WO2019006730A1 - 波束赋形训练的方法、接收设备和发送设备 - Google Patents

波束赋形训练的方法、接收设备和发送设备 Download PDF

Info

Publication number
WO2019006730A1
WO2019006730A1 PCT/CN2017/092110 CN2017092110W WO2019006730A1 WO 2019006730 A1 WO2019006730 A1 WO 2019006730A1 CN 2017092110 W CN2017092110 W CN 2017092110W WO 2019006730 A1 WO2019006730 A1 WO 2019006730A1
Authority
WO
WIPO (PCT)
Prior art keywords
training
channel
information
antenna
space
Prior art date
Application number
PCT/CN2017/092110
Other languages
English (en)
French (fr)
Inventor
李德建
刘劲楠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17917154.1A priority Critical patent/EP3531572A4/en
Priority to PCT/CN2017/092110 priority patent/WO2019006730A1/zh
Priority to CN201780092630.8A priority patent/CN110800219B/zh
Priority to CN202111402234.5A priority patent/CN114221683A/zh
Publication of WO2019006730A1 publication Critical patent/WO2019006730A1/zh
Priority to US16/430,730 priority patent/US11070263B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length

Definitions

  • the present application relates to the field of communications, and more specifically, to a method, a receiving device, and a transmitting device for beamforming training in communication.
  • the millimeter-wave band communication technology can provide high-speed communication of several gigabits per second to meet the uncompressed transmission of high-definition video.
  • the communication rate of several gigabits per second is gradually unable to meet the communication requirements.
  • high frequency communication begins to adopt higher channel bandwidths and more antennas at a desired communication rate of tens of gigabits.
  • MIMO Multiple input multiple output
  • LOS MIMO is mainly implemented by dual polarization (Dual Polarization) or orthogonal polarization, multiple antennas configured with frequency division multiplexing on multiple channels, and increased antenna spacing.
  • BF analog beam forming
  • the current CSI/MCS feedback is feedback for frequency domain Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • the feedback of CSI is generally only related to subcarriers or subbands, that is, the signal to noise ratio (SNR)/MCS/CSI of the receive chain/spacetime stream corresponding to the subcarrier or subband is fed back.
  • SNR signal to noise ratio
  • MCS/CSI channel aggregation
  • the present application provides a beamforming training method, a receiving device, and a transmitting device, which can make a transmit antenna (transmission chain), a transmission sector (transmission beam), and a SNR of a channel and a receiving chain in beamforming BF training feedback.
  • the MCS/CSI is mapped so that the maximum channel capacity can be known in the feedback, and the optimal MIMO antenna configuration and channel configuration are obtained.
  • the BF training feedback may further include indicating whether CSD needs to be applied between multiple spatial/spacetime flows (referred to as flows), and if the measurement result of the BF training indicates that CSD is not required to be applied, indicating that the opposite device does not apply CSD, thereby It can be beneficial to improve the packet detection rate of the legacy STA and the decoding success rate of the L-Header field in the PPDU.
  • flows multiple spatial/spacetime flows
  • a method for beamforming training comprising: performing BF training on at least one channel with a first device according to BF training request information, wherein the BF training request information includes the BF training The antenna configuration information and the channel configuration information of the at least one channel; receiving the first feedback information sent by the first device, where the first feedback information includes: the measurement result of the BF training, and the information of the antenna corresponding to the measurement result of the BF training The beam information of the antenna and the channel information corresponding to the antenna; determining, according to the first feedback information, an optimal antenna configuration and/or digital domain BF precoding information on the at least one channel.
  • the beamforming training method provided by the first aspect may be such that the first feedback information (final feedback information) of the beamforming training includes a transmitting antenna, a transmitting sector (a transmitting beam), and a channel where the transmitting antenna is located and the first device.
  • the measured measurements are matched so that the maximum channel capacity can be known in the feedback to obtain an optimal MIMO channel configuration.
  • the antenna configuration information includes one or more antenna numbers configured on each channel in the BF training.
  • the channel configuration information includes at least one of the following information: channel binding mode or channel aggregation mode information used by the BF training sequence, and whether each antenna performs indication information of the BF training on all channels, and each antenna performs the The order information of the channels of the BF training, and the number information of the channel for which the BF training is performed by each antenna.
  • the BF training request information further includes indication information for indicating whether the BF training is performed on all channels.
  • BF training request information includes indication information for indicating whether to perform the BF training on all channels, so that BF training can support BF training on all channels, which is advantageous for obtaining BF measurement results on each channel, thereby obtaining More accurate antenna configuration and channel configuration.
  • the method further includes: receiving second feedback information, where the second feedback information includes In the case where each antenna needs to perform the BF training on multiple channels, the measurement results on the channel of the BF training that has been completed.
  • the BF training request information when there are multiple beams on an antenna that need to perform the BF training, the BF training request information further includes multiple beams for the antenna to perform the BF training.
  • the measurement result of the BF training includes: sequence number information of the BRP packet corresponding to each beam indicated by the beam information and length information of the training sequence in the BRP packet.
  • the first feedback information further includes modulation coding policy information of each channel of the at least one channel corresponding to the measurement result of the BF training.
  • the first feedback information further includes indication information for indicating whether the plurality of space-time streams corresponding to the multiple antennas need to apply the cyclic shift diversity CSD.
  • a method for beamforming training comprising: performing BF training on at least one channel with a second device according to BF training request information, wherein the BF training request information includes the BF training Antenna configuration information and channel configuration information for the at least one channel.
  • Determining the first feedback information the first feedback information includes: a measurement result of the BF training, information of an antenna corresponding to the measurement result of the BF training, beam information of the antenna, and channel information corresponding to the antenna. Sending the first feedback information to the second device.
  • the beamforming training method provided by the second aspect the first feedback information (final feedback information) of the beamforming training, the transmitting antenna, the transmitting sector (transmitting beam), and the channel where the transmitting antenna is located are measured by the first device.
  • the SNR/MCS/CSI is corresponding so that the maximum channel capacity can be known in the feedback to obtain an optimal channel configuration.
  • the antenna configuration information includes an antenna number configured on each channel in the BF training.
  • the channel configuration information includes at least one of the following information: a channel binding manner or a channel aggregation manner information used by the BF training sequence, and whether each antenna performs indication information of the BF training on all channels, and the BF is performed by each antenna.
  • the BF training request information further includes indication information for indicating whether the BF training is performed on all channels.
  • the method before the sending the first feedback information to the second device, the method further includes: determining second feedback information, where the BF training is performed, The second feedback information includes a measurement result on the channel of the BF training that has been completed in a case where each antenna needs to perform the BF training on a plurality of channels; and the second feedback information is transmitted to the second device.
  • the measurement result of the BF training includes: sequence number information of a beam optimization protocol BRP packet corresponding to each beam indicated by the beam information, and length information of the training sequence in the BRP packet .
  • the first feedback information further includes modulation coding strategy information of each channel of the at least one channel corresponding to the measurement result of the BF training.
  • the first feedback information further includes indication information for indicating whether the plurality of space-time streams corresponding to the multiple antennas need to apply the cyclic shift diversity CSD.
  • a method for beamforming training comprising: performing BF training on at least one channel with a first device according to beamforming BF training request information, wherein the BF training request information includes the Antenna configuration information and channel configuration information for BF training.
  • the method for beamforming training provided by the third aspect includes, in the received final feedback information, indication information indicating whether each of the plurality of links needs to adopt CSD coding. According to the indication information, it is determined that CSD coding is applied between different flows, thereby improving the packet detection rate of the legacy STA and the decoding success rate of the L-Header field in the PPDU.
  • the antenna configuration information includes an antenna number configured on each channel in the BF training.
  • the channel configuration information includes at least one of the following information: channel binding mode or channel aggregation mode information used by the BF training sequence, and whether each antenna performs indication information of the BF training on all channels, and each antenna performs the Sequence information of the channels trained by BF.
  • the first feedback information further includes: a measurement result of the BF training, antenna information corresponding to the measurement result of the BF training, beam information of the antenna, and a channel corresponding to the antenna information.
  • a method for beamforming training comprising: performing BF training on at least one channel with a second device according to beamforming BF training request information, wherein the BF training request information includes the Antenna configuration information and channel configuration information for BF training. Based on the measurement result of the BF training, it is determined whether a plurality of space-time streams corresponding to the plurality of antennas need to apply cyclic shift diversity CSD.
  • the second device sends first feedback information, where the first feedback information includes an indication message for indicating whether each of the plurality of space-time streams needs to apply CSD interest.
  • the method for beamforming training determines whether a plurality of streams corresponding to the plurality of antennas are related according to the measurement result of the BF training, and if the plurality of streams are related, determining that the multiple streams need to be applied CSD, if there is no correlation between multiple streams, it is determined that CSD is not required to be applied between the multiple streams.
  • the indication information indicating whether each of the plurality of space-time streams needs to adopt CSD coding is included in the first feedback information. According to the indication information, it is determined that CSD coding is applied between different flows, so that the packet detection rate of the legacy STA and the decoding success rate of the L-Header field in the PPDU can be improved.
  • the antenna configuration information includes an antenna number configured on each channel in the BF training.
  • the channel configuration information includes at least one of the following information: a channel binding manner or a channel aggregation manner information used by the BF training sequence, and whether each antenna performs indication information of the BF training on all channels, and the BF is performed by each antenna. Sequence information of the trained channels.
  • determining, according to the measurement result of the BF training, whether the plurality of space-time streams corresponding to the multiple antennas need to apply the cyclic shift diversity CSD including: according to the measurement result When it is determined that the plurality of space-time streams belong to different channels, it is determined that the plurality of space-time streams do not apply the CSD. And determining, according to the measurement result, that at least two of the plurality of space-time streams belong to the same channel, and determining whether the at least two space-time streams need to be applied according to whether the at least two space-time streams are related.
  • the CSD determining, according to the measurement result of the BF training, whether the plurality of space-time streams corresponding to the multiple antennas need to apply the cyclic shift diversity CSD
  • determining whether the at least two space-time streams are related according to whether the at least two space-time streams are related Whether the two space-time streams need to apply the CSD includes: determining that the at least two space-time streams are related if the at least two space-time streams adopt the same polarization mode. A space-time stream in which the CSD needs to be applied in the at least two space-time streams is determined.
  • determining whether the at least two space-time streams are related according to whether the at least two space-time streams are related Whether the two space-time streams need to apply the CSD including: when the at least two space-time streams adopt different orthogonal polarization modes, and the correlation value between the at least two space-time streams is less than a preset value, It is determined that the at least two space-time streams are irrelevant. Determining that the at least two space-time streams do not need to apply the CSD.
  • the first feedback information further includes: a measurement result of the BF training, antenna information corresponding to the measurement result of the BF training, beam information of the antenna, and a channel corresponding to the antenna information.
  • a receiving device including a processor, a memory, and a transceiver for supporting the receiving device to perform a corresponding function in the above method.
  • the receiving device is the second device in the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, and the processor is configured to invoke the instruction to implement the first aspect or the third aspect and various A method of beamforming training in an implementation.
  • the sixth aspect provides a receiving device, including a processing module, a storage module, and a transceiver module, configured to support the receiving device to perform the functions of the receiving device in any of the foregoing first aspect or the first aspect, or the foregoing
  • the third aspect or the function of the receiving device in any possible implementation of the third aspect.
  • the receiving device is the second device in the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • a transmitting device including a processor, a memory, and a transceiver for supporting the transmitting device to perform a corresponding function in the above method.
  • the transmitting device is the first device in the above method.
  • the processor, the memory, and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to execute a specific Signal transceiving, the processor is used to invoke the instruction to implement the method of beamforming training in the second or fourth aspect and various implementations thereof.
  • the eighth aspect provides a sending device, including a processing module, a storage module, and a transceiver module, configured to support the terminal device to perform the functions of the sending device in any of the foregoing second aspect or the second aspect, or the foregoing
  • the transmitting device is the first device in the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • a ninth aspect a computer readable storage medium for storing a computer program, the computer program comprising a method for performing the first aspect or any of the possible implementations of the first aspect, and the third An instruction of a method of any of the possible implementations of aspect or aspect.
  • a tenth aspect a computer readable storage medium for storing a computer program, the computer program comprising a method for performing any of the possible implementations of the second aspect or the second aspect, and the fourth The instructions of the aspect or method of any of the possible implementations of the fourth aspect.
  • FIG. 1 is a schematic diagram of transmission in a channel aggregation mode.
  • FIG. 2 is a schematic diagram of a frame format of a PPDU.
  • 3 is a schematic diagram of CSD for two different streams of enhanced directional multi-gigabit PPDUs.
  • FIG. 4 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method of beamforming training according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of BF training performed by a second device and a first device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of MIMO transmission in a channel aggregation transmission mode according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of final feedback information of channel aggregation BF training with two different transmit antennas according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of second feedback information and first feedback information of multiple rounds of BF training in a channel aggregation mode according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of second feedback information of multiple rounds of BF training in a channel aggregation mode according to another embodiment of the present invention.
  • FIG. 11 is a schematic flow chart of a method of beamforming training according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of MIMO in which a STA 4 and STA 2 form a 4 ⁇ 4 mode according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a CSD of 4x4 mode MIMO according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a CSD of an 8x8 mode MIMO according to an embodiment of the present invention.
  • 15 is a schematic diagram of a CSD of 4x4 mode MIMO according to another embodiment of the present invention.
  • 16 is a schematic diagram of CSD encoding of 4x4 mode MIMO according to another embodiment of the present invention.
  • Figure 17 is a schematic block diagram of a receiving device in accordance with one embodiment of the present invention.
  • Figure 18 is a schematic block diagram of a receiving device in accordance with another embodiment of the present invention.
  • Figure 19 is a schematic block diagram of a transmitting device in accordance with one embodiment of the present invention.
  • Figure 20 is a schematic block diagram of a transmitting device in accordance with another embodiment of the present invention.
  • Figure 21 is a schematic block diagram of a receiving device in accordance with one embodiment of the present invention.
  • Figure 22 is a schematic block diagram of a receiving device in accordance with another embodiment of the present invention.
  • Figure 23 is a schematic block diagram of a transmitting device in accordance with one embodiment of the present invention.
  • Figure 24 is a schematic block diagram of a transmitting device in accordance with another embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • LTE long term evolution
  • FDD frequency division duplex
  • LTE/LTE LTE/LTE.
  • -A time division duplex (TDD) system LTE/LTE-A frequency division duplex (FDD) system
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • Wi-Fi wireless local area network
  • WLAN Wireless local area networks
  • the terminal device may also be referred to as a user equipment (UE), a mobile station (MS), a mobile terminal, etc., and the terminal device may be connected by using a wireless device.
  • a radio access network (RAN) communicates with one or more core network devices, for example, the terminal device may include various handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, or connected to a wireless modem. Other processing equipment. It may also include a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a wireless modem (modem), a handheld device (handset).
  • PDA personal digital assistant
  • WLAN wireless local area networks
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PLMN public land mobile network
  • the base station may also be referred to as a network side device or an access network device
  • the network side device may be a device for communicating with the terminal device
  • the network device may be an evolved base station (evolutional Node B, eNB) in the LTE system.
  • eNodeB evolved base station
  • gNB evolved base station
  • gNB access point in NR
  • base transceiver station transceiver node
  • in-vehicle device wearable device
  • network device in future 5G network or network side device in future evolved PLMN system
  • the network side device may be an access point (AP) in the WLAN, or may be a global system for mobile communication (GSM) or code division multiple access (code dvision).
  • GSM global system for mobile communication
  • code dvision code division multiple access
  • CDMA Code Division Multiple access
  • BTS Base Transceiver Station
  • eNB evolved NodeB
  • eNodeB evolved NodeB
  • LTE Long Term Evolution
  • the network device may also be a Node B of a 3rd Generation (3G) system.
  • the network device may also be a relay station or an access point, or an in-vehicle device, a wearable device, and a future 5G network.
  • the embodiments of the present invention are not limited herein. For convenience of description, in all embodiments of the present invention, the above-mentioned devices that provide wireless communication functions for the MS are collectively referred to as network devices.
  • MIMO technology In the millimeter wave band, MIMO technology is used. In order to overcome the path loss, analog BF training is still needed to close the MIMO link between the transceiver devices.
  • multiple antenna/multiple radio frequency chains in a MIMO link are combined with multi-channel utilization, for example, multiple antennas of a transceiver device are combined with multiple channels in channel aggregation, or multiple transceiver devices with orthogonally polarized antennas
  • the RF chain is combined with the polarized channel in the orthogonal polarization
  • the feedback of the result of the BF training for example, the BF training CSI feedback
  • the feedback of the beam information corresponding to the optimal one or more MIMO links, and the feedback of the MCS In the middle it is necessary to consider the influence of the channel.
  • a space-time stream is a stream of modulation symbols generated after applying space-time processing to modulation symbols of one or more spatial streams.
  • one transmit antenna corresponds to a space-time stream.
  • the spatial stream and the space-time stream are simply referred to as "streams".
  • the concurrent transmission of multiple streams between a pair of transceiver devices by frequency division multiplexing is mainly implemented by using channel aggregation (CA).
  • CA channel aggregation
  • two identical high-frequency modem modules can be used in a single device. Each modem module operates independently on a different channel and transmits a stream through a separate antenna to achieve aggregate transmission of the channel.
  • STA1 and STA2 simultaneously transmit data on channel 1 and channel 2.
  • FIG. 1 is a schematic diagram of transmission in channel aggregation mode, and MCSs used on different channels may be different or different, and guard bands exist between channels. .
  • prior art CSI feedback includes displayed CSI feedback and implicit CSI feedback.
  • the displayed CSI feedback refers to feedback of the SNR of each receive chain and the CSI matrix of each subcarrier.
  • one receiving chain is a radio frequency chain for receiving signals on the receiving side, and the radio frequency chain can process the received signals to form a digital signal and provide the baseband.
  • the CSI matrix is a channel matrix between multiple transmit and receive antennas.
  • the implicit CSI feedback refers to the SNR of each stream and the digital domain BF feedback matrix of each subcarrier.
  • the implicit CSI mainly refers to no longer feeding back the CSI matrix, but feedback the key information contained in the CSI matrix. For example, a digital domain (baseband) BF feedback matrix calculated from a CSI matrix.
  • the MCS feedback of the prior art is included in the high-throughput control field, and the MCS feedback includes the number of the MCS, which may indicate an unbalanced MCS, that is, indicates that different flows adopt different MCSs.
  • the CSI/MCS feedback of the prior art is feedback of the frequency domain-oriented OFDM, and the feedback of the CSI is generally only related to the subcarrier or the subband, that is, the feedback is the receive chain/stream corresponding to the subcarrier or the subband.
  • SNR/MCS/CSI in the feedback result, the transmit antenna, the transmit sector (transmission beam), and the SNR/MCS/CSI of the receive chain/space-time stream do not correspond.
  • MIMO based on CA or orthogonal polarization after performing BF training on multiple channels, when transmitting the information of the optimal link with the highest link quality, the transmitting antenna in the optimal link information is used.
  • the area is matched with the channel, SNR, MCS, and CSI of the space-time stream of feedback, that is, the complete and accurate optimal link information is fed back to achieve the maximum channel capacity.
  • the BF training is completed on one channel, which means that both the initiator and the responder of the BF training have completed the BF training and/or the receiving BF training on one channel according to the training content indicated by the BF training request information. .
  • FIG. 2 is a schematic diagram of a frame format of an enhanced directional multi-gigabit (EDMG) physical layer protocol data unit (PPDU).
  • EDMG enhanced directional multi-gigabit
  • PPDU physical layer protocol data unit
  • AGC automatic gain control
  • TRN training
  • BRP beam refinement protocol
  • the EDMG PPDU frame includes: a Golay Sequence field, a legacy short training field (L-STF), a legacy channel estimation field (L-CEF), and a legacy. Head (L-Header) and EDMG Head A (EDMG-Header-A) fields.
  • the Ga128 field in Fig. 3 is that the Golay sequence is a subsequence of length 128.
  • Applying CSD encoding is to apply CSD to any one of the two streams, and to add a partial sequence of the length of the first Ga128 sequence in the L-STF to T shift , which is appended to the EDMG-Header-A field.
  • the partial sequence corresponding to T shift is cyclically shifted to the end of the EDMG-Header-A field, so that stream 1 and stream 2 are aligned in time in the front part of the EDMG-STF field, but the sequence of stream 1 and stream 2 is aligned.
  • the content is different, thereby eliminating the signal correlation of Flow 1 and Stream 2 and the undesirable beamforming effects.
  • the embodiment of the present invention provides a beamforming training method, which can make a transmit antenna, a transmit sector (a transmit beam), and a SNR/MCS/CSI corresponding to a channel and a receive chain in beamforming training feedback. So, the maximum channel capacity can be known in the feedback, and the optimal MIMO channel configuration is obtained. It is also possible to indicate whether CSD needs to be applied between different flows, so that the packet detection rate of the legacy STA (Legacy STA) and the decoding success rate of the L-Header field in the PPDU can be improved.
  • the legacy STA Legacy STA
  • the decoding success rate of the L-Header field in the PPDU can be improved.
  • FIG. 4 is a schematic diagram of an application scenario of the embodiment of the present invention. As shown in FIG. 4, the present invention is mainly applied to a wireless local area network, and the system architecture or scenario includes at least one AP and at least one STA performing wireless communication, or Expanded into the scenario of wireless communication between network devices and terminal devices.
  • the embodiments of the present invention are not limited herein.
  • the system may include more APs and STAs, or the AP may be configured by each STA. Between Line communication, etc.
  • FIG. 5 is a schematic flowchart of a method 100 for beamforming training according to an embodiment of the present invention.
  • the method 100 can be applied to the method shown in FIG. In the scene, of course, it can also be applied in other communication scenarios.
  • the embodiments of the present invention are not limited herein.
  • the method 100 includes:
  • the second device generates beamforming BF training request information, where the BF training request information includes antenna configuration information of the BF training and channel configuration information for performing the BF training on at least one channel.
  • the second device sends the BF training request information to the first device.
  • the second device performs BF training on the at least one channel with the first device according to the BF training request information.
  • the first device determines first feedback information, where the first feedback information includes: a measurement result of the BF training, information about an antenna corresponding to the measurement result of the BF training, beam information of the antenna, and channel information corresponding to the antenna. .
  • the first device sends the first feedback information to the second device.
  • the second device determines, according to the first feedback information, an optimal antenna configuration and/or digital domain BF precoding information on the at least one channel.
  • FIG. 6 is a schematic diagram of performing BF training on a second device and a first device according to an embodiment of the present invention.
  • the interaction process of the initiator (second device) and responder (first device) of the BF training in time is as shown in FIG. 6.
  • each round of BF training is composed of BF training request information sent by the initiator and feedback information sent by the responder.
  • the initiator and responder need to configure the training mode and parameters for the BF training process through the BF establishment process before performing the BF training.
  • one or more rounds of BF training between the initiator and the responder, and performing multiple rounds of BF training facilitates the initiator to speed up the alignment of the beam between the multiple antennas according to the intermediate feedback information in the middle of the process, and speed up the acceleration.
  • the first device sends the first feedback information (final feedback information) to the initiating device, and uses the notification to inform the result of the training.
  • the antenna of the second device and/or the first device may be a phased array antenna, a directional antenna, a single antenna with orthogonal polarization (dual polarization), and different polarizations. Any of the dual antennas of the capability.
  • an antenna array having a plurality of antenna elements is simply referred to as an antenna, and therefore, each antenna can form an analog beamforming.
  • the antenna, the array antenna and the radio frequency chain have the same meaning in expression, and the sector, the beam and the antenna weight vector (AWV) have the same meaning in expression.
  • the sector number may be replaced by the serial number of the AWV sequence number/TRN subfield, and the antenna number may be replaced by a radio chain number (RF chain ID), where the AWV sequence number refers to the TRN training sequence in the BRP packet corresponding to the AWV ( For example, the sequence number of a TRN subsequence.
  • RF chain ID radio chain number
  • the AWV sequence number refers to the TRN training sequence in the BRP packet corresponding to the AWV
  • the sequence number of a TRN subsequence For example, the sequence number of a TRN subsequence.
  • the sector, beam and antenna weight vectors may be substituted for each other, and the sector number, AWV number, and TRN subfield number may be replaced by each other.
  • the first device and the second device may work in a single channel, or channel aggregation, or channel bonding mode.
  • the orthogonal polarization of the first device and the second device antenna can also be used in conjunction with channel aggregation.
  • the first device and the second device In the channel aggregation mode, the first device and the second device have a plurality of independent baseband modules and their corresponding RF chains, wherein each baseband module and its corresponding RF chain can be independently transmitted or received on one channel.
  • transmission or reception cannot be performed on multiple channels at the same time, and multiple baseband modules and RF chains can transmit/receive orthogonal training sequences or cannot transmit/receive orthogonal training sequences.
  • the second device in the BF training establishment phase, the second device (taking SAT1 as an example) generates BF training request information, where the BF training request information includes antenna configuration information for performing BF training for each antenna and performing the BF on at least one channel. Trained channel configuration information.
  • the antenna configuration information is configuration information of the MIMO transmitting antenna to be used in the BF training, and may include one or more of the following information: the number of transmitting antennas and the antenna number (Antenna ID), and the polarization capability of the transmitting antenna. Whether the orthogonal training sequence is used between the transmitting antennas, the number of BRP packets sent by each transmitting antenna, the sending sector number and sequence of each transmitting antenna, and the length/training sequence of the training sequence carried by each BRP packet. The number of units (TRN-Unit) and the like are not limited herein.
  • the channel configuration information includes a channel number for performing BF training for each antenna, a channel order for performing BF training for each antenna, channel bonding or channel aggregation, and whether each antenna is performed on all channels.
  • the embodiments of the present invention are not limited herein.
  • the indication information of whether each antenna performs the BF training on all channels refers to whether to perform BF training for other channels after switching to other channels after each antenna completes BF training on the currently running channel.
  • the BF training request information may not carry the channel configuration information.
  • the channel number of each BF training for each antenna and the channel order are used by a pair of second devices supporting the channel aggregation and the first device to perform BF training on two or more channels.
  • a pair of second devices and the first device perform BF training in 2x2 mode for two antennas (eg, antenna 1 and antenna 2) and two channels (eg, channel 1 and channel) 2) BF training in 2x2 mode under channel aggregation
  • the channel number and sequence of BF training for each antenna can be expressed as follows:
  • Antenna 1 Channel 1, Channel 2.
  • Antenna 2 Channel 2, Channel 1.
  • the channel number and order of BF training for each antenna can be expressed as follows:
  • Antenna 1 Channel 1, Channel 2.
  • Antenna 2 Channel 1, Channel 2.
  • the channel number of each antenna for BF training and the channel order information for BF training for each antenna can be simplified as follows: whether BF training is performed on all channels. This is because each of the two transmit antennas and the two receive antennas employs any training method, and each antenna can transmit or receive BF training on only one of the two channels at the same time. For example, if antenna 1 completes training on channel 1, when the "BF training on all channels" information in the configuration information of the BF training indicates that training is required on all channels, antenna 1 needs to jump to Training is performed on channel 2.
  • the channel configuration information may further include a transmission start time and duration of each transmitting antenna on each channel, thereby enabling the first device to associate the received training sequence with the number and channel number of the transmitting antenna.
  • the sending start time of each transmitting antenna on each channel is calculated by the sending order of each antenna on the channel and the total length of the TRN sequence transmitted by each antenna, and the duration is equal to each antenna transmitting the TRN sequence on the channel. The total time of the column.
  • the SAT1 sends the BF training request information to the first device (taking SAT2 as an example).
  • the BF training request information is sent to the SAT2, and correspondingly, the SAT2 receives the BF training request information.
  • SAT2 After receiving the BF training request information, SAT2 performs BF training on at least one channel with SAT1.
  • the SAT2 receives the BF training request information, and starts BF training based on the antenna configuration information and channel configuration information included in the BF training request information and SAT1.
  • One or more rounds of BF training can be performed between SAT1 and SAT2. That is, a round of BF training and feedback or multiple rounds of BF training and feedback.
  • the embodiments of the present invention are not limited herein.
  • SAT2 will detect the channel coefficients of the BF training. After the BF training is completed, SAT2 will according to all the channel coefficients detected and a selection criterion (such as channel capacity, total throughput, etc.) according to multiple MIMO channels.
  • the matrix selects the optimal one or more effective channel matrices H eff .
  • the effective channel matrix H eff is a channel matrix of a MIMO channel corresponding to a MIMO link, and is composed of channel coefficients having a dimension of K ⁇ L. Where K and L are the number of transmitting antennas and receiving antennas, respectively.
  • the channel coefficient h(i M , j N , m) refers to a measurement result obtained by measuring a BF training sequence transmitted by one transmission beam j N of one transmitting antenna on a channel m, one receiving beam i M of one receiving antenna.
  • H eff is related to the channel because each channel coefficient in H eff is related to the channel number m.
  • the total capacity of all channels involved in data transmission in the case of the channel aggregation mode should be used as a basis for judgment.
  • the total channel capacity of all channels after aggregation should be calculated.
  • S140, SAT2 determines first feedback information, where the first feedback information includes: a measurement result of the BF training, information of an antenna corresponding to the measurement result of the BF training, beam information of the antenna, and channel information corresponding to the antenna.
  • the frequency difference between the channel frequency response and the path loss caused by the radio frequency device and the different channels due to the large difference in frequency is also large.
  • the path loss caused by the difference in frequency between different channels of adjacent 2.16 GHz bandwidth is only 0.3-0.9 dB, and the required SNR between MCSs of different orders is at least 1 dB, so only the loss introduced by different channels is considered. It is not enough to support the use of different MCSs on adjacent different channels.
  • the main reasons for using different MCSs (or unbalanced MCSs) for different channels include different path paths with different path losses and discontinuous channel aggregation).
  • the MCS is respectively associated with the transmission path (determined by the transmitting antenna/transmitting sector/transmitting AWV) and the channel. Therefore, when each stream MCS is fed back, the corresponding transmitting antenna ID/sending sector ID and channel number information should be fed back together. .
  • SAT2 can determine, according to the H eff , a correspondence between the measurement result of the BF training and the antenna, the beam of the antenna, and the channel on which the antenna performs the BF training. Since the different antennas of STA1 and STA2 are likely to be spatially separated, for example, the center points of different antennas of STA1 and/or STA2 are separated by d1 and d2 cm, respectively. When the different antennas of STA1 and/or STA2 are spatially separated, since the propagation paths experienced by the beams emitted by different antennas are different, the optimal MIMO link will be simultaneously matched with the selected beam and the selected beam. Channel related.
  • H eff when H eff is fed back, the corresponding H eff of one or more optimal MIMO links is related to the beam and the channel. It is necessary to determine the correspondence between the transmitting antenna (including the transmitting beam), the receiving antenna (including the receiving beam), and the channel and CSI.
  • FIG. 7 shows a transmission of 2x2 MIMO mode.
  • Each antenna of STA1 and STA2 corresponds to an independent RF chain and baseband module, and STA1 and STA2 are respectively on channel 1. And transmit on channel 2. There is a guard band between channel 1 and channel 2.
  • H eff can be expressed by the formula (1):
  • h 11 denotes that the receiving antenna 1 measures the channel coefficient on the transmitting antenna 1 on the channel 1.
  • h 22 denotes that the receiving antenna 2 measures the channel coefficients on the transmitting antenna 2 on the channel 2.
  • H eff can be expressed by the formula (2):
  • the channel coefficient h(i 1 , j 1 , 1) represents the channel coefficient of the transmission beam j 1 of the transmitting antenna 1 and the reception beam i 1 of the receiving antenna 1 on the channel 1
  • the channel coefficient h (i 2 , j 2 , 2) represent the channel coefficients of the transmission beam j 2 of the transmitting antenna 2 and the receiving beam i 2 of the receiving antenna 2 on the channel 2.
  • Each channel coefficient corresponds to one channel.
  • the channel coefficients are all time domain vectors. After determining H eff , the channel corresponding to the channel coefficient can be confirmed.
  • STA2 may obtain SNR according to the values of
  • the STA2 determines MCS 1 /SNR 1 and MCS 2 /SNR 2 corresponding to h 11 and h 22 , and after determining the channels corresponding to MCS 1 /SNR 1 and MCS 2 /SNR 2 respectively, the BF training can be generated.
  • a feedback information final feedback information
  • sending the first feedback information to the STA1 where the first feedback information includes: a measurement result of the BF training, information of the antenna corresponding to the measurement result of the BF training, and a beam of the antenna Information, channel information corresponding to the antenna.
  • the first feedback information further includes modulation and coding policy information of each channel of the at least one channel corresponding to the measurement result of the BF training.
  • the first feedback information may further include channel modulation and coding policy information corresponding to the antenna for performing the BF training, and may be used for subsequent channel selection according to the channel modulation and coding policy information, thereby increasing feedback accuracy. Improve the efficiency of subsequent information or data transmission.
  • the first feedback information may be (MCS 1 /SNR 1 /h 11 , antenna 1, transmission sector 1 corresponding to antenna 1, channel 1) and (MCS 2 /SNR 2 /h 22 , antenna 2, antenna 2 corresponding transmission Sector 2, channel 2).
  • the first feedback information may be fed back to STA1 in the form of a table.
  • Table 1 is an optimal MIMO configuration table with two optimal MIMO configuration feedback information for channel aggregation mode.
  • the first feedback information may be fed back in the form of Table 1, that is, in the first feedback information (final feedback information), the measurement result of the BF training is performed with the transmit antenna number and the beam number of the transmit antenna, and the transmit antenna is performed.
  • the channel numbers of the BF training are associated.
  • Table 1 is only an example to show the final feedback.
  • the combination in Table 1 only describes the relationship between the contents of the feedback, and the content can be placed in a message (for example, a new EDMG is defined).
  • the channel measurement report element can be separately fed back, and the feedback can be independently separated at different times and in different messages, as long as the correspondence between the contents in the combination of the feedback information can be identified.
  • the embodiments of the present invention are not limited herein.
  • the first device (STA2) transmits the first feedback information to the second device (STA1).
  • the second device determines, according to the first feedback information, an optimal MIMO configuration and/or digital domain BF precoding information of the BF training. Therefore, the optimal MIMO configuration and/or the digital domain BF precoding information can be better utilized for data transmission, thereby improving data transmission efficiency.
  • the digital domain BF precoding information refers to the coding information calculated by the first device of the BF training according to the effective channel matrix H eff , for example, singular value decomposition for H eff to obtain an encoding matrix.
  • the beamforming training method provided by the embodiment of the present invention has a larger bandwidth (2.16 GHz) of a single channel in the 60 GHz band, and the channel frequency response and the path loss are different due to the large difference in frequency between the RF device and the different channels.
  • the transmit antenna configuration corresponding to the link with the highest link quality contains corresponding channel information, which enables beamforming training to feed back the antenna configuration with the highest link quality, especially in channel aggregation and/or orthogonality.
  • the transmitting antenna, the transmitting sector (transmitting beam), and the channel to be configured by the transmitting antenna, and the SNR/MCS/CSI are associated, so that the transmitting device of the BF training sequence can obtain not only feedback information.
  • the optimal antenna configuration corresponding to the link with the highest link quality can also obtain the channel configuration corresponding to each antenna, that is, the antenna configuration on each channel is known, thereby achieving the maximum channel capacity/maximum reachable rate.
  • the BF training request information further includes indication information for indicating whether the BF training is performed on all channels.
  • the BF training request information further includes indication information for indicating whether the BF training is performed on all channels.
  • Each antenna of STA1 and STA2 needs to determine whether to perform training on all channels according to the indication information.
  • the specific method may be: including a Count Down field in each BRP packet, and the initial value of the countdown field is set to the number of all BRP packets sent on one channel, and the number of BRP packets may be It is calculated based on "the number of BRP packets transmitted by each transmitting antenna" in the BF training configuration information.
  • STA2 may send second feedback information (intermediate feedback information), and each antenna of STA1 and/or STA2 is Switch to another channel, Continue to perform BF training on another channel.
  • the BF training between STA1 and STA2 may be performed one round or multiple rounds, which will be separately described below.
  • FIG. 8 is a schematic diagram of first feedback information of BF training for channel aggregation when there are two different transmit antennas according to an embodiment of the present invention. As shown in FIG. 8, STA1 has two transmit antennas, and STA2 has two receive antennas.
  • channel 1 is the primary channel and channel 2 is the secondary channel.
  • the initiator STA1 first performs BF training on the channel 1 with the channel number smaller on the transmitting antenna 1 and the transmitting antenna 2, and all the receiving antennas of the responder STA2 are measured on the channel 1, and then the STA1 transmits the antenna 1 and the transmitting antenna again. 2 BF training is performed on channel 2 with a large channel number, and all receiving antennas of STA2 are measured on channel 2.
  • STA2 After performing BF training on all channels of channel aggregation, STA2 performs first feedback information for the entire process of BF training described above. The first feedback information sent by STA2 must be sent on the primary channel, and the secondary channel is optional.
  • the transmit antenna, the transmit sector (transmission beam), and the channel in which the transmit antenna is located in the first feedback information correspond to the SNR/MCS/CSI measured by the first device.
  • the second device before receiving the first feedback information, receives the second feedback information sent by the first device, where the second feedback information needs to be performed on multiple channels on each antenna.
  • the STA2 sends the second feedback information (intermediate feedback information) to the STA1 before the STA1 sends the first feedback information to the STA1, where the second feedback information includes The measurement result on the channel of the BF training that has been completed.
  • FIG. 9 is a schematic diagram of second feedback information and first feedback information of multiple rounds of BF training in a channel aggregation mode according to an embodiment of the present invention.
  • STA1 has two transmit antennas. For channel 1 and secondary channel 2 in channel aggregation, channel 1 is the primary channel and channel 2 is the secondary channel. The two receiving RF chains of STA2 share one receiving antenna.
  • the second feedback information includes a number of one or more transmit beams with optimal quality (ie, an optimal AWV number) and/or a signal to noise ratio or received signal strength of one or more of the above-mentioned best quality transmit beams.
  • STA1 After STA1 receives the second feedback information, STA1 has the optimal transmit beam information on channel 1, and STA1 can perform the BF training in the BRP phase again on channel 2, and can be optimally transmitted according to the existing channel 1.
  • the beam information by using the principle that the channel 2 is similar to the optimal transmission beam on the channel 1, greatly reduces the number of transmission beams trained on the channel 2, thereby greatly reducing the sequence duration of the transmitted BF training training.
  • Feedback 1 and feedback 2 in Fig. 9 are the second feedback information and the first feedback information of the BF training process, respectively.
  • the second feedback information includes the transmit beam of the best quality of the transmit antenna 1 and the transmit antenna 2 of STA1 on channel 1.
  • first feedback information and the second feedback information may be carried in a BRP frame, for example, included in a channel measurement feedback element or an EDMG channel measurement feedback element within a BRP frame.
  • FIG. 10 is a second feedback information and first of multiple rounds of BF training in a channel aggregation mode according to another embodiment of the present invention.
  • Schematic diagram of feedback information In FIG. 10, STA1 has two transmit antennas, and STA2 has two receive antennas. For channel 1 and secondary channel 2 in channel aggregation, channel 1 is the primary channel and channel 2 is the secondary channel. STA1 has 2 different transmit antennas, while STA2 has 2 receive antennas. Since antenna 1 of STA1 performs BF training on channel 1 and channel 2 of antenna 1 of STA1, after BF training on channel 1 and channel 2, STA2 performs BF training on channel 1 and channel 2 on the primary channel respectively. Second feedback information.
  • the two transmitting antennas need to switch to another channel (interchange channel) for BF training, after each antenna performs BF training for all channels, STA2 is for each antenna on the primary channel.
  • the BF training of all channels is performed to perform first feedback information.
  • the second feedback information and the first feedback information may be sent on the primary channel, and may or may not be sent on the secondary channel.
  • the embodiments of the present invention are not limited herein.
  • the second feedback information is sent to the second device when the BF training performs channel switching.
  • the STA2 may send to the STA1 when the BF training performs channel switching.
  • the second feedback information for example, after all the antennas of the STA1 are BF-trained on the channel 1, the antennas of the STA1 are sent to the STA1 before the BF training of the channel 2, that is, the antenna of the STA1 is in the channel switching time. Second feedback information information.
  • the BF training request information further includes multiple beam optimization protocols for performing BF training on multiple beams of at least one antenna.
  • the measurement result of the BF training includes: sequence number information of a beam optimization protocol BRP packet corresponding to each beam indicated by the beam information, and length information of the training sequence in the BRP packet.
  • the BF training request information is also The sequence number information of the plurality of beam optimization protocol BRP packets for the BF training of the plurality of beams and the length information of the training sequence in each of the BRP packets are included.
  • the measurement result of the BF training further includes sequence information of the BRP packet corresponding to each of the multiple beams and length information of the training sequence in the BRP packet.
  • the serial number of the BRP packet corresponding to the AWV number should be fed back simultaneously, such as (antenna 1, BRP2, AWV10) indicating the 10th TRN sub of the second BRP packet for antenna 1.
  • the AWV corresponding to the field has the best reception quality.
  • one or more AWV serial numbers may be fed back in the intermediate feedback information after each round of BF training, for example, the feedback information for the antenna Z is: (antenna Z, BRP1, AWV a, AWV b..., BRP2, AWV c), multiple AWV sequence numbers can be used to indicate the next round of finer BF training beam starting point, and can also be used for the final round of BF training to determine the optimal antenna beam configuration, and can also be used as subsequent beam tracking.
  • Alternative beam may be used to indicate the next round of finer BF training beam starting point, and can also be used for the final round of BF training to determine the optimal antenna beam configuration, and can also be used as subsequent beam tracking.
  • the measurement result of the BF training includes: a signal to noise ratio SNR of the BF training, channel state information of a channel where the BF training is located, and a modulation and coding strategy MCS of a channel where the BF training is located.
  • SAT2 when performing BF training between SAT1 and SAT2, SAT2 can determine the signal-to-noise ratio SNR of the BF training based on the measured channel coefficients and can feed back the suggested MCS and determine the optimal MIMO channel configuration.
  • the measurement result of the BF training may also include other CSI or information related to the BF trained antenna, beam and channel, for example, other CSI information includes channel impulse response of each channel (single input list)
  • the output case) or the channel matrix of each channel is not limited herein.
  • the embodiment of the present invention further provides a method 200 for beamforming training.
  • the method 200 can be applied to the scenario shown in FIG. 4, and can of course be applied to other communication scenarios.
  • the embodiments of the present invention are not limited herein.
  • the method 200 includes:
  • the second device generates BF training request information, where the BF training request information includes antenna configuration information of the BF training and channel configuration information for performing the BF training on at least one channel.
  • the second device sends the BF training request information to the first device.
  • the second device performs BF training on the at least one channel with the first device according to the BF training request information.
  • the first device determines, according to the measurement result of the BF training, whether a plurality of space-time streams corresponding to the multiple antennas need to adopt cyclic shift diversity CSD coding.
  • the first device sends the first feedback information of the BF training to the second device, where the first feedback information includes indication information for indicating whether each of the plurality of space-time streams needs to adopt CSD coding.
  • the second device determines, according to the first feedback information, whether each of the plurality of space-time streams adopts the CSD encoding.
  • each round of BF training consists of BF training request information sent by the initiator (second device) and feedback information sent by the responder (first device).
  • the initiator and responder need to configure the training mode and parameters for the BF training process through the BF establishment process before performing the BF training.
  • one or more rounds of MIMO BF training between the initiator and the responder, and multiple rounds of BF training are beneficial to the initiator to speed up the alignment of the beam between the multiple antennas according to the feedback information in the middle of the process, and speed up the acceleration.
  • the second device in the BF training establishment phase, the second device (taking SAT1 as an example) generates BF training request information, where the BF training request information includes antenna configuration information for performing BF training for each antenna, and performing BF training for each antenna.
  • Channel configuration information which is configuration information of a MIMO transmitting antenna to be used in BF training, and may include one or more of the following information: number of transmitting antennas and antenna number (Antenna ID), transmitting antenna Polarization capability information, whether orthogonal training sequences are used between transmit antennas, the number of BRP packets sent by each transmit antenna, the transmit sector number and sequence of each transmit antenna, and the training sequence carried by each BRP packet. Length / number of training sequence units (TRN-Unit), etc.
  • the channel configuration information includes a channel number for performing BF training for each antenna, a channel order for performing BF training for each antenna, channel bonding or channel aggregation, indication information of whether each antenna performs the BF training on all channels, and the like.
  • the embodiments of the present invention are not limited herein.
  • the SAT1 sends the BF training request information to the first device (taking SAT2 as an example).
  • the BF training request information is generated by SAT1
  • the BF training request information is sent to SAT2, and correspondingly, SAT2 receives the BF training request information.
  • the second device performs BF training on the at least one channel with the first device according to the BF training request information.
  • SAT2 receives the BF training request information, starts BF training according to the antenna configuration information and channel configuration information included in the BF training request information, and SAT1.
  • One or more rounds of BF training can be performed between SAT1 and SAT2. That is, a round of BF training and feedback or multiple rounds of BF training and feedback.
  • Embodiment of the present invention There are no restrictions here.
  • the first device determines, according to the measurement result of the BF training, whether the plurality of space-time streams corresponding to the multiple antennas need to adopt cyclic shift diversity CSD.
  • SAT2 determines an effective channel matrix according to BF training, the effective channel matrix including a plurality of elements, each of the plurality of elements being used to indicate a measurement result of the BF training of one beam of one antenna on one channel. .
  • SAT2 will detect the channel coefficients of the BF training. After the BF training is completed, SAT2 will according to all the channel coefficients detected and a selection criterion (such as channel capacity, total throughput, etc.) according to multiple MIMO channels.
  • the matrix selects the optimal one or more effective channel matrices H eff .
  • the effective channel matrix H eff is a channel matrix of a MIMO channel corresponding to a MIMO space-time stream, and is composed of channel coefficients having a dimension of K ⁇ L, where K and L are the number of transmitting antennas and receiving antennas, respectively.
  • the channel coefficient h(i M , j N , m) refers to a measurement result obtained by measuring a BF training sequence transmitted by one transmission beam j N of one transmitting antenna on a channel m, one receiving beam i M of one receiving antenna.
  • the measurement result of the BF training includes information of an antenna configuration having the highest link quality, and a correspondence relationship between each antenna and a channel, for example, the measurement result includes not only the measurement result of the BF training but also the BF.
  • the configuration information of the antenna corresponding to the measurement result of the training, the beam information of the antenna, the channel information corresponding to the antenna, the modulation and coding strategy information of the channel, and the like are not limited herein.
  • the configuration information of the antenna is used to indicate which antennas the link with the highest link quality is composed of.
  • the beam information of the antenna refers to the beam that should be employed by each of the antennas constituting the link of the highest link quality.
  • the channel information corresponding to the antenna refers to which channel the radio frequency chain corresponding to the antenna should be configured to operate on. For example, if the channel information corresponding to the antenna 1/RF chain 1 included in the measurement result is channel 1, it refers to the antenna 1/radio. Chain 1 needs to be configured to operate on channel 1.
  • the modulation and coding strategy information of the channel refers to the modulation and coding strategy that should be adopted for each channel. Since different channels may be subject to large attenuation or interference, different channels adopt different modulation and coding strategies to flexibly realize the maximum reachable rate of each channel, thereby achieving the maximum channel capacity during channel aggregation.
  • the first device determines, according to the measurement result, whether a plurality of space-time streams corresponding to the plurality of antennas need to adopt cyclic shift diversity CSD.
  • SAT2 can determine whether there are correlations between multiple space-time streams (ie, multiple streams) corresponding to multiple antennas according to H eff in the measurement result, and if multiple streams are related, Then it is determined that CSD needs to be applied between the multiple streams, and if multiple streams are not related, it is determined that CSD is not required to be applied between the multiple streams.
  • the method for STA2 to determine whether multiple flows are related includes:
  • H eff is determined only when the presence of non-zero values on the diagonal, and the other channel coefficient is zero or less than a preset threshold value tends to 0, it is determined that the two streams is not relevant. Or if there is no correlation between the two column vectors of H eff , it is determined that the two streams of the two transmit RF chains corresponding to the two column vectors are irrelevant.
  • STA2 determines the dual-polarization orthogonal matching between the antennas, and there is no polarization leakage, and the flow corresponding to the antenna between STA1 and STA2 is irrelevant.
  • both STA1 and STA2 are configured with dual-polarized antennas, and STA1 transmits preset two BF training sequences TRN1 and TRN2 through horizontal polarization and vertical polarization, respectively, where TRN1 and TRN2 are mutually orthogonal sequences, if STA2 based on the results of horizontal polarization and vertical polarization reception shows that each polarization mode can only receive one training sequence transmitted by polarization, such as STA2.
  • Each of the horizontally polarized antenna and the vertically polarized antenna can only receive one of TRN1 and TRN2, and it is considered that there is no correlation between the two streams TRN1 and TRN2 transmitted by STA1.
  • STA2 determines that different antennas work in channel aggregation mode, and each transmitting or receiving RF chain works on different channels to form a frequency division multiplexing working mode, because each receiving chain of the first device only When a signal of one stream on the channel is received, there is no beamforming effect between the multiple streams, and CSD is not needed.
  • correlation values can be used to indicate the degree of correlation between different streams and to determine whether they are relevant.
  • the correlation value is used to evaluate the correlation degree of the TRN sequence between different streams. When the correlation value between the two streams is greater than the preset value, it is proved that the two streams are related, and CSD needs to be applied when the correlation between the two streams When the value is less than the preset value, it proves that the two streams are irrelevant and there is no need to apply CSD.
  • correlation operations are performed on different column vectors of H eff to obtain correlation values between streams corresponding to column vectors.
  • the first device sends the first feedback information of the BF training to the second device, where the first feedback information includes indication information for indicating whether each of the plurality of space-time streams needs to be CSD-coded.
  • the SAT2 generates the first feedback information of the BF training.
  • the SAT2 determines whether the CSD needs to be applied between the multiple flows according to the effective channel matrix H eff . Therefore, the first feedback information includes Whether each space-time stream in the time stream needs to use the CSD indication.
  • the second device determines, according to the first feedback information, whether each of the plurality of space-time streams adopts the adopted CSD.
  • the SAT1 determines, according to the indication information in the first feedback information, whether each of the plurality of space-time streams adopts the adopted CSD. After determining whether each space-time stream adopts the CSD, in the subsequent communication with SAT2, it is possible to surely adopt CSD, and improve the packet detection rate of the legacy STA and the decoding success rate of the L-Header field in the PPDU.
  • the method for beamforming training determines whether a plurality of streams corresponding to multiple antennas are related according to an effective channel matrix of the BF training, and if the multiple streams are related, determining the multiple streams CSD needs to be applied. If there is no correlation between multiple streams, it is determined that CSD is not required to be applied between the multiple streams.
  • the indication information indicating whether each of the plurality of space-time streams needs to adopt CSD coding is included in the first feedback information. According to the indication information, it is determined that the CSD is applied between different flows, so that the packet detection rate of the legacy STA and the decoding success rate of the L-Header field in the PPDU can be improved.
  • the indication information of whether to apply CSD may be carried in a channel measurement feedback element or an EDMG channel measurement feedback element in a BRP frame.
  • Table 2 is an optimal MIMO configuration table with two optimal MIMO configuration feedback information for carrying information indicating the channel aggregation mode.
  • Table 2 Optimal MIMO configuration table carrying indication information in channel aggregation mode
  • the first feedback information may be fed back in the form of Table 2.
  • Table 2 for each channel in the channel aggregation, an indication information of whether to use CSD is added to indicate whether the space-time flow on the channel needs to be adopted. CSD coding.
  • the measurement result of the BF training is associated with the transmit antenna and the beam of the transmit antenna, the channel configuration information of the transmit antenna for performing the BF training, and the STA1 is instructed whether to use CSD.
  • the method further includes: sending, to the second device, intermediate feedback information, where the intermediate feedback information includes And indicating whether the space-time stream corresponding to the antenna that has performed the BF training needs to adopt the indication information of the CSD.
  • the BF training may have multiple rounds of iteration, that is, multiple rounds of BF training are performed, and the feedback (intermediate feedback) of the BRP training results of these intermediate iterations includes and the BF training already performed. Whether the space-time flow corresponding to the antenna needs to adopt the indication information of the CSD.
  • determining whether the plurality of space-time streams corresponding to the multiple antennas need to adopt cyclic shift diversity CSD includes: determining, when the plurality of space-time streams belong to different channels respectively The CSD is not used for space-time streaming.
  • At least two of the plurality of space-time streams belong to the same channel, determining, according to the orthogonal polarization manner of the at least two space-time streams, whether the at least two space-time streams need to adopt the CSD.
  • each transmitting or receiving RF chain works on a different channel.
  • the frequency division multiplexing operation mode is formed. Since each receiving chain of STA2 receives only one stream signal on the channel, and does not have a beamforming effect between multiple streams, CSD is not required.
  • determining the at least two space-time flows according to the orthogonal polarization manner of the at least two space-time flows including:
  • the at least two space-time stream correlations are determined.
  • a space-time stream in which the CSD needs to be applied in the at least two space-time streams is determined.
  • the at least two first space-time flow groups adopt the same CSD.
  • the at least two The first space-time stream group can adopt the same CSD code, that is, the plurality of first space-time stream groups adopt the same CSD.
  • the at least two space-time streams have different orthogonal polarization modes, and the correlation value between the at least two space-time streams is less than a preset value, Determining that the at least two space-time streams do not require the CSD.
  • FIG. 12 is a schematic diagram of MIMO in which a STA 4 and STA 2 form a 4 ⁇ 4 mode according to an embodiment of the present invention.
  • STA1 has two transmitting antennas
  • STA2 has two receiving antennas
  • each transmitting antenna or each receiving antenna has dual polarization capability (for example, horizontal polarization (H-pol) and vertical Vertical polarization (V-pol)
  • each antenna corresponds to two RF chains
  • each RF chain corresponds to one polarization mode of the antenna, thus forming 4x4 mode MIMO between STA1 and STA2.
  • STA1 and STA2 The antenna spacing is d1 and d2, respectively, where d1 and d2 have a value range greater than or equal to zero.
  • FIG. 12 is a diagram showing a CSD employed in the 4x4 mode MIMO shown in FIG. 13, and FIG. 13 is a schematic diagram of a 4x4 mode MIMO CSD according to an embodiment of the present invention.
  • Fig. 12 is a diagram showing a CSD employed in the 4x4 mode MIMO shown in FIG. 13, and FIG. 13 is a schematic diagram of a 4x4 mode MIMO CSD according to an embodiment of the present invention.
  • stream 1 and stream 2 can be divided into one group (first group), and stream 3 and stream 4 are divided into one group (second group). That is, for one of stream 1 and stream 2, stream 3, and stream 1 (for example, stream 1 and stream 3 in FIG. 13), the length of the first Ga128 subsequence in the short training field STF is A partial sequence of T shift (1) is cyclically shifted to the back of EDMG-Header-A, while another stream within the same group does not undergo any cyclic shift.
  • T shift (0) 0, T shift (1), T shift (2), and T shift (3) are greater than 0, and the value range is a positive integer multiple of the chip duration.
  • the streams between the different groups can adopt the same CSD, that is, the first group and the second group use the same CSD.
  • Stream 1 and stream 3 use the same CSD, so the required CSD value is reduced to 1 T shift , which requires 4 CSD values to be reduced compared to the prior art requirements of Stream 1, Stream 2, Stream 3, and Stream 4. 3
  • the maximum value of the CSD value can be reduced to the minimum value of the original non-zero CSD value.
  • the reduced CSD code value can reduce the packet error rate/false detection rate of the conventional STA.
  • FIG. 14 is a schematic diagram of a CSD of an 8x8 mode MIMO according to an embodiment of the present invention.
  • the transceivers respectively have all streams transmitted on the same channel, that is, 8 streams are transmitted on the same channel.
  • the transmitting and receiving parties implement orthogonal matching between dual-polarized antennas, it is only necessary to use CSD between all streams of the same polarization mode (such as H-pol or V-pol), and the value of CSD encoding is reduced to 4 One. That is, four different CSD code values are used on the four streams having the same polarization mode from stream 1 to stream 4, and four streams having the same polarization mode are used in stream 5 to stream 8.
  • FIG. 15 is a schematic diagram of a CSD of 4x4 mode MIMO according to an embodiment of the present invention.
  • channel aggregation since channel aggregation is used, stream 1 and stream 2 are transmitted on channel 1, stream 3 and stream 4 are transmitted on channel 2, and channel 1 is upstream (stream 1 and stream 2) and channel 2 is upstream (stream 3 There is no interference between it and stream 4), so CSD is not required.
  • stream 1 and stream 2 on channel 1 stream 3 and stream 4 on channel 2 are transmitted between stream 1 and stream 2, and stream 3 and stream 4 are respectively transmitted by orthogonally polarized antennas.
  • orthogonal polarization matching is used, CSD is not required.
  • channel 1 and channel 2 are merely exemplary descriptions, and may be any two channels that meet the channel aggregation requirements.
  • FIG. 16 is a schematic diagram of a 4x4 mode MIMO CSD according to another embodiment of the present invention. As shown in FIG. 16, it is assumed that the transmitting and receiving devices respectively have two different dual-polarized antennas, and each dual-polarized antenna operates on a different channel.
  • the BF training result shows that the stream 1 and the stream 2 on the channel 1 have A better orthogonally polarized beam, and the degree of orthogonality between the dual-polarized beam between stream 3 and stream 4 on channel 2 is poor, then two streams on channel 1 are not required to be CSD, and two on channel 2 Streams need to use CSD.
  • a partial sequence of CSD encoded values of T shift(1) is cyclically shifted to the back of EDMG-Header-A. Due to different antennas, different channels and other factors, the orthogonal polarization effects on different channels are different, and the dual polarization of different antennas is caused by different antenna positions and device movement/antenna rotation. The degree of leakage between the two is different.
  • the independent CSD feedback indication is used for different channels, which can flexibly indicate whether the communication link on different channels adopts CSD, so that the requirements of different communication links on different channels can be more flexibly supported. .
  • the indication information of whether to apply the CSD at this time may be carried in the confirmation frame or the block confirmation frame, for example, by the control trailer part of the confirmation frame or the block confirmation frame, including the field indication in the control tail.
  • the CSD stream and the channel on which the stream is located should be applied. The embodiments of the present invention are not limited herein.
  • the method for beamforming training determines whether there is correlation between multiple links (ie, multiple streams) corresponding to multiple antennas according to the effective channel matrix of the BF training, if multiple flows are related Then, it is determined that CSD needs to be applied between the multiple streams, and if multiple streams are not related, it is determined that CSD is not required to be applied between the multiple streams.
  • the indication information indicating whether each of the plurality of links needs to adopt CSD coding is included in the first feedback information. According to the indication information, it is determined that CSD coding is applied between different flows, so that the packet detection rate of the legacy STA and the decoding success rate of the L-Header field in the PPDU can be facilitated.
  • the method for beamforming training according to the embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 16.
  • the receiving device and the transmitting device of the embodiment of the present invention will be described in detail below with reference to FIG. 17 to FIG.
  • FIG. 17 is a schematic block diagram of a receiving device in accordance with one embodiment of the present invention. It should be understood that the receiving device embodiment and the party The method embodiments correspond to each other, and a similar description can refer to the method embodiment.
  • the receiving device 300 shown in FIG. 17 can be used to execute the steps corresponding to the second device in FIG.
  • the receiving device 300 includes a processor 310, a memory 320 and a transceiver 330.
  • the processor 310, the memory 320 and the transceiver 330 are connected by communication, the memory 320 stores instructions, and the processor 310 is used to execute instructions stored by the memory 320.
  • 330 is used to perform specific signal transceiving under the driving of the processor 310.
  • the processor 310 is configured to perform BF training on the at least one channel with the first device according to the BF training request information, where the BF training request information includes antenna configuration information of the BF training and channel configuration information of the at least one channel. .
  • the transceiver 330 is configured to receive first feedback information sent by the first device, where the first feedback information includes: a measurement result of the BF training, information of an antenna corresponding to the measurement result of the BF training, and a beam of the antenna Information, channel information corresponding to the antenna.
  • the processor 310 is further configured to determine an optimal antenna configuration and/or digital domain BF precoding information on the at least one channel according to the first feedback information.
  • the receiving device in the received beamforming training first feedback information, enables the beamforming training to feed back the antenna configuration with the highest link quality, especially in channel aggregation and/or orthogonal polarization.
  • the transmitting antenna, the transmitting sector (transmitting beam), and the channel to be configured by the transmitting antenna, and the SNR/MCS/CSI are associated, so that the transmitting device of the BF training sequence can obtain not only optimal feedback information.
  • the antenna configuration corresponding to the link with the highest link quality can also obtain the channel configuration corresponding to each antenna, that is, the antenna configuration on each channel is known, thereby achieving the maximum channel capacity/maximum reachable rate.
  • the various components in the receiving device 300 communicate with each other via a communication connection, i.e., between the processor 310, the memory 320, and the transceiver 330, through internal interconnect paths, and communicate control and/or data signals.
  • a communication connection i.e., between the processor 310, the memory 320, and the transceiver 330, through internal interconnect paths, and communicate control and/or data signals.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP, a digital signal processor (DSP), an application specific integrated circuit (application). Specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the antenna configuration information includes an antenna number configured on each channel in the BF training.
  • the channel configuration information includes at least one of the following information: the BF training sequence uses channel bonding or channel aggregation information, and each antenna performs indication of the BF training on all channels, and each antenna performs the BF training. Sequence information of the channel, each antenna performs number information of the channel of the BF training. .
  • the BF training request information when the BF training is performed in a channel aggregation mode, the BF training request information further includes indication information for indicating whether the BF training is performed on all channels.
  • the transceiver in a case that each antenna needs to perform the BF training on multiple channels, is further configured to send a second before the transceiver 330 sends the first feedback information.
  • Feedback information the second feedback information includes measurement results on the channel of the BF training that has been completed.
  • the measurement result of the BF training includes: sequence number information of a beam optimization protocol BRP packet corresponding to each beam indicated by the beam information. And length information of the training sequence in the BRP packet.
  • the first feedback information further includes modulation and coding policy information of each channel of the at least one channel corresponding to the measurement result of the BF training.
  • the processor 310 may be implemented by a processing module
  • the memory 320 may be implemented by a storage module
  • the transceiver 330 may be implemented by a transceiver module.
  • the receiving device 400 may include a processing module 410.
  • the receiving device 300 shown in FIG. 17 or the receiving device 400 shown in FIG. 18 can implement the steps performed by the second device in FIG. 5 described above. To avoid repetition, details are not described herein again.
  • FIG. 19 shows a schematic block diagram of a transmitting device 500 in accordance with one embodiment of the present invention. It should be understood that the transmitting device embodiment and the method embodiment correspond to each other, and a similar description may refer to the method embodiment, and the transmitting device 500 shown in FIG. 19 may be used to perform the steps corresponding to the first device in FIG.
  • the transmitting device 500 includes a processor 510, a memory 520 and a transceiver 530.
  • the processor 510, the memory 520 and the transceiver 530 are connected by communication, the memory 520 stores instructions, and the processor 510 is used to execute the memory 520.
  • the stored instructions are used by the transceiver 530 to perform specific signal transceiving under the driving of the processor 510.
  • the processor 510 is configured to perform BF training on the at least one channel with the second device according to the BF training request information, where the BF training request information includes the antenna configuration information of the BF training and channel configuration information of the at least one channel. .
  • the processor 510 is further configured to determine first feedback information, where the first feedback information includes: a measurement result of the BF training, information of an antenna corresponding to the measurement result of the BF training, beam information of the antenna, and corresponding to the antenna. Channel information.
  • the transceiver 530 is configured to send the first feedback information to the second device.
  • the transmitting antenna, the transmitting sector (the transmitting beam), and the channel where the transmitting antenna is located are measured by the receiving device.
  • the SNR/MCS/CSI is matched so that the maximum channel capacity can be known in the feedback to obtain an optimal MIMO channel configuration.
  • the various components in the transmitting device 500 communicate with one another via a communication connection, i.e., the processor 510, the memory 520, and the transceiver 530 communicate with each other via an internal connection path to communicate control and/or data signals.
  • a communication connection i.e., the processor 510, the memory 520, and the transceiver 530 communicate with each other via an internal connection path to communicate control and/or data signals.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit CPU, NP or a combination of CPU and NP, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in random storage , flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in the field.
  • the antenna configuration information includes an antenna number configured on each channel in the BF training.
  • the channel configuration information includes at least one of the following information: the BF training sequence uses channel bonding or channel aggregation information, and each antenna performs indication information of the BF training on all channels, and each antenna performs the BF training. Sequence information of the channel, each antenna performs number information of the channel of the BF training.
  • the BF training request information when the BF training is performed in a channel aggregation mode, further includes indication information for indicating whether the BF training is performed on all channels. .
  • the processor 510 when the BF training is performed, is further configured to determine second feedback information, before the transceiver 530 receives the first feedback information, where
  • the second feedback information includes, in the case that each antenna needs to perform the BF training on multiple channels, the transceiver 530 further transmits the result to the second device on the measurement result of the completed BF training channel. Second feedback information.
  • the BF training request information when there are multiple beams on one antenna, further includes multiple beams for the at least one antenna to perform the BF training.
  • the measurement result of the BF training includes: sequence number information of the BRP packet corresponding to each beam indicated by the beam information and length information of the training sequence in the BRP packet.
  • the first feedback information further includes modulation and coding policy information of each channel of the at least one channel corresponding to the measurement result of the BF training.
  • the processor 510 may be implemented by a processing module
  • the memory 520 may be implemented by a storage module
  • the transceiver 530 may be implemented by a transceiver module.
  • the sending device 600 may include a processing module 610.
  • the transmitting device 500 shown in FIG. 19 or the transmitting device 600 shown in FIG. 20 can implement the steps performed by the first device in FIG. 5 described above. To avoid repetition, details are not described herein again.
  • FIG. 21 is a schematic block diagram of a receiving device in accordance with one embodiment of the present invention. It should be understood that the receiving device embodiment and the method embodiment correspond to each other, and a similar description may refer to the method embodiment, and the receiving device 700 shown in FIG. 21 may be used to perform the steps corresponding to the second device in FIG.
  • the receiving device 700 includes a processor 710, a memory 720 and a transceiver 730, the memory 720 and the transceiver 730 are connected by communication, the memory 720 stores instructions, and the processor 710 is used to execute instructions stored in the memory 720, the transceiver The 730 is configured to perform specific signal transceiving under the driving of the processor 710.
  • the processor 710 is configured to perform BF training on the at least one channel with the first device according to the beamforming BF training request information, where the BF training request information includes antenna configuration information and channel configuration information of the BF training.
  • the transceiver 730 is configured to receive first feedback information of the beamforming BF training sent by the first device, where the first feedback information includes: indicating whether multiple space-time streams corresponding to the multiple antennas need to apply cyclic shift Bit diversity CSD indication information.
  • the processor 710 is further configured to determine, according to the first feedback information, whether each of the plurality of space-time streams applies the CSD.
  • the receiving device determines whether a plurality of space-time streams corresponding to the plurality of antennas need to apply CSD according to the effective channel matrix of the BF training, and includes, in the first feedback information, each of the plurality of links. Links Whether to use the CSD coded instructions.
  • the CSD encoding may be determined between different flows according to the indication information, so that the packet detection rate of the legacy STA and the decoding success rate of the L-Header field in the PPDU may be improved.
  • the various components in the receiving device 700 communicate with one another via a communication connection, i.e., the processor 710, the memory 720, and the transceiver 730 communicate with each other through an internal connection path to communicate control and/or data signals.
  • a communication connection i.e., the processor 710, the memory 720, and the transceiver 730 communicate with each other through an internal connection path to communicate control and/or data signals.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, NP, or a combination of CPU and NP, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the antenna configuration information includes an antenna number configured on each channel in the BF training.
  • the channel configuration information includes at least one of the following information: the BF training sequence uses channel bonding or channel aggregation information, and each antenna performs indication of the BF training on all channels, and each antenna performs the BF training. Sequence information of the channel, each antenna performs number information of the channel of the BF training.
  • the BF training request information when there are multiple beams on one antenna, further includes multiple beams for the at least one antenna to perform the BF training.
  • the measurement result of the BF training includes: sequence number information of the BRP packet corresponding to each of the plurality of beams and length information of the training sequence in the BRP packet.
  • the processor 710 may be implemented by a processing module
  • the memory 720 may be implemented by a storage module
  • the transceiver 730 may be implemented by a transceiver module.
  • the receiving device 800 may include a processing module 810.
  • the receiving device 700 shown in FIG. 21 or the receiving device 800 shown in FIG. 22 can implement the steps performed by the second device in FIG. 11 described above. To avoid repetition, details are not described herein again.
  • FIG. 23 shows a schematic block diagram of a transmitting device 900 in accordance with one embodiment of the present invention. It should be understood that the transmitting device embodiment and the method embodiment correspond to each other, and a similar description may refer to the method embodiment, and the transmitting device 900 shown in FIG. 23 may be used to perform the steps corresponding to the first device in FIG.
  • the transmitting device 900 includes a processor 910, a memory 920, and a transceiver 930.
  • the processor 910, the memory 920, and the transceiver 930 are connected by communication, the memory 920 stores instructions, and the processor 910 is configured to execute the memory 920.
  • the stored instructions are used by the transceiver 930 to perform specific signal transceiving under the driving of the processor 910.
  • the processor 910 is configured to perform BF training on the at least one channel with the second device according to the BF training request information, where the BF training request information includes the antenna configuration information of the BF training and channel configuration information of the at least one channel. .
  • the processor 910 is further configured to determine, according to the measurement result of the BF training, whether a plurality of space-time streams corresponding to the plurality of antennas need to apply cyclic shift diversity CSD.
  • the transceiver 930 is configured to send first feedback information to the second device, where the first feedback information includes Whether each of the plurality of space-time streams needs to apply CSD indication information.
  • the transmitting device determines whether a plurality of space-time streams (ie, multiple streams) corresponding to multiple antennas are related according to the effective channel matrix of the BF training, and if the multiple streams are related, determining CSD needs to be applied between the multiple streams. If there is no correlation between the multiple streams, it is determined that CSD is not required to be applied between the multiple streams.
  • the indication information indicating whether each of the plurality of space-time streams needs to adopt CSD coding is included in the first feedback information. According to the indication information, it is determined that the CSD is applied between different flows, so that the packet detection rate of the legacy STA and the decoding success rate of the L-Header field in the PPDU can be improved.
  • the various components in the transmitting device 900 communicate with one another via a communication connection, i.e., the processor 90, the memory 920, and the transceiver 930 communicate with each other via an internal connection path to communicate control and/or data signals.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, an NP, or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the processor 910 is specifically configured to: when determining that the plurality of space-time streams belong to different channels according to the measurement result, determining that the plurality of space-time streams are not applied The CSD. Determining, according to the measurement result, that at least two of the plurality of space-time streams belong to the same channel, and determining whether the at least two space-time streams need to apply the CSD according to whether the at least two space-time streams are related. .
  • the processor 910 is specifically configured to: when at least two space-time streams of the plurality of space-time streams belong to the same channel, the at least two spaces are When the same polarization mode is used for the time flow, the at least two space-time flow correlations are determined. A space-time stream in which the CSD needs to be applied in the at least two space-time streams is determined.
  • the processor 910 is specifically configured to: when at least two of the plurality of space-time streams belong to the same channel, when the at least two When the space-time flow adopts different orthogonal polarization modes, and the correlation value between the at least two space-time flows is less than a preset value, determining that the at least two space-time flows are irrelevant; determining that the at least two space-time flows are not This CSD needs to be applied.
  • the processor 910 may be implemented by a processing module
  • the memory 920 may be implemented by a storage module
  • the transceiver 930 may be implemented by a transceiver module.
  • the receiving device 1100 may include a processing module 1110.
  • the transmitting device 900 shown in FIG. 23 or the transmitting device 1100 shown in FIG. 24 can implement the steps performed by the first device in FIG. 11 described above. To avoid repetition, details are not described herein again.
  • Embodiments of the present invention also provide a computer readable medium for storing computer program code, the computer program comprising instructions for performing the method of beamforming training of the present invention implemented in Figures 5 and 11 above.
  • the readable medium may be a read-only memory (ROM) or a random access memory (RAM), which is not limited in the embodiment of the present invention.
  • association relationship indicates that there may be three relationships, for example, A and/or B, which may indicate that there are three cases in which A exists separately, A and B exist at the same time, and B exists separately.
  • character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present application, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种波束赋形训练的方法、接收设备和发送设备,该方法包括:根据BF训练请求信息,与第一设备在至少一个信道上进行BF训练,该BF训练请求信息包括该BF训练的天线配置信息和至少一个信道的信道配置信息。接收该第一设备发送的第一反馈信息,该第一反馈信息包括该BF训练的测量结果、该测量结果对应的天线的信息、该天线的波束信息、该天线对应的信道信息。根据该第一反馈信息,确定至少一个信道上最优天线配置和/或数字域BF预编码信息。本申请提供的波束赋形训练的方法,使得BF训练反馈中的发送天线、发送扇区、信道与接收链的SNR/MCS/CSI对应起来,可以获知最大的信道容量,获得最优的MIMO信道配置。

Description

波束赋形训练的方法、接收设备和发送设备 技术领域
本申请涉及通信领域,更为具体的,涉及通信中波束赋形训练的方法、接收设备和发送设备。
背景技术
为了缓解频谱资源的日益紧张,毫米波频段的巨大带宽资源可以满足人们的通信需求。毫米波频段的通信技术可以提供每秒数吉比特的高速率通信,满足高清视频的无压缩传输。但随着超高清视频、虚拟现实和增强现实等技术的发展,每秒数吉比特的通信速率也逐渐不能满足通信需求。为了进一步提高数据速率,高频通信开始采用更高的信道带宽和更多的天线,以期望通信速率达到数十吉比特速率。例如在电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)制定的无线局域网(wireless local area network,WLAN)的802.11ay标准中,提出通过信道绑定(channel bonding)和多输入多输出技术(multiple input multiple output,简称“MIMO”)技术来增大信道带宽和增多空间流/空时流的方式,将通信速率提高到超过20吉比特每秒以上。
由于毫米波通信的通信距离较小,主要应用场景为室内视距(line-of-sight,简称“LOS”)应用,不利于实现需要丰富散射径的MIMO技术。目前主要通过双极化(Dual Polarization)或正交极化、多个天线分别配置在多个信道上的频分复用、增大天线间距等方式实现LOS MIMO。
在毫米波频段使用MIMO技术时,为了克服路径损耗仍然需要进行模拟波束赋形(beam forming,简称“BF”)训练。MIMO中的多天线或多射频链与多信道利用相结合时,例如,与信道聚合中的多信道相结合或与正交极化中的极化信道相结合,在MIMO BF训练的信道状态信息(channel state information,简称“CSI”)反馈和最优的一个或多个MIMO链路反馈和调制预编码策略(modulation and coding scheme,MCS)反馈中,就必须考虑信道的影响。
目前的CSI/MCS反馈是面向频域的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的反馈。CSI的反馈一般只跟子载波或子频带相关,也就是说,反馈的是与子载波或子频带对应的接收链/空时流的信噪比(signal noise ratio,SNR)/MCS/CSI,但对于多天线的频分复用或者信道聚合。从这样的反馈结果中获知的信道容量的精确度不好,并且,也不能获知信道对应的天线配置和不同信道上的MCS配置,从而不能确定最优的天线配置以及数字域BF预编码信息。
发明内容
本申请提供一种波束赋形训练的方法、接收设备和发送设备,可以使得波束赋形BF训练反馈中的发送天线(发送链)、发送扇区(发送波束)、信道与接收链的SNR/MCS/CSI对应起来,从而在在反馈中可以获知最大的信道容量,获得最优的MIMO天线配置以及信道配置。在BF训练反馈还可以包括指示多个空间流/空时流(简称为流)之间是否需要应用CSD,如果BF训练的测量结果显示不需要应用CSD时,指示对侧设备不应用CSD,从而可以利于提高传统STA的包检测率和PPDU中L-Header字段的译码成功率。
第一方面,提供了一种波束赋形训练的方法,该方法包括:根据BF训练请求信息,与第一设备在至少一个信道上进行BF训练,其中,该BF训练请求信息包括该BF训练的天线配置信息和该至少一个信道的信道配置信息;接收该第一设备发送的第一反馈信息,该第一反馈信息包括:该BF训练的测量结果、该BF训练的测量结果对应的天线的信息、该天线的波束信息、该天线对应的信道信息;根据该第一反馈信息,确定该至少一个信道上的最优天线配置和/或数字域BF预编码信息。
第一方面提供的波束赋形训练的方法,可以使得波束赋形训练的第一反馈信息(最终反馈信息)中发送天线、发送扇区(发送波束)、以及发送天线所在的信道与第一设备测量的测量结果对应起来,从而在在反馈中可以获知最大的信道容量,获得最优的MIMO信道配置。
在第一方面的一种可能的实现方式中,该天线配置信息包括该BF训练中每个信道上配置的一个或多个天线编号。该信道配置信息包括以下信息中的至少一种:BF训练序列采用的信道绑定方式或信道聚合方式的信息,每个天线是否在全部信道上进行该BF训练的指示信息,每个天线进行该BF训练的信道的顺序信息,每个天线进行该BF训练的信道的编号信息。
在第一方面的一种可能的实现方式中,在该BF训练是在信道聚合模式下进行的情况下,该BF训练请求信息还包括用于指示是否在全部信道上进行该BF训练的指示信息。在BF训练请求信息中包括用于指示是否在全部信道上进行该BF训练的指示信息,使得BF训练可以支持在全部信道上进行BF训练,有利于得到每个信道上的BF测量结果,从而得到更准确的天线配置和信道配置。
在第一方面的一种可能的实现方式中,在进行多轮该BF训练的情况下,在接收该第一反馈信息之前,该方法还包括:接收第二反馈信息,该第二反馈信息包括在每个天线需要在多个信道上进行该BF训练的情况下,在已经完成的该BF训练的信道上的测量结果。
在第一方面的一种可能的实现方式中,当一个天线上有多个波束需要进行该BF训练时,该BF训练请求信息还包括用于该天线的多个波束进行该BF训练的多个波束优化协议BRP包的序号信息和每个该BRP包中的训练序列的长度信息。该BF训练的测量结果包括:该波束信息指示的每一个波束对应的该BRP包的序号信息和该BRP包中的训练序列的长度信息。
在第一方面的一种可能的实现方式中,该第一反馈信息还包括该BF训练的测量结果对应的该至少一个信道中每一个信道的调制编码策略信息。
在第一方面的一种可能的实现方式中,该第一反馈信息还包括用于指示多个天线对应的多个空时流是否需要应用循环移位分集CSD的指示信息。
第二方面,提供了一种波束赋形训练的方法,该方法包括:根据BF训练请求信息,与第二设备在至少一个信道上进行BF训练,其中,该BF训练请求信息包括该BF训练的天线配置信息和该至少一个信道的信道配置信息。确定第一反馈信息,该第一反馈信息包括:该BF训练的测量结果、该BF训练的测量结果对应的天线的信息、该天线的波束信息、该天线对应的信道信息。向该第二设备发送该第一反馈信息。
第二方面提供的波束赋形训练的方法,波束赋形训练的第一反馈信息(最终反馈信息)中发送天线、发送扇区(发送波束)、以及发送天线所在的信道与第一设备测量的 SNR/MCS/CSI是对应的,从而在在反馈中可以获知最大的信道容量,获得最优的信道配置。
在第二方面的一种可能的实现方式中,该天线配置信息包括该BF训练中每个信道上配置的天线编号。该信道配置信息包括以下信息的至少一种:BF训练序列采用的信道绑定方式或信道聚合方式的信息,每个天线是否在全部信道上进行该BF训练的指示信息,每个天线进行该BF训练的信道的顺序信息,每个天线进行该BF训练的信道的编号信息。
在第二方面的一种可能的实现方式中,在该BF训练是在信道聚合模式下进行的情况下,该BF训练请求信息还包括用于指示是否在全部信道上进行该BF训练的指示信息。
在第二方面的一种可能的实现方式中,在进行多轮该BF训练情况下,在该向该第二设备发送该第一反馈信息之前,该方法还包括:确定第二反馈信息,该第二反馈信息包括在每个天线需要在多个信道上进行该BF训练的情况下,在已经完成的该BF训练的信道上的测量结果;向该第二设备发送该第二反馈信息。
在第二方面的一种可能的实现方式中,该BF训练的测量结果包括:该波束信息指示的每一个波束对应的波束优化协议BRP包的序号信息和该BRP包中的训练序列的长度信息。
在第二方面的一种可能的实现方式中,该第一反馈信息还包括该BF训练的测量结果对应的该至少一个信道中每一个信道的调制编码策略信息。
在第二方面的一种可能的实现方式中,该第一反馈信息还包括用于指示多个天线对应的多个空时流是否需要应用循环移位分集CSD的指示信息。
第三方面,提供了一种波束赋形训练的方法,该方法包括:根据波束赋形BF训练请求信息,与第一设备在至少一个信道上进行BF训练,其中,该BF训练请求信息包括该BF训练的天线配置信息和信道配置信息。接收该第一设备发送的波束赋形BF训练的第一反馈信息,该第一反馈信息包括用于指示与多个天线对应的多个空时流是否需要应用循环移位分集CSD的指示信息。根据该第一反馈信息,确定该多个空时流中的每个空时流是否应用该CSD。
第三方面提供的波束赋形训练的方法,在接收的最终反馈信息中包括指示该多个链路中的每个链路是否需要采用CSD编码的指示信息。可以根据该指示信息确定不同的流之间是应用CSD编码,从而利于提高传统STA的包检测率和PPDU中L-Header字段的译码成功率。
在第三方面的一种可能的实现方式中,该天线配置信息包括该BF训练中每个信道上配置的天线编号。该信道配置信息包括以下信息中的至少一种:BF训练序列采用的信道绑定方式或信道聚合方式的信息,每个天线是否在全部信道上进行该BF训练的指示信息,每个天线进行该BF训练的信道的顺序信息。
在第三方面的一种可能的实现方式中,该第一反馈信息还包括:该BF训练的测量结果、该BF训练的测量结果对应的天线信息、该天线的波束信息、该天线对应的信道信息。
第四方面,提供了一种波束赋形训练的方法,该方法包括:根据波束赋形BF训练请求信息,与第二设备在至少一个信道上进行BF训练,其中,该BF训练请求信息包括该BF训练的天线配置信息和信道配置信息。根据该BF训练的测量结果,确定与多个天线对应的多个空时流是否需要应用循环移位分集CSD。该第二设备发送第一反馈信息,该第一反馈信息包括用于指示该多个空时流中的每个空时流是否需要应用CSD的指示信 息。
第四方面提供的波束赋形训练的方法,根据BF训练的测量结果判断与多个天线对应的多个流之间是否相关,若多个流之间相关,则确定这多流之间需要应用CSD,若多个流之间不相关,则确定这多流之间不需要应用CSD。在第一反馈信息中包括指示该多个空时流中的每个空时流是否需要采用CSD编码的指示信息。根据该指示信息确定不同的流之间是应用CSD编码,从而可以利于提高传统STA的包检测率和PPDU中L-Header字段的译码成功率。
在第四方面的一种可能的实现方式中,该天线配置信息包括该BF训练中每个信道上配置的天线编号。该信道配置信息包括以下信息的至少一种:BF训练序列采用的信道绑定方式或信道聚合方式的信息,每个天线是否在全部信道上进行该BF训练的指示信息,每个天线进行该BF训练的信道的顺序信息。
在第四方面的一种可能的实现方式中,根据所述BF训练的测量结果,确定与多个天线对应的多个空时流是否需要应用循环移位分集CSD,包括:在根据该测量结果确定该多个空时流分别属于不同的信道情况下,确定该多个空时流不应用该CSD。在根据该测量结果确定该多个空时流中的至少两个空时流属于同一个信道的情况下,根据该至少两个空时流是否相关,确定该至少两个空时流是否需要应用该CSD。
在第四方面的一种可能的实现方式中,在该多个空时流中的至少两个空时流属于同一个信道的情况下,根据该至少两个空时流是否相关,确定该至少两个空时流是否需要应用该CSD,包括:在该至少两个空时流采用相同极化方式的情况下,确定该至少两个空时流相关。确定该至少两个空时流中需要应用该CSD的空时流。
在第四方面的一种可能的实现方式中,在该多个空时流中的至少两个空时流属于同一个信道的情况下,根据该至少两个空时流是否相关,确定该至少两个空时流是否需要应用该CSD,包括:在该至少两个空时流采用不同正交极化方式,且该至少两个空时流之间的相关值小于预设值的情况下,确定该至少两个空时流不相关。确定该至少两个空时流不需要应用该CSD。
在第四方面的一种可能的实现方式中,该第一反馈信息还包括:该BF训练的测量结果、该BF训练的测量结果对应的天线信息、该天线的波束信息、该天线对应的信道信息。
第五方面,提供了一种接收设备,包括处理器、存储器和收发器,用于支持该接收设备执行上述方法中相应的功能。该接收设备为上述方法中的第二设备。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第一方面或第三方面及其各种实现方式中的波束赋形训练的方法。
第六方面,提供了一种接收设备,包括处理模块、存储模块和收发模块,用于支持接收设备执行上述第一方面或第一方面的任意可能的实现方式中的接收设备的功能,或者上述第三方面或第三方面的任意可能的实现方式中的接收设备的功能。该接收设备为上述方法中的第二设备。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第七方面,提供了一种发送设备,包括处理器、存储器和收发器,用于支持该发送设备执行上述方法中相应的功能。该发送设备为上述方法中的第一设备。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的 信号收发,该处理器用于调用该指令实现上述第二方面或第四方面及其各种实现方式中的波束赋形训练的方法。
第八方面,提供了一种发送设备,包括处理模块、存储模块和收发模块,用于支持终端设备执行上述第二方面或第二方面的任意可能的实现方式中的发送设备的功能,或者上述第四方面或第四方面的任意可能的实现方式中的发送设备的功能。该发送设备为上述方法中的第一设备。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第一方面或第一方面的任一种可能的实现方式的方法,以及上述第三方面或第三方面的任一种可能的实现方式的方法的指令。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第二方面或第二方面的任一种可能的实现方式的方法,以及上述第四方面或第四方面的任一种可能的实现方式的方法的指令。
附图说明
图1是信道聚合模式的传输示意图。
图2是PPDU的帧格式的示意图。
图3是对于增强定向多吉比特PPDU的两个不同的流应用CSD的示意图。
图4是本发明实施例的一个应用场景的示意图。
图5是本发明一个实施例的波束赋形训练的方法的示意性流程图。
图6是本发明一个实施例第二设备和第一设备进行BF训练示意图。
图7是本发明一个实施例信道聚合传输模式下MIMO传输的示意图。
图8是本发明一个实施例的具有2个不同的发送天线时信道聚合的BF训练的最终反馈信息的示意图。
图9是本发明一个实施例的信道聚合模式下多轮BF训练的第二反馈信息和第一反馈信息的示意图。
图10是本发明另一个实施例的信道聚合模式下多轮BF训练的第二反馈信息的示意图。
图11是本发明另一个实施例的波束赋形训练的方法的示意性流程图。
图12是本发明一个实施例的STA1和STA2形成4x4模式的MIMO示意图。
图13是本发明一个实施例的4x4模式的MIMO的CSD的示意图。
图14是本发明一个实施例的8x8模式的MIMO的CSD的示意图。
图15是本发明另一个实施例的4x4模式的MIMO的CSD的示意图。
图16本发明另一个实施例的4x4模式的MIMO的CSD编码的示意图。
图17是本发明一个实施例的接收设备的示意性框图。
图18是本发明另一个实施例的接收设备的示意性框图。
图19是本发明一个实施例的发送设备的示意性框图。
图20是本发明另一个实施例的发送设备的示意性框图。
图21是本发明一个实施例的接收设备的示意性框图。
图22是本发明另一个实施例的接收设备的示意性框图。
图23是本发明一个实施例的发送设备的示意性框图。
图24是本发明另一个实施例的发送设备的示意性框图。
具体实施方式
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本申请的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE/LTE-A频分双工(frequency division duplex,FDD)系统、LTE/LTE-A时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、公共陆地移动网络(public land mobile network,PLMN)系统、设备对设备(device to device,D2D)网络系统或者机器对机器(machine to machine,M2M)网络系统、无线保真(wireless fidelity,Wi-Fi)系统、无线局域网(wireless local area networks,WLAN)以及未来的5G通信系统等。
还应理解,在本发明实施例中,终端设备也可称之为用户设备(user equipment,UE)、移动台mobile station,MS)、移动终端(mobile terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网设备进行通信,例如,终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。还可以包括用户单元、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type Communication,MTC)终端、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)。可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。本发明实施例在此不作限制。
还应理解,基站也可以称之为网络侧设备或者接入网设备,网络侧设备可以是用于与终端设备通信的设备,网络设备可以是LTE系统中的演进型基站(evolutional Node B,eNB或eNodeB),NR中的gNB或接入点,基站收发器、收发节点等,或者车载设备、可穿戴设备,未来5G网络中的网络设备或者未来演进的PLMN系统中的网络侧设备。例如,网络侧设备可以是WLAN中的接入点(access point,AP),也可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code dvision  multiple access,CDMA),CDMA中的基站(Base Transceiver Station,BTS)。还可以是LTE系统中的演进的节点B(evolved NodeB,eNB或者eNodeB)。或者,网络设备还可以是第三代(3rd Generation,3G)系统的节点B(Node B),另外,该网络设备还可以是中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。本发明实施例在此不作限制。为方便描述,本发明所有实施例中,上述为MS提供无线通信功能的装置统称为网络设备。
在毫米波频段使用MIMO技术,为了克服路径损耗仍然需要先进行模拟BF训练,以闭合收发设备之间的MIMO链路。当MIMO链路中的多天线/多射频链与多信道利用相结合时,例如,收发设备的多天线与信道聚合中的多信道相结合,或具有正交极化天线的收发设备的多个射频链与正交极化中的极化信道结合时,在BF训练的结果反馈中,例如,BF训练CSI反馈、最优的一个或多个MIMO链路对应的波束信息的反馈和MCS的反馈中,就必须考虑信道的影响。特别地,当反馈最优的一个或多个MIMO链路对应的波束信息时,需要反馈每个MIMO链路对应的信道信息。另外,利用正交极化实现MIMO时,也对于MIMO的预编码提出了新的设计要求。
现有技术提出多条空间流或空时流之间的频分多址技术,不同射频(Radio Frequency,RF)链/天线工作在不同信道上,即通过频分复用的方式实现一对设备之间多个空间流/空时流的并发传输。空时流即针对一个或多个空间流(spatial stream)的调制符号进行应用空时处理后所生成的调制符号的流。一般来说,一个发送天线对应了一个空时流。为了简洁,在本发明实施例中,将空间流和空时流简称为“流”。
通过频分复用的方式实现一对收发设备之间多个流的并发传输主要通过利用信道聚合(channel aggregation,CA)来实现。例如,在一个设备内使用2个相同的高频调制解调器(modem)模块,每个调制解调器模块独立工作在一个不同的信道上,并通过一个独立天线发送一个流,就可以实现信道的聚合传输。如图1所示,STA1和STA2在信道1和信道2上同时发送数据,图1是信道聚合模式的传输示意图,且不同信道上采用的MCS可以不同,也可以不同,信道之间存在保护频带。
现有技术中,CSI的反馈一般只跟子载波或子频带相关,而MCS的反馈则主要与流相关。例如,现有技术的CSI反馈包括显示的CSI反馈和隐式的CSI反馈。显示的CSI反馈是指反馈各个接收链(receive chain)的SNR和各子载波的CSI矩阵。其中,一个接收链是接收侧的用于接收信号的射频链,该射频链能将接收信号完成处理,形成数字信号并提供给基带。CSI矩阵则是多个收发天线之间的信道矩阵。隐式的CSI反馈是指各流的SNR和各子载波的数字域BF反馈矩阵。其中隐式CSI主要是指不再反馈CSI矩阵,而是反馈CSI矩阵包含的关键信息。例如从CSI矩阵计算得到的数字域(基带)BF反馈矩阵。
现有技术的MCS反馈包含在高吞吐量控制字段,MCS反馈包括MCS的编号,可以指示非均衡(Unequal)的MCS,即指示不同的流采用不同的MCS。
现有技术的CSI/MCS反馈是面向频域的OFDM的反馈,CSI的反馈一般只跟子载波或子频带相关,也就是说,反馈的与是子载波或子频带对应的接收链/流的SNR/MCS/CSI,反馈的结果中,发送天线、发送扇区(发送波束)、信道与接收链/空时流的SNR/MCS/CSI没有对应起来。而现在基于CA或正交极化的MIMO中,需要在多个信道上完成BF训练后,在反馈具有最高链路质量的最优链路的信息时,将最优链路信息中的发送天线、发送扇 区,与反馈的空时流的信道、SNR、MCS、CSI对应起来,即反馈完整且准确的最优链路信息,以达到最大的信道容量。其中,在一个信道上完成该BF训练,指的是该BF训练的发起者和响应者都已经按照BF训练请求信息指示的训练内容,完成了一个信道上的发送BF训练和/或接收BF训练。
图2所示的是增强定向多吉比特(enhanced directional multi-gigabit,EDMG)物理层协议数据单元(physical layer protocol data unit,PPDU)的帧格式的示意图。其中,图2中的自动增益控制(automatic gain control,AGC)字段和训练(Training,TRN)字段是用于波束优化协议(beam refinement protocol,BRP)阶段的模拟BF训练。
在解除不同空间流或空时流之间信号的相关性时,循环移位分集(cyclic shift diversity,CSD)越大越好,但CSD过大会造成传统站点(legacy station,L-STA)接收到很强的符号间干扰(inter symbol interference,ISI),不利于L-STA的成功接收。而且,当空间流/空时流之间无相关性时,就无需使用CSD,而且不使用CSD有利于提高传统站点(legacy station,L-STA)的包检测的成功率和物理层协议数据单元(physical layer protocol data unit,PPDU)中的传统头部(legacy header,L-Header)字段的译码成功率。
图3是针对EDMG PPDU的两个不同的流应用CSD的示意图。如图3所示,EDMG PPDU帧包括:格雷序列(Golay Sequence)字段、传统短训练字段(legacy short training field,L-STF)、传统信道估计字段(legacy channel estimation field,L-CEF)、传统头部(L-Header)和EDMG头部A(EDMG-Header-A)字段。图3中的Ga128字段是格雷序列是一种长度为128的子序列。应用CSD编码是指针对两个流的中的任意一个流应用CSD,将L-STF中第一个Ga128序列开端的时间长度为Tshift的部分序列,附加在EDMG-Header-A字段的后面,即将Tshift对应的部分序列循环移位至EDMG-Header-A字段的后面,从而使流1和流2在EDMG-STF字段的前面部分在时间上是对齐的,但流1和流2的序列内容是不同的,从而消除流1和流2的信号相关性和不期望的波束赋形效应。
在解除不同流之间信号的相关性时,CSD越大越好,但CSD过大将会造成很强的ISI,即使对于LOS情况也会出现多径效应,导致L-STA针对前导码(preamble)的误检率上升,包括降低包检测和物理层信令字段(如L-Header和EDMG-Header-A字段)的译码等性能,使L-STA无法根据物理层信令字段正确解读PPDU时长。但是,多条流之间无相关性时,就无需使用CSD,而且不使用CSD有利于提高L-STA的包检测率和L-Header字段的译码成功率。
基于上述问题,本发明实施例提供了一种波束赋形训练的方法,可以使得波束赋形训练反馈中的发送天线、发送扇区(发送波束)、信道与接收链的SNR/MCS/CSI对应起来,从而在在反馈中可以获知最大的信道容量,获得最优的MIMO信道配置。还可以指示不同的流之间是否需要应用CSD,从而可以利于提高传统STA(Legacy STA)的包检测率和PPDU中L-Header字段的译码成功率。
图4是本发明实施例的一个应用场景的示意图,如图4所示,本发明主要应用于无线局域网,其系统架构或场景包括至少一个AP和至少一个STA进行无线通信的过程中,也可以扩展至网络设备和终端设备之间进行无线通信的场景中。本发明实施例在此不作限制。
应理解,本发明实施例仅以图4所示的应用场景为例进行说明,但本发明实施例并不限于此,例如,该系统可以包括更多的AP和STA,或者AP可以每一个STA之间进 行通信等。
下面结合图5详细说明本申请提供的波束赋形训练的方法,图5是本发明一个实施例的波束赋形训练的方法100的示意性流程图,该方法100可以应用在图5所示的场景中,当然也可以应用在其他通信场景中。本发明实施例在此不作限制。
如图5所示,该方法100包括:
S110,第二设备生成波束赋形BF训练请求信息,该BF训练请求信息包括该BF训练的天线配置信息和在至少一个信道进行该BF训练的信道配置信息。
S120,第二设备向第一设备发送该BF训练请求信息。
S130,第二设备根据BF训练请求信息,与第一设备在至少一个信道上进行BF训练。
S140,第一设备确定第一反馈信息,该第一反馈信息包括:该BF训练的测量结果、与该BF训练的测量结果对应的天线的信息、该天线的波束信息、该天线对应的信道信息。
S150,第一设备向第二设备发发送该第一反馈信息。
S160,第二设备根据该第一反馈信息,确定该至少一个信道上的最优天线配置和/或数字域BF预编码信息。
具体而言,图6是本发明一个实施例的第二设备和第一设备进行BF训练示意图。BF训练的发起者(第二设备)和响应者(第一设备)在时间上的交互过程如图6所示。在图6中,每一轮BF训练都由发起者发送的BF训练请求信息和响应者发送的反馈信息构成。为了协商工作于何种MIMO模式,发起者和响应者需要在进行BF训练之前,通过BF建立过程针对BF训练过程进行训练模式和参数的配置。完成BF建立后,发起者与响应者之间进行一轮或多轮的BF训练,进行多轮BF训练有利于发起者根据过程中间的中间反馈信息,加快对齐收发多天线之间的波束,加快获得最优的MIMO模拟天线配置。其中N为正整数。例如,当N=1时,表示发起者和响应者只进行了一轮BF训练。在BF训练结束后,第一设备会向发起设备发送第一反馈信息(最终反馈信息),用与通知本次训练的结果。
应理解,在本发明实施例中,第二设备和/或第一设备的天线可以是相控阵阵列天线、定向天线、具有正交极化(双极化)的单天线和有不同极化能力的双天线中的任意一种。本发明实施例中将具有多个天线阵元的天线阵列简称为天线,因此,每个天线都可以形成模拟波束赋形。在本发明实施例中,天线、阵列天线和射频链在表达上具有相同的含义,扇区、波束和天线权重矢量(antenna weight vector,AWV)在表达上有相同的含义。例如扇区编号可以由AWV序号/TRN子字段的序号代替表示,天线编号可以由射频链编号(RF chain ID)代替表示,其中,AWV序号是指与该AWV对应的BRP包中TRN训练序列(例如一个TRN子序列)的序号。扇区、波束和天线权重矢量可以相互代替表示,扇区编号、AWV序号、TRN子字段的序号可以相互代替表示。
还应理解,在本发明实施例中,第一设备和第二设备可以工作在单信道,或信道聚合,或者信道绑定等模式下。为了更好地支持LOS MIMO,第一设备和第二设备天线的正交极化还可以与信道聚合结合使用。在信道聚合模式中,第一设备和第二设备具有多个独立的基带模块及其对应的RF链,其中每个基带模块及其对应的RF链可以独立地在一个信道上进行发送或接收,但不能同时在多个信道上进行发送或接收,多个基带模块和RF链可以发送/接收正交训练序列或不能发送/接收正交训练序列。在信道聚合模式中,如果多个RF链共用一个天线,则无需为多个RF链单独进行模拟BF训练。如果多个RF链 分别连接不同的天线,考虑到天线位置的不同以及信道聚合中的多个信道的信道频率响应可能具有较大差别,为了通过模拟BF训练(例如BRP阶段的BF训练)得到精确的最优MIMO天线配置,因此需要将多个RF链分别在不同的信道上进行模拟BF训练。
在S110中,在BF训练建立阶段,第二设备(以SAT1为例)生成BF训练请求信息,该BF训练请求信息包括每个天线进行该BF训练的天线配置信息和在至少一个信道进行该BF训练的信道配置信息。
该天线配置信息是拟在BF训练中采用的MIMO发送天线的配置信息,可以包括以下信息的一种或多种:发送天线的个数及天线编号(Antenna ID)、发送天线的极化能力信息、发送天线之间是否采用正交的训练序列、每个发送天线发送的BRP包的个数、每个发送天线的发送扇区编号和顺序、每个BRP包携带的训练序列的长度/训练序列单元(TRN-Unit)的个数等,本发明实施例在此不作限制。
该信道配置信息包括每个天线进行BF训练的信道编号、每个天线进行BF训练的信道顺序、信道绑定(channel bonding)或信道聚合的方式的信息、每个天线是否在全部信道上进行所述BF训练的指示信息、每个天线进行该BF训练的信道的编号信息等。本发明实施例在此不作限制。
应理解,每个天线是否在全部信道上进行该BF训练的指示信息是指当每个天线在当前运行的信道上完成BF训练后,是否切换到其它信道上继续针对其它信道进行BF训练。当BF训练的收发双方的运行信道只是单个信道时,该BF训练请求信息可以不携带信道配置信息。本发明实施例在此不作限制。
每个天线进行BF训练的信道编号以及信道顺序用于支持信道聚合的一对第二设备和第一设备在两个及以上的信道进行BF训练。例如,针对信道聚合与MIMO的结合情况,假设一对第二设备和第一设备进行2x2模式的BF训练,针对2个天线(例如天线1和天线2)和两个信道(例如信道1和信道2)的信道聚合下的2x2模式的BF训练,每个天线进行BF训练的信道编号及其顺序可以表示为下列方式:
天线1:信道1、信道2。
天线2:信道2、信道1。
当天线1和天线2能够发送正交的BF训练序列时,每个天线进行BF训练的信道编号及其顺序可以表示为下列方式:
天线1:信道1、信道2。
天线2:信道1、信道2。
当信道聚合只包含两个信道时,每个天线进行BF训练的信道编号、每个天线进行BF训练的信道顺序信息可以简化为:是否在全部信道上进行BF训练。这是因为无论2个发送天线和2个接收天线采用任何训练方式,每个天线都同时只能在两个信道中的一个信道上进行发送或接收BF训练。例如,如果天线1在信道1上完成了训练,当BF训练的配置信息中的“是否在全部信道上进行BF训练”信息指示需要在全部信道上进行训练时,则天线1还需要跳转至信道2上进行训练。
应理解,该信道配置信息还可以包括各个发送天线在各个信道上的发送起始时间和持续时间,从而使第一设备能够将接收的训练序列与发送天线的编号、信道编号对应起来。其中,各个发送天线在各个信道上的发送起始时间由各天线在信道上的发送顺序和每个天线发送TRN序列的总长度计算得出,持续时间等于各天线在该信道上发送TRN序 列的总时。本发明实施例在此不作限制。
S120,SAT1向第一设备(以SAT2为例)发送该BF训练请求信息。
具体而言,在SAT1生成该BF训练请求信息后,变向SAT2发送该BF训练请求信息,相应的,SAT2接收该BF训练请求信息。
S130,SAT2接收到该BF训练请求信息后,与SAT1在至少一个信道上进行BF训练。
具体而言,SAT2接收该BF训练请求信息,根据该BF训练请求信息包括的天线配置信息和信道配置信息和SAT1开始BF训练。SAT1和SAT2之间可以进行一轮或者多轮BF训练。即进行一轮的BF训练和反馈或者多轮的BF训练与反馈。本发明实施例在此不作限制。
在BF训练过程中,SAT2会检测BF训练的信道系数,在BF训练结束后,SAT2会根据检测到的所有信道系数和一个选择准则(例如信道容量、总吞吐量等),根据多个MIMO信道矩阵选择最优的一个或多个有效信道矩阵Heff。有效信道矩阵Heff是与MIMO链路对应的MIMO信道的信道矩阵,由信道系数构成,其维度为K×L。其中K和L分别为发送天线和接收天线的个数。信道系数h(iM,jN,m)是指在信道m上,一个接收天线的一个接收波束iM,针对一个发送天线的一个发送波束jN发送的BF训练序列测量得到的测量结果。每一个信道系数都对应一个信道,其中,iM是指天线编号为M的天线上的波束编号,jN是指天线编号为N的天线上的波束编号,M=1,2,…,K,N=1,2,…,L,K和L为正整数,m是指信道编号。可以看出,信道聚合模式下,Heff与信道有关,因为Heff中的每个信道系数都与信道编号m有关。
应理解,当以信道容量/信道总吞吐量作为发送波束和接收波束的选择准则时,应当以信道聚合模式的情况下数据传输时涉及的全部信道的总容量作为判断依据。例如在信道聚合中,应计算聚合后的全部信道的总信道容量。
S140,SAT2确定第一反馈信息,该第一反馈信息包括:该BF训练的测量结果、与该BF训练的测量结果对应的天线的信息、该天线的波束信息、与该天线对应的信道信息。
具体而言,由于60GHz频段的单个信道的带宽(2.16GHz)较大,射频器件和不同信道由于频率相差较大,引起的信道频率响应、路径损耗相差也较大。例如,相邻的2.16GHz带宽的不同信道之间的频率差别引起的路径损耗只有0.3-0.9dB,而不同阶的MCS之间所需的SNR至少差1dB,因而仅考虑不同信道引入的损耗时,尚不足以支持在相邻的不同信道上采用不同的MCS。不同信道使用不同MCS(或称为非均衡MCS)的主要原因包括不同传输路径相差较大路径损耗以及非连续的信道聚合)。MCS分别与传输路径(由发送天线/发送扇区/发送AWV决定)、信道一一对应,因此反馈每个流MCS时,应一并反馈对应的发送天线ID/发送扇区ID和信道编号信息。
在S140中,SAT2根据该Heff,可以确定该BF训练的测量结果与该天线、该天线的波束和该天线进行该BF训练的信道之间的对应关系。由于STA1和STA2的不同天线在空间上很可能是分开的,例如STA1和/或STA2的不同天线的中心点之间分别间隔了d1和d2厘米。当STA1和/或STA2的不同天线在空间上是分开的时候,由于不同天线发出的波束所经历的传播路径不同,将导致最优MIMO链路同时与所选择的波束和所选的波束对应的信道有关。即反馈Heff时,一个或多个最优MIMO链路分别对应的Heff与波束和信道有关。需要确定发送天线(包含发送波束)、接收天线(包含接收波束)与信道 和CSI的对应关系。图7是信道聚合传输模式下MIMO传输的示意图,图7中所示的为2x2MIMO模式的传输,STA1和STA2的每个天线都对应一个独立的射频链和基带模块,STA1和STA2分别在信道1和信道2上进行传输。信道1和信道2之间具有保护频带。对于图7所示的传输模式,需要确定发送天线(包含发送波束)、接收天线(包含接收波束)与信道和CSI的对应关系。Heff可以由公式(1)来表示:
Figure PCTCN2017092110-appb-000001
公式(1)中,h11表示接收天线1在信道1上测得到发送天线1上的信道系数。h22表示接收天线2在信道2上测得到发送天线2上的信道系数。对于图7所示的MIMO传输模式,h12和h21为0,这是因为接收天线1和接收天线2分别工作在不同的信道上,收不到另一条信道上的信号。此时,对于图7所示的MIMO传输模式,Heff可以由公式(2)来表示:
Figure PCTCN2017092110-appb-000002
公式(2)中,信道系数h(i1,j1,1)表示发送天线1的发送波束j1和接收天线1的接收波束i1在信道1上的信道系数,信道系数h(i2,j2,2)表示发送天线2的发送波束j2和接收天线2的接收波束i2在信道2上的信道系数。每一个信道系数都对应一个信道。信道系数都为时域矢量。在确定了Heff后,便可以确实与信道系数对应的信道。STA2可以根据|h11|2和|h22|2的值或根据测量的h11和h22的值得到SNR,分别确定与h11和h22对应的MCS1/SNR1和MCS2/SNR2/CSI1,并且确定与MCS1/SNR1和MCS2/SNR2/CSI1分别对应的信道。
STA2确定与h11和h22对应的MCS1/SNR1和MCS2/SNR2,并且确定与MCS1/SNR1和MCS2/SNR2分别对应的信道后,便可以生成该BF训练的第一反馈信息(最终反馈信息)并向STA1发送第一反馈信息,该第一反馈信息包括:该BF训练的测量结果、与该BF训练的测量结果对应的该天线的信息,及该天线的波束的信息、该天线对应的信道信息。
可选的,作为一个实施例,该第一反馈信息还包括该BF训练的测量结果对应的该至少一个信道中每一个信道的调制编码策略信息。
具体而言,该第一反馈信息还可以包括与进行该BF训练的天线对应的信道调制编码策略信息,用于后续的根据该信道调制编码策略信息进行信道的选择等,可以增加反馈的准确度,提高后续信息或者数据传输的效率。
例如,针对图7所述的传输模式。第一反馈信息可以是(MCS1/SNR1/h11,天线1,天线1对应的发送扇区1,信道1)和(MCS2/SNR2/h22,天线2,天线2对应的发送扇区2,信道2)。
应理解,该第一反馈信息可以是以表的形式向STA1进行反馈。例如,表1是针对信道聚合模式的具有两个最优的MIMO配置反馈信息的最优的MIMO配置表。
表1 信道聚合模式的最优的MIMO配置
Figure PCTCN2017092110-appb-000003
Figure PCTCN2017092110-appb-000004
该第一反馈信息可以是以表1的形式反馈,即在第一反馈信息(最终反馈信息)中将该BF训练的测量结果与该发送天线编号及该发送天线的波束编号、该发送天线进行该BF训练的信道编号对应起来。
应理解,表1仅是为了表明最终反馈的一个例子,表1中的组合只是形容反馈的各项内容之间的存在相互对应的关系,各项内容可以放在一个消息(例如新定义一个EDMG信道测量报告元素)内一起反馈,也可以独立地分开在不同的时间、在不同的消息内反馈,只要反馈信息的组合中的各项内容之间的对应关系能被识别即可。本发明实施例在此不作限制。
在S150中,第一设备(STA2)向第二设备(STA1)发送第一反馈信息。
在S160中,第二设备根据该第一反馈信息,确定所述BF训练的最优MIMO配置和/或数字域BF预编码信息。从而可以更好的利用最优MIMO配置和/或数字域BF预编码信息进行数据传输,提高数据传输效率。其中,数字域BF预编码信息是指BF训练的第一设备根据有效信道矩阵Heff计算出的编码信息,例如针对Heff进行奇异值分解得到编码矩阵。
本发明实施例提供的波束赋形训练的方法,由于60GHz频段的单个信道的带宽(2.16GHz)较大,射频器件和不同信道由于频率相差较大,引起的信道频率响应、路径损耗相差也较大,因此通过具有最高链路质量的链路对应的发送天线配置包含对应的信道信息,可以使得波束赋形训练反馈具有最高链路质量的天线配置时,尤其是在信道聚合和/或正交极化MIMO应用场景下,将发送天线、发送扇区(发送波束)与发送天线应配置的信道、以及SNR/MCS/CSI对应起来,从而使BF训练序列的发送设备在反馈信息中不仅可以获得最优的最高链路质量的链路对应的天线配置,还能获得每个天线对应的信道配置,即获知每个信道上的天线配置,从而实现最大信道容量/最大可达速率。
可选的,作为一个实施例,该BF训练请求信息还包括用于指示是否在全部信道上进行该BF训练的指示信息。
具体而言,当BF训练是在信道聚合模式下进行的时,由于信道聚合涉及多个信道,因此,该BF训练请求信息还包括用于指示是否在全部信道上进行该BF训练的指示信息。STA1和STA2的每个天线需要根据该指示信息确定是否在全部信道上进行训练。具体的方法可以是:在每一个BRP包内包含一个倒计数(Count Down)字段,该倒计数字段的初始值设置为在一个信道上发送的全部BRP包的个数,BRP包的个数可以根据BF训练配置信息中的“每个发送天线发送的BRP包的个数”等计算得到。当在一个信道上完成了BF训练配置信息指示的全部波束训练后,即倒计数字段指示为0时,STA2可以发送第二反馈信息(中间反馈信息),STA1和/或STA2的每个天线便切换到另一个信道, 继续在另一个信道上进行BF训练。
应理解,对于信道聚合模式,STA1和STA2之间的BF训练可以进行一轮,也可以进行多轮,下面将分别进行描述。
对于信道聚合模式,STA1和STA2之间的BF训练进行一轮时,BF训练可以采用STA1和STA2预先约定发送顺序的方式,隐式地指示各个天线(用天线ID或射频链ID表示)在各个信道上的发送顺序。例如,STA1和STA2按照信道编号从小到大信道顺序在多个信道上依次进行BF训练。图8是本发明一个实施例的具有2个不同的发送天线时信道聚合的BF训练的第一反馈信息的示意图。如图8所示,STA1有两个发送天线,STA2有两个接收天线,对于信道聚合中的信道1和次信道2,信道1为主信道,信道2为次信道。发起者STA1首先将发送天线1和发送天线2在信道编号较小的信道1上进行BF训练,响应者STA2的所有接收天线都在信道1进行测量,然后,STA1再将发送天线1和发送天线2在信道编号大的信道2上进行BF训练,STA2的所有接收天线都在信道2进行测量。当在信道聚合的所有信道上都完成BF训练后,STA2针对上述BF训练整个过程进行第一反馈信息。STA2发送的第一反馈信息=时必选在主信道上进行发送,次信道为可选发送。该第一反馈信息中发送天线、发送扇区(发送波束)、以及发送天线所在的信道与第一设备测量的SNR/MCS/CSI是对应的。
可选的,作为一个实施例,第二设备在接收该第一反馈信息之前,接收第一设备发送的第二反馈信息,该第二反馈信息包括在每个天线需要在多个信道上进行该BF训练的情况下,在已经完成的该BF训练的信道上的测量结果。
对于信道聚合模式,STA1和STA2之间的BF训练进行多轮时,STA2向STA1在发送第一反馈信息之前,STA2向该STA1发送第二反馈信息(中间反馈信息),该第二反馈信息包括在已经完成的所述BF训练的信道上的测量结果。
具体而言,在STA2反馈第一反馈信息之前,BF训练可能存在多轮迭代,即进行了多轮BF训练,这些中间迭代的BRP训练结果的反馈(第二反馈信息)包括针对BRP包的各个TRN的测量结果,但不包括第一反馈信息。图9是本发明一个实施例的信道聚合模式下多轮BF训练的第二反馈信息和第一反馈信息的示意图。在图9中,STA1有两个发送天线,对于信道聚合中的信道1和次信道2,信道1为主信道,信道2为次信道。STA2的2个接收射频链共用一个接收天线。由于STA1首先在信道1上进行BRP阶段的BF训练,在信道1的BF训练完毕后,STA2针对信道1上的STA1的发送天线1和发送天线2反馈最优的发送波束信息,即向STA1发送第二反馈信息。该第二反馈信息包括质量最优的一个或多个发送波束的编号(即最优的AWV编号)和/或上述质量最优的一个或多个发送波束的信噪比或接收信号强度,在STA1接收到该第二反馈信息后,由于STA1已具有信道1上的最优发送波束信息,STA1在信道2上再次进行BRP阶段的BF训练时,可以根据已有的信道1上的最优发送波束信息,利用信道2与信道1上的最优发送波束相似程度高的原理,大幅减少在信道2上进行训练的发送波束个数,从而大幅减少发送的BF训练训练的序列时长。图9中的反馈1和反馈2分别是BF训练过程的第二反馈信息和第一反馈信息。其中,第二反馈信息包含信道1上的STA1的发送天线1和发送天线2的质量最优的发送波束。
应理解,第一反馈信息和第二反馈信息可以携带于BRP帧内,例如包含在BRP帧内的信道测量反馈元素或EDMG信道测量反馈元素内。
图10是本发明另一个实施例的信道聚合模式下多轮BF训练的第二反馈信息和第一 反馈信息的示意图。在图10中,STA1有两个发送天线,STA2有两个接收天线,对于信道聚合中的信道1和次信道2,信道1为主信道,信道2为次信道。STA1的具有2个不同的发送天线,而STA2的具有2个接收射天线。由于STA1的天线1在信道1上和STA1的天线2信道2上分别进行BF训练,信道1和信道2上BF训练结束后,STA2在主信道上针对信道1和信道2上分别进行BF训练进行第二反馈信息。在第二反馈信息发送完毕后,由于两个发送天线需要切换到另外一个信道(互换信道)进行BF训练,在每个天线进行全部信道的BF训练后,STA2在主信道上针对每个天线进行全部信道的BF训练进行第一反馈信息。
应理解,对于第二反馈信息和第一反馈信息,必须在主信道发送,而在辅信道上可以发送,也可以不发送。本发明实施例在此不作限制。
可选的,作为一个实施例,当该BF训练是在信道聚合模式下进行的情况下,在该BF训练进行信道切换时向该第二设备发送该第二反馈信息。
具体而言,对于存在第二反馈信息的信道聚合模式下的BF训练,例如,图9和图10所示的具有第二反馈信息的BF训练,STA2可以在BF训练进行信道切换时向STA1发送该第二反馈信息,例如,STA1的所有天线在信道1进行BF训练结束后,STA1的所有天线在信道2进行BF训练前,即STA1的天线在信道切换的时间内,STA2向STA1发送该第二反馈信息信息。
可选的,作为一个实施例,当一个天线上有多个波束需要进行该BF训练时,该BF训练请求信息还包括用于至少一个天线的多个波束进行该BF训练的多个波束优化协议BRP包的序号信息和每个该BRP包中的训练序列的长度信息。该BF训练的测量结果包括:该波束信息指示的每一个波束对应的波束优化协议BRP包的序号信息和该BRP包中的训练序列的长度信息。
当一个天线上有多个波束需要进行该BF训练时,即一个天线的AWV数量较大时,由于每个天线可能采用多个BRP包的训练序列进行BF训练,因此,该BF训练请求信息还包括用于该多个波束进行该BF训练的多个波束优化协议BRP包的序号信息和每个该BRP包中的训练序列的长度信息。在第一反馈信息中,该BF训练的测量结果还包括与该多个波束中的每一个波束对应的该BRP包的序列信息和该BRP包中的训练序列的长度信息。因此反馈最优的一个或多个AWV编号时,应当同时反馈AWV编号对应的BRP包的序号,如(天线1,BRP2,AWV10)表示针对天线1,第2个BRP包的第10个TRN子字段对应的AWV具有最优的接收质量。应理解,每一轮的BF训练结束后的中间反馈信息中,可以反馈一个或多个AWV序号,例如针对天线Z的反馈信息为:(天线Z,BRP1,AWV a,AWV b…,BRP2,AWV c),多个AWV序号可以用于指示下一轮更精细的BF训练的波束起点,也可以用于最后一轮BF训练的决定最优的天线波束配置,还可用作后续的波束追踪的备选波束。
可选的,作为一个实施例,该BF训练的测量结果包括:该BF训练的信噪比SNR、该BF训练所在的信道的信道状态信息、该BF训练所在的信道的调制与编码策略MCS。
具体而言,SAT1和SAT2之间进行BF训练时,SAT2可以根据测量的信道系数确定BF训练的信噪比SNR和可以反馈建议的MCS并且用于确定最优的MIMO信道配置。
应理解,BF训练的测量结果还可以包括其他与BF训练的天线、波束以及信道相关的其他的CSI或者信息,例如其他的CSI信息包括每个信道的信道冲激响应(单输入单 输出情况)或者每个信道的信道矩阵(在MIMO情况下),本发明实施例在此不作限制。
本发明实施例还提供了一种波束赋形训练的方法200,该方法200可以应用在图4所示的场景中,当然也可以应用在其他通信场景中。本发明实施例在此不作限制。
如图11所示,该方法200包括:
S210,第二设备生成BF训练请求信息,该BF训练请求信息包括该BF训练的天线配置信息和在至少一个信道进行该BF训练的信道配置信息。
S220,第二设备向第一设备发送该BF训练请求信息。
S230,第二设备根据BF训练请求信息,与第一设备在该至少一个信道上进行BF训练。
S240,第一设备根据BF训练的测量结果,确定与多个天线对应的多个空时流是否需要采用循环移位分集CSD编码。
S250,第一设备向第二设备发送该BF训练的第一反馈信息,该第一反馈信息包括用于指示该多个空时流中的每个空时流是否需要采用CSD编码的指示信息。
S260,第二设备根据第一反馈信息,确定该多个空时流中的每个空时流是否采用该采用CSD编码。
具体而言,BF训练的发起者(第二设备)和响应者(第一设备)在时间上的交互过程如图6所示。每一轮BF训练都由发起者(第二设备)发送的BF训练请求信息和响应者(第一设备)发送的反馈信息构成。为了协商工作于何种MIMO模式,发起者和响应者需要在进行BF训练之前,通过BF建立过程针对BF训练过程进行训练模式和参数的配置。完成BF建立后,发起者与响应者之间进行一轮或多轮的MIMO BF训练,进行多轮BF训练有利于发起者根据过程中间的反馈信息,加快对齐收发多天线之间的波束,加快获得最优的MIMO模拟天线配置。其中N为正整数。例如当N=1时,表示发起者和响应者只进行了一轮BF训练。
在S210中,在BF训练建立阶段,第二设备(以SAT1为例)生成BF训练请求信息,该BF训练请求信息包括每个天线进行该BF训练的天线配置信息和每个天线进行该BF训练的信道配置信息,该天线配置信息是拟在BF训练中采用的MIMO发送天线的配置信息,可以包括以下信息的一种或多种:发送天线的个数及天线编号(Antenna ID)、发送天线的极化能力信息、发送天线之间是否采用正交的训练序列、每个发送天线发送的BRP包的个数、每个发送天线的发送扇区编号和顺序、每个BRP包携带的训练序列的长度/训练序列单元(TRN-Unit)的个数等。该信道配置信息包括每个天线进行BF训练的信道编号、每个天线进行BF训练的信道顺序、信道绑定或信道聚合、每个天线是否在全部信道上进行所述BF训练的指示信息等。本发明实施例在此不作限制。
S220,SAT1向第一设备(以SAT2为例)发送该BF训练请求信息。
具体而言,在SAT1生成该BF训练请求信息后,便向SAT2发送该BF训练请求信息,相应的,SAT2接收该BF训练请求信息。
S230,第二设备根据BF训练请求信息,与第一设备在该至少一个信道上进行BF训练。
具体而言,SAT2接收该BF训练请求信息,根据该BF训练请求信息包括的天线配置信息和信道配置信息,和SAT1开始BF训练。SAT1和SAT2之间可以进行一轮或者多轮BF训练。即进行一轮的BF训练和反馈或者多轮的BF训练与反馈。本发明实施例 在此不作限制。
S240,第一设备根据BF训练的测量结果,确定与多个天线对应的多个空时流是否需要采用循环移位分集CSD。
具体而言,SAT2根据BF训练确定有效信道矩阵,该有效信道矩阵包括多个元素,该多个元素中的每个元素用于指示一个天线的一个波束在一个信道上的该BF训练的测量结果。
在BF训练过程中,SAT2会检测BF训练的信道系数,在BF训练结束后,SAT2会根据检测到的所有信道系数和一个选择准则(例如信道容量、总吞吐量等),根据多个MIMO信道矩阵选择最优的一个或多个有效信道矩阵Heff。有效信道矩阵Heff是一个MIMO空时流对应的MIMO信道的信道矩阵,由信道系数构成,其维度为K×L,其中K和L分别为发送天线和接收天线的个数。信道系数h(iM,jN,m)是指在信道m上,一个接收天线的一个接收波束iM,针对一个发送天线的一个发送波束jN发送的BF训练序列测量得到的测量结果。每一个信道系数都对应一个信道,其中,iM是指天线编号为M的天线上的波束编号,jN是指天线编号为N的天线上的波束编号,M=1,2,…,K,N=1,2,…,L,K和L为正整数,m是指信道编号。
应理解,该BF训练的测量结果包括具有最高链路质量的的天线配置、每个天线与信道的对应关系的信息,例如,该测量结果不仅仅包括该BF训练的测量结果、还包括该BF训练的测量结果对应的天线的配置信息、该天线的波束信息、该天线对应的信道信息、该信道的调制编码策略信息等,本发明实施例在此不作限制。其中,天线的配置信息用于指示最高链路质量的链路由哪些天线构成。该天线的波束信息是指构成最高链路质量的链路的天线中的每个天线应采用的波束。该天线对应的信道信息是指该天线对应的射频链应配置运行在哪个信道上,例如,若测量结果中包括的天线1/射频链1对应的信道信息为信道1,是指天线1/射频链1需要配置运行在信道1上,该信道的调制编码策略信息是指每个信道应采用的调制编码策略。由于不同的信道可能受到的衰减或干扰相差较大,不同的信道采用不同的调制编码策略可以灵活实现每个信道的最大可达速率,从而达到信道聚合时的最大信道容量。
S240,第一设备根据该测量结果,确定与多个天线对应的多个空时流是否需要采用循环移位分集CSD。
SAT2会根据上根据测量结果,例如,可以根据测量结果中的Heff,判断与多个天线对应的多个空时流(即多个流)之间是否相关,若多个流之间相关,则确定这多流之间需要应用CSD,若多个流之间不相关,则确定这多流之间不需要应用CSD。
STA2判断多个流是否相关的方法包括:
1、STA2根据Heff,当确定Heff只是对角线上存在非0值,而其它信道系数为0或小于预设门限的趋于0的值时,确定该两个流不相关。或者Heff的两个列向量之间不相关时,则确定两个列向量对应的两个发送射频链的两个流不相关。
2、STA2根据该测量结果,确定天线之间的双极化正交匹配,且无极化泄漏,则STA1和STA2之间与该天线对应的流之间不相关。例如,STA1和STA2都配置了双极化的天线,STA1分别通过水平极化和垂直极化发送预设的两个BF训练序列TRN1和TRN2,其中,TRN1和TRN2是互相正交的序列,如果STA2基于水平极化和垂直极化的接收结果显示每一种极化方式只能接收到一种极化方式发送的训练序列,例如STA2 的水平极化天线和垂直极化天线中的每一个天线只能接收到TRN1和TRN2的其中一种,则认为STA1发送的TRN1和TRN2两个流之间不相关。
3、STA2根据该测量结果,确定不同天线工作在信道聚合方式,且各个发送或接收RF链工作在不同的信道,形成频分复用的工作方式,由于第一设备的每个接收链只会接收到本信道上的一个流的信号,不会出现多流之间的波束赋形效应,则也不需要CSD。
具体而言,可以用相关值来表示不同流之间的相关程度并判断是否相关。相关值是用于评定不同流之间的TRN序列的相关程度,当两个流之间的相关值大于预设值时,证明两个流相关,需要应用CSD,当两个流之间的相关值小于于预设值时,证明两个流不相关,不需要应用CSD。例如,针对Heff的不同列向量进行相关运算,得到列向量对应的流之间的相关值。
应理解,对于多天线都采用双极化的情况,不同天线之间的正交极化的多个流之间无需采用CSD,而不同天线之间的经相同极化的波束发送流之间需采用CSD。
S250,第一设备向第二设备发送该BF训练的第一反馈信息,该第一反馈信息包括用于指示该多个空时流中的每个空时流是否需要采用CSD编的指示信息。
具体而言,SAT2会生成BF训练的第一反馈信息,由于SAT2根据该有效信道矩阵Heff判断多个流之间是否需要应用CSD,因此,该第一反馈信息包括用于指示该多个空时流中的每个空时流是否需要采用CSD的指示信息。
S260,第二设备根据该第一反馈信息,确定该多个空时流中的每个空时流是否采用该采用CSD。
具体而言,SAT1根据该第一反馈信息中的指示信息,确定该多个空时流中的每个空时流是否采用该采用CSD。在确定每个空时流是否采用该采用CSD后,在后续的和SAT2进行通信时,便可以确实是否采用CSD,提高传统STA的包检测率和PPDU中L-Header字段的译码成功率。
本发明实施例提供的波束赋形训练的方法,根据BF训练的有效信道矩阵确定判断与多个天线对应的多个流之间是否相关,若多个流之间相关,则确定这多流之间需要应用CSD,若多个流之间不相关,则确定这多流之间不需要应用CSD。在第一反馈信息中包括指示该多个空时流中的每个空时流是否需要采用CSD编码的指示信息。根据该指示信息确定不同的流之间是应用CSD,从而可以利于提高传统STA的包检测率和PPDU中L-Header字段的译码成功率。
应理解,是否应用CSD的指示信息可以携带于BRP帧内的信道测量反馈元素或EDMG信道测量反馈元素
应理解,该指示信息可以是以表的形式向SAT1反馈是否需要进行应用CSD编码。表2是针对信道聚合模式携带指示信息的具有两个最优的MIMO配置反馈信息的最优的MIMO配置表。
表2 信道聚合模式携带指示信息的最优的MIMO配置表
Figure PCTCN2017092110-appb-000005
Figure PCTCN2017092110-appb-000006
该第一反馈信息可以是以表2的形式反馈,表2中,针对信道聚合中的每一个信道,增加了一个是否采用CSD的指示信息,用于指示该信道上的空时流是否需要采用CSD编码。最终反馈中将该BF训练的测量结果与该发送天线及该发送天线的波束、该发送天线进行该BF训练的信道配置信息对应起来、以及向STA1指示是否采用CSD。
可选的,最为一个实施例,当进行多轮该BF训练时,在第一设备发送该第一反馈信息之前,该方法还包括:向该第二设备发送中间反馈信息,该中间反馈信息包括用于指示与已经进行所述BF训练的天线对应的空时流是否需要采用所述CSD的指示信息。
具体而言,在STA2反馈第一反馈信息之前,BF训练可能存在多轮迭代,即进行了多轮BF训练,这些中间迭代的BRP训练结果的反馈(中间反馈)包括与已经进行该BF训练的天线对应的空时流是否需要采用该CSD的指示信息。
可选的,作为一个实施例,确定与多个天线对应的多个空时流是否需要采用循环移位分集CSD,包括:当该多个空时流分别属于不同的信道时,确定该多个空时流不采用该CSD。
在该多个空时流中的至少两个空时流属于同一个信道的情况下,根据该至少两个空时流的正交极化方式,确定该至少两个空时流是否需要采用该CSD。
具体而言,对于信道聚合模式的BF训练,该多个空时流(流)分别属于不同的信道时,由于不同的流分别处于不同的信道,即各个发送或接收RF链工作在不同的信道,形成频分复用的工作方式,由于STA2的每个接收链只会接收到本信道上的一个流的信号,不会出现多流之间的波束赋形效应,则也不需要CSD。
在多个流中的至少两个流属于同一个信道的情况下,则需要根据属于同一个信道的该至少两个流的正交极化方式,确定该至少两个流是否需要采用该CSD。
可选的,作为一个实施例,在多个流中的至少两个流属于同一个信道的情况下,根据该至少两个空时流的正交极化方式,确定该至少两个空时流是否需要采用该CSD,包括:
在该至少两个空时流采用相同极化方式的情况下,确定该至少两个空时流相关。
确定该至少两个空时流中需要应用该CSD的空时流。
具体而言,由于该至少两个流在一个信道上进行数据传输,而当该至少两个流采用相同的正交极化方式时,由于采用相同的正交极化方式的两个流之间具有相关性,因此,确定该至少两个空时流中需要应用该CSD的空时流。
可选的,作为一个实施例,该至少两个第一空时流组采用相同的CSD。
具体而言,由于每个第一空时流组内的空时流都采用相同的极化方式,而至少两个第一空时流组之间具有不同的极化方式,因此,该至少两个第一空时流组可以采用相同的CSD编码,即多个第一空时流组采用相同的CSD。
应理解,在至少两个流属于同一个信道,该至少两个空时流具有不同的正交极化方式,且该至少两个空时流之间的相关值小于预设值的情况下,确定该至少两个空时流不需要采用该CSD。
图12是本发明一个实施例的STA1和STA2形成4x4模式的MIMO示意图。如图12所示,STA1具有2个发送天线,STA2具有两个接收天线,每个发送天线或每个接收天线都具有双极化能力(例如水平极化(horizontal polarization,H-pol)和垂直极化(vertical polarization,V-pol),每个天线对应2个RF链,每一个RF链对应天线的一种极化方式,因而在STA1和STA2之间形成了4x4模式的MIMO。STA1和STA2的天线间距分别为d1和d2,其中d1和d2取值范围是大于或等于0。
针对信道聚合和/或正交极化情况下的BF训练,根据Heff显示的流的相关性,针对每个接收天线/接收射频链,可以将所有具有相关性的发送天线/发送射频链/发送波束对应的流分成一组,即将Heff的每一个行向量中不为0的值对应的发送天线/发送射频链/发送波束分别分成一组。对于同一个接收天线,如果其接收的多个发送天线的多个发送波束发出的多个信号中,只有一个信号不为0,其它信号为0,即Heff对应上述接收天线的行向量中只有一个元素的值不为0,则称上述多个发送天线的多个发送波束针对这个接收天线不相关。
针对每一个接收天线/接收射频链,将具有相关性的空时流(简称为“流”)分为一组后,根据在同一组内流的个数Nstream,针对PPDU在多个天线上具有波束赋形效应的字段采用预先定义的CSD。由于处于不同组的流之间都不相关,因此不同组的流之间可以采用相同的CSD。例如,图12是所示的4x4模式的MIMO中,采用的CSD如图13所示,图13是本发明一个实施例的4x4模式的MIMO的CSD的示意图。图13中,流1和流2之间、流3和流4之间由于分别是相同极化方式而具有相关性,因此相同的CSD方式分别在流1和流2、流3和流4之间使用,可以将流1和流2分为一个组(第一组),流3和流4分为一个组(第二组)。即针对流1和流2中的一个流、流3和流4中的一个流(例如图13中的流1和流3),将短训练字段STF中的第一个Ga128子序列的长度为Tshift(1)的部分序列,循环移位至EDMG-Header-A的后部,而同一组内的另一个流不进行任何循环移位。可以看出,相比针对4个流中的每个流都应用CSD而需要4个不同的CSD的值:Tshift(0)、Tshift(1)、Tshift(2)、Tshift(3),其中Tshift(0)=0,Tshift(1)、Tshift(2)和Tshift(3)大于0,并且取值范围是正整数倍的码片时长。由于按流的相关性进行了分组,而不同组之间的流可以采用相同的CSD,即第一组和第二组用相同的CSD。流1和流3采用了同样的CSD,因此需要的CSD的值减少为1个Tshift,比现有技术的要求的流1、流2、流3和流4需要采用4个CSD值减少了3个。减少了CSD的值的个数后,同时能够将CSD值的最大值减小为原来非零CSD的值中的最小值。减小后的CSD编码值可以降低传统STA的误包率/误检率。
采用CSD的8x8模式MIMO的示意图如图14所示。图14是本发明一个实施例的8x8模式的MIMO的CSD的示意图。在图14中,收发设备分别具有所有流都在同一个信道上发送,即8条流都在同一个信道上发送。当收发双方实现了双极化天线之间的正交匹配时,只需在同一种极化模式(例如H-pol或V-pol)的所有流之间采用CSD,CSD编码的值减少到了4个。即在流1至流4这4个具有相同的极化方式的流上采用4个不同的CSD编码值,在流5至流8这4个具有相同的极化方式的流上采用和在流1至流4 上采用的CSD的值。例如,流1至流4一次采用的CSD的值为Tshift(3)、Tshift(2)、Tshift(1)和Tshift(0),其中Tshift(0)=0,Tshift(1)、Tshift(2)和Tshift(3)大于0并且取值范围是正整数倍的码片时长,Tshift(1)为一倍的码片时长。
应理解,同时采用信道聚合和正交极化天线的一种4x4MIMO如图15所示。图15是本发明一个实施例的4x4模式的MIMO的CSD的示意图。图15中,由于采用了信道聚合,流1和流2在信道1上发送,流3和流4在信道2上发送,因而信道1上流(流1和流2)与信道2上流(流3和流4)之间不存在干扰,因而不需要采用CSD。对于信道1上的流1和流2,信道2上的流3和流4,由于流1和流2之间,流3和流4之间分别采用正交极化天线发送,当收发双方实现了正交极化匹配时,也不需要采用CSD。应理解,在本发明实施例中,信道1和信道2只是示例性说明,可以是符合信道聚合要求的任意两个信道。
由于在信道聚合模式中,信道之间可能具有较大的信道间隔(例如间隔了1个信道以上),考虑到不同的信道的信道频率响应可能具有较大差异,且较大的信道差异可能导致双极化波束之间不再正交,此时,应当为不同信道上的流分别采用不同的CSD反馈指示。例如,图16本发明另一个实施例的4x4模式的MIMO的CSD的示意图。如图16所示,假设收发双方设备分别具有2个不同的双极化天线,且每个双极化天线工作在不同的信道上,如果BF训练结果显示信道1上的流1和流2具有较好的正交极化波束,而信道2上的流3与流4之间的双极化波束正交程度较差,则设置信道1上的两个流无需CSD,而信道2上的两个流需要使用CSD。例如,在流3上,将CSD编码值为Tshift(1)的部分序列,循环移位至EDMG-Header-A的后面。由于不同信道上的正交极化链路因不同天线、不同信道等因素而导致正交极化效果差异较大,以及由于天线位置的不同、设备移动/天线旋转而导致不同天线的双极化之间的泄露程度不同,针对不同的信道采用独立的CSD的反馈指示,可以灵活地指示不同信道上的通信链路是否采用CSD,从而能够更灵活地支持不同信道上的不同通信链路的要求。
应理解,在BF训练完成以后的数据传输中,因为天线旋转导致的天线极化不匹配问题,或者传输路径造成极化泄漏变大,将导致天线极化的正交性恶化。此时是否应用CSD的指示信息可以携带于确认帧或块(block)确认帧内,例如由确认帧或块确认帧的控制拖尾(control trailer)部分携带,包括用控制拖尾内的字段指示应该应用CSD的流和流所在的信道。本发明实施例在此不作限制。
还应理解,在本发明各个实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应该以其功能和内在的逻辑而定,而不应对本申请的实施例的实施过程造成任何限制。
本发明实施例提供的波束赋形训练的方法,根据BF训练的有效信道矩阵确定判断与多个天线对应的多个链路(即多个流)之间是否相关,若多个流之间相关,则确定这多流之间需要应用CSD,若多个流之间不相关,则确定这多流之间不需要应用CSD。在第一反馈信息中包括指示该多个链路中的每个链路是否需要采用CSD编码的指示信息。根据该指示信息确定不同的流之间是应用CSD编码,从而可以利于传统STA的包检测率和PPDU中L-Header字段的译码成功率。
上文结合图1至图16,详细描述了本发明实施例的波束赋形训练的方法,下面将结合图17至图24,详细描述本发明实施例的接收设备和发送设备。
图17是本发明一个实施例的接收设备的示意性框图。应理解,接收设备实施例与方 法实施例相互对应,类似的描述可以参照方法实施例,图17所示的接收设备300可以用于执行对应于图5中第二设备执行的步骤。该接收设备300包括:处理器310、存储器320和收发器330,处理器310、存储器320和收发器330通过通信连接,存储器320存储指令,处理器310用于执行存储器320存储的指令,收发器330用于在处理器310的驱动下执行具体的信号收发。
该处理器310,用于根据BF训练请求信息,与第一设备在至少一个信道上进行BF训练,其中,该BF训练请求信息包括该BF训练的天线配置信息和该至少一个信道的信道配置信息。
该收发器330,用于接收该第一设备发送的第一反馈信息,该第一反馈信息包括:该BF训练的测量结果、与该BF训练的测量结果对应的天线的信息、该天线的波束信息、与该天线对应的信道信息。
该处理器310还用于根据该第一反馈信息,确定至少一个信道上的最优天线配置和/或数字域BF预编码信息。
本发明实施例提供的接收设备,在接收的波束赋形训练第一反馈信息中,使得波束赋形训练反馈具有最高链路质量的天线配置时,尤其是在信道聚合和/或正交极化MIMO应用场景下,将发送天线、发送扇区(发送波束)与发送天线应配置的信道、以及SNR/MCS/CSI对应起来,从而使BF训练序列的发送设备在反馈信息中不仅可以获得最优的最高链路质量的链路对应的天线配置,还能获得每个天线对应的信道配置,即获知每个信道上的天线配置,从而实现最大信道容量/最大可达速率。
接收设备300中的各个组件通过通信连接,即处理器310、存储器320和收发器330之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,作为一个实施例,该天线配置信息包括该BF训练中每个信道上配置的天线编号。该信道配置信息包括以下信息中的至少一种:BF训练序列采用信道绑定或信道聚合方式的信息,每个天线是否在全部信道上进行该BF训练的指示信息,每个天线进行该BF训练的信道的顺序信息,每个天线进行所述BF训练的信道的编号信息。。
可选的,作为一个实施例,当该BF训练是在信道聚合模式下进行的时,该BF训练请求信息还包括用于指示是否在全部信道上进行该BF训练的指示信息。
可选的,作为一个实施例,在每个天线需要在多个信道上进行所述BF训练的情况下,,在该收发器330发送第一反馈信息之前,该收发器还用于发送第二反馈信息,该第二反馈信息包括在已经完成的该BF训练的信道上的测量结果。
可选的,作为一个实施例,当一个天线上有多个波束需要进行该BF训练时,该BF训练的测量结果包括:该波束信息指示的每一个波束对应的波束优化协议BRP包的序号信息和该BRP包中的训练序列的长度信息。
可选的,作为一个实施例,该第一反馈信息还包括该BF训练的测量结果对应的该至少一个信道中每一个信道的调制编码策略信息。
应注意,本发明实施例中,处理器310可以由处理模块实现,存储器320可以由存储模块实现,收发器330可以由收发模块实现,如图18所示,接收设备400可以包括处理模块410、存储模块420和收发模块430。
图17所示的接收设备300或图18所示的接收设备400能够实现前述图5中第二设备执行的步骤,为避免重复,这里不再赘述。
图19示出了本发明一个实施例的发送设备500的示意性框图。应理解,发送设备实施例与方法实施例相互对应,类似的描述可以参照方法实施例,图19所示的发送设备500可以用于执行对应于图5中第一设备执行的步骤。如图19所示,该发送设备500包括:处理器510、存储器520和收发器530,处理器510、存储器520和收发器530通过通信连接,存储器520存储指令,处理器510用于执行存储器520存储的指令,收发器530用于在处理器510的驱动下执行具体的信号收发。
该处理器510,用于根据BF训练请求信息,与第二设备在至少一个信道上进行BF训练,其中,该BF训练请求信息包括该BF训练的天线配置信息和该至少一个信道的信道配置信息。
该处理器510还用于确定第一反馈信息,该第一反馈信息包括:该BF训练的测量结果、与该BF训练的测量结果对应的天线的信息、该天线的波束信息、与该天线对应的信道信息。
该收发器530,用于向该第二设备发送该第一反馈信息。
本发明实施例提供的发送设备,在发送的波束赋形训练的第一反馈信息(最终反馈信息)中,发送天线、发送扇区(发送波束)、以及发送天线所在的信道与接收设备测量的SNR/MCS/CSI是对应起来,从而在反馈中可以获知最大的信道容量,获得最优的MIMO信道配置。
发送设备500中的各个组件通过通信连接,即处理器510、存储器520和收发器530之间通过内部连接通路互相通信,传递控制和/或数据信号。应注意,本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器CPU,NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储 器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
可选的,在本发明的另一个实施例中,该天线配置信息包括该BF训练中每个信道上配置的天线编号。该信道配置信息包括以下信息的至少一种:BF训练序列采用信道绑定或信道聚合方式的信息,每个天线是否在全部信道上进行该BF训练的指示信息,每个天线进行该BF训练的信道的顺序信息,每个天线进行该BF训练的信道的编号信息。
可选的,在本发明的另一个实施例中,当该BF训练是在信道聚合模式下进行的时,该BF训练请求信息还包括用于指示是否在全部信道上进行该BF训练的指示信息。
可选的,在本发明的另一个实施例中,当进行多轮该BF训练时,在该收发器530接收该第一反馈信息之前,该处理器510还用于确定第二反馈信息,该第二反馈信息包括在每个天线需要在多个信道上进行该BF训练的情况下,在已经完成的该BF训练的信道上的测量结果,该收发器530还用向该第二设备发送该第二反馈信息。
可选的,在本发明的另一个实施例中,当一个天线上有多个波束需要进行该BF训练时,该BF训练请求信息还包括用于至少一个天线的多个波束进行该BF训练的多个波束优化协议BRP包的序号信息和每个该BRP包中的训练序列的长度信息。该BF训练的测量结果包括:该波束信息指示的每一个波束对应的该BRP包的序号信息和该BRP包中的训练序列的长度信息。
可选的,在本发明的另一个实施例中,该第一反馈信息还包括该BF训练的测量结果对应的该至少一个信道中每一个信道的调制编码策略信息。
应注意,在发明实施例中,处理器510可以由处理模块实现,存储器520可以由存储模块实现,收发器530可以由收发模块实现,如图20所示,发送设备600可以包括处理模块610、存储模块620和收发模块630。
图19所示的发送设备500或图20所示的发送设备600能够实现前述图5中第一设备执行的步骤,为避免重复,这里不再赘述。
图21是本发明一个实施例的接收设备的示意性框图。应理解,接收设备实施例与方法实施例相互对应,类似的描述可以参照方法实施例,图21所示的接收设备700可以用于执行对应于图11中第二设备执行的步骤。该接收设备700包括:处理器710、存储器720和收发器730,处理器710、存储器720和收发器730通过通信连接,存储器720存储指令,处理器710用于执行存储器720存储的指令,收发器730用于在处理器710的驱动下执行具体的信号收发。
该处理器710,用于根据波束赋形BF训练请求信息,与第一设备在至少一个信道上进行BF训练,其中,该BF训练请求信息包括该BF训练的天线配置信息和信道配置信息。
该收发器730,用于接收该第一设备发送的波束赋形BF训练的第一反馈信息,该第一反馈信息包括用于指示与多个天线对应的多个空时流是否需要应用循环移位分集CSD的指示信息。
该处理器710还用于根据该第一反馈信息,确定该多个空时流中的每个空时流是否应用该CSD。
本发明实施例提供的接收设备,根据BF训练的有效信道矩阵确定与多个天线对应的多个空时流是否需要应用CSD,并在第一反馈信息中包括指示该多个链路中的每个链路 是否需要采用CSD编码的指示信息。可以根据该指示信息确定不同的流之间是应用CSD编码,从而可以利于提高传统STA的包检测率和PPDU中L-Header字段的译码成功率。
接收设备700中的各个组件通过通信连接,即处理器710、存储器720和收发器730之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,NP,或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本发明的另一个实施例中,该天线配置信息包括该BF训练中每个信道上配置的天线编号。该信道配置信息包括以下信息中的至少一种:BF训练序列采用信道绑定或信道聚合方式的信息,每个天线是否在全部信道上进行该BF训练的指示信息,每个天线进行该BF训练的信道的顺序信息,每个天线进行该BF训练的信道的编号信息。
可选的,在本发明的另一个实施例中,当一个天线上有多个波束需要进行该BF训练时,该BF训练请求信息还包括用于至少一个天线的多个波束进行该BF训练的多个波束优化协议BRP包的序号信息和每个该BRP包中的训练序列的长度信息。该BF训练的测量结果包括:与该多个波束中的每一个波束对应的该BRP包的序号信息和该BRP包中的训练序列的长度信息。
应注意,在发明实施例中,处理器710可以由处理模块实现,存储器720可以由存储模块实现,收发器730可以由收发模块实现,如图22所示,接收设备800可以包括处理模块810、存储模块820和收发模块830。
图21所示的接收设备700或图22所示的接收设备800能够实现前述图11中第二设备执行的步骤,为避免重复,这里不再赘述。
图23示出了本发明一个实施例的发送设备900的示意性框图。应理解,发送设备实施例与方法实施例相互对应,类似的描述可以参照方法实施例,图23所示的发送设备900可以用于执行对应于图11中第一设备执行的步骤。如图23所示,该发送设备900包括:处理器910、存储器920和收发器930,处理器910、存储器920和收发器930通过通信连接,存储器920存储指令,处理器910用于执行存储器920存储的指令,收发器930用于在处理器910的驱动下执行具体的信号收发。
该处理器910,用于根据BF训练请求信息,与第二设备在至少一个信道上进行BF训练,其中,该BF训练请求信息包括该BF训练的天线配置信息和该至少一个信道的信道配置信息。
该处理器910还用于根据该BF训练的测量结果,确定与多个天线对应的多个空时流是否需要应用循环移位分集CSD。
该收发器930,用于向该第二设备发送第一反馈信息,该第一反馈信息包括用于指示 该多个空时流中的每个空时流是否需要应用CSD的指示信息。
本发明实施例提供的发送设备,根据BF训练的有效信道矩阵确定判断与多个天线对应的多个空时流(即多个流)之间是否相关,若多个流之间相关,则确定这多流之间需要应用CSD,若多个流之间不相关,则确定这多流之间不需要应用CSD。在第一反馈信息中包括指示该多个空时流中的每个空时流是否需要采用CSD编码的指示信息。根据该指示信息确定不同的流之间是应用CSD,从而可以利于提高传统STA的包检测率和PPDU中L-Header字段的译码成功率。
发送设备900中的各个组件通过通信连接,即处理器90、存储器920和收发器930之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU、NP,或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本发明的另一个实施例中,该处理器910具体用于:当根据该测量结果确定该多个空时流分别属于不同的信道时,确定该多个空时流不应用该CSD。当根据该测量结果确定该多个空时流中的至少两个空时流属于同一个信道时,根据该至少两个空时流是否相关,确定该至少两个空时流是否需要应用该CSD。
可选的,在本发明的另一个实施例中,该处理器910具体用于:在该多个空时流中的至少两个空时流属于同一个信道的情况下,该至少两个空时流采用相同极化方式时,确定该至少两个空时流相关。确定该至少两个空时流中需要应用该CSD的空时流。
可选的,在本发明的另一个实施例中,该处理器910具体用于:在该多个空时流中的至少两个空时流属于同一个信道的情况下,当该至少两个空时流采用不同正交极化方式,且该至少两个空时流之间的相关值小于预设值时,确定该至少两个空时流不相关;确定该至少两个空时流不需要应用该CSD。
应注意,在发明实施例中,处理器910可以由处理模块实现,存储器920可以由存储模块实现,收发器930可以由收发模块实现,如图24所示,接收设备1100可以包括处理模块1110、存储模块1120和收发模块1130。
图23所示的发送设备900或图24所示的发送设备1100能够实现前述图11中第一设备执行的步骤,为避免重复,这里不再赘述。
本发明实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述图5和图11中本发明实施的波束赋形训练的方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本发明实施例对此不做限制。
应理解,本文中术语“和/或”以及“A或B中的至少一种”,仅仅是一种描述关联对象 的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求所述的保护范围为准。

Claims (30)

  1. 一种波束赋形训练的方法,其特征在于,包括:
    根据BF训练请求信息,与第一设备在至少一个信道上进行BF训练,其中,所述BF训练请求信息包括所述BF训练的天线配置信息和所述至少一个信道的信道配置信息;
    接收所述第一设备发送的第一反馈信息,所述第一反馈信息包括:所述BF训练的测量结果、所述BF训练的测量结果对应的天线信息、所述天线的波束信息、所述天线对应的信道信息;
    根据所述第一反馈信息,确定所述至少一个信道上的最优天线配置和/或数字域BF预编码信息。
  2. 根据权利要求1所述的方法,其特征在于,所述天线配置信息包括所述BF训练中每个信道上配置的天线编号;
    所述信道配置信息包括以下信息中的至少一种:BF训练序列采用的信道绑定方式或信道聚合方式的信息,每个天线是否在全部信道上进行所述BF训练的指示信息,每个天线进行所述BF训练的信道的顺序信息,每个天线进行所述BF训练的信道的编号信息。
  3. 根据权利要求1或2所述的方法,其特征在于,在接收所述第一反馈信息之前,所述方法还包括:
    接收第二反馈信息,所述第二反馈信息包括在每个天线需要在多个信道上进行所述BF训练的情况下,在已经完成所述BF训练的信道上的测量结果。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述BF训练的测量结果包括:所述波束信息指示的每一个波束对应的波束优化协议BRP包的序号信息和所述BRP包中的训练序列的长度信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一反馈信息还包括所述BF训练的测量结果对应的所述至少一个信道中每一个信道的调制编码策略信息。
  6. 一种波束赋形训练的方法,其特征在于,包括:
    根据BF训练请求信息,与第二设备在至少一个信道上进行BF训练,其中,所述BF训练请求信息包括所述BF训练的天线配置信息和所述至少一个信道的信道配置信息;
    确定第一反馈信息,所述第一反馈信息包括:所述BF训练的测量结果、与所述BF训练的测量结果对应的天线的信息、所述天线的波束信息、所述天线对应的信道信息;
    向所述第二设备发送所述第一反馈信息。
  7. 根据权利要求6所述的方法,其特征在于,所述天线配置信息包括所述BF训练中每个信道上配置的天线编号;
    所述信道配置信息包括以下信息中的至少一种:BF训练序列采用的信道绑定方式或信道聚合方式的信息,每个天线是否在全部信道上进行所述BF训练的指示信息,每个天线进行所述BF训练的信道的顺序信息,每个天线进行所述BF训练的信道的编号信息。
  8. 根据权利要求6或7所述的方法,其特征在于,在所述向所述第二设备发送所述第一反馈信息之前,所述方法还包括:
    确定第二反馈信息,所述第二反馈信息包括在每个天线需要在多个信道上进行所述BF训练的情况下,在已经完成的所述BF训练的信道上的测量结果;
    向所述第二设备发送所述第二反馈信息。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述BF训练的测量结果包括:所述波束信息指示的每一个波束对应的波束优化协议BRP包的序号信息和所述BRP包中的训练序列的长度信息。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述第一反馈信息还包括所述BF训练的测量结果对应的所述至少一个信道中每一个信道的调制编码策略信息。
  11. 一种波束赋形训练的方法,其特征在于,包括:
    根据波束赋形BF训练请求信息,与第一设备在至少一个信道上进行BF训练,其中,所述BF训练请求信息包括所述BF训练的天线配置信息和信道配置信息;
    接收所述第一设备发送的波束赋形BF训练的第一反馈信息,所述第一反馈信息包括用于指示多个天线对应的多个空时流是否需要应用循环移位分集CSD的指示信息;
    根据所述第一反馈信息,确定所述多个空时流中的每个空时流是否应用所述CSD。
  12. 一种波束赋形训练的方法,其特征在于,包括:
    根据波束赋形BF训练请求信息,与第二设备在至少一个信道上进行BF训练,其中,所述BF训练请求信息包括所述BF训练的天线配置信息和信道配置信息;
    根据所述BF训练的测量结果,确定多个天线对应的多个空时流是否需要应用循环移位分集CSD;
    向所述第二设备发送第一反馈信息,所述第一反馈信息包括用于指示所述多个空时流中的每个空时流是否需要应用CSD的指示信息。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述BF训练的测量结果,确定与多个天线对应的多个空时流是否需要应用循环移位分集CSD,包括:
    在根据所述测量结果确定所述多个空时流分别属于不同的信道的情况下,确定所述多个空时流不应用所述CSD;
    在根据所述测量结果确定所述多个空时流中的至少两个空时流属于同一个信道的情况下,根据所述至少两个空时流是否相关,确定所述至少两个空时流是否需要应用所述CSD。
  14. 根据权利要求13所述的方法,其特征在于,所述在根据所述测量结果确定所述多个空时流中的至少两个空时流属于同一个信道的情况下,根据所述至少两个空时流是否相关,确定所述至少两个空时流是否需要应用所述CSD,包括:
    在所述至少两个空时流采用相同极化方式的情况下,确定所述至少两个空时流相关;
    确定所述至少两个空时流中需要应用所述CSD的空时流。
  15. 根据权利要求13所述的方法,其特征在于,所述在根据所述测量结果确定所述多个空时流中的至少两个空时流属于同一个信道的情况下,根据所述至少两个空时流是否相关,确定所述至少两个空时流是否需要应用所述CSD,包括:
    在所述至少两个空时流采用不同极化方式,且所述至少两个空时流之间的相关值小于预设值的情况下,确定所述至少两个空时流不相关;
    确定所述至少两个空时流不需要应用所述CSD。
  16. 一种接收设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送 信号;
    所述处理器,根据BF训练请求信息,与第一设备在至少一个信道上进行BF训练,其中,所述BF训练请求信息包括所述BF训练的天线配置信息和所述至少一个信道的信道配置信息;
    所述收发器,用于接收所述第一设备发送的第一反馈信息,所述第一反馈信息包括:所述BF训练的测量结果、所述BF训练的测量结果对应的天线的信息、所述天线的波束信息、所述天线对应的信道信息;
    所述处理器还用于根据所述第一反馈信息,确定所述至少一个信道上的最优天线配置和/或数字域BF预编码信息。
  17. 根据权利要求16所述的接收设备,其特征在于,所述天线配置信息包括所述BF训练中每个信道上配置的天线编号;
    所述信道配置信息包括以下信息中的至少一种:BF训练序列采用的信道绑定方式或信道聚合方式的信息,每个天线是否在全部信道上进行所述BF训练的指示信息,每个天线进行所述BF训练的信道的顺序信息,每个天线进行所述BF训练的信道的编号信息。
  18. 根据权利要求16或17所述的接收设备,其特征在于,在所述收发器接收所述第一反馈信息前,所述收发器还用于接收第二反馈信息,所述第二反馈信息包括在每个天线需要在多个信道上进行所述BF训练的情况下,在已经完成的所述BF训练的信道上的测量结果。
  19. 根据权利要求16至18中任一项所述的接收设备,其特征在于,所述BF训练的测量结果包括:所述波束信息指示的每一个波束对应的波束优化协议BRP包的序号信息和所述BRP包中的训练序列的长度信息。
  20. 根据权利要求16至19中任一项所述的接收设备,其特征在于,所述第一反馈信息还包括所述BF训练的测量结果对应的所述至少一个信道中每一个信道的调制编码策略信息。
  21. 一种发送设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述处理器,用于根据BF训练请求信息,与第二设备在至少一个信道上进行BF训练,其中,所述BF训练请求信息包括所述BF训练的天线配置信息和所述至少一个信道的信道配置信息;
    所述处理器还用于确定第一反馈信息,所述第一反馈信息包括:所述BF训练的测量结果、所述BF训练的测量结果对应的天线的信息、所述天线的波束信息、所述天线对应的信道信息;
    所述收发器用于向所述第二设备发送所述第一反馈信息。
  22. 根据权利要求21所述的发送设备,其特征在于,所述天线配置信息包括所述BF训练中每个信道上配置的天线编号;
    所述信道配置信息包括以下信息中的至少一种:BF训练序列采用的信道绑定方式或信道聚合方式的信息,每个天线是否在全部信道上进行所述BF训练的指示信息,每个天线进行所述BF训练的信道的顺序信息,每个天线进行所述BF训练的信道的编号信息。
  23. 根据权利要求21或22所述的发送设备,其特征在于,在所述收发器向所述第 二设备发送所述第一反馈信息之前,所述处理器还用于确定第二反馈信息,所述第二反馈信息包括在每个天线需要在多个信道上进行所述BF训练的情况下,在已经完成的所述BF训练的信道上的测量结果;
    所述收发器还用于向所述第二设备发送所述第二反馈信息。
  24. 根据权利要求21至23中任一项所述的发送设备,其特征在于,所述BF训练的测量结果包括:所述波束信息指示的每一个波束对应的波束优化协议BRP包的序号信息和所述BRP包中的训练序列的长度信息。
  25. 根据权利要求21至24中任一项所述的发送设备,其特征在于所述第一反馈信息还包括所述BF训练的测量结果对应的所述至少一个信道中每一个信道的调制编码策略信息。
  26. 一种接收设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述处理器,用于根据波束赋形BF训练请求信息,与第一设备在至少一个信道上进行BF训练,其中,所述BF训练请求信息包括所述BF训练的天线配置信息和信道配置信息;
    所述收发器,用于接收所述第一设备发送的波束赋形BF训练的第一反馈信息,所述第一反馈信息包括用于指示与个天线对应的多个空时流是否需要应用循环移位分集CSD的指示信息;
    所述处理器还用于根据所述第一反馈信息,确定所述多个空时流中的每个空时流是否应用所述CSD。
  27. 一种发送设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述处理器,用于根据波束赋形BF训练请求信息,与第二设备在至少一个信道上进行BF训练,其中,所述BF训练请求信息包括所述BF训练的天线配置信息和信道配置信息;
    所述处理器还用于根据所述BF训练的测量结果,确定多个天线对应的多个空时流是否需要应用循环移位分集CSD;
    所述收发器,用于向所述第二设备发送第一反馈信息,所述第一反馈信息包括用于指示所述多个空时流中的每个空时流是否需要应用CSD的指示信息。
  28. 根据权利要求27所述的发送设备,其特征在于,所述处理器具体用于:在所述多个空时流分别属于不同的信道情况下,确定所述多个空时流不应用所述CSD;
    载所述多个空时流中的至少两个空时流属于同一个信道情况下,根据所述至少两个空时流是否相关,确定所述至少两个空时流是否需要应用所述CSD。
  29. 根据权利要求28所述的发送设备,其特征在于,所述处理器具体用于:在所述至少两个空时流采用相同极化方式的情况下,确定所述至少两个空时流相关;
    确定所述所述至少两个空时流中需要应用所述CSD的空时流。
  30. 根据权利要求28所述的发送设备,其特征在于,所述处理器具体用于:在所述至少两个空时流采用不同正交极化方式,且所述至少两个空时流之间的相关值小于预设 值的情况下,确定所述至少两个空时流不相关;
    确定所述至少两个空时流不需要应用所述CSD。
PCT/CN2017/092110 2017-07-06 2017-07-06 波束赋形训练的方法、接收设备和发送设备 WO2019006730A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17917154.1A EP3531572A4 (en) 2017-07-06 2017-07-06 BEAM FORMING EXERCISE METHOD, RECEIVER AND TRANSMITTER
PCT/CN2017/092110 WO2019006730A1 (zh) 2017-07-06 2017-07-06 波束赋形训练的方法、接收设备和发送设备
CN201780092630.8A CN110800219B (zh) 2017-07-06 2017-07-06 波束赋形训练的方法、接收设备和发送设备
CN202111402234.5A CN114221683A (zh) 2017-07-06 2017-07-06 波束赋形训练的方法、接收设备和发送设备
US16/430,730 US11070263B2 (en) 2017-07-06 2019-06-04 Beamforming training method, receiving device, and sending device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/092110 WO2019006730A1 (zh) 2017-07-06 2017-07-06 波束赋形训练的方法、接收设备和发送设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/430,730 Continuation US11070263B2 (en) 2017-07-06 2019-06-04 Beamforming training method, receiving device, and sending device

Publications (1)

Publication Number Publication Date
WO2019006730A1 true WO2019006730A1 (zh) 2019-01-10

Family

ID=64950494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092110 WO2019006730A1 (zh) 2017-07-06 2017-07-06 波束赋形训练的方法、接收设备和发送设备

Country Status (4)

Country Link
US (1) US11070263B2 (zh)
EP (1) EP3531572A4 (zh)
CN (2) CN114221683A (zh)
WO (1) WO2019006730A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI836059B (zh) * 2019-04-12 2024-03-21 南韓商三星電子股份有限公司 無線通訊設備和無線通訊方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270475B (zh) * 2016-12-30 2020-10-23 华为技术有限公司 一种波束训练方法及通信设备
US11362720B2 (en) * 2017-06-23 2022-06-14 Intel Corporation Apparatus, system and method of beam refinement protocol (BRP) transmit (TX) sector sweep (SS) (TXSS)
US11368204B2 (en) * 2017-06-23 2022-06-21 Intel Corporation Apparatus, system and method of beam refinement protocol (BRP) transmit (TX) sector sweep (SS) (TXSS)
US10779331B2 (en) * 2017-08-21 2020-09-15 Qualcomm Incorporated Random access channel (RACH) transmission with cross-band downlink/uplink (DL/UL) pairing
KR102208398B1 (ko) * 2017-09-01 2021-01-27 엘지전자 주식회사 무선랜 시스템에서 빔포밍을 지원하는 방법 및 이를 위한 장치
EP3493419B1 (en) * 2017-12-04 2021-01-20 Apple Inc. Techniques for beamforming in multi-user systems
US10638493B2 (en) * 2017-12-08 2020-04-28 Intel IP Corporation Apparatus, system and method of beam refinement protocol (BRP)
EP3579443A1 (en) * 2018-06-07 2019-12-11 Volkswagen Aktiengesellschaft Vehicle, apparatus, method and computer program for communicating in multiple mobile communication systems
EP3821541A1 (en) * 2018-07-12 2021-05-19 Sony Corporation Imu-assisted polarization division multiplexed mimo wireless communication
US11196464B2 (en) * 2019-09-09 2021-12-07 Qualcomm Incorporated Beam training in millimeter wave relays using amplify-and-forward transmissions
CN112752273B (zh) * 2019-10-29 2023-08-22 上海华为技术有限公司 一种波束调整的方法以及相关设备
US11985515B2 (en) * 2019-11-04 2024-05-14 Qualcomm Incorporated Methods and apparatuses for dynamic antenna array reconfiguration and signaling in millimeter wave bands
US11818734B2 (en) * 2020-04-02 2023-11-14 Qualcomm Incorporated Methods and apparatus for communicating cyclic delay diversity information among peer sidelink nodes
CN114630412A (zh) * 2020-12-11 2022-06-14 华为技术有限公司 无线局域网中的功率控制方法及相关装置
WO2024050667A1 (zh) * 2022-09-05 2024-03-14 华为技术有限公司 通信方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120106474A1 (en) * 2010-10-29 2012-05-03 Nec (China ) Co., Ltd. Beamforming training methods, apparatuses and system for a wireless communication system
CN104303477A (zh) * 2012-05-10 2015-01-21 三星电子株式会社 使用模拟和数字混合波束成形的通信方法和装置
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
CN106559114A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种波束训练方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924107B2 (ja) * 2006-04-27 2012-04-25 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
US8503928B2 (en) * 2008-06-18 2013-08-06 Mediatek Inc. Method and system for beamforming training and communications apparatuses utilizing the same
US8422961B2 (en) * 2009-02-23 2013-04-16 Nokia Corporation Beamforming training for functionally-limited apparatuses
US8548385B2 (en) * 2009-12-16 2013-10-01 Intel Corporation Device, system and method of wireless communication via multiple antenna assemblies
US9225401B2 (en) * 2012-05-22 2015-12-29 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation and multiple antenna beamforming operation
CN104662811B (zh) * 2012-09-18 2018-05-01 Lg电子株式会社 在多天线无线通信系统中发送有效反馈的方法及其设备
KR102043021B1 (ko) * 2013-04-15 2019-11-12 삼성전자주식회사 이동 통신 시스템에서 빔포밍을 위한 스케쥴링 방법 및 장치
US9647735B2 (en) * 2013-05-31 2017-05-09 Intel IP Corporation Hybrid digital and analog beamforming for large antenna arrays
US20160072572A1 (en) * 2013-06-25 2016-03-10 Lg Electronics Inc. Method for performing beamforming based on partial antenna array in wireless communication system and apparatus therefor
KR102130294B1 (ko) * 2014-04-02 2020-07-08 삼성전자주식회사 무선 통신 시스템에서 단일 스트림 다중 빔 송수신 방법 및 장치
US10021695B2 (en) * 2015-04-14 2018-07-10 Qualcomm Incorporated Apparatus and method for generating and transmitting data frames
US9825782B2 (en) * 2015-07-27 2017-11-21 Qualcomm, Incorporated Channel estimation
US9838107B2 (en) * 2015-10-16 2017-12-05 Lg Electronics Inc. Multiple beamforming training
US10142005B2 (en) * 2015-11-02 2018-11-27 Lg Electronics Inc. Beamforming training
EP3381134A1 (en) * 2015-11-23 2018-10-03 Nokia Solutions and Networks Oy User device beamforming training in wireless networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120106474A1 (en) * 2010-10-29 2012-05-03 Nec (China ) Co., Ltd. Beamforming training methods, apparatuses and system for a wireless communication system
CN104303477A (zh) * 2012-05-10 2015-01-21 三星电子株式会社 使用模拟和数字混合波束成形的通信方法和装置
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
CN106559114A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种波束训练方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531572A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI836059B (zh) * 2019-04-12 2024-03-21 南韓商三星電子股份有限公司 無線通訊設備和無線通訊方法

Also Published As

Publication number Publication date
US11070263B2 (en) 2021-07-20
CN110800219B (zh) 2021-11-30
EP3531572A1 (en) 2019-08-28
CN114221683A (zh) 2022-03-22
CN110800219A (zh) 2020-02-14
EP3531572A4 (en) 2020-01-22
US20190288760A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US11070263B2 (en) Beamforming training method, receiving device, and sending device
JP7453263B2 (ja) mmWAVE無線ネットワークのシングルユーザハイブリッドMIMOのためのシステムおよび方法
US20210409969A1 (en) Beamforming methods and methods for using beams
US11736158B2 (en) Multiple input multiple output (MIMO) setup in millimeter wave (MMW) WLAN systems
KR102371879B1 (ko) Mmw wlan 시스템에서의 mimo 모드 적응
US10523295B2 (en) Split beamforming refinement phase (BRP) based sector level sweep (SLS) for multi-antenna array devices
US10848218B2 (en) Fast beam refinement phase for periodic beamforming training
US11240682B2 (en) Split sector level sweep using beamforming refinement frames
KR20190090789A (ko) 밀리미터파 wlan을 위한 다차원 빔 미세조정 절차 및 시그널링
US10447351B2 (en) Partial multi-antenna sector level sweep
CN111934736B (zh) 一种发送波束优化协议包的方法及设备
CN110912594A (zh) 波束训练方法及装置
US20180248600A1 (en) Wideband sector sweep using wideband training (trn) field
JP2017063447A (ja) 無線ローカル・エリア・ネットワーク(lan)におけるアドバンスト受信機パフォーマンスを保護するためにシグナリングすること
WO2019128890A1 (zh) 一种数据传输方法及设备
WO2024057140A1 (en) Unified channel state information codebook

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017917154

Country of ref document: EP

Effective date: 20190522

NENP Non-entry into the national phase

Ref country code: DE