WO2019006784A1 - 一种白光有机电致发光器件和相应的显示面板 - Google Patents

一种白光有机电致发光器件和相应的显示面板 Download PDF

Info

Publication number
WO2019006784A1
WO2019006784A1 PCT/CN2017/093840 CN2017093840W WO2019006784A1 WO 2019006784 A1 WO2019006784 A1 WO 2019006784A1 CN 2017093840 W CN2017093840 W CN 2017093840W WO 2019006784 A1 WO2019006784 A1 WO 2019006784A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
luminescent
luminescent layer
bis
electrode
Prior art date
Application number
PCT/CN2017/093840
Other languages
English (en)
French (fr)
Inventor
涂爱国
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/739,704 priority Critical patent/US10411213B2/en
Publication of WO2019006784A1 publication Critical patent/WO2019006784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers

Definitions

  • the present invention relates to the field of electroluminescent devices, and more particularly to a white organic electroluminescent device and a corresponding display panel.
  • OLED Organic Light-Emitting Diode
  • Display Liquid Crysta Display
  • OLED display technology has the advantages of self-illumination, wide viewing angle, almost infinite contrast, low power consumption, and extremely high reaction speed.
  • the OLED device structure is composed of an anode (ITO), a cathode, and an organic functional layer sandwiched therebetween.
  • the organic functional layer includes a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, and an electron injection layer.
  • the white organic electroluminescent device generally adopts a BY (blue+yellow) double-emitting layer structure, and the white light adopting the BY structure causes the light color to be warm due to insufficient blue light component, and the power consumption increases due to insufficient blue light when used in an OLED display or a television. .
  • BY blue+yellow
  • the present invention adopts a technical solution of providing a first electrode, a first hole injection layer, a first hole transport layer, a first light emitting layer, and a first electron transport layer which are sequentially stacked together.
  • a display panel comprising the organic electroluminescent device as described above.
  • FIG. 1 is a schematic structural view of a first embodiment of an organic electroluminescent device of the present invention
  • Figure 3 is a schematic view showing the structure of a second embodiment of the organic electroluminescent device of the present invention.
  • Figure 4 is a table of performance parameters of a second embodiment of the organic electroluminescent device of the present invention.
  • Fig. 5 is a schematic structural view of an embodiment of a display panel of the present invention.
  • FIG. 1 is a schematic structural view of a first embodiment of an organic electroluminescent device of the present invention.
  • the organic electroluminescent device 10 includes a first electrode 101, a first hole injecting layer 102, a first hole transporting layer 103, a first light emitting layer 104, a first electron transporting layer 105, a charge generating layer 106, and a second cavity.
  • the first electrode 101 is plated on the substrate by sputtering, and the remaining layers are sequentially vapor-deposited on the surface of the next layer by vapor deposition.
  • the first hole injection layer 102 is evaporated on the surface of the first electrode 101.
  • the first hole transport layer 103 is evaporated on the surface of the first hole injection layer 102, and so on.
  • the first electrode 101 is made of a material having a high work function and a light transmissive material.
  • a transparent ITO (Indium Tin Oxide Transparent Semiconductor) electrode is used, and the thickness is 70 nm.
  • the hole injection layer can lower the barrier between the ITO electrode and the hole transport layer, and increase the adhesion of the ITO to the hole transport layer.
  • the first hole injection layer 102 is made of MoO3 material The material has a thickness of 1 nm.
  • the hole transport layer is responsible for adjusting the transport rate and number of holes, and the first hole transport layer 103 is made of ⁇ -NPB (N,N-diphenyl-N,N-di-2-naphthyl-1,1-biphenyl).
  • the first luminescent layer 104 is made of MADN: 3% DSA-ph (9,10-bis(2-naphthyl)-2-methylanthracene and 3% of 4,4'-(1,4-phenylene). a mixture of bis-(1E)-2,1-ethylenediyl)bis(N,N-diphenylaniline), MADN: 3% DSA-ph is an organic substance that emits blue light under excitation, and has a thickness of 25 nm. .
  • the electron transport layer is used to adjust the electron transport rate such that the injected electrons and holes recombine at the light-emitting layer.
  • the first electron transport layer 105 is made of BmPyPb (1,3-bis(3,5-dipyridin-3-ylphenyl)benzene) material and has a thickness of 20 nm.
  • a charge generating layer is used to connect the luminescent OLED units in series.
  • the charge generating layer 106 was made of BmPyPb: 10% Li (a mixture of 1,3-bis(3,5-dipyridin-3-ylphenyl)benzene and 10% lithium), and had a thickness of 20 nm.
  • the second hole injection layer 107 is similar in efficacy to the first hole injection layer 102, and is also made of a MoO3 material having a thickness of 10 nm.
  • the second hole transport layer 108 is similar in efficacy to the first hole transport layer 103, and likewise uses ⁇ -NPB (N,N-diphenyl-N,N-di-2-naphthyl-1,1-biphenyl- 4,4-Diamine) material with a thickness of 15 nm.
  • the electron blocking layer can improve the luminous efficiency of the organic electroluminescent device.
  • the electron blocking layer 109 is made of TACA (4,4',4"-tris(carbazol-9-yl)triphenylamine), thickness. It is 10 nm.
  • the second luminescent layer 110 needs to be excited to emit blue light, which may be MADN: 3% DSA-ph (9,10-di(2-naphthyl)-2-methylindole and 3% of 4,4'-(1) a mixture of 4-phenylenebis-(1E)-2,1-ethylenediyl)bis(N,N-diphenylaniline) having a thickness of 5 nm because the second luminescent layer 110 is only for the first step
  • the light-emitting layer is in a state of insufficient blue light, so only a very thin layer is required, and the thickness is smaller than the first light-emitting layer 102.
  • the third light-emitting layer 111 is DCZPPY: Ir(BT)2(acac) (2,6-double ((9H- a mixture of carbazole-9-yl)-3,1-phenylene)pyridine and bis(2-phenylbenzothiazole) acetylacetonate), having a thickness of 30 nm.
  • DCZPPY (2,6-double (( 9H-carbazol-9-yl)-3,1-phenylene)pyridine is an organic light-emitting material that emits blue light and is doped with Ir(BT)2(acac) (acetylacetonate bis(2-benzene) After the benzothiazole)), the light emitted by the mixture of the two is yellow.
  • the third luminescent layer 111 should be substantially equivalent to the thickness of the first luminescent layer 102, larger than the thickness of the second luminescent layer 110, such that the organic electricity The white light emitted by the light-emitting device will not be warm or cold.
  • the function of the second electron transport layer 112 is similar to that of the first electron transport layer 105, while the second electron transport layer 112 of the embodiment of the present invention further includes the effect of the electron injection layer.
  • the second electron transport layer 112 is made of BmPyPb (1,3-bis(3,5-dipyridin-3-ylphenyl)benzene) material having a thickness of 45 nm and covered with a layer of LiF (lithium fluoride) having a thickness of 1 nm. ), LiF can effectively improve the electron transport efficiency of organic semiconductors.
  • Al aluminum
  • the thickness is 70nm.
  • metals such as Ag (silver), Ca (calcium), and Mg (magnesium), and composites thereof may also be used.
  • the multi-layer structure of the invention can reduce the energy level barrier across electrons and holes transitions, and is beneficial to reducing resource consumption.
  • FIG. 2 is a table of performance parameters of the first embodiment of the organic electroluminescent device of the present invention.
  • J represents current density
  • L represents luminance
  • CE represents current efficiency
  • LE represents light efficiency
  • CIE represents light color coordinates
  • peak represents spectral peak
  • EQE represents external quantum efficiency.
  • the external quantum efficiency refers to the ratio of the number of photons emitted from the organic electroluminescent device to the number of injected electrons in the observation direction.
  • the OLED is a multilayer film structure, and the light emitted by the luminescent layer is absorbed and reflected by many layers of organic materials, only a small part The light energy is revealed, and the internal quantum efficiency is the actual luminous efficiency of the luminescent layer after the above loss is eliminated.
  • the light extraction efficiency is the ratio of the external quantum efficiency to the internal quantum efficiency.
  • Current efficiency is used to evaluate the luminescent properties of the material.
  • CIE is one of the basic specifications for scientific representation of color developed by the International Commission on Illumination. In the illuminated area, the value of the color coordinates is required to be as close as possible (0.3, 0.3). In the prior art, the color coordinate values of white light can reach (0.33, 0.38). In the embodiment of the invention, the white light color coordinate Y value reaches 0.341, and the display effect is superior to the general white organic electroluminescent device.
  • the present invention can effectively solve the problem of adding a thin blue light emitting layer (ie, the second light emitting layer 109) on the side of the yellow light emitting layer (ie, the third light emitting layer 110) away from the second electrode.
  • a thin blue light emitting layer ie, the second light emitting layer 109
  • the yellow light emitting layer ie, the third light emitting layer 110
  • FIG. 3 is a schematic structural view of a second embodiment of the organic electroluminescent device of the present invention.
  • the second luminescent layer 210 in the second embodiment of the present invention The luminescent material used in the third luminescent layer 211 is different from that described in the first embodiment, and the remaining layer structures and materials are the same as in the first embodiment.
  • the material used for the second light-emitting layer 210 is CPhBzIm (9-phenyl-3,6-bis[4-(1-phenyl-1H-benzimidazolidin-2-)benzene). Base]-9H-carbazole), having a thickness of 5 nm.
  • the third light-emitting layer 211 is made of CPhBzIm:Ir(BT)2(acac)(9-phenyl-3,6-bis[4-(1-phenyl-1H-benzimidazolidin-2-)phenyl]- A material of 9H-carbazole and a mixture of bis(2-phenylbenzothiazole) acetylacetonate, having a thickness of 30 nm.
  • the applied voltage energy drives the electrons and holes respectively from the cathode and the anode into the component, and when the two meet and combine in conduction, a so-called electron is formed.
  • - Hole recombination When the chemical molecules in the luminescent layer are excited by the external energy, if the electron spin is paired with the ground state electrons, it is a singlet state, and the light released is so-called fluorescence; on the contrary, if the excited state electron and the ground state electron spin Unpaired and parallel, it is called the triplet state, and the light it emits is so-called phosphorescence.
  • CPhBzIm is a very special material, in addition to being used directly as a deep blue fluorescent layer, it can also be used as a phosphorescent host material, with a yellow phosphorescent material, and the luminous efficiency is also quite high.
  • the phosphorescent material can utilize the triplet excitons formed by the energy transfer mode of the triplet state to the triplet state, and can be utilized by the singlet state to the singlet state energy transfer mode, and then through the singlet state to the triplet state.
  • the triplet excitons achieve the purpose of simultaneously utilizing the triplet excitons and singlet excitons of CPhBzIm, so the highest internal quantum efficiency can be close to 100%, and the highest external quantum efficiency can be close to 25%.
  • the second luminescent layer 109 is made of a CPhBzIm material, so that the second luminescent layer 109 is excited to emit blue light
  • the third luminescent layer 110 is made of a mixture material of CPhBzIm and acetylacetonate II to emit phosphorescent yellow. Light.
  • FIG. 4 is a table of performance parameters of the second embodiment of the organic electroluminescent device of the present invention.
  • J represents current density
  • L represents luminance
  • CE represents current efficiency
  • LE represents light efficiency
  • CIE represents light color coordinates
  • peak represents spectral peak
  • EQE represents external quantum efficiency.
  • the external quantum efficiency refers to the ratio of the number of photons emitted from the organic electroluminescent device to the number of injected electrons in the observation direction.
  • the OLED is a multilayer film structure, and the light emitted by the luminescent layer is absorbed and reflected by many layers of organic materials, only a small part Light can be seen inside Quantum efficiency is the actual luminous efficiency of the luminescent layer after the above loss is eliminated.
  • the light extraction efficiency is the ratio of the external quantum efficiency to the internal quantum efficiency.
  • Current efficiency is used to evaluate the luminescent properties of the material.
  • CIE is one of the basic specifications for scientific representation of color developed by the International Commission on Illumination. In the illuminated area, the value of the color coordinates is required to be as close as possible (0.3, 0.3). In the prior art, the color coordinate values of white light can reach (0.33, 0.38). In the embodiment of the invention, the white light color coordinate Y value reaches 0.352, and the display effect is superior to the general white organic electroluminescent device.
  • the second embodiment of the present invention can use the organic electroluminescent material CPhBzIm which can emit blue fluorescence or phosphorescent yellow light main material, and can simultaneously utilize CPhBzIm on the basis of the first embodiment of the present invention.
  • the triplet excitons and singlet excitons effectively improve resource utilization efficiency and save resource consumption.
  • FIG. 5 is a schematic structural diagram of an embodiment of a display panel.
  • the display panel 30 may be an OLED display panel including at least one organic electroluminescent device 31 as shown in FIG. 1 or 3.
  • the organic electroluminescent device used in the embodiment of the display panel of the present invention adds a blue light emitting layer on the lower side of the yellow light emitting layer, which can effectively solve the BY (blue + yellow) double light emitting layer in the prior art.
  • a blue light emitting layer on the lower side of the yellow light emitting layer
  • the color shift and the power consumption are large.
  • an organic electroluminescence material which can emit blue fluorescence or a phosphorescent yellow light main material can be used, and the organic electricity can be simultaneously used.
  • the triplet excitons and singlet excitons of the luminescent material effectively improve resource utilization efficiency and save resource consumption.
  • the present invention adds a blue light emitting layer under the existing yellow light emitting layer to enhance The light intensity of blue light.
  • the present invention employs CPhBzIm (9-phenyl-3,6-bis[4-(1-phenyl-1H-benzimidazole) which can emit both blue light and yellow phosphorescent host material.
  • 2-)Phenyl]-9H-carbazole can achieve the purpose of simultaneously utilizing the triplet excitons and singlet excitons of the blue layer, effectively improving the display effect and saving resources.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种白光有机电致发光器件(10)和一种显示面板(30),该有机电致发光器件(10)包括:依次堆栈的第一电极(101)、第一空穴注入层(102)、第一空穴传输层(103)、第一发光层(104)、第一电子传输层(105)、电荷产生层(106)、第二空穴注入层(107)、第二空穴传输层(108)、电子阻挡层(109)、第二发光层(110)、第三发光层(111)、第二电子传输层(112)、第二电极(113);第一、第二发光层(104、110)均为蓝光发光层,第三发光层(111)为黄光发光层。通过上述方式,能够有效解决蓝光不足导致发出的白光有色偏和功耗高的问题。

Description

一种白光有机电致发光器件和相应的显示面板 【技术领域】
本发明涉及领域电致发光器件,特别是涉及一种白光有机电致发光器件和相应的显示面板。
【背景技术】
有机电致发光器件(Organic Light-Emitting Diode,OLED)与显示(Liquid Crysta lDisplay,LCD)是不同类型的发光原理。OLED显示技术具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点。
OLED器件结构是由阳极(ITO)、阴极以及夹在两者之间的有机功能层构成。其中的有机功能层包括空穴注入层、空穴传输层、有机发光层、电子传输层、电子注入层等层构成。
白色有机电致发光器件一般采用BY(蓝+黄)双发光层结构,采用BY结构的白光由于蓝光成分不足而使光色偏暖,用于OLED显示器或者电视时会因为蓝光不足导致功耗增加。
【发明内容】
为了至少部分解决以上问题,本发明采用的一个技术方案是:提供依次堆栈在一起的第一电极、第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层、电荷产生层、第二空穴注入层、第二空穴传输层、电子阻挡层、第二发光层、第三发光层、第二电子传输层、第二电极;其中,所述第一发光层为蓝光发光层,所述第二发光层为蓝光发光层,而所述第三发光层为黄光发光层。
为了至少部分解决以上问题,本发明采用的另一个技术方案是:提 供一种显示面板,包括如上所述的有机电致发光器件。
【附图说明】
图1是本发明有机电致发光器件第一实施例的结构示意图;
图2是本发明有机电致发光器件第一实施例的性能参数表格;
图3是本发明有机电致发光器件第二实施例的结构示意图;
图4是本发明有机电致发光器件第二实施例的性能参数表格;
图5是本发明显示面板的实施例的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
请参阅图1,图1是本发明有机电致发光器件第一实施例的结构示意图。有机电致发光器件10包括第一电极101,第一空穴注入层102,第一空穴传输层103,第一发光层104,第一电子传输层105,电荷产生层106,第二空穴注入层107,第二空穴传输层108,电子阻挡层109,第二发光层110,第三发光层111,第二电子传输层112,第二电极113。
第一电极101以溅镀的方法镀在基板上,其余各层是以蒸镀的方法依次蒸镀在下一层的表面,例如第一空穴注入层102蒸镀在第一电极101的表面,第一空穴传输层103蒸镀在第一空穴注入层102的表面,以此类推。
第一电极101采用具有高功函数(high work function)以及可透光的材料,本实施例中采用透明的ITO(铟锡氧化物透明半导体)电极,厚度为70nm。空穴注入层可以降低ITO电极与空穴输层之间的势垒,增加ITO与空穴传输层的黏合程度。第一空穴注入层102采用MoO3材 料,厚度为1nm。空穴传输层负责调节空穴的传输速率和数量,第一空穴传输层103采用β-NPB(N,N-二苯基-N,N-二2-萘基-1,1-联苯-4,4-二胺)材料,厚度为1450nm。第一发光层104采用的材料为MADN:3%DSA-ph(9,10-二(2-萘基)-2-甲基蒽与3%的4,4’-(1,4-亚苯基二-(1E)-2,1-乙烯二基)二(N,N-二苯基苯胺)的混合物),MADN:3%DSA-ph是在激发状态下发出蓝光的有机物,厚度为25nm。电子传输层用于调节电子的传输速率,使注入的电子和空穴是在发光层处复合。第一电子传输层105采用BmPyPb(1,3-双(3,5-二吡啶-3-基苯基)苯)材料,厚度为20nm。电荷产生层用于将发光的OLED单元串联起来。电荷产生层106采用BmPyPb:10%Li(1,3-双(3,5-二吡啶-3-基苯基)苯与10%的锂的混合物),厚度为20nm。
第二空穴注入层107的功效与第一空穴注入层102类似,同样采用MoO3材料,厚度为10nm。第二空穴传输层108的功效与第一空穴传输层103类似,同样采用β-NPB(N,N-二苯基-N,N-二2-萘基-1,1-联苯-4,4-二胺)材料,厚度为15nm。电子阻挡层可以提高有机电致发光器件的发光效率,在本实施例中,电子阻挡层109采用TACA(4,4’,4”-三(咔唑-9-基)三苯胺)材料,厚度为10nm。
第二发光层110需要被激发出蓝光,其可以采用MADN:3%DSA-ph(9,10-二(2-萘基)-2-甲基蒽与3%的4,4’-(1,4-亚苯基二-(1E)-2,1-乙烯二基)二(N,N-二苯基苯胺)的混合物,厚度为5nm。因为第二发光层110仅是为了补足第一发光层蓝光不足的状况,因此仅需要很薄的一层,厚度小于第一发光层102。第三发光层111采用DCZPPY:Ir(BT)2(acac)(2,6-双((9H-咔唑-9-基)-3,1-亚苯基)吡啶与乙酰丙酮酸二(2-苯基苯并噻唑)的混合物)为材料,厚度为30nm。DCZPPY(2,6-双((9H-咔唑-9-基)-3,1-亚苯基)吡啶)是被激发会发出蓝光的有机发光材料,掺入Ir(BT)2(acac)(乙酰丙酮酸二(2-苯基苯并噻唑))后,两者的混合物被激发后发出的光线为黄色。第三发光层111应与第一发光层102的厚度大致相当,大于第二发光层110的厚度,这样有机电致发光器件发出的白光才不会偏暖或偏冷。
第二电子传输层112的功能与第一电子传输层105的类似,同时本发明实施例的采第二电子传输层112还包含了电子注入层的功效。第二电子传输层112采用BmPyPb(1,3-双(3,5-二吡啶-3-基苯基)苯)材料,厚度为45nm,其上覆盖有一层厚度为1nm的LiF(氟化锂),LiF可以有效提高有机半导体的电子传输效率。
为了增加元件的发光效率,电子与空穴的注入通常需要低功函数(low work function)的金属,或复合金属,因此本实施例中采用Al(铝)作为第二电极113的材料,厚度为70nm。在其他实施例中,还可以是Ag(银)、Ca(钙)、Mg(镁)等金属及其复合物。
本发明采用多层结构可以使电子及空穴跃迁时跨越的能级障碍降低,有利于降低资源消耗。
请结合参阅图2,图2是本发明有机电致发光器件第一实施例的性能参数表格。其中,J表示电流密度、L表示亮度、CE表示电流效率、LE表示出光效率、CIE表示光色坐标、peak表示光谱峰值、EQE表示外量子效率。外量子效率指在观测方向上射出有机电致发光器件的光子数目与注入电子数目的比值,OLED是多层薄膜结构,发光层发出的光经过很多层有机材料的吸收和反射之后,只有少部分的光能透出来,内量子效率就是排除上述损失之后,发光层实际的发光效率。出光效率为外量子效率和内量子效率的比。电流效率用于评价材料的发光特性。CIE是由国际照明委员会制定的科学化表示颜色的基本规范之一,在照明区域,要求色坐标的值尽量靠近(0.3,0.3)。现有技术中白光的色坐标值可以达到(0.33,0.38)。本发明实施例中白光色坐标Y值达到0.341,显示效果优于一般的白光有机电致发光器件。
通过上述描述可知,本发明通过在黄色发光层(即第三发光层110)的远离第二电极的一侧添加一层较薄的蓝色发光层(即第二发光层109),可以有效解决BY(蓝+黄)结构时,蓝光成分不足而使光色偏暖,功耗增加的问题。
请参阅图3,图3是本发明有机电致发光器件第二实施例的结构示意图。与本发明第一实施例相比,本发明第二实施例中第二发光层210 和第三发光层211所采用的发光材料与第一实施例所述不同,其余各层结构及材料与第一实施例相同。
在本发明第二实施例中,第二发光层210采用的材料为CPhBzIm(9-苯基-3,6-双[4-(1-苯基-1H-苯并咪唑唑-2-)苯基]-9H-咔唑),厚度为5nm。第三发光层211采用CPhBzIm:Ir(BT)2(acac)(9-苯基-3,6-双[4-(1-苯基-1H-苯并咪唑唑-2-)苯基]-9H-咔唑与乙酰丙酮酸二(2-苯基苯并噻唑)的混合物)材料,厚度为30nm。
当有机电致发光器件受到直流电所衍生的顺向偏压时,外加之电压能量将驱动电子与空穴分别由阴极与阳极注入元件,当两者在传导中相遇、结合,即形成所谓的电子-空穴复合。而当发光层中的化学分子受到外来能量激发后,若电子自旋和基态电子成对,则为单线态,其所释放的光为所谓的荧光;反之,若激发态电子和基态电子自旋不成对且平行,则称为三线态,其所释放的光为所谓的磷光。
CPhBzIm是一个相当特别的材料,除了可以直接作为深蓝光荧光发光层使用,还可以作为磷光主体材料,搭配黄光磷光材料使用,发光效率也相当高。磷光材料既能通过三线态→三线态的能量转移方式来利用形成的三线态激子,又能通过单线态→单线态能量转移方式,然后经过单线态→三线态的系间窜越来利用形成的三线态激子,达到同时利用CPhBzIm的三线态激子和单线态激子的目的,因此其最高内量子效率可接近100%,最高外量子效率可接近25%。
在本发明中,第二发光层109采用CPhBzIm材料而制成,以使第二发光层109受激发出蓝光,而第三发光层110采用CPhBzIm与乙酰丙酮酸二的混合物材料,以发出磷光黄光。
请结合参阅图4,图4是本发明有机电致发光器件第二实施例的性能参数表格。其中,J表示电流密度、L表示亮度、CE表示电流效率、LE表示出光效率、CIE表示光色坐标、peak表示光谱峰值、EQE表示外量子效率。外量子效率指在观测方向上射出有机电致发光器件的光子数目与注入电子数目的比值,OLED是多层薄膜结构,发光层发出的光经过很多层有机材料的吸收和反射之后,只有少部分的光能透出来,内 量子效率就是排除上述损失之后,发光层实际的发光效率。出光效率为外量子效率和内量子效率的比。电流效率用于评价材料的发光特性。CIE是由国际照明委员会制定的科学化表示颜色的基本规范之一,在照明区域,要求色坐标的值尽量靠近(0.3,0.3)。现有技术中白光的色坐标值可以达到(0.33,0.38)。本发明实施例中白光色坐标Y值达到0.352,显示效果优于一般的白光有机电致发光器件。
通过上述描述可知,本发明第二实施例在本发明第一实施例的基础上采用既可以发蓝色荧光,也可以作为磷光黄光主体材料的有机电致发光材料CPhBzIm,可以同时利用到CPhBzIm的三线态激子和单线态激子,有效的提高资源利用效率,节约资源消耗。
请参阅图5,图5是显示面板的实施例的结构示意图。显示面板30可以是一个OLED显示面板,其包括至少一个如图1或图3所示的有机电致发光器件31。
通过上述描述可知,本发明显示面板实施例采用的有机电致发光器件在黄色发光层下侧增加了一层蓝色发光层,可以有效解决现有技术中采用BY(蓝+黄)双发光层时,蓝光不足,造成色偏且功耗大的问题,更进一步的,可以采用既可以发蓝色荧光,也可以作为磷光黄光主体材料的有机电致发光材料,可以同时利用到该有机电致发光材料的三线态激子和单线态激子,有效的提高资源利用效率,节约资源消耗。
区别于现有技术采用BY(蓝+黄)结构时,蓝光成分不足而使光色偏暖,功耗增加的情况,本发明在现有的黄光发光层下加入一层蓝光发光层,增强了蓝光的光强。更进一步的,本发明采用了既可以发蓝光,又可以作为黄色磷光的主体材料的CPhBzIm(9-苯基-3,6-双[4-(1-苯基-1H-苯并咪唑唑-2-)苯基]-9H-咔唑),可以达到同时利用蓝光层的三线态激子和单线态激子的目的,有效的提升显示效果,同时节约资源。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种白光有机电致发光器件,其中,包括:
    依次堆栈在一起的第一电极、第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层、电荷产生层、第二空穴注入层、第二空穴传输层、电子阻挡层、第二发光层、第三发光层、第二电子传输层、第二电极;
    其中,所述第一发光层为蓝光发光层,所述第二发光层为蓝光发光层,而所述第三发光层为黄光发光层;
    所述第二发光层设置在所述第三发光层远离所述第二电极的一侧;
    所述第一空穴注入层、所述第一空穴传输层、所述发光层、所述第一电子传输层、所述第一电荷产生层、所述第二空穴注入层、所述第二空穴传输层、所述电子阻挡层、所述第二发光层、所述第三发光层、所述第二电子传输层、所述第二电极采用蒸镀方式而依次形成。
  2. 根据权利要求1所述的有机电致发光器件,其中,
    所述第二发光层的厚度小于所述第一发光层的厚度;
    且所述第二发光层的厚度小于所述第三发光层的厚度。
  3. 一种白光有机电致发光器件,其中,包括:
    依次堆栈在一起的第一电极、第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层、电荷产生层、第二空穴注入层、第二空穴传输层、电子阻挡层、第二发光层、第三发光层、第二电子传输层、第二电极;
    其中,所述第一发光层为蓝光发光层,所述第二发光层为蓝光发光层,而所述第三发光层为黄光发光层。
  4. 根据权利要求3所述的有机电致发光器件,其中,
    所述第二发光层设置在所述第三发光层远离所述第二电极的一侧。
  5. 根据权利要求4所述的有机电致发光器件,其中,
    所述第二发光层的厚度小于所述第一发光层的厚度;
    且所述第二发光层的厚度小于所述第三发光层的厚度。
  6. 根据权利要求3所述的有机电致发光器件,其中,
    所述第二发光层采用2-甲基-9,10-双(萘-2-基)蒽与3%的4,4’-(1,4-亚苯基二-(1E)-2,1-乙烯二基)二(N,N-二苯基苯胺)的混合物而制成;
    所述第三发光层采用2,6-双((9H-咔唑-9-基)-3,1-亚苯基)吡啶与乙酰丙酮酸二(2-苯基苯并噻唑)的混合物而制成。
  7. 根据权利要求3所述的有机电致发光器件,其中,
    所述第二发光层采用9-苯基-3,6-双[4-(1-苯基-1H-苯并咪唑唑-2-)苯基]-9H-咔唑的材料而制成;
    所述第三发光层采用9-苯基-3,6-双[4-(1-苯基-1H-苯并咪唑唑-2-)苯基]-9H-咔唑与乙酰丙酮酸二(2-苯基苯并噻唑)的混合物而制成。
  8. 根据权利要求3所述的有机电致发光器件,其中,
    所述第一空穴注入层、所述第一空穴传输层、所述发光层、所述第一电子传输层、所述第一电荷产生层、所述第二空穴注入层、所述第二空穴传输层、所述电子阻挡层、所述第二发光层、所述第三发光层、所述第二电子传输层、所述第二电极采用蒸镀方式而依次形成。
  9. 根据权利要求3所述的有机电致发光器件,其中,
    所述第一电极采用铟锡氧化物透明半导体材料而制成,而所述第二电极采用金属铝而制成。
  10. 根据权利要求3所述的有机电致发光器件,其中,
    所述第一发光层采用9,10-二(2-萘基)-2-甲基蒽与3%的4,4’-(1,4-亚苯基二-(1E)-2,1-乙烯二基)二(N,N-二苯基苯胺)的混合物材料制成。
  11. 根据权利要求3所述的有机电致发光器件,其中,
    所述第一空穴注入层采用三氧化钼材料制成;
    所述第一空穴传输层采用N,N-二苯基-N,N-二2-萘基-1,1-联苯-4,4-二胺材料制成;
    所述第一电子传输层采用1,3-双(3,5-二吡啶-3-基苯基)材料制成;
    所述第一电荷产生层采用1,3-双(3,5-二吡啶-3-基苯基)苯与10%的锂的混合物的材料制成;
    所述第二空穴注入层采用三氧化钼材料制成;
    所述第二空穴传输层采用N,N-二苯基-N,N-二2-萘基-1,1-联苯-4,4-二胺材料制成;
    所述电子阻挡层采用4,4’,4”-三(咔唑-9-基)三苯胺材料制成;
    而所述第二电子传输层由一层1,3-双(3,5-二吡啶-3-基苯基)苯材料和一层氟化锂制成。
  12. 一种显示面板,包括多个有机电致发光器件,其中,
    每个所述有机电致发光器件分别包括:依次堆栈在一起的第一电极、第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层、电荷产生层、第二空穴注入层、第二空穴传输层、电子阻挡层、第二发光层、第三发光层、第二电子传输层、第二电极;
    其中,所述第一发光层为蓝光发光层,所述第二发光层为蓝光发光层,而所述第三发光层为黄光发光层。
  13. 根据权利要求12所述的显示面板,其中,
    所述第二发光层设置在所述第三发光层远离所述第二电极的一侧。
  14. 根据权利要求13所述的显示面板,其中,
    所述第二发光层的厚度小于所述第一发光层的厚度;
    且所述第二发光层的厚度小于所述第三发光层的厚度。
  15. 根据权利要求12所述的显示面板,其中,
    所述第二发光层采用2-甲基-9,10-双(萘-2-基)蒽与3%的4,4’-(1,4-亚苯基二-(1E)-2,1-乙烯二基)二(N,N-二苯基苯胺)的混合物而制成;
    所述第三发光层采用2,6-双((9H-咔唑-9-基)-3,1-亚苯基)吡啶与乙酰丙酮酸二(2-苯基苯并噻唑)的混合物而制成。
  16. 根据权利要求12所述的显示面板,其中,
    所述第二发光层采用9-苯基-3,6-双[4-(1-苯基-1H-苯并咪唑唑-2-)苯基]-9H-咔唑的材料而制成;
    所述第三发光层采用9-苯基-3,6-双[4-(1-苯基-1H-苯并咪唑唑-2-)苯基]-9H-咔唑与乙酰丙酮酸二(2-苯基苯并噻唑)的混合物而制成。
  17. 根据权利要求12所述的显示面板,其中,
    所述第一空穴注入层、所述第一空穴传输层、所述发光层、所述第一电子传输层、所述第一电荷产生层、所述第二空穴注入层、所述第二空穴传输层、所述电子阻挡层、所述第二发光层、所述第三发光层、所述第二电子传输层、所述第二电极采用蒸镀方式而依次形成。
  18. 根据权利要求12所述的显示面板,其中,
    所述第一电极采用铟锡氧化物透明半导体材料而制成,而所述第二电极采用金属铝而制成。
  19. 根据权利要求12所述的显示面板,其中,
    所述第一发光层采用9,10-二(2-萘基)-2-甲基蒽与3%的4,4’-(1,4-亚苯基二-(1E)-2,1-乙烯二基)二(N,N-二苯基苯胺)的混合物材料制成。
  20. 根据权利要求12所述的显示面板,其中,
    所述第一空穴注入层采用三氧化钼材料制成;
    所述第一空穴传输层采用N,N-二苯基-N,N-二2-萘基-1,1-联苯-4,4-二胺材料制成;
    所述第一电子传输层采用1,3-双(3,5-二吡啶-3-基苯基)材料制成;
    所述第一电荷产生层采用1,3-双(3,5-二吡啶-3-基苯基)苯与10%的锂的混合物的材料制成;
    所述第二空穴注入层采用三氧化钼材料制成;
    所述第二空穴传输层采用N,N-二苯基-N,N-二2-萘基-1,1-联苯-4,4-二胺材料制成;
    所述电子阻挡层采用4,4’,4”-三(咔唑-9-基)三苯胺材料制成;
    而所述第二电子传输层由一层1,3-双(3,5-二吡啶-3-基苯基)苯材料和一层氟化锂制成。
PCT/CN2017/093840 2017-07-03 2017-07-21 一种白光有机电致发光器件和相应的显示面板 WO2019006784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/739,704 US10411213B2 (en) 2017-07-03 2017-07-21 White LED with two blue layers and a yellow layer and the display panel thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710533596.5 2017-07-03
CN201710533596.5A CN107195793A (zh) 2017-07-03 2017-07-03 一种白光有机电致发光器件和相应的显示面板

Publications (1)

Publication Number Publication Date
WO2019006784A1 true WO2019006784A1 (zh) 2019-01-10

Family

ID=59880830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093840 WO2019006784A1 (zh) 2017-07-03 2017-07-21 一种白光有机电致发光器件和相应的显示面板

Country Status (2)

Country Link
CN (1) CN107195793A (zh)
WO (1) WO2019006784A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725376A (zh) * 2021-08-30 2021-11-30 合肥京东方卓印科技有限公司 有机电致发光器件、制作其的方法及显示面板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004092A (zh) * 2018-06-29 2018-12-14 云谷(固安)科技有限公司 有机电致发光器件和有机电致发光装置
CN112736206A (zh) * 2020-12-25 2021-04-30 安徽熙泰智能科技有限公司 一种白光oled器件结构
CN114203939A (zh) * 2021-12-02 2022-03-18 长春若水科技发展有限公司 一种红、绿、蓝单色光有机发光二极管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001885A1 (en) * 2007-06-27 2009-01-01 Spindler Jeffrey P Tandem oled device
CN102709482A (zh) * 2012-06-26 2012-10-03 吉林大学 一种磷光荧光结合型白光有机电致发光器件
CN103633247A (zh) * 2012-08-29 2014-03-12 海洋王照明科技股份有限公司 白光有机电致发光器件及其制备方法
CN104393184A (zh) * 2014-11-18 2015-03-04 深圳市华星光电技术有限公司 白光oled显示屏及其串联式白光有机发光二极管
CN106328833A (zh) * 2016-11-24 2017-01-11 上海天马有机发光显示技术有限公司 一种有机发光元件、制作方法以及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560862B2 (en) * 2004-10-22 2009-07-14 Eastman Kodak Company White OLEDs with a color-compensated electroluminescent unit
CN100461489C (zh) * 2005-03-03 2009-02-11 友达光电股份有限公司 有机发光二极管
EP2366753B1 (en) * 2010-03-02 2015-06-17 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element and Lighting Device
CN105336872B (zh) * 2015-10-09 2017-06-23 北京大学深圳研究生院 一种白光有机发光二极管器件及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001885A1 (en) * 2007-06-27 2009-01-01 Spindler Jeffrey P Tandem oled device
CN102709482A (zh) * 2012-06-26 2012-10-03 吉林大学 一种磷光荧光结合型白光有机电致发光器件
CN103633247A (zh) * 2012-08-29 2014-03-12 海洋王照明科技股份有限公司 白光有机电致发光器件及其制备方法
CN104393184A (zh) * 2014-11-18 2015-03-04 深圳市华星光电技术有限公司 白光oled显示屏及其串联式白光有机发光二极管
CN106328833A (zh) * 2016-11-24 2017-01-11 上海天马有机发光显示技术有限公司 一种有机发光元件、制作方法以及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725376A (zh) * 2021-08-30 2021-11-30 合肥京东方卓印科技有限公司 有机电致发光器件、制作其的方法及显示面板

Also Published As

Publication number Publication date
CN107195793A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
KR102130648B1 (ko) 백색 유기 발광 소자
KR101135541B1 (ko) 유기 발광 장치
WO2018232947A1 (zh) Woled器件
US20160079556A1 (en) White organic light emitting device
JP4895742B2 (ja) 白色有機電界発光素子
US9893309B2 (en) Organic electroluminescent display device and display apparatus
CN106784358A (zh) 一种白光有机电致发光器件
WO2019006784A1 (zh) 一种白光有机电致发光器件和相应的显示面板
CN110034234B (zh) 一种白光有机电致发光器件
WO2016078102A1 (zh) 白光oled显示屏及其串联式白光有机发光二极管
WO2017206213A1 (zh) Oled器件与oled显示器
US10418578B2 (en) Quantum dot light-emitting diode and display device
US10069096B1 (en) WOLED device
CN103219471A (zh) 基于半透明复合阴极的顶发射有机电致发光器件及其制备方法
KR20110118277A (ko) 투과형 유기 발광 다이오드 소자 및 이를 이용한 투과형 조명 장치
WO2016155147A1 (zh) 蓝光有机电致发光器件及制备方法、显示面板和显示装置
CN109755398A (zh) 一种具有高显色指数的高效杂化白光有机电致发光器件及其制备方法
WO2018036101A1 (zh) 荧光/磷光混合型白光有机发光二极管
TW201136446A (en) Organic light-emitting diode with high color rendering
CN107546248A (zh) 一种非掺杂白光发光层串联有机电致发光器件
CN107026242B (zh) 一种深蓝光有机铱(ⅲ)配合物oled器件
TWI540779B (zh) 有機發光裝置
JP2002050467A (ja) 発光装置
US10411213B2 (en) White LED with two blue layers and a yellow layer and the display panel thereof
TWI518958B (zh) 頂發光藍光有機發光二極管及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916466

Country of ref document: EP

Kind code of ref document: A1