WO2019007077A1 - 显示装置和显示装置的制作方法 - Google Patents

显示装置和显示装置的制作方法 Download PDF

Info

Publication number
WO2019007077A1
WO2019007077A1 PCT/CN2018/076474 CN2018076474W WO2019007077A1 WO 2019007077 A1 WO2019007077 A1 WO 2019007077A1 CN 2018076474 W CN2018076474 W CN 2018076474W WO 2019007077 A1 WO2019007077 A1 WO 2019007077A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
display device
layer
light emitting
present disclosure
Prior art date
Application number
PCT/CN2018/076474
Other languages
English (en)
French (fr)
Inventor
林俊仪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/305,825 priority Critical patent/US11251238B2/en
Publication of WO2019007077A1 publication Critical patent/WO2019007077A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present disclosure relates to, but is not limited to, the field of display technology, and more particularly to a display device and a method of fabricating the display device.
  • OLED Organic Electroluminance Display
  • the OLED can be classified into a bottom emission type and a top emission type.
  • the light emitted from the bottom emission type OLED is from one side of the substrate, and the light emitted from the top emission type OLED is from the top.
  • the color film layer and the touch trace for implementing the touch operation are fabricated through multiple processes, and in actual fabrication, the package is made on the organic electro (EL) layer.
  • the color film layer and the touch trace adopt a multi-pass process, and the manufacturing process is complicated, and may cause loss to the organic EL layer, thereby reducing the production yield of the display.
  • the touch traces in the prior art are usually external traces, and a special space needs to be opened in the display for setting the touch traces, which increases the thickness and weight of the display and affects the appearance of the display. Reduce the market competitiveness of displays.
  • Embodiments of the present disclosure provide a display device and a display device to at least partially solve the problem of the top-emitting touch display in the prior art: the color film layer and the touch trace are required to be processed by using multiple processes. As a result, the manufacturing process is complicated, and the organic EL layer may be damaged, the display yield of the display is lowered, and the thickness and weight of the display are increased due to the touch trace being an external trace, which affects the appearance size of the display.
  • Embodiments of the present disclosure provide a display device including: a touch trace and a photonic crystal structure disposed in a same layer, an orthographic projection of the photonic crystal structure on a substrate and an orthographic projection of a pixel light emitting unit on the substrate overlapping.
  • the photonic crystal structure is a periodically arranged photonic crystal unit, and each of the photonic crystal units includes a plurality of different photonic crystal patterns;
  • Each of the photonic crystal patterns is configured to form monochromatic light of a specific wavelength range after the light emitted by the pixel light emitting unit passes through the photonic crystal pattern.
  • the photonic crystal pattern in each of the photonic crystal units includes a convex columnar structure or a concave columnar structure arranged in different periods.
  • each of the photonic crystal units has three different patterns of photonic crystal patterns for forming monochromatic lights of red, green and blue, respectively.
  • the touch trace is disposed around the photonic crystal unit or a plurality of the photonic crystal patterns.
  • the pixel light emitting unit includes a first electrode layer, an organic light emitting layer, and a second electrode layer which are sequentially arranged.
  • the touch trace and the photonic crystal structure are located in a transparent conductive layer, and the transparent conductive layer is located on a side of the pixel light emitting unit away from the substrate.
  • a side of the transparent conductive layer away from the substrate is provided with a black matrix, and the black matrix is located between two adjacent photonic crystal patterns.
  • the pixel light emitting unit is located in a pixel defining layer, and a thin film encapsulating layer is disposed between the pixel defining layer and the transparent conductive layer.
  • the display device as described above is a top emission touch display.
  • the embodiment of the present disclosure further provides a method for manufacturing a display device, including:
  • a touch trace and a photonic crystal structure are formed by a mask process, the orthographic projection of the photonic crystal structure on the substrate overlapping with the orthographic projection of the pixel light emitting unit on the substrate.
  • the pixel light emitting unit is located in the pixel defining layer, and the forming the touch trace and the photonic crystal structure by using a mask process comprises:
  • the method further includes:
  • a black matrix is formed on the transparent conductive layer, the black matrix being located between two adjacent photonic crystal patterns.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a top plan view of a display device according to an embodiment of the present disclosure
  • FIG. 3 is a top plan view of a photonic crystal pattern in a display device according to an embodiment of the present disclosure
  • FIG. 4 is a top plan view of another photonic crystal pattern in a display device according to an embodiment of the present disclosure.
  • FIG. 5 is a top view of still another photonic crystal pattern in the display device according to an embodiment of the present disclosure.
  • FIG. 6 is a top plan view of another display device according to an embodiment of the present disclosure.
  • FIG. 7 is a top plan view of still another display device according to an embodiment of the present disclosure.
  • FIG. 8 is a top plan view of still another display device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another display device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another display device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another display device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a photonic crystal pattern in a display device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another photonic crystal pattern in a display device according to an embodiment of the present disclosure.
  • FIG. 15 is a flowchart of a method for fabricating a display device according to an embodiment of the present disclosure
  • 16 is a schematic diagram of a process of a method of fabricating a display device according to an embodiment of the invention.
  • FIG. 17 is a flowchart of a method for fabricating another display device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a plan view showing a structure of the display device.
  • the display device provided in this embodiment is, for example, a top emission display device, and the display device may include: a touch trace 130 and a photonic crystal structure 120 disposed in the same layer, and the orthographic projection of the photonic crystal structure 120 on the substrate 210 The orthographic projection of the pixel light emitting unit 110 on the substrate 210 overlaps.
  • the display device may further include: a Pixel Definition Layer (PDL) 230 and a pixel light emitting unit 110 located in the pixel defining region 231.
  • PDL Pixel Definition Layer
  • FIG. 1 is only a partial structure of the display device, and shows a plurality of photonic crystal patterns 122 in the photonic crystal structure 120.
  • a plurality of pixel defining regions 231 are disposed in the pixel defining layer 230, each of the pixel defining regions 231 may be one hole, and one pixel light emitting unit 110 is disposed in each of the pixel defining regions 231.
  • the touch trace 130 and the photonic crystal structure 120 may be disposed in a transparent conductive layer (TCL) 250 of the display device (FIG. 2 shows the touch in the transparent conductive layer 250).
  • TCL transparent conductive layer
  • FIG. 2 shows the touch in the transparent conductive layer 250.
  • the display device is formed on the substrate 210, and a thin film transistor array (TFT Array) layer 220 is disposed between the pixel defining layer (PDL) layer 230 and the substrate 210.
  • the light emitting unit 110 is located in the PDL layer 230.
  • the side of the PDL layer 230 away from the substrate 210 ie, between the transparent conductive layer 250 and the PDL 230
  • TFE thin film encapsulation
  • a side of the spacer 250 away from the substrate is further provided with a protective layer 260, such as a hard coat (Hard Coat).
  • a cross-sectional view of the display device is shown.
  • a pixel defining region 231 is disposed in the PDL layer 230, and the pixel defining region 231 may be formed by performing a mask processing on the PDL layer 230 (for example, formed by coating). After the plurality of pixels in the PDL layer 230 define the region 231, one pixel light emitting unit 110 is formed in each of the pixel defining regions 231 for emitting photons and passing through the photonic crystal structure 120 of the display device.
  • the orthographic projection of the photonic crystal structure 120 on the substrate 210 in the embodiment of the present disclosure overlaps with the orthographic projection of the pixel light emitting unit 110 on the substrate 210.
  • the photonic crystal structure 120 is an overall structure of a pixel layer in the display device.
  • the photonic crystal structure 120 includes a plurality of photonic crystal units 121, each photonic crystal unit 121 is one pixel, and the photonic crystal unit 121 includes a plurality of The photonic crystal pattern 122, each photonic crystal pattern 122 is a sub-pixel.
  • each of the pixel light emitting units 110 in the display device of the embodiment of the present disclosure corresponds to one photonic crystal pattern 122, as can be seen from FIG.
  • the side of the pixel light emitting unit 110 remote from the substrate has a photonic crystal pattern 122 corresponding thereto, and the pixel light emitting unit 110 and the photonic crystal pattern 122 may have a one-to-one correspondence.
  • the display device has a touch trace 130 disposed in the same layer as the photonic crystal structure 120.
  • the touch trace 130 is a trace for implementing a touch function of the user.
  • 2 is a top view of a display device according to an embodiment of the present disclosure.
  • the touch trace 130 and the photonic crystal structure 120 are located in the same layer of the display device (for example, the transparent conductive layer 250), and the touch trace is 130 may be disposed around the photonic crystal unit 121 or the plurality of photonic crystal patterns 122.
  • the relationship of the photonic crystal structure 120, the photonic crystal unit 121, and the photonic crystal pattern 122 is also shown in FIG.
  • the photonic crystal structure 120 disposed in the transparent conductive layer 250 in the embodiment of the present disclosure is used to implement the color film layer function, and the transparent conductive layer 250 can be regarded as a color film layer, and the photon emitted by the pixel light emitting unit 110.
  • the photonic crystal structure 120 has a filtering effect, after the photons pass through the photonic crystal pattern 122 of different patterns, the emitted light of different wavelength ranges can be formed, that is, a single color of different colors is formed. Light.
  • the photonic crystal structure 120 and the touch trace 130 are located on the same layer of the display device, indicating that the color film functional layer and the touch trace 130 are located in the same layer; in addition, the photonic crystal structure 120 and the touch trace 130 may be
  • the masking process is performed on the transparent conductive layer 250 (for example, formed by deposition), that is, the fabrication of the photonic crystal structure 120 and the touch trace 130 can be completed by one process.
  • the color film layer and the touch trace for implementing the touch operation are produced through multiple processes, and a special space needs to be opened in the display for setting the touch trace.
  • the color film functional layer ie, the photonic crystal structure 120
  • the touch trace 130 can be completed through a process to avoid the color film functional layer and the color film functional layer on the organic EL layer.
  • the multi-pass process required for the touch routing can effectively reduce the damage probability of the process to the organic EL layer, thereby obtaining a higher product yield; in addition, the touch trace 130 and the color film functional layer (ie, The photonic crystal structure 120) is located in the same layer (ie, the transparent conductive layer 250), which can effectively reduce the thickness of the overall module and reduce the weight of the display device, thereby improving the market competitiveness of the display device.
  • the photonic crystal structure 120 in the transparent conductive layer 250 includes periodic alignment.
  • the photonic crystal unit 121 has a different photonic crystal pattern 122 in each photonic crystal unit 121. Referring to the display device shown in FIG. 2, FIG. 2 is shown as an example of a photonic crystal pattern 122 having three different patterns in each photonic crystal unit 121.
  • Each photonic crystal pattern 122 in the embodiment of the present disclosure is used to form monochromatic light of a specific wavelength range after the light emitted by the pixel light emitting unit 110 passes through the photonic crystal pattern 122.
  • Each photonic crystal unit 121 of the display device shown in FIG. 2 has three different patterns of photonic crystal patterns 122, that is, the photonic crystal structure 120 in the transparent conductive layer 250 is repeatedly formed by the photonic crystal patterns 122 of the three different patterns.
  • three photonic crystal patterns 122 are used to form monochromatic light of red, green, and blue (Red, Green, Blue, abbreviated as: RGB), respectively, which are used to implement RGB layer functions.
  • FIG. 3 is a top view of a photonic crystal pattern in a display device according to an embodiment of the present disclosure
  • FIG. 4 is a top view of another photonic crystal pattern in the display device according to an embodiment of the present disclosure
  • the patterns of the columnar structures 122a in the different photonic crystal patterns 122 shown in FIG. 3 to FIG. 5 are different.
  • the density of the columnar structures 122a in the photonic crystal pattern 122 shown in FIG. 3 is the smallest, and the photonic crystal pattern 122 shown in FIG.
  • the density of the center pillar structure 122a is the largest, and FIGS.
  • 3 to 5 may be three different photonic crystal patterns 122 in one photonic crystal unit 121, and the photonic crystal pattern 122 in each photonic crystal unit 121 includes outer rows arranged in different periods.
  • the photonic crystal pattern 122 in each photonic crystal unit 121 of the embodiment of the present disclosure is used to form each photonic crystal after the light emitted from the pixel light emitting unit 110 passes through each photonic crystal pattern 122 in the photonic crystal unit 121.
  • Pattern 122 corresponds to monochromatic light in the wavelength range.
  • the photons emitted by each of the pixel light emitting units 110 in the embodiment of the present disclosure are generally the same. After the photons pass through different photonic crystal patterns 122 in each photonic crystal unit 121, the monochromatic light forming different wavelength ranges may be the above red color.
  • the monochromatic light of green and blue, that is, the different photonic crystal patterns 122 in each photonic crystal unit 121 are used to implement the functions of the RGB layer.
  • Embodiments of the present disclosure utilize different periodic arrangements of high and low refractive index materials to pass photons through different high and low refractive index materials to obtain desired red, green, and blue colors.
  • a general transparent conductive material Indium Tin Oxide (ITO)
  • ITO Indium Tin Oxide
  • an air refractive index of 1.0 which is combined with the difference in refractive index between columnar or porous ITO and air.
  • Columnar or pore structures of different periods can filter out monochromatic light of different wavelength ranges.
  • the embodiment of the present disclosure does not limit the photonic crystal pattern 122 including only three different structures in each photonic crystal unit 121, and the photonic crystal pattern 122 is also not limited to form a single color of red, green, and blue. Light. For example, if four photonic crystal patterns 122 of different structures are included in each photonic crystal unit 121, four different colors of monochromatic light can be formed.
  • the touch traces 130 in the embodiment of the present disclosure may be disposed in the vicinity of the photonic crystal unit 121 or the plurality of photonic crystal patterns 122.
  • the touch trace 130 surrounds the plurality of photonic crystal units 121 arranged in the lateral direction.
  • FIG. 6 a top view of another display device according to an embodiment of the present disclosure, where the touch traces 130 in FIG. 6 are arranged in a longitudinal direction. Around the photonic crystal pattern 122.
  • FIG. 7 a top view of still another display device according to an embodiment of the present disclosure, where the touch trace 130 is surrounded by each photonic crystal in FIG. 7 .
  • the touch trace 130 is surrounded by each photonic crystal in FIG. 7 .
  • FIG. 8 a top view of still another display device according to an embodiment of the present disclosure, where the touch traces 130 in FIG. 8 surround the longitudinally arranged n Around the photonic crystal unit 121, that is, around the photonic crystal pattern 122 of n*m (n rows and m columns), n in FIG. 8 is 2, and m is 3.
  • the embodiment of the present disclosure does not limit the specific setting manner of the touch line 130.
  • the setting manner of the touch line 130 shown in FIG. 2 and FIG. 6 to FIG. 8 is only a schematic description, as long as the touch is used.
  • the traces 130 are disposed in the transparent conductive layer 250, that is, disposed in the same layer as the photonic crystal structure 120 for realizing the color film functional layer, and can accurately identify the touch operation of the user, and can be implemented as the present disclosure.
  • the setting of the touch line 130 is set.
  • FIG. 9 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • the pixel light emitting unit 110 in the pixel defining region 231 of the PDL layer 230 of the embodiment of the present disclosure may include a first electrode layer 111, an organic light emitting layer 112, and a second electrode layer 113, which are sequentially arranged, wherein the first electrode layer is a reflective electrode
  • the anode layer (Anode) is an organic EL layer
  • the second electrode layer 113 is a semi-transparent electrode, such as a cathode layer.
  • the principle of the pixel light-emitting unit 110 emitting light is: from the organic light-emitting layer 112. The emitted photons are emitted by the cathode layer after being reflected by the anode layer.
  • FIG. 10 is a schematic structural diagram of still another display device according to an embodiment of the present disclosure.
  • a black matrix 140 is disposed on a side of the transparent conductive layer 250 away from the substrate, and the black matrix 140 is located in two adjacent photonic crystals. Between the graphics 122. The color mixing phenomenon between adjacent sub-pixels due to light leakage can be avoided by providing the black matrix 140 between two adjacent photonic crystal patterns 122.
  • the photonic crystal pattern 122 in the embodiment of the present disclosure may be a convex columnar structure 122a or a concave columnar structure 122b.
  • FIG. 11 is a schematic structural diagram of still another display device according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of still another display device according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another photonic crystal pattern in a display device according to an embodiment of the present disclosure. Referring to FIG. 9 to FIG. 12, in the display device shown in FIG. 9 and FIG. 10, the photonic crystal patterns 122 are all convex columnar structures 122a, and the structure is as shown in FIG.
  • the crystal pattern 122 is a concave columnar structure 122b.
  • the structure is as shown in FIG. 14.
  • the display device shown in FIG. 12 has a black matrix 140 added to the display device shown in FIG.
  • the display device is the same. It should be noted that the size and spacing of the photonic crystal pattern 122 in the embodiment of the present disclosure are generally nanometer grade, for example, less than 500 nm.
  • the embodiment of the present disclosure further provides a method for fabricating a display device, which is used to fabricate the display device provided by any of the above embodiments of the present disclosure.
  • FIG. 15 is a flowchart of a method for fabricating a display device according to an embodiment of the present disclosure.
  • the method provided in this embodiment may be applied to a process of manufacturing a display device.
  • the method provided by the embodiment of the present disclosure may include the following steps:
  • the embodiment of the present disclosure further includes:
  • FIG. 1 a cross-sectional view in the manufacturing process is illustrated in FIG. 1, wherein a manner of forming a pixel defining region in the pixel defining layer may be performed by using a mask. The process exposes the pixel defining layer to form a pixel defining region. After forming the pixel defining region, the pixel light emitting unit may be formed in each of the pixel defining regions. As shown in FIG.
  • the pixel light emitting unit in the embodiment of the present disclosure may also include: a first electrode layer, an organic light emitting layer, and a second
  • the electrode layers can be formed into layers of the pixel light-emitting unit by different process flows, which are described later by several alternative embodiments.
  • a touch trace and a photonic crystal structure are formed by a mask process, and an orthographic projection of the photonic crystal structure on the substrate overlaps with an orthographic projection of the pixel light emitting unit on the substrate.
  • the embodiment of the present disclosure further includes:
  • a thin film encapsulation layer and a transparent conductive layer are sequentially formed on the pixel defining layer and the pixel light emitting unit; and the touch trace and the photonic crystal structure are formed on the transparent conductive layer.
  • a mask process for forming a touch trace and a photonic crystal structure may be as shown in FIG. 16 , and the process includes: coating a layer of photoresist 310 on the transparent conductive layer 250, using gray tone The mask 310 performs step exposure and development on the photoresist 310, wherein the touch trace 130 and the outer columnar structure of the photonic crystal structure 120 (FIG. 16 uses the photonic crystal pattern 122 in the photonic crystal structure 120 as shown in FIG.
  • the structure is shown as an example) forming an unexposed area, a photoresist having a first thickness corresponding to the opaque region 321 of the gray reticle 320; and a position forming portion outside the convex columnar structure in the photonic crystal structure 120
  • the first conductive layer 250 of the fully exposed region is etched to form the touch trace 130 and the photonic crystal structure 120.
  • the photoresist 310 is ashed to remove the photoresist 310 as a whole.
  • the thickness of the transparent conductive layer 250 is exposed to a portion of the exposed region, and the transparent conductive layer 250 of a portion of the thickness in the partially exposed region is etched away by the second etching process, and the remaining photoresist 310 is stripped to form the photonic crystal structure 120.
  • the convex columnar structure It can be seen through the above process that the formed touch trace 130 and the photonic crystal structure 120 are formed by a mask process on the transparent conductive layer 250, and the orthographic projection of the photonic crystal structure 120 on the substrate and the pixel light emitting unit The orthographic projections on the substrate overlap.
  • the manufacturing method of the display device can complete the color film functional layer (ie, the photonic crystal structure) and the touch trace through a process to avoid the color film functional layer and the touch trace on the organic EL layer.
  • the required multi-pass process can effectively reduce the damage probability of the process to the organic EL layer, thereby obtaining a higher product yield; in addition, the touch trace and the color film functional layer (ie, the photonic crystal structure) are located in the same In the layer (ie, the transparent conductive layer), the thickness of the entire module can be effectively reduced, the weight of the display device can be reduced, and the market competitiveness of the display device can be improved.
  • the method provided by the embodiment of the present disclosure may further include:
  • a black matrix is disposed between two adjacent photonic crystal patterns in the figure, which can be used to avoid color mixing caused by light leakage of adjacent sub-pixels.
  • the layers of the pixel light-emitting unit can be formed by different process flows, which are described below through several alternative embodiments.
  • the forming of the pixel light emitting unit in the pixel defining region may include: sequentially depositing the first electrode film, the organic light emitting film, and the second electrode film, and coating the second electrode film A photoresist is coated, and the photoresist is exposed and developed, and then etched by an etching process to form a first electrode layer, an organic light-emitting layer and a second electrode layer in a defined area of each pixel.
  • FIG. 17 a flowchart of a method for fabricating another display device according to an embodiment of the present disclosure, based on the flow shown in FIG. 15 , the present disclosure
  • the embodiment may further include: before S103:
  • an implementation manner of forming a pixel light emitting unit in a pixel defining region may include: forming an organic light emitting layer and a second electrode layer in the pixel defining region.
  • a first electrode film may be deposited before coating the pixel defining layer, and then a pixel defining layer is coated, the pixel defining layer encasing an edge of the first electrode film, and the pixel defining layer is formed by a mask process
  • the pixel defining region in the pixel needs to retain the first electrode film of the pixel defining region position when forming the pixel defining region. Therefore, when the pixel light emitting unit is formed, only the organic light emitting layer and the second electrode layer need to be deposited.
  • the principle of the pixel light emitting unit emitting light in the embodiment of the present disclosure is that the photon emitted from the organic light emitting layer is emitted by the second electrode layer after being reflected by the first electrode layer, and the process provided by the embodiment of the present disclosure. It can be seen that although a first electrode film is deposited on the thin film transistor array layer, and the organic light-emitting layer and the second electrode layer are deposited on the pixel defining layer and the pixel defining region, the first position is only at the position of the pixel defining region. A complete composite structure of the electrode layer, the organic light-emitting layer, and the second electrode layer. Therefore, the pixel light-emitting unit in the embodiment of the present disclosure is disposed only in the pixel defining region.
  • the method may further include:
  • the first electrode film is processed by a mask process to form a first electrode layer; wherein the position of the first electrode layer corresponds to a pixel defining region in the pixel defining layer.
  • the first electrode film may be processed by a mask process to form a first electrode layer before the pixel defining layer is coated, the process such that the first electrode layer remains only within the pixel defining region.
  • the film may be processed by a mask process to retain only the light-emitting layer and the second electrode layer located in the pixel defining region.
  • the photonic crystal structure in the transparent conductive layer is a periodically arranged photonic crystal unit, and the photonic crystal pattern in each photonic crystal unit is different, wherein each photonic crystal pattern is used for After the light emitted from the pixel light emitting unit passes through the photonic crystal pattern, monochromatic light of a specific wavelength range is formed.
  • the photonic crystal pattern of different patterns shown in FIG. 2 as shown in FIG. 2, three different photonic crystal patterns are included in each photonic crystal unit, and the photonic crystal patterns are used to implement the RGB layer function.
  • the photonic crystal pattern in each photonic crystal unit in the embodiment of the present disclosure may include a convex columnar structure or a concave columnar structure arranged in different periods.
  • the touch trace is disposed around the photonic crystal unit or the plurality of photonic crystal patterns.
  • the touch traces may be arranged differently around the photonic crystal unit or the plurality of photonic crystal patterns, as long as the touch traces are disposed in the transparent conductive layer, that is, The photonic crystal structure of the color film functional layer is disposed in the same layer, and the touch operation of the user can be accurately recognized, which can be used as the setting manner of the touch trace in the embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示装置和显示装置的制作方法。其中,显示装置包括:设置于同一层中的触控走线(130)和光子晶体结构(120),该光子晶体结构(120)在基板(210)上的正投影与像素发光单元(110)在该基板(210)上的正投影重叠。

Description

显示装置和显示装置的制作方法
交叉引用
本公开要求2017年7月7日提交的、发明名称为“一种显示装置和显示装置的制作方法”的中国专利申请No.201710551731.9的优先权,其全部内容通过引用结合在此。
技术领域
本公开涉及但不限于显示技术领域,尤指一种显示装置和显示装置的制作方法。
背景技术
随着显示器技术发展和更新换代,有机电致发光显示器件(Organic Electroluminance Display,简称为:OLED)已逐渐成为显示领域的主流产品。按照光的出射方式,OLED可以分为底发射型和顶发射型,底发射型OLED中的出射光来自于衬底基板一侧,顶发射型OLED中的出射光来自顶端。
为了实现大尺寸OLED的全彩化,一般通过顶发射发光二极管(Light Emitting Diode,简称为:LED)和彩膜层叠加来实现。现有技术的顶发射触控显示器中,彩膜层和用于实现触控操作的触控走线通过多道制程制作,在实际制作中,在有机电致(EL)层的封装层上制作彩膜层和触控走线采用多道制程,该制作方式的工艺复杂,并且可能会对有机EL层造成损失,从而降低显示器的制作良率。另外,现有技术中的触控走线通常为外接走线,需要在显示器中开辟专门的空间用于设置触控走线,这样,会增加显示器的厚度和重量,并且影响显示器的外观尺寸,降低显示器的市场竞争性。
发明内容
本公开实施例提供了一种显示装置和显示装置的制作方法,以至少部分解决现有技术中的顶发射触控显示器存在的问题:由于需要采用多道制程制作彩膜层和触控走线,而导致制作工艺复杂,并且可能会对有机EL层造成损失, 降低显示器的制作良率,以及由于触控走线为外接走线而增加显示器的厚度和重量,影响显示器的外观尺寸。
本公开实施例提供一种显示装置,包括:设置于同一层中的触控走线和光子晶体结构,所述光子晶体结构在基板上的正投影与像素发光单元在所述基板上的正投影重叠。
可选地,如上所述的显示装置中,所述光子晶体结构为周期性排列的光子晶体单元,每个所述光子晶体单元包括多个不同的光子晶体图形;
每个所述光子晶体图形,用于在所述像素发光单元发出的光经过所述光子晶体图形后,形成特定波长范围的单色光。
可选地,如上所述的显示装置中,每个所述光子晶体单元内的光子晶体图形包括以不同周期排列的外凸柱状结构或内凹柱状结构。
可选地,如上所述的显示装置中,每个所述光子晶体单元内具有三种不同图形的光子晶体图形,分别用于形成红色、绿色和蓝色的单色光。
可选地,如上所述的显示装置中,所述触控走线设置于所述光子晶体单元或多个所述光子晶体图形的周围。
可选地,如上所述的显示装置中,所述像素发光单元包括依次排列的第一电极层、有机发光层和第二电极层。
可选地,如上所述的显示装置中,所述触控走线和所述光子晶体结构位于透明导电层中,所述透明导电层位于所述像素发光单元远离所述基板的一侧上。
可选地,如上所述的显示装置中,所述透明导电层远离所述基板的一侧设置有黑矩阵,所述黑矩阵位于两个相邻的光子晶体图形之间。
可选地,如上所述的显示装置中,所述像素发光单元位于像素界定层中,所述像素界定层与所述透明导电层之间设置有薄膜封装层。
可选地,如上所述的显示装置是顶发射触控显示器。
本公开实施例还提供一种显示装置的制作方法,包括:
形成像素发光单元;
通过一次掩膜工艺形成触控走线和光子晶体结构,所述光子晶体结构在基 板上的正投影与所述像素发光单元在所述基板上的正投影重叠。
可选地,如上所述的显示装置的制作方法中,所述像素发光单元位于像素界定层中,并且所述通过一次掩膜工艺形成触控走线和光子晶体结构包括:
在所述像素界定层和所述像素发光单元上依次形成薄膜封装层和透明导电层;
采用灰色调掩膜版对所述透明导电层进行一次掩膜处理,形成所述触控走线和所述光子晶体结构,其中,所述触控走线围绕在所述光子晶体结构中光子晶体单元或多个光子晶体图形的周围。
可选地,如上所述的显示装置的制作方法中,所述触控走线和所述光子晶体结构形成于透明导电层上,所述方法还包括:
在所述透明导电层上形成黑矩阵,所述黑矩阵位于两个相邻的光子晶体图形之间。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开实施例提供的一种显示装置的结构示意图;
图2为本公开实施例提供的一种显示装置的俯视图;
图3为本公开实施例提供的显示装置中一种光子晶体图形的俯视图;
图4为本公开实施例提供的显示装置中另一种光子晶体图形的俯视图;
图5为本公开实施例提供的显示装置中又一种光子晶体图形的俯视图;
图6为本公开实施例提供的另一种显示装置的俯视图;
图7为本公开实施例提供的又一种显示装置的俯视图;
图8为本公开实施例提供的再一种显示装置的俯视图;
图9为本公开实施例提供的另一种显示装置的结构示意图;
图10为本公开实施例提供的又一种显示装置的结构示意图;
图11为本公开实施例提供的再一种显示装置的结构示意图;
图12为本公开实施例提供的再一种显示装置的结构示意图;
图13为本公开实施例提供的显示装置中一种光子晶体图形的结构示意图;
图14为本公开实施例提供的显示装置中另一种光子晶体图形的结构示意图;
图15为本公开实施例提供的一种显示装置的制作方法的流程图;
图16为公开实施例提供的显示装置的制作方法的一个工艺过程的示意图;
图17为本公开实施例提供的另一种显示装置的制作方法的流程图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开提供以下几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本公开实施例提供的一种显示装置的结构示意图,图2为该显示装置的一种结构的俯视图。本实施例提供的显示装置例如为顶发射显示装置,该显示装置可以包括:设置于同一层中的触控走线130和光子晶体结构120,该光子晶体结构120在基板210上的正投影与像素发光单元110在基板210上的正投影重叠;另外,该显示装置还可以包括:像素界定层(Pixel Definition Layer,简称为:PDL)230和位于像素界定区域231中的像素发光单元110。需要说明的是,图1仅为显示装置的部分结构,示出了光子晶体结构120中的多个光子晶体图形122。
在本公开实施例中,像素界定层230中设置有多个像素界定区域231,每个像素界定区域231可以为一个孔,并且每个像素界定区域231中设置有一个像素发光单元110。
在实际应用中,触控走线130和光子晶体结构120可以设置于显示装置的 透明导电层(Transparent Conductive Layer,简称为:TCL)250中(图2示出了透明导电层250中触控走线130和光子晶体结构120的一种设置方式)。
在本公开实施例中,显示装置制作于基板210之上,像素界定层(PDL)层230与基板210之间设置有薄膜晶体管阵列(Thin Film Transistor Array,简称为:TFT Array)层220,像素发光单元110具体位于PDL层230中,PDL层230远离基板210的一侧(即透明导电层250与PDL230之间)设置有薄膜封装(Thin Film Encapsulation,简称为:TFE)层240,透明导电层250远离基板的一侧还设置有保护层260,该保护层例如为硬涂层(Hard Coat)。如图1所示,示出了显示装置的截面图。
本公开实施例中的显示装置中,PDL层230中设置有像素界定区域231,该像素界定区域231可以是对(例如通过涂覆形成的)PDL层230进行掩膜处理所形成的,在形成PDL层230中的多个像素界定区域231后,在每个像素界定区域231中形成一个像素发光单元110,这些像素发光单元110用于发射光子并穿过显示装置的光子晶体结构120。
本公开实施例中光子晶体结构120在基板210上的正投影与像素发光单元110在基板210上的正投影重叠。需要说明的是,光子晶体结构120为显示装置中像素层的整体结构,光子晶体结构120中包括多个光子晶体单元121,每个光子晶体单元121为一个像素,光子晶体单元121中包括多个光子晶体图形122,每个光子晶体图形122为一个子像素。基于上述光子晶体结构120、光子晶体单元121和光子晶体图形122的关系,本公开实施例的显示装置中每个像素发光单元110对应一个光子晶体图形122,从图1中可以看出,每个像素发光单元110远离基板的一侧具有与其对应的光子晶体图形122,像素发光单元110与光子晶体图形122可以为一一对应的关系。另外,显示装置中具有与光子晶体结构120设置于同一层中的触控走线130,该触控走线130为用于实现用户触控功能的走线。图2为本公开实施例提供的一种显示装置的俯视图,可以看出,触控走线130和光子晶体结构120位于显示装置的同一层(例如为透明导电层250)中,触控走线130可以设置于光子晶体单元121或多个光子晶体图形122的周围。图2中同时示出了光子晶体结构120、光子晶体单元121和光子晶体图形122的关系。
需要说明的是,本公开实施例中设置于透明导电层250中的光子晶体结构 120用于实现彩膜层功能,可以将透明导电层250视为彩膜层,当像素发光单元110发射的光子经过透明导电层250中的光子晶体结构120后,由于光子晶体结构120具有滤波作用,在光子经过不同图形的光子晶体图形122后,可以形成不同波长范围的出射光,即形成不同颜色的单色光。也就是说,光子晶体结构120和触控走线130位于显示装置的同一层,表示彩膜功能层和触控走线130位于同一层;另外,光子晶体结构120和触控走线130可以是对(例如通过沉积形成的)透明导电层250进行掩膜处理所形成的,即可以通过一道制程完成光子晶体结构120和触控走线130的制作。
现有技术中的顶发射触控显示器中,彩膜层和用于实现触控操作的触控走线通过多道制程制作,并且需要在显示器中开辟专门的空间用于设置触控走线。相比之下,本公开实施例提供的显示装置中,可以通过一道制程完成彩膜功能层(即光子晶体结构120)和触控走线130,避免在有机EL层上制作彩膜功能层和触控走线时所需的多道制程,可以有效的减小工艺制程对有机EL层的损伤几率,从而获得较高的产品良率;另外,触控走线130和彩膜功能层(即光子晶体结构120)位于同一层(即透明导电层250)中,可以有效降低整体模组的厚度,减轻显示装置的重量,从而提高显示装置的市场竞争性。
可选地,基于上述对光子晶体结构120、光子晶体单元121和每个光子晶体图形122之间关系的描述,在本公开实施例中,透明导电层250中的光子晶体结构120包括周期性排列的光子晶体单元121,每个光子晶体单元121内的光子晶体图形122不同。参照图2所示显示装置,图2以每个光子晶体单元121内具有三种不同图形的光子晶体图形122为例予以示出。
本公开实施例中的每个光子晶体图形122,用于在像素发光单元110发出的光经过本光子晶体图形122后,形成特定波长范围的单色光。图2所示显示装置的每个光子晶体单元121内具有三种不同图形的光子晶体图形122,即透明导电层250中光子晶体结构120由这三种不同图形的光子晶体图形122重复排列形成,例如,三种光子晶体图形122分别用于形成红色、绿色和蓝色(Red、Green、Blue,简称为:RGB)的单色光,这些光子晶体图形122用于实现RGB层功能。
可选地,图3为本公开实施例提供的显示装置中一种光子晶体图形的俯视图,图4为本公开实施例提供的显示装置中另一种光子晶体图形的俯视图,图 5为本公开实施例提供的显示装置中又一种光子晶体图形的俯视图。可以看出,图3到图5所示不同光子晶体图形122中的柱状结构122a组成的图形不同,图3所示光子晶体图形122中柱状结构122a的密度最小,图5所示光子晶体图形122中柱状结构122a的密度最大,图3到图5可以为一个光子晶体单元121内的三种不同的光子晶体图形122,每个光子晶体单元121内的光子晶体图形122包括以不同周期排列的外凸柱状结构或内凹柱状结构。
本公开实施例的每个光子晶体单元121内的光子晶体图形122,用于在像素发光单元110发出的光经过本光子晶体单元121内的每个光子晶体图形122后,形成与每个光子晶体图形122对应波长范围的单色光。本公开实施例中每个像素发光单元110发射的光子通常为相同的,在光子经过每个光子晶体单元121内不同的光子晶体图形122后,形成不同波长范围的单色光可以为上述红色、绿色和蓝色的单色光,即每个光子晶体单元121内不同的光子晶体图形122用于实现RGB层的功能。本公开实施例利用高低折射率材料的不同周期性排列,使光子经过不同的高低折射率材料后,得到所需的红色、绿色和蓝色。举例来说,一般透明导电材料氧化铟锡(Indium Tin Oxide,简称为:ITO),折射率约1.8,而空气折射率为1.0,利用柱状或孔洞状ITO与空气折射率的高低差异,再结合不同周期的柱状或孔洞结构,即可分别过滤出不同波长范围的单色光。
需要说明的是,本公开实施例不限制每个光子晶体单元121内仅包括三种不同结构的光子晶体图形122,同样不限制光子晶体图形122仅用于形成红色、绿色和蓝色的单色光。例如,若每个光子晶体单元121内包括四种不同结构的光子晶体图形122时,可以形成四种不同颜色的单色光。
可选地,本公开实施例中的触控走线130的设置方式可以为:设置于光子晶体单元121或多个光子晶体图形122的周围。
在本公开实施例的一种可能的实现方式中,如图2所示,触控走线130围绕在横向排列的多个光子晶体单元121的周围。
在本公开实施例的另一种可能的实现方式中,如图6所示,为本公开实施例提供的另一种显示装置的俯视图,图6中触控走线130围绕在纵向排列的多个光子晶体图形122的周围。
在本公开实施例的另一种可能的实现方式中,如图7所示,为本公开实施 例提供的又一种显示装置的俯视图,图7中触控走线130围绕在每个光子晶体单元121的周围。
在本公开实施例的另一种可能的实现方式中,如图8所示,为本公开实施例提供的再一种显示装置的俯视图,图8中触控走线130围绕在纵向排列的n个光子晶体单元121的周围,即围绕在n*m(n排m列)的光子晶体图形122的周围,图8中的n为2,m为3。
需要说明的是,本公开实施例不限制触控走线130的具体设置方式,上述图2,图6到图8所示触控走线130的设置方式仅是示意性说明,只要将触控走线130设置于透明导电层250中,即与用于实现彩膜功能层的光子晶体结构120设置于同一层中,并且可以对用户的触控操作进行准确的识别,均可以作为本公开实施例中触控走线130的设置方式。
可选地,图9为本公开实施例提供的另一种显示装置的结构示意图。本公开实施例的PDL层230的像素界定区域231中的像素发光单元110可以包括依次排列的第一电极层111、有机发光层112和第二电极层113,其中,第一电极层为反射电极,例如为阳极层(Anode),有机发光层112即为有机EL层,第二电极层113为半透明电极,例如阴极层(Cathode),像素发光单元110发光的原理为:从有机发光层112发出的光子经过阳极层的反射后由阴极层发射出。
可选地,图10为本公开实施例提供的又一种显示装置的结构示意图。在图2所示显示装置的结构基础上,图10所示实施例提供的显示装置中,透明导电层250远离基板的一侧设置有黑矩阵140,黑矩阵140位于两个相邻的光子晶体图形122之间。可以通过在两个相邻的光子晶体图形122之间设置黑矩阵140,来避免相邻亚像素之间由于漏光而造成混色现象。
可选地,本公开实施例中的光子晶体图形122可以为外凸柱状结构122a,也可以为内凹柱状结构122b。图11为本公开实施例提供的再一种显示装置的结构示意图,图12为本公开实施例提供的再一种显示装置的结构示意图,图13为本公开实施例提供的显示装置中一种光子晶体图形的结构示意图,图14为本公开实施例提供的显示装置中另一种光子晶体图形的结构示意图。参照图9到图12,图9和图10所示显示装置中,光子晶体图形122均为外凸柱状结构122a,该结构如图13所示;图11和图12所示显示装置中,光子晶体图形 122均为内凹柱状结构122b,该结构如图14所示,其中,图12所示显示装置在图11所示显示装置的基础上,增加了黑矩阵140,其它结构与图11所示显示装置相同。需要说明的是,本公开实施例中光子晶体图形122的大小及间距间通常为纳米等级,例如小于500nm。
基于本公开上述各实施例提供的显示装置,本公开实施例还提供一种显示装置的制作方法,该显示装置的制作方法用于制作本公开上述任一实施例提供的显示装置。
如图15所示,为本公开实施例提供的一种显示装置的制作方法的流程图。本实施例提供的方法可以应用于制作显示装置的工艺中,本公开实施例提供的方法,可以包括如下步骤:
S110,形成像素发光单元。
在实际应用中,本公开实施例在形成像素发光单元之前,还包括:
S100,在基板上形成薄膜晶体管阵列层;
S103,形成像素界定层,并形成该像素界定层中的像素界定区域;其中,像素发光单元将形成于像素界定区域中。
在本公开实施例中,可以参照图1所示实施例提供的显示装置,图1中示出了制作过程中的截面图,其中,形成像素界定层中的像素界定区域的方式可以采用掩膜工艺对像素界定层进行曝光,形成像素界定区域。在形成像素界定区域后,可以在每个像素界定区域中形成像素发光单元,如图9所示,本公开实施例中的像素发光单元同样可以包括:第一电极层、有机发光层和第二电极层,可以通过不同的工艺流程形成像素发光单元的各层,后续通过几个可选地实施例予以说明。
S120,通过一次掩膜工艺形成触控走线和光子晶体结构,该光子晶体结构在基板上的正投影与像素发光单元在该基板上的正投影重叠。
在实际应用中,本公开实施例在形成触控走线和光子晶体结构之前,还包括:
S111,在像素界定层和像素发光单元上依次形成薄膜封装层和透明导电 层;触控走线和光子晶体结构均将形成于该透明导电层上。
在本公开实施例中,形成触控走线和光子晶体结构的掩膜工艺可以如图16所示,该工艺方式包括:在透明导电层250上涂覆一层光刻胶310,采用灰色调掩膜版320对光刻胶310进行阶梯曝光并显影,其中,触控走线130和光子晶体结构120的外凸柱状结构(图16以光子晶体结构120中的光子晶体图形122为图13所示结构为例予以示出)位置形成未曝光区域,具有第一厚度的光刻胶,对应于灰色调掩膜版320的不透光区域321;光子晶体结构120中外凸柱状结构以外位置形成部分曝光区域,具有第二厚度的光刻胶,对应于灰色调掩膜版320的部分透光区域322;透明导电层250中除触控走线130和光子晶体结构120以外位置形成完全曝光区域,无光刻胶,对应于灰色调掩膜版320的完全透光区域,第一厚度大于第二厚度。对完全曝光区域的透明导电层250进行第一次刻蚀,形成触控走线130和光子晶体结构120;随后,对光刻胶310进行灰化处理,使光刻胶310在整体上去除第二厚度,暴露出部分曝光区域的透明导电层250,通过第二次刻蚀工艺刻蚀掉部分曝光区域中部分厚度的透明导电层250,剥离剩余的光刻胶310,从而形成光子晶体结构120的外凸柱状结构。通过上述工艺过程可以看出,形成的触控走线130和光子晶体结构120是通过对透明导电层250的一次掩膜工艺形成的,并且光子晶体结构120在基板上的正投影与像素发光单元110在基板上的正投影重叠。
本公开实施例提供的显示装置的制作方法,可以通过一道制程完成彩膜功能层(即光子晶体结构)和触控走线,避免在有机EL层上制作彩膜功能层和触控走线时所需的多道制程,可以有效的减小工艺制程对有机EL层的损伤几率,从而获得较高的产品良率;另外,触控走线和彩膜功能层(即光子晶体结构)位于同一层(即透明导电层)中,可以有效降低整体模组的厚度,减轻显示装置的重量,从而提高显示装置的市场竞争性。
可选地,本公开实施例提供的方法还可以包括:
S130,在透明导电层上形成黑矩阵,该黑矩阵位于两个相邻的光子晶体图形之间。
参考图10和图12所示显示装置,图中两个相邻的光子晶体图形之间均设置有黑矩阵,可以用于避免相邻亚像素漏光而造成的混色现象。
本公开上述实施例中已经说明像素发光单元的各层可以通过不同的工艺 流程形成,以下通过几个可选的实施方式予以说明。
在本公开实施例的一种工艺方式中,在像素界定区域中形成像素发光单元的实现方式可以包括:依次沉积第一电极薄膜、有机发光薄膜和第二电极薄膜,在第二电极薄膜上涂覆一层光刻胶,对光刻胶进行曝光显影,随后采用刻蚀工艺进行刻蚀,形成位于每个像素界定区域中的第一电极层、有机发光层和第二电极层。
在本公开实施例的另一种工艺方式中,如图17所示,为本公开实施例提供的另一种显示装置的制作方法的流程图,在图15所示流程的基础上,本公开实施例在S103之前还可以包括:
S101,在薄膜晶体管阵列层上形成第一电极薄膜。
本公开实施例中,在像素界定区域中形成像素发光单元的实现方式,可以包括:在像素界定区域中形成有机发光层和第二电极层。
在本公开实施例中,可以在涂覆像素界定层之前沉积第一电极薄膜,随后涂覆像素界定层,像素界定层包住第一电极薄膜的边缘,并通过掩膜工艺形成该像素界定层中的像素界定区域,在形成像素界定区域时需要保留像素界定区域位置的第一电极薄膜,因此,在形成像素发光单元时,只需要沉积有机发光层和第二电极层即可。
需要说明的是,本公开实施例中像素发光单元发光的原理为:从有机发光层发出的光子经过第一电极层的反射后由第二电极层发射出,从本公开实施例提供的工艺方式可知,虽然薄膜晶体管阵列层上沉积有一层第一电极薄膜,并且像素界定层和像素界定区域上均沉积有有机发光层和第二电极层,但是,只有在像素界定区域的位置才具有第一电极层、有机发光层和第二电极层的完整复合结构,因此,本公开实施例中的像素发光单元仅设置于上述像素界定区域中。
可选地,在本公开实施例中,在S103之前还可以包括:
S102,通过掩膜工艺对第一电极薄膜进行处理,形成第一电极层;其中,该第一电极层的位置对应像素界定层中的像素界定区域。
在本公开实施例中,在涂覆像素界定层之前,可以通过掩膜工艺对第一电极薄膜进行处理,形成第一电极层,该工艺可以使得第一电极层仅保留在像素 界定区域内。类似地,在像素界定层上沉积有机发光薄膜和第二电极薄膜后,也可以通过掩膜工艺进行处理,仅保留位于像素界定区域机发光层和第二电极层。
可选地,在本公开实施例中,透明导电层中的光子晶体结构为周期性排列的光子晶体单元,每个光子晶体单元内的光子晶体图形不同,其中,每个光子晶体图形,用于在像素发光单元发出的光经过本光子晶体图形后,形成特定波长范围的单色光。可以参照图2所示的不同图形的光子晶体图形,图2所示以每个光子晶体单元内包括三种不同光子晶体图形为例予以示出,该些光子晶体图形用于实现RGB层功能。
另外,本公开实施例中每个光子晶体单元内的光子晶体图形可以包括以不同周期排列的外凸柱状结构或内凹柱状结构。
可选地,在本公开实施例中,触控走线设置于光子晶体单元或多个光子晶体图形的周围。可以参照图2、图6到图8所示,触控走线围绕光子晶体单元或多个光子晶体图形可以采用不同的设置方式,只要将触控走线设置于透明导电层中,即与用于实现彩膜功能层的光子晶体结构设置于同一层中,并且可以对用户的触控操作进行准确的识别,均可以作为本公开实施例中触控走线的设置方式。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的保护范围仍须以所附的权利要求书所界定的范围为准。

Claims (13)

  1. 一种显示装置,包括:设置于同一层中的触控走线和光子晶体结构,所述光子晶体结构在基板上的正投影与像素发光单元在所述基板上的正投影重叠。
  2. 根据权利要求1所述的显示装置,其中所述光子晶体结构为周期性排列的光子晶体单元,每个所述光子晶体单元包括多个不同的光子晶体图形;
    每个所述光子晶体图形,用于在所述像素发光单元发出的光经过所述光子晶体图形后,形成特定波长范围的单色光。
  3. 根据权利要求2所述的显示装置,其中每个所述光子晶体单元内的光子晶体图形包括以不同周期排列的外凸柱状结构或内凹柱状结构。
  4. 根据权利要求2所述的显示装置,其中每个所述光子晶体单元内具有三种不同图形的光子晶体图形,分别用于形成红色、绿色和蓝色的单色光。
  5. 根据权利要求2所述的显示装置,其中所述触控走线设置于所述光子晶体单元或多个所述光子晶体图形的周围。
  6. 根据权利要求1~5中任一项所述的显示装置,其中所述像素发光单元包括依次排列的第一电极层、有机发光层和第二电极层。
  7. 根据权利要求1~6中任一项所述的显示装置,其中所述触控走线和所述光子晶体结构位于透明导电层中,所述透明导电层位于所述像素发光单元远离所述基板的一侧上。
  8. 根据权利要求7所述的显示装置,其中所述透明导电层远离所述基板的一侧设置有黑矩阵,所述黑矩阵位于两个相邻的光子晶体图形之间。
  9. 根据权利要求7所述的显示装置,其中所述像素发光单元位于像素界定层中,所述像素界定层与所述透明导电层之间设置有薄膜封装层。
  10. 根据权利要求1~9中任一项所述的显示装置,所述显示装置为顶发射触控显示器。
  11. 一种显示装置的制作方法,包括:
    形成像素发光单元;
    通过一次掩膜工艺形成触控走线和光子晶体结构,所述光子晶体结构在基板上的正投影与所述像素发光单元在所述基板上的正投影重叠。
  12. 根据权利要求11所述的显示装置的制作方法,其中所述像素发光单元位于像素界定层中,并且所述通过一次掩膜工艺形成触控走线和光子晶体结构包括:
    在所述像素界定层和所述像素发光单元上依次形成薄膜封装层和透明导电层;
    采用灰色调掩膜版对所述透明导电层进行一次掩膜处理,形成所述触控走线和所述光子晶体结构,其中,所述触控走线围绕在所述光子晶体结构中光子晶体单元或多个光子晶体图形的周围。
  13. 根据权利要求11所述的显示装置的制作方法,其中所述触控走线和所述光子晶体结构形成于透明导电层上,所述方法还包括:
    在所述透明导电层上形成黑矩阵,所述黑矩阵位于两个相邻的光子晶体图形之间。
PCT/CN2018/076474 2017-07-07 2018-02-12 显示装置和显示装置的制作方法 WO2019007077A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/305,825 US11251238B2 (en) 2017-07-07 2018-02-12 Display device and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710551731.9A CN107359180B (zh) 2017-07-07 2017-07-07 一种显示装置和显示装置的制作方法
CN201710551731.9 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019007077A1 true WO2019007077A1 (zh) 2019-01-10

Family

ID=60292418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076474 WO2019007077A1 (zh) 2017-07-07 2018-02-12 显示装置和显示装置的制作方法

Country Status (3)

Country Link
US (1) US11251238B2 (zh)
CN (1) CN107359180B (zh)
WO (1) WO2019007077A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359180B (zh) * 2017-07-07 2020-05-22 京东方科技集团股份有限公司 一种显示装置和显示装置的制作方法
CN109686869B (zh) * 2019-02-28 2020-04-28 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法
CN110098231A (zh) * 2019-04-29 2019-08-06 武汉华星光电半导体显示技术有限公司 有机发光二极管显示屏及其制作方法
CN110120466A (zh) * 2019-05-30 2019-08-13 京东方科技集团股份有限公司 显示基板及其制造方法、显示面板
CN110911460B (zh) * 2019-11-25 2022-04-26 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645786A (zh) * 2012-03-29 2012-08-22 京东方科技集团股份有限公司 彩膜基板、显示装置及彩膜基板的制备方法
CN103941908A (zh) * 2013-12-23 2014-07-23 上海天马微电子有限公司 一种触摸屏显示面板以及触摸屏显示装置
CN104201188A (zh) * 2014-08-22 2014-12-10 京东方科技集团股份有限公司 Oled像素单元及其制备方法、显示面板和显示装置
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN107359180A (zh) * 2017-07-07 2017-11-17 京东方科技集团股份有限公司 一种显示装置和显示装置的制作方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451689B1 (ko) * 2002-04-30 2004-10-11 삼성전자주식회사 포토닉 크리스탈을 이용한 반사형 디스플레이 장치
US8643532B1 (en) * 2005-12-12 2014-02-04 Nomadics, Inc. Thin film emitter-absorber apparatus and methods
KR101338117B1 (ko) * 2009-10-29 2013-12-06 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR101313654B1 (ko) * 2009-12-18 2013-10-02 엘지디스플레이 주식회사 표면 플라즈몬을 이용한 컬러필터와 액정표시장치 및 그 제조방법
CN102645789B (zh) 2011-09-27 2015-04-22 北京京东方光电科技有限公司 取向膜的固化系统及固化方法
KR20140081221A (ko) * 2012-12-21 2014-07-01 삼성전자주식회사 디스플레이 패널 및 이를 가지는 디스플레이장치
US20180364153A1 (en) * 2017-06-15 2018-12-20 William N Carr Absorptive Spectrometer with Integrated Photonic and Phononic Structures
US9564550B2 (en) * 2013-10-28 2017-02-07 Infineon Technologies Dresden Gmbh Optoelectronic component, a method for manufacturing an optoelectronic component, and a method for processing a carrier
CN104716144B (zh) * 2015-03-06 2018-02-16 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN105045011B (zh) * 2015-08-28 2018-05-25 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板以及显示装置
CN105607334B (zh) * 2016-01-06 2021-01-26 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板、显示装置
WO2017132568A1 (en) * 2016-01-29 2017-08-03 University Of Florida Research Foundation, Incorporated Organic light-emitting diodes comprising grating structures and light extraction layers
CN105572955A (zh) * 2016-02-24 2016-05-11 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板、触控面板
CN106406617A (zh) * 2016-09-26 2017-02-15 京东方科技集团股份有限公司 触控面板及其触控检测方法以及显示装置
KR101816134B1 (ko) * 2017-03-31 2018-01-08 동우 화인켐 주식회사 터치 센서가 일체화된 플렉서블 컬러 필터와 이를 포함하는 유기발광표시장치 및 그 제조방법
KR102357521B1 (ko) * 2017-06-02 2022-02-03 삼성디스플레이 주식회사 표시 장치
CN107577374B (zh) * 2017-09-22 2021-01-26 京东方科技集团股份有限公司 一种手写板及其控制方法
CN108153027B (zh) * 2018-01-30 2020-11-20 京东方科技集团股份有限公司 一种显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645786A (zh) * 2012-03-29 2012-08-22 京东方科技集团股份有限公司 彩膜基板、显示装置及彩膜基板的制备方法
CN103941908A (zh) * 2013-12-23 2014-07-23 上海天马微电子有限公司 一种触摸屏显示面板以及触摸屏显示装置
CN104201188A (zh) * 2014-08-22 2014-12-10 京东方科技集团股份有限公司 Oled像素单元及其制备方法、显示面板和显示装置
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN107359180A (zh) * 2017-07-07 2017-11-17 京东方科技集团股份有限公司 一种显示装置和显示装置的制作方法

Also Published As

Publication number Publication date
US20210225946A1 (en) 2021-07-22
CN107359180A (zh) 2017-11-17
CN107359180B (zh) 2020-05-22
US11251238B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2019007077A1 (zh) 显示装置和显示装置的制作方法
US11056543B2 (en) Display panel and manufacturing method thereof
WO2020192313A1 (zh) 有机发光显示面板及制作方法、显示装置
US10263049B2 (en) Color filter substrate and method of manufacturing the same, organic light emitting display panel and display device
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
CN111933670B (zh) 一种显示基板及其制备方法、显示装置
WO2021042443A1 (zh) Oled显示面板及其制作方法
US20230247887A1 (en) Display panel and manufacturing method thereof
TW201320326A (zh) 有機電激發光顯示裝置及其製造方法
CN111785760B (zh) 一种显示基板及其制备方法、显示装置
CN110277423B (zh) 一种显示面板的制作方法,以及显示面板和显示装置
JP2012226931A (ja) 表示装置
JP2016018734A (ja) 表示装置及びその製造方法
US20140091291A1 (en) Array substrate and manufacturing method thereof, oled display device
CN111430445B (zh) 一种显示基板及其制备方法、显示装置
WO2016187987A1 (zh) 一种显示面板及其制作方法、显示装置
CN105336881A (zh) 一种印刷型高分辨率显示器件及其制作方法
JP2013073800A (ja) 表示装置
CN108231857B (zh) Oled微腔结构及其制备方法、显示装置
JP2012221686A (ja) 表示装置
KR102673170B1 (ko) 유기발광표시장치 및 그 제조방법
US20160155992A1 (en) Display substrate and manufacturing method thereof and display device
CN109920820B (zh) 彩色滤光片的制造方法
KR20080003079A (ko) 유기발광소자 및 그 제조방법
US20210327980A1 (en) Display devices, display substrates thereof and manufacturing methods of display substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/06/2020 )

122 Ep: pct application non-entry in european phase

Ref document number: 18827812

Country of ref document: EP

Kind code of ref document: A1