WO2019128890A1 - 一种数据传输方法及设备 - Google Patents

一种数据传输方法及设备 Download PDF

Info

Publication number
WO2019128890A1
WO2019128890A1 PCT/CN2018/122948 CN2018122948W WO2019128890A1 WO 2019128890 A1 WO2019128890 A1 WO 2019128890A1 CN 2018122948 W CN2018122948 W CN 2018122948W WO 2019128890 A1 WO2019128890 A1 WO 2019128890A1
Authority
WO
WIPO (PCT)
Prior art keywords
data streams
data
group
header
edmg
Prior art date
Application number
PCT/CN2018/122948
Other languages
English (en)
French (fr)
Inventor
吴涛
陈特彦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019128890A1 publication Critical patent/WO2019128890A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and device.
  • Wi-Fi Wireless Fidelity
  • Wi-Fi Wireless Local Area Network
  • Wi-Fi Wireless Local Area Network
  • Wi-Fi Wireless Local Area Network
  • Wi-Fi Wireless Fidelity
  • WLAN Wireless Local Area Network
  • the 802.11ay standard is the next-generation evolution of 802.11ad 60GHz WLANs. It also operates in the high-frequency range of 60 gigahertz (GHz). Its main target is peak rate from 7 Gigabits per second (Gbps). Upgrade to greater than 20Gbps.
  • the 802.11ay standard also hopes to expand the application range of WLAN technology, for example, in addition to continuing to support 802.11ad point-to-point close-range wireless high-definition audio and video signals, it also introduces wireless access, backhaul, point-to-multipoint, etc. Scene.
  • multi-channel aggregation and multi-antenna transmission are introduced.
  • SU-MIMO Single-user Multiple-Input Multiple-Output
  • Multi-User Multiple-Input Multiple-Output Multi-User Multiple-Input Multiple-Output
  • MU-MIMO transmission.
  • the signal fades faster during spatial transmission, the multipath effect is not obvious, resulting in poor SU-MIMO performance, and in the millimeter wave or 60 GHz high frequency scene.
  • the embodiment of the invention provides a data transmission method and device, which can effectively eliminate interference between data streams and improve system transmission performance.
  • an embodiment of the present invention provides a data transmission method, where the method includes:
  • the transmitting device divides the data stream to be sent into two groups of data streams, where the two groups of data streams include a first group of data streams and a second group of data streams, and the second group of data streams
  • the stream performs a weighting operation to generate a second set of target data streams, and then transmits a first set of data streams and a second set of target data streams. Since the second group of data streams are weighted, the interference between the data streams can be effectively reduced, thereby improving the transmission performance of the system.
  • the performing the weighting operation on the second set of data streams includes weighting the EDMG-Header-B portion and the data portion of each of the second set of data streams.
  • the transmitting device only needs to perform weighting operation on a part of each data stream in the second group of data streams, which reduces the complexity of the weighting operation process.
  • the performing the weighting operation on the second group of data streams comprises performing a weighting operation on a data portion of each of the second group of data streams.
  • the weighting operation is specifically: multiplying the EDMG-Header-B portion and the data portion of each of the second data streams by or It can be seen that the weight of the weighting operation is a fixed value. Since the weight of the weighting operation is not required to be calculated based on the channel state fed back by the receiving end, the overhead of the system is reduced, and the implementation complexity of the system is reduced.
  • the weighting operation is specifically: multiplying the data portion of each data stream in the second group of data streams by or
  • an indication field is further included before the EDMG-Header-B portion, the indication field is used to indicate an EDMG-Header-B portion of each of the second group of data streams And whether the data part has been weighted.
  • the indication field may indicate to the receiving end device whether the EDMG-Header-B part and the data part of each of the second set of data streams are weighted so that the receiving end device adopts the corresponding solution. Tuning mode to demodulate the data stream.
  • the indication field may occupy one bit.
  • the EDMG-Header-B portion is used to indicate each data stream in the second group of data streams. And the data part has been weighted.
  • the EDMG-Header-B part and the data part for indicating each of the second data streams are not weighted.
  • the data stream to be transmitted is a data stream that has undergone MASK modulation or ⁇ /2 MASK modulation.
  • the MASK modulation comprises BPSK modulation
  • the ⁇ /2 MASK modulation comprises ⁇ /2 BPSK modulation.
  • the method before transmitting the first set of data streams and the second set of target data streams, the method further includes:
  • an embodiment of the present invention provides a data transmission method, where the data transmission method includes:
  • the receiving end device receives two sets of data streams, where the two sets of data streams include a first group of data streams and a second group of data streams, wherein the second group of data streams have been weighted and received.
  • the end device demodulates the first set of data streams and the second set of data streams. Since the second group of data streams are weighted, the interference between the data streams received by the receiving device can be effectively reduced, thereby improving the receiving performance of the receiving device.
  • the second set of data streams has been weighted so that the EDMG-Header-B portion and the data portion of each of the second set of data streams have been weighted.
  • the second group of data streams has been weighted, and the data portion of each of the second group of data streams has been weighted.
  • the weighting operation is specifically: multiplying the EDMG-Header-B portion and the data portion of each of the second data streams by or
  • the weighting operation is specifically: multiplying the data portion of each data stream in the second group of data streams by or
  • an indication field is further included before the EDMG-Header-B portion, the indication field is used to indicate an EDMG-Header-B portion of each of the second group of data streams And whether the data part has been weighted.
  • the indication field may indicate to the receiving end device whether the EDMG-Header-B part and the data part of each of the second set of data streams are weighted so that the receiving end device adopts the corresponding solution. Tuning mode to demodulate the data stream.
  • the indication field may occupy one bit.
  • the EDMG-Header-B portion is used to indicate each data stream in the second group of data streams. And the data part has been weighted.
  • the EDMG-Header-B part and the data part for indicating each of the second data streams are not weighted.
  • the data stream to be transmitted is a data stream that has undergone MASK modulation or ⁇ /2 MASK modulation.
  • the MASK modulation comprises BPSK modulation
  • the ⁇ /2 MASK modulation comprises ⁇ /2 BPSK modulation.
  • the second group of data streams after performing the weighting operation, the second group of data streams also performs the following operations:
  • an embodiment of the present invention provides a transmitting end device, where the transmitting end device has a function of implementing the data transmission method provided by the foregoing first aspect and any possible design of the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present invention provides a receiving end device, which has the function of implementing the data transmission method provided by the foregoing second aspect and any possible design of the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present invention provides a sending end device, where the sending end device includes a processor and a transmitter.
  • the processor is configured to support the transmitting device to perform corresponding functions in the above methods, such as generating or processing data and/or information involved in the above methods.
  • the transmitter is configured to support the sending end device to send data, information or instructions involved in the foregoing method to the receiving end device, for example, sending the first group of data streams and the second group of target data streams.
  • the source device may further include a receiver for receiving information or instructions from the sink device.
  • the structure of the transmitting device may further include a memory for coupling with the processor to save necessary program instructions and data of the transmitting device.
  • an embodiment of the present invention provides a receiving end device, where the receiving end device includes a processor and a receiver.
  • the processor is configured to support the receiving device to perform corresponding functions in the above methods, such as processing data and/or information involved in the above methods.
  • the receiver is configured to support the receiving end to receive data, information or instructions involved in the above method, for example, receiving the first set of data streams and the second set of data streams.
  • the receiving device may also include a transmitter for transmitting information or instructions.
  • the structure of the receiving end device may further include a memory for coupling with the processor to save necessary program instructions and data of the receiving end device.
  • a computer readable storage medium stores a computer program loaded by a processor and executed to implement any of the first aspect or the first aspect described above A possible method of data transmission provided by the design.
  • the computer program is loaded by a processor and executed to implement the data transmission method provided by any of the above second aspect or the second aspect.
  • an embodiment of the present application provides a computer program product, which when implemented on a processor, implements the data transmission method provided by any of the above aspects or any of the possible aspects of the first aspect.
  • the computer program product when the computer program product is run on a processor, the data transmission method provided by any of the above second aspect or the second aspect may be implemented.
  • a ninth aspect a chip is provided, the chip comprising a processor and/or program instructions, when the chip is running, implementing the data transmission method provided by any one of the above first aspect or the first aspect .
  • the data transmission method provided by any of the above second aspect or the second aspect may be implemented.
  • the data transmission method and device provided by the embodiments of the present invention divide the data stream to be sent into two groups of data streams, where the two groups of data streams include a first group of data streams and a second group of data streams, and the second group of data streams A weighting operation is performed to generate a second set of target data streams, and then a first set of data streams and a second set of target data streams are transmitted. Since the second group of data streams are weighted, the interference between the data streams can be effectively reduced, thereby improving the transmission performance of the system.
  • FIG. 1 is an exemplary schematic diagram of a wireless local area network according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a SU-MIMO transmission system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a downlink MU-MIMO transmission system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a data flow grouping according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another data flow grouping according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of another data transmission method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a logical structure of a transmitting device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a logic mechanism of a receiving end device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of hardware of a transmitting end device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of hardware of a receiving end device according to an embodiment of the present invention.
  • FIG. 1 is an exemplary schematic diagram of a Wireless Local Area Networks (WLAN) 100 according to an embodiment of the present invention.
  • wireless local area network 100 includes an Access Point (AP) 102 and stations (Stations) 104-106, wherein stations 104-106 can communicate with access point 102 over a wireless link.
  • AP Access Point
  • Stations stations
  • stations 104-106 can communicate with access point 102 over a wireless link.
  • the WLAN may include a plurality of Basic Service Sets (BSSs), the nodes of the basic service set are site STAs, and the sites include access point class (Access Point, AP for short) and non-access point class sites ( None Access Point Station (Non-AP STA), each basic service set may include one AP and multiple Non-AP STAs associated with the AP.
  • BSSs Basic Service Sets
  • AP Access Point
  • Non-AP STA None Access Point Station
  • each basic service set may include one AP and multiple Non-AP STAs associated with the AP.
  • STAs 104-106 are Non-AP STAs.
  • the Non-AP STA is simply referred to as an STA
  • the site of the access point class is referred to as an AP.
  • Access point class sites also known as wireless access points or hotspots.
  • the AP is an access point for mobile users to enter the wired network. It is mainly deployed in the home, inside the building, and inside the campus. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • An AP is equivalent to a bridge connecting a wired network and a wireless network. Its main function is to connect the STAs together and then connect the wireless network to the wired network.
  • the AP may be a terminal device with a Wireless Fidelity (WiFi) chip or a network device, such as a smart phone that provides an AP function or service.
  • the AP may be a device supporting the 802.11ax system. Further, the AP may be a device supporting multiple WLAN technologies such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • the STA may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • mobile phone supporting WiFi communication function tablet computer supporting WiFi communication function, set-top box supporting WiFi communication function, smart TV supporting WiFi communication function, smart wearable device supporting WiFi communication function, and vehicle communication supporting WiFi communication function Devices and computers that support WiFi communication.
  • the site can support the 802.11ax system. Further optionally, the site supports multiple WLAN formats such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the AP can perform uplink and downlink transmissions to different STAs on different time-frequency resources.
  • the AP may adopt different modes for uplink and downlink transmission, such as OFDMA SU-MIMO mode or OFDMA MU-MIMO mode.
  • the data transmission method provided by the embodiment of the present invention may be applied to other communication systems in addition to the foregoing WLAN system, which is not limited by the embodiment of the present invention.
  • the data transmission method of the embodiment of the present invention is applicable to communication between an AP and an STA, but is also applicable to communication between an AP and an AP or communication between a STA and an STA.
  • the embodiment of the present invention is described by taking the communication between the AP and the STA as an example.
  • FIG. 2 is a schematic diagram of a SU-MIMO transmission system according to an embodiment of the present invention.
  • the transmitting device transmits with two antennas
  • the receiving device receives with two antennas
  • the transmitting device transmits x 1 with the transmitting antenna 1 , and transmits it with the transmitting antenna 2.
  • x 2 the signals received by the two receiving antennas on the receiving device can be expressed as:
  • h 11 is the channel from the transmitting antenna 1 to the receiving antenna 1
  • h 12 is the channel from the transmitting antenna 2 to the receiving antenna 1
  • h 21 is the channel from the transmitting antenna 1 to the receiving antenna 2
  • h 22 is the transmitting antenna 2 to the receiving antenna 2 channels.
  • y 1 is a signal received by the receiving antenna 1
  • h 21 h 11 e j ⁇ is a signal received by the receiving antenna 2.
  • FIG. 3 is a schematic diagram of a downlink MU-MIMO transmission system according to an embodiment of the present invention.
  • the following line user is an example of two receiving end devices.
  • the transmitting end device transmits a signal x 1 by using the transmitting antenna 1 and x 2 by using the transmitting antenna 2 .
  • the signals received by the two receiving antennas of the receiving device 1 can be expressed as:
  • h 11 is the channel of the transmitting antenna 1 of the transmitting device to the receiving antenna 1 of the receiving device 1
  • h 21 is the channel of the transmitting antenna 1 of the transmitting device to the receiving antenna 2 of the receiving device 1
  • h 12 is the transmitting
  • the transmitting antenna 2 of the end device is to the channel of the receiving antenna 1 of the receiving device 1
  • h 22 is the channel of the transmitting antenna 2 of the transmitting device to the receiving antenna 2 of the receiving device 1.
  • y 1 is a signal received by the receiving antenna 1 of the receiving device 1
  • y 2 is a signal received by the receiving antenna 2 of the receiving antenna 2 on the receiving device 1.
  • the signals received by the two receiving antennas of the receiving device 2 can be expressed as:
  • g 11 is the channel of the transmitting antenna 1 of the transmitting device to the receiving antenna 1 of the receiving device 2
  • g 12 is the channel of the transmitting antenna 2 of the transmitting device to the receiving antenna 1 of the receiving device 2
  • g 21 is the transmitting The channel from the transmitting antenna 1 of the end device to the receiving antenna 2 of the receiving device
  • g 22 is the channel of the transmitting antenna 2 of the transmitting device to the receiving antenna 2 of the receiving device.
  • z 1 is a signal received by the receiving antenna 1 of the receiving device 2
  • z 2 is a signal received by the receiving antenna 2 of the receiving device 2.
  • the transmitting antenna 1 and the transmitting antenna 2 in FIG. 2 and FIG. 3 described above may be composed of several array elements on one phased array antenna.
  • the receiving antenna 1 and the receiving antenna 2 may also be configured by a phased array. It consists of several array elements on the antenna.
  • the transmitting antenna 1 can be composed of the first to fourth array elements on the phased array antenna, and the transmitting antenna 2 can be composed of the fifth to eighth array elements on the same phased array antenna.
  • the receiving antenna 1 can be composed of the first to fourth array elements on the phased array antenna, and the receiving antenna 2 can be composed of the fifth to eighth array elements on the same phased array antenna.
  • the data transmission method provided by the embodiment of the invention can effectively eliminate interference between data streams and improve system transmission performance.
  • the data stream mentioned in the embodiment of the present invention may be a space-time stream in 802.11ay, or may be a data stream specified by other protocols.
  • the data transmission method provided by the embodiment of the present invention will be described in detail below with reference to FIG.
  • FIG. 4 is a schematic flowchart of a data transmission method 400 according to an embodiment of the present invention.
  • the method 400 can be applied to a SU-MIMO system, and can also be applied to a downlink MU-MIMO system.
  • Step 401 Divide the data stream to be sent into two groups of data streams, where the two groups of data streams include a first group of data streams and a second group of data streams.
  • Step 402 Perform a weighting operation on the second group of data streams to generate a second group of target data streams.
  • Step 403 Send the first group of data streams and the second group of target data streams.
  • the transmitting device divides the data stream to be sent into two groups of data streams, where the two groups of data streams include a first group of data streams and a second group of data streams, and the second group of data streams
  • the stream performs a weighting operation to generate a second set of target data streams, and then transmits a first set of data streams and a second set of target data streams. Since the second group of data streams are weighted, the interference between the data streams can be effectively reduced, thereby improving the transmission performance of the system.
  • the sending end device needs to group the data streams to be sent before sending the data stream.
  • the sending end device divides the data streams to be sent into two groups.
  • the transmitting device groups the data streams sent to the receiving device.
  • the number of data streams sent by the sending end device to the receiving end device is N, that is, the number of data streams to be sent is N, N is a positive integer greater than or equal to 2, and the N data streams are divided into In two groups, the first set of data streams includes data stream 1 to data stream N 1 , and the second set of data streams includes data stream N 1 +1 to data stream N.
  • the grouping method may be preset, for example, presetting that the N data streams are equally divided into two groups according to the data stream number, among them Indicates rounding down; or among them Indicates rounding up.
  • the sending end device may also determine the grouping method according to the specific communication requirement before sending the data stream.
  • the packet may be grouped according to the characteristics of the data stream to be sent, that is, the data streams of the same service are grouped into one group, for example, the video.
  • the service data flows are grouped into one group, and the voice service data streams are grouped into one group.
  • other grouping methods may be used for grouping, which is not limited in the embodiment of the present invention.
  • the source device groups the data streams sent to the multiple receiver devices.
  • the data stream packets in the downlink MU-MIMO scenario are The data stream corresponding to the different receiving end devices is grouped, where the receiving end device refers to the user equipment that receives the downlink data stream, hereinafter referred to as the user.
  • the data stream to be sent includes a data stream corresponding to N users, wherein the number of data streams corresponding to each user is n max , 1 ⁇ n ⁇ N, and n and N are positive integers. N is greater than or equal to 2. In a specific implementation process, N users may be divided into two groups.
  • the first group of users includes user 1 to user N 1
  • the second group of users includes user N 1 +1 to user N, exemplary. among them Indicates rounding down; or among them It means rounding up, that is, N users are equally divided into two groups according to the user number. It can be understood that after the N users are divided into two groups, the data streams corresponding to the corresponding N users are also divided into two groups, that is, the first group of data streams includes the data stream corresponding to the user 1 to the user N 1 , The two sets of data streams include data streams corresponding to users N 1 +1 to N.
  • the sender device may also perform grouping according to the service type transmitted by the user, for example, group users who transmit the same service type (for example, time-frequency service or voice service), and divide users that transmit other service types.
  • group users who transmit the same service type (for example, time-frequency service or voice service)
  • divide users that transmit other service types for example, the embodiment of the present invention does not limit this.
  • the sending end device may complete the grouping of the data stream to be sent while generating the data stream to be sent. In other words, the sender device does not need to separately group the data streams to be transmitted. It can be understood that the sending end device can also group the data streams to be sent after generating the data stream to be sent, and then perform weighting operations on one of the data streams.
  • the second group of data streams is weighted to generate a second group of target data streams.
  • Weighting the second set of data streams refers to weighting each of the second set of data streams.
  • the weighting operation refers to multiplying each of the second set of data streams by the same weight.
  • the weight can be expressed as a complex exponential form, for example Where r represents the amplitude value, 0 ⁇ r ⁇ 1, Indicates the phase value,
  • the weights can also be expressed in other forms, which are not limited in the embodiments of the present invention.
  • the weighting operation of the second set of data streams includes EDMG-Header-B (Enhanced directional multi-gigabit-Header-B) portions and data for each of the second set of data streams Part of the weighting operation.
  • the transmitting device only weights the EDMG-Header-B portion and the data portion of each of the second data streams, that is, the EDMG of each of the second data streams.
  • the -Header-B part and the data part are multiplied by a weight. For example, as shown in FIG.
  • the second group of data streams includes the data stream N 1 +1 to the data stream N, and the EDMG-Header-B portion and the data portion of the data stream N 1 +1 are multiplied by a weight. , for example, multiply Similarly, the same weighting operation is performed on other data streams in the second set of data streams. As shown in FIG.
  • the second group of data streams includes the data stream corresponding to the user N 1 +1 to the user N, and the EDMG-Header-B of each data stream in the data stream corresponding to the user N 1 +1 Both the part and the data part are multiplied by a weighting amount, for example multiplied by Similarly, the same weighting operation is performed on the EDMG-Header-B portion and the data portion of each of the data streams corresponding to other users.
  • the weight may be preset by the communication protocol, or may be calculated according to the channel state in the actual communication process, and is not limited herein.
  • the performing the weighting operation on the second group of data streams comprises performing a weighting operation on a data portion of each of the second group of data streams.
  • the weighting operation of the second set of data streams is specifically multiplying the EDMG-Header-B portion and the data portion of each of the second set of data streams by or
  • the weighting operation performed by the transmitting device on the second group of data streams may adopt a fixed weight, so that the implementation complexity in the actual communication process can be reduced.
  • the performing the weighting operation on the second group of data streams includes performing a weighting operation on a data portion of each of the second group of data streams, where the weighting operation is specifically performed in the second group of data streams. Multiply the data portion of each data stream by or
  • an indication field is further included before the EDMG-Header-B portion of each of the second set of data streams, the indication field being used to indicate each of the second set of data streams Whether the EDMG-Header-B part and the data part of a data stream have been weighted.
  • an indication field may be added to each data stream of the second group of data streams.
  • an indication field may be added before the EDMG-Header-B portion, which is used to indicate whether the EDMG-Header-B portion and the data portion of each data stream in the second group of data streams have been weighted.
  • the transmitting device can instruct the receiving device to demodulate the data stream by using a demodulation manner corresponding to the weighting operation.
  • the indication field may be included in an existing field of each data stream in the second group of data streams.
  • the indication field may be included in an EDMG-Header-A (Enhanced directional multi-gigabit-Header-A) field of each of the second set of data streams.
  • the field may be included in the EDMG-Header-A field of each of the data streams corresponding to the second group of users. It is to be understood that the indication field may also be included in other existing fields of each of the foregoing second data streams, which is not limited by the embodiment of the present invention.
  • the indication field may be a new field, that is, a new field is added to each of the second group of data streams, and the newly added field and each of the second group of data streams are The existing fields in the data stream are different.
  • the newly added field is used to indicate whether the EDMG-Header-B part and the data part of each of the second set of data streams have been weighted.
  • the above indication field can occupy one bit.
  • the value of the bit is 1, it indicates that the EDMG-Header-B part and the data part of each data stream in the second group of data streams have been weighted; when the value of the bit is 0, the indication The EDMG-Header-B portion and the data portion of each of the second set of data streams are not weighted.
  • the value of the bit is 1, indicating that the EDMG-Header-B part and the data part of each data stream in the second group of data streams are not weighted; when the value of the bit is 0 , indicating that the EDMG-Header-B portion and the data portion of each of the second set of data streams have been weighted.
  • the data stream to be transmitted is a data stream that has been subjected to M-Ary Amplitude Shift Keying (MASK) modulation or ⁇ /2 MASK modulation.
  • the transmitting device modulates the data stream before transmitting the data stream, and the data stream to be sent may be a data stream obtained after performing ⁇ /2MASK modulation or MASK modulation.
  • MASK also known as multi-digit digital modulation.
  • the data stream to be sent may be a data stream obtained after ⁇ /2 MASK modulation; when the data stream to be sent is sent by using OFDM.
  • the data stream to be sent may be a data stream obtained after performing MASK modulation.
  • ⁇ /2MASK modulation is ⁇ /2 2ASK modulation
  • ⁇ /2MASK modulation is also called ⁇ /2BPSK modulation
  • 2ASK modulation is also called BPSK modulation.
  • the data stream to be transmitted may also be a data stream obtained after performing ⁇ /2 BPSK modulation or BPSK modulation.
  • the method before transmitting the first set of data streams and the second set of target data streams, the method further includes:
  • k is the sequence number of each of the data streams
  • ⁇ (y(k)) ⁇ 0 y(k)
  • y(k) is a function of k.
  • multiplying each of the second set of target data streams by the weight e j ⁇ (y(k)) is specifically: EDMG-Header-B of each data stream in the second group of data streams The part and the data part are multiplied by the weight e j ⁇ (y(k)) .
  • multiplying each of the second set of target data streams by the weight e j ⁇ (y(k)) is specifically: multiplying the data portion of each of the second set of data streams by a weight. e j ⁇ (y(k)) .
  • the above data portion specifically refers to the data portion of the data stream in FIG. 5 or FIG. 6.
  • the foregoing method 400 is applied in a SU-MIMO scenario, and the sending device may be an access point for performing downlink transmission, such as but not limited to the access point 102 in FIG. 1; the sending device may also perform uplink
  • the transmitted site is, for example but not limited to, site 104 or 106 in FIG.
  • the method 400 is applied in a downlink MU-MIMO scenario, and the source device may be an access point for performing downlink transmission, such as but not limited to the access point 102 in FIG.
  • the receiving end device in the foregoing MIMO system may not support the solution of the present application. Therefore, before performing data transmission, the receiving end device needs to report the corresponding capability to the transmitting end device, that is, whether the device is supported.
  • the transmitting device uses the solution of the present application to perform data transmission.
  • FIG. 7 is a schematic flowchart of another data transmission method 700 according to an embodiment of the present invention.
  • the method 700 can be applied to a SU-MIMO system, and can also be applied to a downlink MU-MIMO system.
  • Step 701 Receive two sets of data streams sent by the sending end device, where the two sets of data includes a first set of data streams and a second set of data streams, wherein the second set of data streams has been weighted.
  • Step 702 Demodulate the first group of data streams and the second group of data.
  • the receiving end device receives two sets of data streams, where the two sets of data streams include a first group of data streams and a second group of data streams, wherein the second group of data streams have been weighted and received.
  • the end device demodulates the first set of data streams and the second set of data streams. Since the second group of data streams are weighted, the interference between the data streams received by the receiving device can be effectively reduced, thereby improving the receiving performance of the receiving device.
  • the second set of data streams has been weighted so that the EDMG-Header-B portion and the data portion of each of the second set of data streams have been weighted.
  • the second group of data streams has been weighted, and the data portion of each of the second group of data streams has been weighted.
  • the weighting operation is specifically: multiplying the EDMG-Header-B portion and the data portion of each of the second data streams by or
  • the weighting operation is specifically: multiplying the data portion of each data stream in the second group of data streams by or
  • an indication field is further included before the EDMG-Header-B portion, the indication field is used to indicate an EDMG-Header-B portion of each of the second group of data streams And whether the data part has been weighted.
  • the indication field may indicate to the receiving end device whether the EDMG-Header-B part and the data part of each of the second set of data streams are weighted so that the receiving end device adopts the corresponding solution. Tuning mode to demodulate the data stream.
  • the indication field may occupy one bit.
  • the EDMG-Header-B part and data for indicating each data stream in the second group of data streams are used. Some have been weighted.
  • the EDMG-Header-B portion and the data portion for indicating each of the data streams in the second group of data streams are not subjected to a weighting operation.
  • the data stream to be transmitted is a data stream that has undergone MASK modulation or ⁇ /2 MASK modulation.
  • the MASK modulation comprises BPSK modulation
  • the ⁇ /2 MASK modulation comprises ⁇ /2 BPSK modulation.
  • the second group of data streams after performing the weighting operation, the second group of data streams also performs the following operations:
  • k is the sequence number of each of the data streams
  • ⁇ (y(k)) ⁇ 0 y(k)
  • y(k) is a function of k.
  • multiplying each of the second set of target data streams by the weight e j ⁇ (y(k)) is specifically: EDMG-Header-B of each data stream in the second group of data streams The part and the data part are multiplied by the weight e j ⁇ (y(k)) .
  • multiplying each of the second set of target data streams by the weight e j ⁇ (y(k)) is specifically: multiplying the data portion of each of the second set of data streams by a weight. e j ⁇ (y(k)) .
  • the foregoing method 700 is a receiving side method of the method 400, and related technical features are described in detail in the foregoing method 400. Reference may be made to the description in the method 400, and details are not described herein again.
  • the data demodulation process of the receiving end device in the SU-MIMO scenario and the downlink MU-MIMO scenario provided by the embodiment of the present invention will be described below.
  • the receiving device demodulates the two sets of data streams.
  • the following will be described in detail with reference to FIG. 2, in which two data streams are included in each of the two data streams.
  • the first set of data streams is denoted by s 1
  • y 1 is the data stream received by the receiving antenna 1
  • y 2 is the data stream received by the receiving antenna 2, which can be specifically expressed as:
  • h 11 is the channel from the transmitting antenna 1 to the receiving antenna 1
  • h 12 is the channel from the transmitting antenna 2 to the receiving antenna 1
  • h 21 is the channel from the transmitting antenna 1 to the receiving antenna 2
  • h 22 is the transmitting antenna 2 to the receiving antenna 2 channels.
  • the receiving device first performs channel equalization and obtains the estimates of y 1 respectively.
  • y 2 valuation The specific implementation is related to the algorithm used. Take the ZF (Zero forcing) algorithm as an example. The specific processing is as follows:
  • the receiving end device demodulates the two sets of data streams.
  • the two sets of data streams include only one data stream as an example. Description.
  • the data stream received by the receiving device 1 can be expressed as:
  • h 11 is the channel of the transmitting antenna 1 of the transmitting device to the receiving antenna 1 of the receiving device 1
  • h 12 is the channel of the transmitting antenna 1 of the transmitting device to the receiving antenna 2 of the receiving device 1
  • h 21 is the transmitting The channel from the transmitting antenna 1 of the end device to the receiving antenna 2 of the receiving device 1
  • h 22 is the channel of the transmitting antenna 2 of the transmitting device to the receiving antenna 2 of the receiving device 1.
  • y 1 is the data stream received by the receiving antenna 1 of the receiving device 1
  • y 2 is the data stream received by the receiving antenna 2 of the receiving device 1.
  • the receiver first performs channel equalization to obtain an estimate of y 1 .
  • y 2 valuation take The real part is the estimate of s 1 .
  • the receiving process of the receiving device 2 is similar, and the difference from the receiving device 1 is that The imaginary part is the estimate of s 2 .
  • the foregoing method 700 is applied in a SU-MIMO scenario, and the receiving device may be an access point, such as but not limited to the access point 102 in FIG. 1; the receiving device may also be a site, for example, but not Limited to site 104 or 106 in FIG.
  • the foregoing method 700 is applied in a downlink MU-MIMO scenario, and the receiving device may be a site, such as but not limited to the site 104 or 106 in FIG.
  • FIG. 8 is a schematic diagram of a logical structure of a transmitting end device 800 according to an embodiment of the present invention. As shown in FIG. 8, the transmitting device 800 includes a grouping module 810, a generating module 820, and a transmitting module 830.
  • the grouping module 810 is configured to divide the data stream to be sent into two groups of data streams, where the two groups of data streams include a first group of data streams and a second group of data streams.
  • the generating module 820 is configured to perform a weighting operation on the second group of data streams to generate a second group of target data streams.
  • the sending module 830 is configured to send the first group of data streams and the second group of target data streams.
  • the transmitting end device divides the data stream to be sent into two sets of data streams, where the two sets of data streams include a first group of data streams and a second group of data streams, and weights the second group of data streams. Operation, generating a second set of target data streams, and then transmitting the first set of data streams and the second set of target data streams. Since the second group of data streams are weighted, the interference between the channels corresponding to the data streams can be effectively reduced, thereby improving the transmission performance of the system.
  • weighting the second set of data streams includes weighting the EDMG-Header-B portion and the data portion of each of the second set of data streams.
  • the weighting operation of the second set of data streams is specifically multiplying the EDMG-Header-B portion and the data portion of each of the second set of data streams by or
  • an indication field is further included before the EDMG-Header-B portion of each data stream, the indication field being used to indicate that the second group of data streams has been weighted.
  • the indication field may be included in an existing field of each data stream in the second group of data streams.
  • the indication field may be included in the EDMG-Header-A field of each of the second set of data streams.
  • the field may be included in the EDMG-Header-A field of each of the data streams corresponding to the second group of users.
  • the indication field may be a new field, that is, a new field is added to each data stream in the second group of data streams, where the added field is used to indicate the second group of data streams.
  • the EDMG-Header-B part and the data part of each data stream are weighted.
  • the above indication field can occupy one bit.
  • the value of the bit is 1, it indicates that the EDMG-Header-B part and the data part of each data stream in the second group of data streams have been weighted; when the value of the bit is 0, the indication The EDMG-Header-B portion and the data portion of each of the second set of data streams are not weighted.
  • the value of the bit is 1, indicating that the EDMG-Header-B part and the data part of each data stream in the second group of data streams are not weighted; when the value of the bit is 0 , indicating that the EDMG-Header-B portion and the data portion of each of the second set of data streams have been weighted.
  • the data stream to be transmitted is a data stream that has been subjected to ⁇ /2 MASK modulation or MASK modulation.
  • the transmitting device modulates the data stream before transmitting the data stream, and the data stream to be sent is a data stream obtained after performing ⁇ /2MASK modulation or MASK modulation.
  • the data stream to be sent is sent by using a single carrier transmission mode
  • the data stream to be sent is a data stream obtained after ⁇ /2 MASK modulation
  • the data stream to be sent is sent by using OFDM
  • the data stream to be transmitted is a data stream obtained after performing MASK modulation.
  • ⁇ /2MASK modulation is ⁇ /2 2ASK modulation
  • ⁇ /2MASK modulation is also called ⁇ /2BPSK modulation
  • 2ASK modulation is also called BPSK modulation
  • the data stream to be transmitted may also be a data stream obtained after performing ⁇ /2 BPSK modulation or BPSK modulation.
  • the sending module before the sending module sends the first group of data streams and the second group of target data streams, the generating module is further configured to: use the second group of target data streams
  • multiplying each of the second set of target data streams by the weight e j ⁇ (y(k)) is specifically: EDMG-Header-B of each data stream in the second group of data streams The part and the data part are multiplied by the weight e j ⁇ (y(k)) .
  • multiplying each of the second set of target data streams by the weight e j ⁇ (y(k)) is specifically: multiplying the data portion of each of the second set of data streams by a weight. e j ⁇ (y(k)) .
  • the transmitting device 800 is configured to perform the foregoing method 400, and related technical features are described in detail in the foregoing method 400, and details are not described herein again.
  • FIG. 9 is a schematic diagram of a logical structure of a receiving end device 900 according to an embodiment of the present invention. As shown in FIG. 9, the receiving end device includes a receiving module 910 and a demodulating module 920.
  • the receiving module 910 is configured to receive two sets of data streams sent by the sending end device, where the two sets of data includes a first set of data streams and a second set of data streams, wherein the second set of data streams has been weighted.
  • the demodulation module 920 is configured to demodulate the first group of data streams and the second group of data.
  • the receiving end device receives two sets of data streams, where the two sets of data streams include a first group of data streams and a second group of data streams, wherein the second group of data streams have been weighted and received.
  • the end device demodulates the first set of data streams and the second set of data streams. Since the second group of data streams are weighted, the interference between the data streams received by the receiving device can be effectively reduced, thereby improving the receiving performance of the receiving device.
  • the weighting operation of the second set of data streams includes weighting the EDMG-Header-B portion and the data portion of each of the second set of data streams.
  • the weighting operation of the second group of data streams includes performing weighting operations on data portions of each of the second group of data streams.
  • the weighting operation is specifically: multiplying the EDMG-Header-B portion and the data portion of each of the second data streams by or
  • the weighting operation is specifically: multiplying the data portion of each data stream in the second group of data streams by or
  • an indication field is further included before the EDMG-Header-B portion, the indication field is used to indicate an EDMG-Header-B portion of each of the second group of data streams And whether the data part has been weighted.
  • the indication field may indicate to the receiving end device whether the EDMG-Header-B part and the data part of each of the second set of data streams are weighted so that the receiving end device adopts the corresponding solution. Tuning mode to demodulate the data stream.
  • the indication field may occupy one bit.
  • the EDMG-Header-B portion is used to indicate each data stream in the second group of data streams. And the data part has been weighted.
  • the EDMG-Header-B part and the data part for indicating each of the second data streams are not weighted.
  • the value of the bit is 1, indicating that the EDMG-Header-B part and the data part of each data stream in the second group of data streams are not weighted; when the value of the bit is 0 , indicating that the EDMG-Header-B portion and the data portion of each of the second set of data streams have been weighted.
  • the data stream to be transmitted is a data stream that has undergone MASK modulation or ⁇ /2 MASK modulation.
  • the MASK modulation comprises BPSK modulation
  • the ⁇ /2 MASK modulation comprises ⁇ /2 BPSK modulation.
  • the second group of data streams after performing the weighting operation, the second group of data streams also performs the following operations:
  • multiplying each of the second set of target data streams by the weight e j ⁇ (y(k)) is specifically: EDMG-Header-B of each data stream in the second group of data streams The part and the data part are multiplied by the weight e j ⁇ (y(k)) .
  • multiplying each of the second set of target data streams by the weight e j ⁇ (y(k)) is specifically: multiplying the data portion of each of the second set of data streams by a weight. e j ⁇ (y(k)) .
  • the foregoing receiving device 900 is configured to perform the foregoing method 700, and related technical features are described in detail in the foregoing method 700, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of hardware of a transmitting end device according to an embodiment of the present invention.
  • the transmitting device 1000 includes a processor 1002, a transceiver 1004, a plurality of antennas 1006, a memory 1008, an I/O (Input/Output) interface 1010, and a bus 1012.
  • the transceiver 1004 further includes a transmitter 10042 and a receiver 10044, the memory 1008 further for storing instructions 10082 and data 10084.
  • the processor 1002, the transceiver 1004, the memory 1008, and the I/O interface 1010 are communicably connected to each other through a bus 1012, and the plurality of antennas 1006 are connected to the transceiver 1004.
  • the processor 1002 may be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or may be a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 1002 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 1002 may be configured to perform, for example, steps 410 and 420 in FIG. 4 and the grouping module 810 and the generating module in the transmitting device 800 shown in FIG. 820 operations performed.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor 1002 may be a processor specifically designed to perform the above steps and/or operations, or may be a processor that performs the above steps and/or operations by reading and executing the instructions 10082 stored in the memory 1008, the processor 1002 Data 10084 may be required during the execution of the above steps and/or operations.
  • the transceiver 1004 includes a transmitter 10042 and a receiver 10044, wherein the transmitter 10042 is configured to transmit signals through at least one of the plurality of antennas 1006.
  • Receiver 10044 is configured to receive signals through at least one of the plurality of antennas 1006.
  • the transmitter 10042 may be specifically configured to be executed by at least one of the plurality of antennas 1006, for example, step 430 in FIG. 4 and transmission in FIG. The operation performed by the transmitting module 830 in the end device 800
  • the memory 1008 may be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 10010 is specifically configured to store instructions 10082 and data 10084, and the processor 1002 can perform the steps and/or
  • the I/O interface 1010 is for receiving instructions and/or data from a peripheral device and outputting instructions and/or data to the peripheral device.
  • the transmitting device 1000 may also include other hardware devices, which are not enumerated herein.
  • FIG. 11 is a schematic structural diagram of hardware of a receiving end device according to an embodiment of the present invention.
  • the transmitting device 1100 includes a processor 1102, a transceiver 1104, a plurality of antennas 1106, a memory 1108, an I/O (Input/Output) interface 1111, and a bus 1112.
  • the transceiver 1104 further includes a transmitter 11042 and a receiver 11044 for further storing instructions 11082 and data 11084.
  • the processor 1102, the transceiver 1104, the memory 1108, and the I/O interface 1111 are communicably connected to each other through a bus 1112, and the plurality of antennas 1106 are connected to the transceiver 1104.
  • the processor 1102 can be a general-purpose processor, such as, but not limited to, a central processing unit (CPU), or a dedicated processor such as, but not limited to, a digital signal processor (DSP), an application. Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Moreover, processor 1102 can also be a combination of multiple processors. In particular, in the technical solution provided by the embodiment of the present invention, the processor 1102 can be configured to perform, for example, the step 710 in FIG. 7 and the operation performed by the demodulation module 920 in the receiving device 900 shown in FIG.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor 1102 may be a processor specifically designed to perform the above steps and/or operations, or may be a processor that performs the above steps and/or operations by reading and executing the instructions 11082 stored in the memory 1108, the processor 1102 Data 11084 may be required during the execution of the above steps and/or operations.
  • the transceiver 1104 includes a transmitter 11042 and a receiver 11044, wherein the transmitter 11042 is configured to transmit signals through at least one of the plurality of antennas 1106.
  • Receiver 11044 is configured to receive signals through at least one of the plurality of antennas 1106.
  • the receiver 11044 may be specifically configured to be executed by at least one of the plurality of antennas 1106, for example, step 710 in FIG. 7 and receiving in FIG. The operations performed by the module 910 are received in the end device 900.
  • the memory 1108 can be various types of storage media, such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile RAM
  • PROM Programmable ROM
  • EPROM Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory
  • registers such as random access memory (RAM), read only memory (ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable PROM (EEPROM), flash memory, optical memory, and registers.
  • the memory 11011 is specifically configured to store instructions 11082 and data 11084, and the processor 1102 can perform the steps and/or
  • the I/O interface 1111 is for receiving instructions and/or data from a peripheral device and outputting instructions and/or data to the peripheral device.
  • the transmitting device 1100 may also include other hardware devices, which are not enumerated herein.
  • the embodiment of the present invention provides a chip, which includes a processor and/or program instructions.
  • the chip When the chip is running, the data transmission method provided by the foregoing method embodiment is implemented.
  • the embodiment of the invention further provides a chip system, which includes a processor for supporting the above-mentioned transmitting device to implement the functions involved.
  • the chip system further comprises a memory for storing program instructions and data necessary for the transmitting device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiment of the invention further provides a chip system, which includes a processor for supporting the above-mentioned receiving device to implement the functions involved.
  • the chip system further comprises a memory for storing program instructions and data necessary for the transmitting device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本发明涉及通信技术领域,尤其涉及无线局域网通信系统中降低信号之间的干扰的技术。在一种数据传输方法中,将待发送的数据流分成两组,并将其中一组数据流进行加权操作,从而生成一组目标数据流,然后将未进行加权操作的一组数据流和已进行加权操作的一组数据流同时发送给接收端设备。由于对同时发送的两组数据流中的一组数据流进行了加权操作,可以有效减少同时发送的各个数据流之间的干扰,从而提升了系统的传输性能。

Description

一种数据传输方法及设备 技术领域
本发明涉及通信技术领域,尤其涉及一种数据传输方法及设备。
背景技术
无线保真(Wireless Fidelity,Wi-Fi)技术,也就是无线局域网(Wireless Local Area Network,WLAN)技术越来越成熟,提供的传输速度越来越高,再结合其较好的灵活性,在家用和商用环境中得到了越来越多的应用。802.11ay标准是802.11ad 60GHz WLAN的下一代的演进技术,也工作于60千兆赫兹(GHz)的高频段,其主要目标为峰值速率从7千兆位/秒(Giga Bits Per Second,Gbps)提升到大于20Gbps。另外802.11ay标准还希望扩展WLAN技术的应用范围,例如:除继续支持802.11ad点对点近距离的无线高清音视频信号为主的应用外,还引入无线接入,回传,点到多点等各种情景。具体实现过程中,802.11ay标准中为了达到更高的峰值速率,引入了多信道汇聚和多天线传输。
目前讨论的802.11ay中,可以支持单用户多输入多输出(Single-User Multiple-Input Multiple-Output,SU-MIMO)传输和下行多用户多输入多输出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)传输。在毫米波或60GHz高频场景下,进行SU-MIMO传输时,信号在空间传输过程中衰落较快,多径效应不明显,导致SU-MIMO性能较差;而在毫米波或60GHz高频场景下,进行下行MU-MIMO传输,当接收端的至少两个站点(Station,STA)相对于发送端的接入点(Access Point,AP)处在相同的位置或者相近的位置时,发送给至少两个STA的信号彼此干扰,也会导致下行MU-MIMO的性能较差。由此可见,需要一种新的数据传输机制以提升SU-MIMO传输和下行MU-MIMO传输的性能。
发明内容
本发明实施例提供了一种数据传输方法及设备,可以有效消除数据流之间的干扰,提升系统传输性能。
第一方面,本发明实施例提供一种数据传输方法,所述方法包括:
将待发送的数据流分为两组数据流,所述两组数据流包括第一组数据流和第二组数据流;
将所述第二组数据流进行加权操作,生成第二组目标数据流;
发送所述第一组数据流和所述第二组目标数据流。
本发明实施例提供的数据传输方法,发送端设备将待发送的数据流分为两组数据流,该两组数据流包括第一组数据流和第二组数据流,并将第二组数据流进行加权操作,生成第二组目标数据流,然后发送第一组数据流和第二组目标数据流。由于对第二组数据流进行了加权操作,可以有效减少数据流之间的干扰,从而提升系统的传输 性能。
在一种可能的设计中,所述将所述第二组数据流进行加权操作包括将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分进行加权操作。在这种情况下,发送端设备只需要对第二组数据流中的每一个数据流的一部分进行加权操作,降低了加权操作过程的复杂度。
可选的,所述将所述第二组数据流进行加权操作包括将第二组数据流中的每一个数据流的数据部分进行加权操作。
在一种可能的设计中,上述加权操作具体为:将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以
Figure PCTCN2018122948-appb-000001
Figure PCTCN2018122948-appb-000002
可以看出,加权操作的权重为固定值,由于不需要基于接收端反馈的信道状态进行计算而获得加权操作的权重,从而减少了系统的开销,降低了系统的实现复杂度。
可选的,上述加权操作具体为:将第二组数据流中的每一个数据流的数据部分乘以
Figure PCTCN2018122948-appb-000003
Figure PCTCN2018122948-appb-000004
在一种可能的设计中,在所述EDMG-Header-B部分之前还包括指示字段,所述指示字段用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否已进行加权操作。在这种情况下,指示字段可以向接收端设备指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否进行了加权操作,以便接收端设备采用相对应的解调方式来解调数据流。
在具体实现过程中,所述指示字段可以占用一个比特位,当该比特位的取值为1时,用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。当该比特位的取值为0时,用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权操作。
在一种可能的设计中,所述待发送的数据流为已进行MASK调制或π/2MASK调制的数据流。其中,所述MASK调制包括BPSK调制,所述π/2MASK调制包括π/2BPSK调制。
在一种可能的设计中,在发送所述第一组数据流和所述第二组目标数据流之前还包括:
将所述第二组目标数据流中的每一个数据流乘以权重e jφ(y(k)),其中,k为所述每一个数据流的序号,φ(y(k))=φ 0y(k),y(k)为k的函数。可选的,在具体实现过程中,
Figure PCTCN2018122948-appb-000005
第二方面,本发明实施例提供一种数据传输方法,所述数据传输方法包括:
接收发送端设备发送的两组数据流,所述两组数据包括第一组数据流和第二组数据流,其中,所述第二组数据流已进行加权操作;
对所述第一组数据流和所述第二组数据进行解调。
本发明实施例提供的数据传输方法,接收端设备接收两组数据流,该两组数据流包括第一组数据流和第二组数据流,其中该第二组数据流已进行加权操作,接收端设备对该第一组数据流和第二组数据流进行解调。由于对第二组数据流进行了加权操作,可以有效减少接收端设备接收到的数据流之间的干扰,从而提升接收端设备的接收性能。
在一种可能的设计中,所述第二组数据流已进行加权操作包括第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。
可选的,所述第二组数据流已进行加权操作包括第二组数据流中的每一个数据流的数据部分已进行加权操作。
在一种可能的设计中,上述加权操作具体为:将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以
Figure PCTCN2018122948-appb-000006
Figure PCTCN2018122948-appb-000007
可选的,上述加权操作具体为:将第二组数据流中的每一个数据流的数据部分乘以
Figure PCTCN2018122948-appb-000008
Figure PCTCN2018122948-appb-000009
在一种可能的设计中,在所述EDMG-Header-B部分之前还包括指示字段,所述指示字段用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否已进行加权操作。在这种情况下,指示字段可以向接收端设备指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否进行了加权操作,以便接收端设备采用相对应的解调方式来解调数据流。
在具体实现过程中,所述指示字段可以占用一个比特位,当该比特位的取值为1时,用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。当该比特位的取值为0时,用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权操作。
在一种可能的设计中,所述待发送的数据流为已进行MASK调制或π/2MASK调制的数据流。其中,所述MASK调制包括BPSK调制,所述π/2MASK调制包括π/2BPSK调制。
在一种可能的设计中,所述第二组数据流在进行所述加权操作之后,还进行了如下操作:
所述第二组目标数据流中的每一个数据流乘以权重e jφ(y(k)),其中,k为所述每一个数据流的序号,φ(y(k))=φ 0y(k),y(k)为k的函数。可选的,在具体实现过程中,
Figure PCTCN2018122948-appb-000010
第三方面,本发明实施例提供了一种发送端设备,该发送端设备具有实现上述第一方面以及第一方面中任一种可能的设计所提供的数据传输方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多于一个与上述功能相对应的模块。
第四方面,本发明实施例提供了一种接收端设备,该接收端设备具有实现上述第二方面以及第二方面中任一种可能的设计所提供的数据传输方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多于一个与上述功能相对应的模块。
第五方面,本发明实施例提供了一种发送端设备,该发送端设备的结构中包括处理器和发射器。所述处理器被配置为支持发送端设备执行上述方法中的相应功能,例如生成或者处理上述方法中所涉及的数据和/或信息。所述发射器用于支持发送端设备向接收端设备发送上述方法中所涉及的数据、信息或者指令,例如,发送所述第一组数据流和所述第二组目标数据流。在一个可能的设计中,所述发送端设备还可以包括接收器,所述接收器用于接收来自接收端设备的信息或指令。在一个可能的设计中,所述发送端设备的结构中还可以包括存储器,所述存储器用于与处理器耦合,保存发送端设备必要的程序指令和数据。
第六方面,本发明实施例提供了一种接收端设备,该接收端设备的结构中包括处理器和接收器。所述处理器被配置为支持接收端设备执行上述方法中的相应功能,例如处理上述方法中所涉及的数据和/或信息。所述接收器用于支持接收端接收上述方法中所涉及的数据、信息或者指令,例如,接收所述第一组数据流和所述第二组数据流。在一个可能的设计中,所述接收端设备还可以包括发射器,所述发射器用于发射信息或指令。在一个可能的设计中,所述接收端设备的结构中还可以包括存储器,所述存储器用于与处理器耦合,保存接收端设备必要的程序指令和数据。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述第一方面或第一方面中任一种可能设计所提供的数据传输方法。或者,所述计算机程序由处理器加载并执行 以实现上述第二方面或第二方面中任一种可能设计所提供的数据传输方法。
第八方面,本申请实施例提供一种计算机程序产品,当该计算机程序产品在处理器上运行时,实现上述第一方面或者第一方面的任一可能的设计所提供的数据传输方法。或者当该计算机程序产品在处理器上运行时,实现上述第二方面或第二方面中任一种可能设计所提供的数据传输方法。
第九方面,提供了一种芯片,所述芯片包括处理器和/或程序指令,当所述芯片运行时,实现上述第一方面或第一方面中任一种可能设计所提供的数据传输方法。或者,当所述芯片运行时,实现上述第二方面或第二方面中任一种可能设计所提供的数据传输方法。
本发明实施例提供的数据传输方法及设备,将待发送的数据流分为两组数据流,该两组数据流包括第一组数据流和第二组数据流,并将第二组数据流进行加权操作,生成第二组目标数据流,然后发送第一组数据流和第二组目标数据流。由于对第二组数据流进行了加权操作,可以有效减少数据流之间的干扰,从而提升系统的传输性能。
附图说明
图1是本发明实施例提供的无线局域网络的示范性示意图;
图2是本发明实施例提供的SU-MIMO传输系统示意图;
图3是本发明实施例提供的下行MU-MIMO传输系统示意图;
图3a是本发明实施例提供的天线结构示意图;
图4是本发明实施例提供的一种数据传输方法的示意性流程图;
图5是本发明实施例提供的一种数据流分组示意图;
图6是本发明实施例提供的另一种数据流分组示意图;
图7是本发明实施例提供的另一种数据传输方法的示意性流程图。
图8是本发明实施例提供的发送端设备的逻辑结构示意图;
图9是本发明实施例提供的接收端设备的逻辑机构示意图;
图10是本发明实施例提供的发送端设备的硬件结构示意图;
图11是本发明实施例提供的接收端设备的硬件结构示意图。
具体实施方式
以下将结合附图对本发明实施例进行进一步地详细说明。
图1是本发明实施例提供的无线局域网络(Wireless Local Area Networks,WLAN)100的示范性示意图。如图1所示,无线局域网络100包括接入点(Access Point,AP)102和站点(Station,STA)104~106,其中站点104~106可通过无线链路与接入点102通信。
目前WLAN采用的标准为电气和电子工程师协会(Institute of Electrical and Electronics Engineers,简称IEEE)802.11系列标准。WLAN可以包括多个基本服务集 (Basic Service Set,简称BSS),基本服务集的节点为站点STA,站点包括接入点类的站点(Access Point,简称AP)和非接入点类的站点(None Access Point Station,简称Non-AP STA),每个基本服务集可以包含一个AP和多个关联于该AP的Non-AP STA,需要指出的是上述STA104~106为Non-AP STA,下文将Non-AP STA简称为STA,将接入点类的站点简称AP。
接入点类站点,也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个STA连接到一起,然后将无线网络接入有线网。具体地,AP可以是带有无线保真(Wireless Fidelity,简称WiFi)芯片的终端设备或者网络设备,例如提供AP功能或者服务的智能手机。可选地,AP可以为支持802.11ax制式的设备,进一步可选地,该AP可以为支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式的设备。
上述STA可以是无线通信芯片、无线传感器或无线通信终端。例如:支持WiFi通信功能的移动电话、支持WiFi通信功能的平板电脑、支持WiFi通信功能的机顶盒、支持WiFi通信功能的智能电视、支持WiFi通信功能的智能可穿戴设备、支持WiFi通信功能的车载通信设备和支持WiFi通信功能的计算机。可选地,站点可以支持802.11ax制式,进一步可选地,该站点支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。
需要说明的是,引入正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)技术后的WLAN系统802.11ax中,AP可以在不同的时频资源上给不同的STA进行上下行传输。AP进行上下行传输可以采用不同的模式,如OFDMA SU-MIMO模式,或者OFDMA MU-MIMO模式。
还需要说明的是,本发明实施例提供的数据传输方法除了应用于上述WLAN系统,还可以应用于其他通信系统,本发明实施例对此不做限定。另外,本发明实施例的数据传输方法适用于AP与STA之间的通信,但同样适用于AP与AP之间的通信或STA与STA之间的通信。本发明实施例仅以应用在AP与STA之间的通信为例进行说明。
在802.11ay中,可以支持SU-MIMO传输和下行MU-MIMO传输。下面将结合附图对SU-MIMO传输和下行MU-MIMO传输进行简要的介绍。
图2是本发明实施例提供的SU-MIMO传输系统的示意图。如图2所示,以2x2的MIMO系统为例,发送端设备用两根天线进行发送,接收端设备用两根天线进行接收,发送端设备用发射天线1发送x 1,用发射天线2发送x 2,则接收端设备上的两根接收天线接收到的信号可以表示为:
y 1=h 11x 1+h 12x 2
y 2=h 21x 1+h 22x 2
其中:h 11为发射天线1到接收天线1的信道,h 12为发射天线2到接收天线1的信道,h 21为发射天线1到接收天线2的信道,h 22为发射天线2到接收天线2的信道。y 1为接收天线1接收到的信号,h 21=h 11e 为接收天线2接收到的信号。
图3是本发明实施例提供的下行MU-MIMO传输系统的示意图。如图3所示,以下行用户为两个接收端设备为例,发送端设备用发射天线1发送信号x 1,用发射天线2发送x 2。接收端设备1的两根接收天线接收到的信号可以表示为:
y 1=h 11x 1+h 12x 2
y 2=h 21x 1+h 22x 2
其中:h 11为发送端设备的发射天线1到接收端设备1的接收天线1的信道,h 21为发送端设备的发射天线1到接收端设备1的接收天线2的信道,h 12为发送端设备的发射天线2到接收端设备1的接收天线1的信道,h 22为发送端设备的发射天线2到接收端设备1的接收天线2的信道。y 1为接收端设备1的接收天线1接收到的信号,y 2为接收端设备1上接收天线2接收天线2接收到的信号。
接收端设备2的两根接收天线接收到的信号可以表示为:
z 1=g 11x 1+g 12x 2
z 2=g 21x 1+g 22x 2
其中:g 11为发送端设备的发射天线1到接收端设备2的接收天线1的信道,g 12为发送端设备的发射天线2到接收端设备2的接收天线1的信道,g 21为发送端设备的发射天线1到接收端设备的接收天线2的信道,g 22为发送端设备的发射天线2到接收端设备的接收天线2的信道。z 1为接收设备2的接收天线1接收到的信号,z 2为接收设备2的接收天线2接收到的信号。
需要说明的是,上述图2和图3中的发射天线1和发射天线2可以由一个相控阵天线上的若干阵元组成,同样,接收天线1和接收天线2也可以由一个相控阵天线上的若干阵元组成。如图3a所示,发射天线1可以由相控阵天线上第1到第4个阵元组成,发射天线2可以由同一个相控阵天线上的第5到第8个阵元组成。接收天线1可以由相控阵天线上第1到第4个阵元组成,接收天线2可以由同一个相控阵天线上的第5到第8个阵元组成。此时天线信道之间有很强的相干性,例如h 21=h 11e ,其中0是一个绝对值小于45度的值。
现有技术中,在毫米波或60GHz高频场景下,进行SU-MIMO传输时,信号在空间传输过程中衰落较快,多径效应不明显,导致SU-MIMO性能较差;而在毫米波或60GHz高频场景下,进行下行MU-MIMO传输时,当接收端的至少两个STA相对于发送端的AP处在相同的位置或者相近的位置时,发送给至少两个STA的信号彼此干扰,也会导致下行MU-MIMO的性能较差。采用本发明实施例提供的数据传输方法,可以有效消除数据流之间的干扰,提升系统传输性能。需要指出的是,本发明实施例中所提到的数据流可以是802.11ay中的时空流(space-time stream),也可以是其它协议规定的数据流。下面将结合图4对本发明实施例提供的数据传输方法进行详细的说明。
图4是本发明实施例提供的数据传输方法400的示意性流程图,该方法400可以应用于SU-MIMO系统中,也可以应用于下行MU-MIMO系统中。
步骤401、将待发送的数据流分为两组数据流,所述两组数据流包括第一组数据流和第二组数据流。
步骤402、将所述第二组数据流进行加权操作,生成第二组目标数据流。
步骤403、发送所述第一组数据流和所述第二组目标数据流。
本发明实施例提供的数据传输方法,发送端设备将待发送的数据流分为两组数据流,该两组数据流包括第一组数据流和第二组数据流,并将第二组数据流进行加权操作,生成第二组目标数据流,然后发送第一组数据流和第二组目标数据流。由于对第二组数据流进行了加权操作,可以有效减少数据流之间的干扰,从而提升系统的传输性能。
在本发明实施例中,发送端设备在发送数据流之前,需要对待发送的数据流进行分组,在一种可能的实现方式中,发送端设备将待发送的数据流分成两组。
在SU-MIMO场景下,发送端设备对发送给接收端设备的数据流进行分组。如图5所示,发送端设备发送给接收端设备的数据流的数量为N,即待发送的数据流的数量为N,N为大于等于2的正整数,将该N个数据流分为两组,第一组数据流包括数据流1到数据流N 1,第二组数据流包括数据流N 1+1到数据流N。在具体实现过程中,分组的方法可以预先设置,例如预先设置将N个数据流按照数据流序号平均分成两组,则
Figure PCTCN2018122948-appb-000011
其中
Figure PCTCN2018122948-appb-000012
表示向下取整;或者
Figure PCTCN2018122948-appb-000013
其中
Figure PCTCN2018122948-appb-000014
表示向上取整。需要指出的是,发送端设备在发送数据流之前也可以根据具体通信需求确定分组方法,例如可以根据待发送的数据流的特征进行分组,即将相同业务的数据流分为一组,例如将视频业务数据流分为一组,将语音业务数据流分为一组,除了上述分组方法之外,还可以采用其它分组方法进行分组,本发明实施例对此不作限制。
在下行MU-MIMO场景下,发送端设备对发送给多个接收端设备的数据流进行分组,与SU-MIMO场景下的数据流分组不同的是,下行MU-MIMO场景下的数据流分组是针对不同接收端设备所对应的数据流进行分组,这里的接收端设备是指接收下行数据流的用户设备,下文中简称为用户。如图6所示,待发送的数据流包括N个用户所对应的数据流,其中每个用户所对应的数据流的数量为n max,1≤n≤N,n、N均为正整数,N大于等于2。在具体实现过程中,可以先将N个用户分成两组,第一组用户包括用户1到用户N 1,第二组用户包括用户N 1+1到用户N,示例性的,
Figure PCTCN2018122948-appb-000015
其中
Figure PCTCN2018122948-appb-000016
表示向下取整;或者
Figure PCTCN2018122948-appb-000017
其中
Figure PCTCN2018122948-appb-000018
表示向上取整,即将N个用户按照用户序号平均分成两组。可以理解的是,将N个用户分成两组后,相应的N个用户所对应的数据流也分成了两组,即第一组数据流包括用户1到用户N 1所对应的数据流,第二组数据流包括用户N 1+1到用户N所对应的数据流。在实际通信过程中,发送端设备还可以根据用户传输的业务类型进行分组,例如将传输相同业务类型(例如时频业务或语音业务)的用户分为一组,将传输其它业务类型的用户分为一组,本发明实施例对此不作限制。
需要特别说明的是,在具体实现过程中,发送端设备可以在生成待发送的数据流的同时完成对待发送的数据流的分组。换句话说,发送端设备不需要单独针对待发送的数据流进行分组。可以理解的是,发送端设备也可以在生成待发送的数据流之后,再对待发送的数据流进行分组,然后再对其中的一组数据流进行加权操作。
发送端设备将待发送的数据流分成两组之后,对第二组数据流进行加权操作,生成第二组目标数据流。对第二组数据流进行加权操作是指对第二组数据流中的每一个数据流进行加权操作。加权操作是指将第二组数据流中的每一个数据流乘以相同的权 重。该权重可以表示为复指数形式,例如
Figure PCTCN2018122948-appb-000019
其中r表示幅度值,0<r≤1,
Figure PCTCN2018122948-appb-000020
表示相位值,
Figure PCTCN2018122948-appb-000021
该权重也可以表示为其它形式,本发明实施例对此不作限制。
在一种可能的设计中,将第二组数据流进行加权操作包括将第二组数据流中的每一个数据流的EDMG-Header-B(Enhanced directional multi-gigabit-Header-B)部分和数据部分进行加权操作。在这种情况下,发送端设备只对第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分进行加权操作,即将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以一个权重。举例来说,如图5所示,第二组数据流包括数据流N 1+1到数据流N,将数据流N 1+1中的EDMG-Header-B部分和数据部分都乘以一个权重,例如乘以
Figure PCTCN2018122948-appb-000022
同样,对第二组数据流中的其它数据流进行相同的加权操作。又如图6所示,第二组数据流包括用户N 1+1到用户N所对应的数据流,将用户N 1+1所对应的数据流中的每一个数据流的EDMG-Header-B部分和数据部分都乘以一个加权量,例如乘以
Figure PCTCN2018122948-appb-000023
同样,对其它用户所对应的数据流中的每一个数据流的EDMG-Header-B部分和数据部分进行相同的加权操作。在具体实现过程中,权重可以由通信协议预先设置,也可以根据实际通信过程中的信道状态计算得到,在此不作限制。
可选的,所述将所述第二组数据流进行加权操作包括将第二组数据流中的每一个数据流的数据部分进行加权操作。其具体实现过程可以参考上文的描述,在此不再赘述。
在一种可能的设计中,将第二组数据流进行加权操作具体为将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以
Figure PCTCN2018122948-appb-000024
Figure PCTCN2018122948-appb-000025
在这种情况下,发送端设备对第二组数据流进行加权操作可以采用固定的权重,如此一来,可以降低实际通信过程中的实现复杂度。
可选的,所述将所述第二组数据流进行加权操作包括将第二组数据流中的每一个数据流的数据部分进行加权操作,上述加权操作具体为将第二组数据流中的每一个数据流的数据部分乘以
Figure PCTCN2018122948-appb-000026
Figure PCTCN2018122948-appb-000027
在一种可能的设计中,在第二组数据流中的每一个数据流的EDMG-Header-B部分之前还包括指示字段,所述指示字段用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否已进行加权操作。具体地,发送端设备在发送第二组数据流时,可以在第二组数据流的每一个数据流中增加一个指示字段。例如可以在EDMG-Header-B部分之前增加一个指示字段,该指示字段用于指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否已进行了加权操作。这样一来,发送端设备可以指示接收端设备采用与加权操作相对应的解调方式来解调数据流。
可选的,上述指示字段可以包含在上述第二组数据流中的每一个数据流的已有字 段中。举例来说,如图5所示,该指示字段可以包含在第二组数据流中的每一个数据流的EDMG-Header-A(Enhanced directional multi-gigabit-Header-A)字段中。又如图6所示,该字段可以包含在第二组用户所对应的数据流中的每一个数据流的EDMG-Header-A字段中。可以理解的是,该指示字段还可以包含在上述第二组数据流中的每一个数据流的其它已有字段中,本发明实施例对此不作限制。
可选的,上述指示字段可以为一个新的字段,即在上述第二组数据流中的每一个数据流中新增加一个字段,该新增加的字段与上述第二组数据流中的每一个数据流中已有的字段不同。该新增加的字段用于指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否已进行了加权操作。
在一种可能的设计中,上述指示字段可以占用一个比特位。当该比特位的取值为1时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作;当该比特位的取值为0时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权操作。或者,当该比特位的取值为1时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权操作;当该比特位的取值为0时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。
在一种可能的设计中,待发送的数据流为已进行M进制幅移键控(M-Ary Amplitude Shift Keying,MASK)调制或π/2MASK调制的数据流。发送端设备在发送数据流之前,先对数据流进行调制,上述待发送的数据流可以是进行π/2MASK调制或MASK调制后获得的数据流。这里的MASK,又称多进制数字调制法。需要指出的是,当上述待发送的数据流采用单载波发送方式进行发送时,上述待发送的数据流可以是进行π/2MASK调制后获得的数据流;当上述待发送的数据流采用OFDM发送方式进行发送时,上述待发送的数据流可以是进行MASK调制后获得的数据流。当π/2MASK调制为π/2 2ASK调制时,π/2MASK调制也称为π/2BPSK调制;同样,2ASK调制也称为BPSK调制。可以理解的是,待发送的数据流也可以是进行π/2BPSK调制或BPSK调制后获得的数据流。
在一种可能的设计中,在发送所述第一组数据流和所述第二组目标数据流之前还包括:
将所述第二组目标数据流中的每一个数据流乘以权重e jφ(y(k)),其中,k为所述每一 个数据流的序号,φ(y(k))=φ 0y(k),y(k)为k的函数。可选的,在具体实现过程中,
Figure PCTCN2018122948-appb-000028
需要指出的是,当k所对应的LDPC编码块中的数据包括第一个比特时,y(k)的取值为0,除此之外,对于k所对应的LDPC编码块中的每一个数据,y(k)的取值依次加1,直到下一个LDPC编码块的第一个比特出现。
可选的,上述将第二组目标数据流中的每一个数据流乘以权重e jφ(y(k))具体为:将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以权重e jφ(y(k))
可选的,上述将第二组目标数据流中的每一个数据流乘以权重e jφ(y(k))具体为:将第二组数据流中的每一个数据流的数据部分乘以权重e jφ(y(k))
其中,上述数据部分具体是指图5或图6中的数据流的data部分。
需要说明的是,上述方法400应用在SU-MIMO场景下,发送端设备可以是进行下行传输的接入点,例如但不限于图1中的接入点102;发送端设备也可以是进行上行传输的站点,例如但不限于图1中的站点104或106。上述方法400应用在下行MU-MIMO场景下,发送端设备可以是进行下行传输的接入点,例如但不限于图1中的接入点102。
另外,在具体实现过程中,上述MIMO系统中的接收端设备可能存在不支持本申请方案的情况,因而在进行数据传输之前,接收端设备需要向发送端设备上报相应的能力,即是否支持本申请方案,当发送端设备确定接收端设备支持本申请的方案,则发送端设备采用本申请的方案进行数据传输。
图7为本发明实施例提供的另一种数据传输方法700的示意性流程图。在具体实现过程中,该方法700可以应用于SU-MIMO系统中,也可以应用于下行MU-MIMO系统中。
步骤701、接收发送端设备发送的两组数据流,所述两组数据包括第一组数据流和第二组数据流,其中,所述第二组数据流已进行加权操作。
步骤702、对所述第一组数据流和所述第二组数据进行解调。
本发明实施例提供的数据传输方法,接收端设备接收两组数据流,该两组数据流包括第一组数据流和第二组数据流,其中该第二组数据流已进行加权操作,接收端设备对该第一组数据流和第二组数据流进行解调。由于对第二组数据流进行了加权操作,可以有效减少接收端设备接收到的数据流之间的干扰,从而提升接收端设备的接收性能。
在一种可能的设计中,所述第二组数据流已进行加权操作包括第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。
可选的,所述第二组数据流已进行加权操作包括第二组数据流中的每一个数据流的数据部分已进行加权操作。
在一种可能的设计中,上述加权操作具体为:将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以
Figure PCTCN2018122948-appb-000029
Figure PCTCN2018122948-appb-000030
可选的,上述加权操作具体为:将第二组数据流中的每一个数据流的数据部分乘以
Figure PCTCN2018122948-appb-000031
Figure PCTCN2018122948-appb-000032
在一种可能的设计中,在所述EDMG-Header-B部分之前还包括指示字段,所述指示字段用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否已进行加权操作。在这种情况下,指示字段可以向接收端设备指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否进行了加权操作,以便接收端设备采用相对应的解调方式来解调数据流。
在具体实现过程中,所述指示字段可以占用一个比特位,当该比特位的取值为1时,用于指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。当该比特位的取值为0时,用于指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权操作。或者,当该比特位的取值为1时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权操作;当该比特位的取值为0时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。
在一种可能的设计中,所述待发送的数据流为已进行MASK调制或π/2MASK调制的数据流。其中,所述MASK调制包括BPSK调制,所述π/2MASK调制包括π/2BPSK调制。
在一种可能的设计中,所述第二组数据流在进行所述加权操作之后,还进行了如下操作:
将所述第二组目标数据流中的每一个数据流乘以权重e jφ(y(k)),其中,k为所述每一个数据流的序号,φ(y(k))=φ 0y(k),y(k)为k的函数。可选的,在具体实现过程中,
Figure PCTCN2018122948-appb-000033
需要指出的是,当k所对应的LDPC编码块中的数据包括第一个比特时,y(k)的取值为0,除此之外,对于k所对应的LDPC编码块中的每一个数据,y(k)的取值依次加1,直到下一个LDPC编码块的第一个比特出现。
可选的,上述将第二组目标数据流中的每一个数据流乘以权重e jφ(y(k))具体为:将 第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以权重e jφ(y(k))
可选的,上述将第二组目标数据流中的每一个数据流乘以权重e jφ(y(k))具体为:将第二组数据流中的每一个数据流的数据部分乘以权重e jφ(y(k))
需要指出的是,上述方法700为方法400的接收侧方法,其涉及的相关技术特征在上述方法400中已经有详细的描述,可以参考方法400中的描述,在此不再赘述。下面将对本发明实施例提供的接收端设备在SU-MIMO场景下和下行MU-MIMO场景下的数据解调过程进行说明。
在SU-MIMO场景下,接收端设备接收到两组数据流之后,对两组数据流进行解调,下面将结合图2,以两组数据流中都只包括一个数据流为例进行详细说明。第一组数据流记为s 1,第二组数据流记为s 2,其中,s 1和s 2为采用MASK调制的数据流,发送端设备用天线1发送x 1=s 1,用天线2发送x 2=j*s 2
y 1为接收天线1接收到的数据流,y 2为接收天线2接收到的数据流,具体可以表示为:
y 1=h 11x 1+h 12x 2
y 2=h 21x 1+h 22x 2
其中:h 11为发射天线1到接收天线1的信道,h 12为发射天线2到接收天线1的信道,h 21为发射天线1到接收天线2的信道,h 22为发射天线2到接收天线2的信道。
接收端设备首先进行信道均衡,分别获得y 1的估值
Figure PCTCN2018122948-appb-000034
和y 2的估值
Figure PCTCN2018122948-appb-000035
具体的实现和采用的算法相关,以采用ZF(Zero forcing)算法为例,具体处理如下:
Figure PCTCN2018122948-appb-000036
其中,[] -1表示对矩阵求逆。
在具体解调过程中,取
Figure PCTCN2018122948-appb-000037
的实数部分即为s 1的估值,取
Figure PCTCN2018122948-appb-000038
的虚数部分即为s 2的估值。
在下行MU-MIMO场景下,接收端设备接收到两组数据流之后,对两组数据流进行解调,下面将结合图3,以两组数据流中都只包括一个数据流为例进行详细说明。第一组数据流记为s 1,第二组数据流记为s 2,其中,s 1和s 2为采用MASK调制的数据流,发送端设备用天线1发送x 1=s 1给接收端设备1,用天线2发送x 2=j*s 2给接收端设备2。
接收端设备1接收到的数据流可以表示为:
y 1=h 11x 1+h 12x 2
y 2=h 21x 1+h 22x 2
其中,h 11为发送端设备的发射天线1到接收端设备1的接收天线1的信道,h 12为发送端设备的发射天线1到接收端设备1的接收天线2的信道,h 21为发送端设备的发射天线1到接收端设备1的接收天线2的信道,h 22为发送端设备的发射天线2到接收端设备1的接收天线2的信道。y 1为接收端设备1的接收天线1接收到的数据流,y 2为接收端设备1的接收天线2接收到的数据流。
和上述SU-MIMO场景下的解调过程类似,接收机首先进行信道均衡,获得y 1的估值
Figure PCTCN2018122948-appb-000039
和y 2的估值
Figure PCTCN2018122948-appb-000040
Figure PCTCN2018122948-appb-000041
的实数部分为s 1的估值。
可以理解的是,接收端设备2的接收处理类似,与接收端设备1不同的地方在于,取
Figure PCTCN2018122948-appb-000042
的虚数部分为s 2的估值。
还需要指出的是,上述方法700应用在SU-MIMO场景下,接收端设备可以是接入点,例如但不限于图1中的接入点102;接收端设备也可以是站点,例如但不限于图1中的站点104或106。上述方法700应用在下行MU-MIMO场景下,接收端设备可以是站点,例如但不限于图1中的站点104或106。
图8是本发明实施例提供的一种发送端设备800的逻辑结构示意图。如图8所示,发送端设备800包括分组模块810、生成模块820和发送模块830。
分组模块810用于将待发送的数据流分为两组数据流,所述两组数据流包括第一组数据流和第二组数据流。
生成模块820用于将所述第二组数据流进行加权操作,生成第二组目标数据流。
发送模块830用于发送所述第一组数据流和所述第二组目标数据流。
本发明实施例提供的发送端设备,将待发送的数据流分为两组数据流,该两组数据流包括第一组数据流和第二组数据流,并将第二组数据流进行加权操作,生成第二组目标数据流,然后发送第一组数据流和第二组目标数据流。由于对第二组数据流进行了加权操作,可以有效减少数据流所对应的信道之间的干扰,从而提升系统的传输性能。
在一种可能的设计中,将第二组数据流进行加权操作包括将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分进行加权操作。
在一种可能的设计中,将第二组数据流进行加权操作具体为将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以
Figure PCTCN2018122948-appb-000043
Figure PCTCN2018122948-appb-000044
在一种可能的设计中,在每一个数据流的EDMG-Header-B部分之前还包括指示字段,所述指示字段用于指示所述第二组数据流已进行加权操作。
可选的,上述指示字段可以包含在上述第二组数据流中的每一个数据流的已有字段中。举例来说,如图5所示,该指示字段可以包含在第二组数据流中的每一个数据流的EDMG-Header-A字段中。又如图6所示,该字段可以包含在第二组用户所对应的数据流中的每一个数据流的EDMG-Header-A字段中。
可选的,上述指示字段可以为一个新增的字段,即在上述第二组数据流中的每一个数据流中新增一个字段,该新增的字段用于指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分都进行了加权操作。
在一种可能的设计中,上述指示字段可以占用一个比特位。当该比特位的取值为1时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作;当该比特位的取值为0时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权操作。或者,当该比特位的取值为1时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权 操作;当该比特位的取值为0时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。
在一种可能的设计中,待发送的数据流为已进行π/2MASK调制或MASK调制的数据流。发送端设备在发送数据流之前,先对数据流进行调制,上述待发送的数据流是进行π/2MASK调制或MASK调制后获得的数据流。需要指出的是,当上述待发送的数据流采用单载波发送方式进行发送时,上述待发送的数据流是进行π/2MASK调制后获得的数据流;当上述待发送的数据流采用OFDM发送方式进行发送时,上述待发送的数据流是进行MASK调制后获得的数据流。当π/2MASK调制为π/2 2ASK调制时,π/2MASK调制也称为π/2BPSK调制;同样,2ASK调制也称为BPSK调制。可以理解的是,待发送的数据流也可以是进行π/2BPSK调制或BPSK调制后获得的数据流。
在一种可能的设计中,所述发送模块在发送所述第一组数据流和所述第二组目标数据流之前,所述生成模块还用于:将所述第二组目标数据流中的每一个数据流乘以权重e jφ(y(k)),其中,k为所述每一个数据流的序号,φ(y(k))=φ 0y(k),y(k)为k的函数。可选的,在具体实现过程中,
Figure PCTCN2018122948-appb-000045
需要指出的是,当k所对应的LDPC编码块中的数据包括第一个比特时,y(k)的取值为0,此后对于k所对应的LDPC编码块中的每一个数据,y(k)的取值依次加1,直到下一个LDPC编码块的第一个比特出现。
可选的,上述将第二组目标数据流中的每一个数据流乘以权重e jφ(y(k))具体为:将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以权重e jφ(y(k))
可选的,上述将第二组目标数据流中的每一个数据流乘以权重e jφ(y(k))具体为:将第二组数据流中的每一个数据流的数据部分乘以权重e jφ(y(k))。需要指出的是,发送端设备800用于执行上述方法400,其涉及的相关技术特征在上述方法400中已有详细的描述,在此不再赘述。
图9是本发明实施例提供的一种接收端设备900的逻辑结构示意图。如图9所示,接收端设备包括接收模块910和解调模块920。
接收模块910,用于接收发送端设备发送的两组数据流,所述两组数据包括第一组数据流和第二组数据流,其中,所述第二组数据流已进行加权操作。
解调模块920,用于对所述第一组数据流和所述第二组数据进行解调。
本发明实施例提供的接收端设备,接收端设备接收两组数据流,该两组数据流包 括第一组数据流和第二组数据流,其中该第二组数据流已进行加权操作,接收端设备对该第一组数据流和第二组数据流进行解调。由于对第二组数据流进行了加权操作,可以有效减少接收端设备接收到的数据流之间的干扰,从而提升接收端设备的接收性能。
在一种可能的设计中,所述第二组数据流已进行加权操作包括将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分进行加权操作。
可选的,所述第二组数据流已进行加权操作包括将第二组数据流中的每一个数据流的数据部分进行加权操作。
在一种可能的设计中,上述加权操作具体为:将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以
Figure PCTCN2018122948-appb-000046
Figure PCTCN2018122948-appb-000047
可选的,上述加权操作具体为:将第二组数据流中的每一个数据流的数据部分乘以
Figure PCTCN2018122948-appb-000048
Figure PCTCN2018122948-appb-000049
在一种可能的设计中,在所述EDMG-Header-B部分之前还包括指示字段,所述指示字段用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否已进行加权操作。在这种情况下,指示字段可以向接收端设备指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否进行了加权操作,以便接收端设备采用相对应的解调方式来解调数据流。
在具体实现过程中,所述指示字段可以占用一个比特位,当该比特位的取值为1时,用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。当该比特位的取值为0时,用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权操作。或者,当该比特位的取值为1时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分未进行加权操作;当该比特位的取值为0时,指示第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。
在一种可能的设计中,所述待发送的数据流为已进行MASK调制或π/2MASK调制的数据流。其中,所述MASK调制包括BPSK调制,所述π/2MASK调制包括π/2BPSK调制。
在一种可能的设计中,所述第二组数据流在进行所述加权操作之后,还进行了如下操作:
将所述第二组目标数据流中的每一个数据流乘以权重e jφ(y(k)),其中,k为所述每一个数据流的序号,φ(y(k))=φ 0y(k),y(k)为k的函数。可选的,在具体实现过程中,
Figure PCTCN2018122948-appb-000050
需要指出的是,当k所对应的LDPC编码块中的数据包括第一个比特时,y(k)的取值为0,此后对于k所对应的LDPC编码块中的每一个数据,y(k)的取值依次加1,直到下一个LDPC编码块的第一个比特出现。
可选的,上述将第二组目标数据流中的每一个数据流乘以权重e jφ(y(k))具体为:将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以权重e jφ(y(k))
可选的,上述将第二组目标数据流中的每一个数据流乘以权重e jφ(y(k))具体为:将第二组数据流中的每一个数据流的数据部分乘以权重e jφ(y(k))
需要指出的是,上述接收端设备900用于执行上述方法700,其涉及的相关技术特征在上述方法700中已有详细的描述,在此不再赘述。
图10是本发明实施例提供的一种发送端设备的硬件结构示意图。如图10所示,发送端设备1000包括处理器1002、收发器1004、多根天线1006,存储器1008、I/O(输入/输出,Input/Output)接口1010和总线1012。收发器1004进一步包括发射器10042和接收器10044,存储器1008进一步用于存储指令10082和数据10084。此外,处理器1002、收发器1004、存储器1008和I/O接口1010通过总线1012彼此通信连接,多根天线1006与收发器1004相连。
处理器1002可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器1002还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器1002可以用于执行,例如,图4中的步骤410和步骤420以及图7所示的发送端设备800中分组模块810和生成模块820所执行的操作。处理器1002可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器1008中存储的指令10082来执行上述步骤和/或操作的处理器,处理器1002在执行上述步骤和/或操作的过程中可能需要用到数据10084。
收发器1004包括发射器10042和接收器10044,其中,发射器10042用于通过多根天线1006之中的至少一根天线发送信号。接收器10044用于通过多根天线1006之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,发射器10042具体可以用于通过多根天线1006之中的至少一根天线执行,例如,图4中的步骤430以及图7所示的发送端设备800中发送模块830所执行的操作
存储器1008可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪 存、光存储器和寄存器等。存储器10010具体用于存储指令10082和数据10084,处理器1002可以通过读取并执行存储器1008中存储的指令10082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据10084。
I/O接口1010用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,发送端设备1000还可以包括其他硬件器件,本文不再一一列举。
图11为本发明实施例提供的一种接收端设备的硬件结构示意图。如图11所示,发送端设备1100包括处理器1102、收发器1104、多根天线1106,存储器1108、I/O(输入/输出,Input/Output)接口1111和总线1112。收发器1104进一步包括发射器11042和接收器11044,存储器1108进一步用于存储指令11082和数据11084。此外,处理器1102、收发器1104、存储器1108和I/O接口1111通过总线1112彼此通信连接,多根天线1106与收发器1104相连。
处理器1102可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器1102还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器1102可以用于执行,例如,图7中的步骤710以及图9所示的接收端设备900中解调模块920所执行的操作。处理器1102可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器1108中存储的指令11082来执行上述步骤和/或操作的处理器,处理器1102在执行上述步骤和/或操作的过程中可能需要用到数据11084。
收发器1104包括发射器11042和接收器11044,其中,发射器11042用于通过多根天线1106之中的至少一根天线发送信号。接收器11044用于通过多根天线1106之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,接收器11044具体可以用于通过多根天线1106之中的至少一根天线执行,例如,图7中的步骤710以及图9所示的接收端设备900中接收模块910所执行的操作。
存储器1108可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器11011具体用于存储指令11082和数据11084,处理器1102可以通过读取并执行存储器1108中存储的指令11082,来执行上文所述的步骤和/或操作,在执行上述步骤和/或操作的过程中可能需要用到数据11084。
I/O接口1111用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,发送端设备1100还可以包括其他硬件器件,本文不再一一列举。
本发明实施例提供了一种芯片,所述芯片包括处理器和/或程序指令,当所述芯片运行时,实现上述方法实施例所提供的数据传输方法。
本发明实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持上述发送端设备实现其所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存发送端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本发明实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持上述接收端设备实现其所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存发送端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
需要说明的是,在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    将待发送的数据流分为两组数据流,所述两组数据流包括第一组数据流和第二组数据流;
    将所述第二组数据流进行加权操作,生成第二组目标数据流;
    发送所述第一组数据流和所述第二组目标数据流。
  2. 根据权利要求1所述的方法,其特征在于,所述将所述第二组数据流进行加权操作包括将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分进行加权操作。
  3. 根据权利要求1或2所述的方法,其特征在于,所述加权操作具体为:将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以
    Figure PCTCN2018122948-appb-100001
    Figure PCTCN2018122948-appb-100002
  4. 根据权利要求2或3所述的方法,其特征在于,在所述EDMG-Header-B部分之前还包括指示字段,所述指示字段用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否已进行加权操作。
  5. 根据权利要求4所述的方法,其特征在于,所述指示字段设置为1的1比特值时,用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述待发送的数据流为已进行
    MASK调制或π/2MASK调制的数据流,其中,所述MASK调制包括BPSK调制,所述π/2MASK调制包括π/2BPSK调制。
  7. 根据权利要求1-6所述的方法,其特征在于,在发送所述第一组数据流和所述第二组目标数据流之前还包括:
    将所述第二组目标数据流中的每一个数据流乘以权重e jφ(y(k)),其中,k为所述每一个数据流的序号,φ(y(k))=φ 0y(k),y(k)为k的函数。
  8. 一种发送端设备,其特征在于,所述发送端设备包括:
    分组模块,用于将待发送的数据流分为两组数据流,所述两组数据流包括第一组数据流和第二组数据流;
    生成模块,用于将所述第二组数据流进行加权操作,生成第二组目标数据流;
    发送模块,用于发送所述第一组数据流和所述第二组目标数据流。
  9. 根据权利要求8所述的发送端设备,其特征在于,所述将所述第二组数据流进行加权操作包括将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分进行加权操作。
  10. 根据权利要求8或9所述的发送端设备,其特征在于,所述加权操作具体为:将第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分乘以
    Figure PCTCN2018122948-appb-100003
    Figure PCTCN2018122948-appb-100004
  11. 根据权利要求9或10所述的发送端设备,其特征在于,在所述EDMG-Header-B部分之前还包括指示字段,所述指示字段用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分是否已进行加权操作。
  12. 根据权利要求11所述的发送端设备,其特征在于,所述指示字段设置为1的1比特值时,用于指示所述第二组数据流中的每一个数据流的EDMG-Header-B部分和数据部分已进行加权操作。
  13. 根据权利要求8-12任一项所述的发送端设备,其特征在于,所述待发送的数据流为已进行MASK调制或π/2MASK调制的数据流,其中,所述MASK调制包括BPSK调制,所述π/2MASK调制包括π/2BPSK调制。
  14. 根据权利要求8-13任一项所述的发送端设备,其特征在于,所述发送模块在发送所述第一组数据流和所述第二组目标数据流之前,所述生成模块还用于:
    将所述第二组目标数据流中的每一个数据流乘以权重e jφ(y(k)),其中,k为所述每一个数据流的序号,φ(y(k))=φ 0y(k),y(k)为k相关的函数。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1-7任一项所述的方法。
PCT/CN2018/122948 2017-12-29 2018-12-22 一种数据传输方法及设备 WO2019128890A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711488970.0 2017-12-29
CN201711488970.0A CN109995402B (zh) 2017-12-29 2017-12-29 一种数据传输方法及设备

Publications (1)

Publication Number Publication Date
WO2019128890A1 true WO2019128890A1 (zh) 2019-07-04

Family

ID=67063149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122948 WO2019128890A1 (zh) 2017-12-29 2018-12-22 一种数据传输方法及设备

Country Status (2)

Country Link
CN (1) CN109995402B (zh)
WO (1) WO2019128890A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029875A2 (en) * 2003-09-24 2005-03-31 Nortel Networks Limited Digital convertible radio snr optimization
CN1618226A (zh) * 2002-01-17 2005-05-18 皇家飞利浦电子股份有限公司 基于客户带宽或性能的目标升级的视频多点广播
CN101534143A (zh) * 2008-03-12 2009-09-16 大唐移动通信设备有限公司 一种应用多天线发射双数据流的方法及装置
CN101867398A (zh) * 2009-04-20 2010-10-20 中兴通讯股份有限公司 一种适用于频分复用系统的单用户波束成形方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705448B1 (ko) * 2005-12-09 2007-04-09 한국전자통신연구원 다중 안테나로 구성된 ofdm에서 채널 정보 및 코드북을이용한 송신 전력 할당 방법 및 장치
CN101883366A (zh) * 2009-05-08 2010-11-10 中兴通讯股份有限公司 基于频分双工系统的多用户波束赋形方法与装置
CN103209011B (zh) * 2010-08-20 2015-09-09 华为技术有限公司 一种ofdm多天线映射方法和装置
DE102011078704A1 (de) * 2011-07-05 2013-01-10 Continental Teves Ag & Co. Ohg Datenauswahlverfahren zur Verminderung des Dekodierrechenaufwands eines Fahrzeug-zu-X-Kommunikationssystems und Fahrzeug-zu-X-Kommunikationssystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618226A (zh) * 2002-01-17 2005-05-18 皇家飞利浦电子股份有限公司 基于客户带宽或性能的目标升级的视频多点广播
WO2005029875A2 (en) * 2003-09-24 2005-03-31 Nortel Networks Limited Digital convertible radio snr optimization
CN101534143A (zh) * 2008-03-12 2009-09-16 大唐移动通信设备有限公司 一种应用多天线发射双数据流的方法及装置
CN101867398A (zh) * 2009-04-20 2010-10-20 中兴通讯股份有限公司 一种适用于频分复用系统的单用户波束成形方法和装置

Also Published As

Publication number Publication date
CN109995402A (zh) 2019-07-09
CN109995402B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US9948370B2 (en) Method and apparatus for multiple frame transmission for supporting MU-MIMO
US9793966B2 (en) Link adaptation method and apparatus in wireless LAN system
Siddiqui et al. Gigabit wireless networking with IEEE 802.11 ac: technical overview and challenges
WO2018228532A1 (zh) 通信方法、终端及网络设备
WO2019006730A1 (zh) 波束赋形训练的方法、接收设备和发送设备
KR20100138692A (ko) 링크 적응 절차 수행 방법
KR20100042228A (ko) 멀티캐스트 프레임 전송방법 및 중복 프레임 검출 방법
WO2019029730A1 (zh) 一种pdsch接收信息的指示方法、数据接收方法及装置
CN111934736B (zh) 一种发送波束优化协议包的方法及设备
US10778287B2 (en) Multipoint data transmission method and apparatus
US11528671B2 (en) Frame structure to support long distance transmission
WO2020001454A1 (zh) 波束赋形训练的方法和装置
CN110912594B (zh) 波束训练方法及装置
US10694546B2 (en) Media access control for duplex transmissions in wireless local area networks
WO2017190359A1 (zh) 一种训练包发送方法及装置
US11431434B2 (en) Method and apparatus for secure communication in wireless communication system
WO2020078320A1 (zh) 通信方法和通信装置
US10673677B2 (en) Single carrier-based data transmission method and apparatus
WO2016141585A1 (zh) 一种天线模式选择方法、装置及系统
WO2016077975A1 (en) Evolved node-b and user equipment and methods for group sounding in full-dimension multiple-input multiple-output systems
CN107592142B (zh) 一种信道估计序列的传输方法和装置
EP4300903A1 (en) Signal transmission method, and apparatus
WO2019128890A1 (zh) 一种数据传输方法及设备
KR101729926B1 (ko) 순차적 리스폰스 프로토콜을 이용한 데이터 통신 방법 및 상기 방법이 적용된 단말
WO2024016837A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893762

Country of ref document: EP

Kind code of ref document: A1