WO2019004630A1 - 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치 - Google Patents
저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치 Download PDFInfo
- Publication number
- WO2019004630A1 WO2019004630A1 PCT/KR2018/006582 KR2018006582W WO2019004630A1 WO 2019004630 A1 WO2019004630 A1 WO 2019004630A1 KR 2018006582 W KR2018006582 W KR 2018006582W WO 2019004630 A1 WO2019004630 A1 WO 2019004630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- low
- carbonization
- cooling
- steam generator
- gas
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/08—Processing by evaporation; by distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0027—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D47/00—Separating dispersed particles from gases, air or vapours by liquid as separating agent
- B01D47/06—Spray cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/20—Disposal of liquid waste
- G21F9/22—Disposal of liquid waste by storage in a tank or other container
Definitions
- the present invention relates to an apparatus for treating a waste liquid generated in a system for carbonizing medium and low-level radioactive waste using a low-pressure superheated steam.
- the radioactive waste to be delivered to the repository generated from the nuclear power plant is composed of concentrated waste, waste water, waste filter, trap, sludge, etc., and the amount of generated sludge accounts for about 80% of total radioactive waste.
- the garbage is compressed and stored in a drum with protective clothing, socks, gloves, anti-scratch paper, vinyl, plastic, wood, metal, rubber,
- the volume of radioactive wastes that can be mass-wasted is large, and if they can be reduced in volume, the volume of drums to be delivered to the repository can be greatly reduced, the life of the repository can be extended, and the disposal cost can be reduced And the efficiency of nuclear power plant operation can be improved.
- the present invention has been made to solve the above problems, and it is an object of the present invention to reduce the volume by evaporating, drying and separating a waste liquid generated in a flammable medium and low level radioactive waste carbonization system using a low pressure superheated steam.
- Another object of the present invention is to minimize the environmental and reprocessing problems by reducing the volume of the waste liquid generated after carbonizing medium and low-level radioactive waste.
- the present invention relates to a feeder facility for crushing medium and low-level radioactive waste generated in a nuclear power plant injected with a hopper into crushers to a predetermined size and then supplying them to a carbonization furnace;
- the low-level superheated steam supplied from the reheat steam generator to the carbonization furnace is directly carbonized by the reheat steam generator while horizontally transporting the medium- and low-level radioactive waste,
- a carbonization facility for separating carbonized byproducts and carbonized gas from the carbonized byproducts and discharging the separated carbonized byproducts and carbonized gas to a carbonized byproduct tank and a blower;
- a saturated steam generator for producing superheated steam at a predetermined temperature and supplying the superheated steam to the carbonization furnace and the reheated steam generator; and a multi-stage steam generator for reheating the saturated steam generated in the saturated steam generator to produce reheated steam at a predetermined temperature
- a heat source equipment having a reheat steam generator, a blower for supplying the
- the middle- and low-level radioactive waste drum generated annually in a nuclear power plant is reduced to approximately 1 / 5 can be saved to reduce construction cost by reducing the disposal cost of radioactive waste and extending the service life of the permanent repository.
- the extension of the lifespan of the permanent repository has the advantage of extending the need for additional construction due to the stability of nuclear power plant operation, the elimination of regional conflicts, and the permanent disposal of radioactive waste.
- FIG. 1 is a schematic diagram showing a carbonization facility in a medium- and low-level radioactive waste carbonization system using a low-pressure superheated steam according to an embodiment of the present invention.
- FIG. 2 shows a carbonization facility of the medium and low-level radioactive waste carbonization system using the low-pressure superheated steam of the present invention.
- FIG. 3 is a view illustrating a carbonization furnace in a medium and low-level radioactive waste carbonization system using a low-pressure superheated steam according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram showing a carbonaceous gas treatment facility in a medium and low level radioactive waste carbonation system using low pressure superheated steam according to an embodiment of the present invention.
- FIG. 5 shows a carbonaceous gas treatment facility in the medium- and low-level radioactive waste carbonization system using the low-pressure superheated steam of the present invention.
- FIG. 6 is a schematic diagram showing an apparatus for treating a waste liquid in a medium- and low-level radioactive waste carbonization system using the low-pressure superheated steam of the present invention.
- the present invention is divided into a facility for carbonizing medium and low-level radioactive waste generated in a nuclear power plant, an apparatus for treating carbonaceous gas generated in the carbonization process, and a device for treating the waste fluid generated in the carbonization process.
- the supply facility is a facility for carbonizing combustible middle and low level radioactive wastes, such as clothing, gloves, waste paper, and the like, from the hopper 10, And the waste is crushed to a predetermined size by the crusher 12 in the hopper 10 and then supplied to the carbonization facility.
- the feeder uses a crusher 12 to increase the carbonization efficiency of the carbonization plant and to achieve a smooth continuous process.
- the crusher 12 drives the motor 11 by the operation (RUN) and the stop (STOP) push button switch (PBS) of the crusher control panel 13 and the speed can be adjusted by the crusher inverter. Furthermore, the crusher 12 crushes the combustible radioactive waste to a predetermined size, and then enters the carbonization facility through the hopper 10.
- Carbonization plants are carbonized by direct superheated steam to mid- and low-level radioactive waste that has been crushed to a certain size in the supply facility to reduce its volume.
- the carbonization plant includes a carbonization furnace (20) provided with a rotating screw (27).
- the carbonization furnace 20 is constituted by a substantially cylindrical housing and installed horizontally.
- the carbonization furnace 20 is provided with an inlet 21 into which the low and intermediate radioactive wastes are introduced, a steam inlet 22 into which the reheated steam is introduced in the reheated steam generator 55, a carbonization byproduct outlet 23 through which the carbonization by- A carbonated gas discharge port 24 through which gas is discharged is formed.
- a chamber 25 is formed in the side wall of the carburetor 20 in which a plurality of spray nozzles 26 for spraying the reheated steam flowing from the reheat steam generator 55 across the right and left side faces and the lower side face are formed.
- the screw 27 provided in the carbonization furnace 20 is operated by driving the motor 29.
- the motor 29 is driven by the operation (RUN) and the stop (STOP) push button switch (PBS) of the carbonization facility control panel 30 and the speed of the screw can be adjusted by the inverter. Further, it is preferable to adjust the rotation speed of the motor 29 so that the combustible radioactive waste can be sufficiently carbonized until reaching the carbonization by-product outlet 23.
- the carbonization furnace 20 is provided with a double slide gate 14 between the crusher 12 and the carbonization furnace 20 at the front end of the inlet 21 into which the medium and low level radioactive waste is introduced, And each of the solenoid valves crosses the timer installed in the carbonization furnace 20 so that the combustible waste can be supplied continuously while blocking external air at the time of charging and discharging the combustible waste.
- a double slide gate 15 is provided between the carbonization byproduct discharge port 23 of the carbonization furnace 20 and the carbonization byproduct storage tank 28.
- a hopper is provided between the double slide gates 15, The respective solenoid valves cross each other to shut off the outside air when carbonization by-products are discharged to the carbonization byproduct storage tank 28 so that homogeneous carbides can be obtained.
- the carbonization furnace 20 carbonizes the low-temperature superheated steam supplied from the reheat steam generator 55 while horizontally transporting the supplied medium-low-level radioactive waste to the rotating screw 27, The carbonized gas is separated and discharged through the respective outlets into the carbonization byproduct tank and the blower.
- the heat source equipment generates overheated steam at a predetermined temperature or higher to supply the heat source necessary for the carburetor 20. That is, in the heat source equipment, the superheated steam of 500 degrees or more is produced in the saturated steam generator 50 and supplied to the carbonization furnace 20 and the reheat steam generator 55.
- the saturated steam generator 50 produces a saturated vapor at a predetermined temperature, for example, 100 degrees or more, through the evaporator.
- the evaporator uses a plurality of heaters to heat the time constants to produce saturated steam.
- the saturated steam generator 50 is driven by START and STOP PBS (Push Button Switch) of the carbonization facility control panel 30.
- START and STOP PBS Push Button Switch
- the circulating blower 40 is designed to be driven by a START and STOP PBS (Push Button Switch) of the carbonization facility control panel 30 and capable of speed control.
- START and STOP PBS Push Button Switch
- the saturated steam generated in the saturated steam generator 50 is supplied through the carburetor 20, the reheat steam generator 55 and the circulation line.
- the reheated steam is reheated and supplied to the superheated steam at a predetermined temperature, for example, And supplies it to the carbonization furnace 20 and the circulation line.
- the reheat steam generator 55 is installed in multiple stages to raise the temperature of the saturated steam conveyed by using a plurality of electric heaters (Flanged Immersion Heater) for each stage. Further, each of the electric heaters is designed to be driven by START button and STOP button (Push Button Switch) by a reheat steam generator control panel 57 provided in the reheat steam generator 55.
- the electric heater at each end of the reheat steam generator 55 is turned on or off according to the temperature value set by the temperature controller including the input temperature of the reheat steam generator 55 and the indicator to produce a low pressure superheated steam of 500 degrees or more And circulated to the circulating blower 40.
- the cooling facility cools the high temperature carbonized gas generated in the carbonization furnace 20 and separated by the air-cooled heat exchange.
- the cooling system includes a gas cooler 60 and a gas cooling fan 61.
- the gas cooler 60 cools the heat contained in the carbonated gas with the air blown from the gas cooling fan 61 driven by the motor.
- the condensed water is separated and discharged to the condensed water storage tank 69, and the cooled carbonized gas is supplied to the cleaning facility.
- the cleaning facility separates and collects the dust contained in the carbonized gas by the liquid point, the liquid film, and the air bubbles by spraying the cleaning liquid to the carbonized gas cooled in the cooling facility.
- the cleaning facility includes a cleaning tower 62, a plurality of spray pumps 63 for spraying a cleaning liquid to the cleaning tower 62, and a condenser 64 for cooling the cleaned carbonaceous gas with the time lapse water.
- the cleaning tower 62 sucks the carbonated gas flowing into the venturi pipe into the cleaning liquid supplied from the spray pump 63, and then sprays the cleaning liquid sprayed from the spray pump 63 onto the carbonized gas.
- the dust separated from the carbonized gas is settled in the lower part of the washing tower 62 and separated and discharged into the condensed water storage tank 69.
- the carbonized gas from which dust has been removed from the cleaning tower 62 is supplied to the condenser 64 and cooled.
- the condensed water generated during the condensation of the carbonized gas in the condenser (64) is separated and discharged to the condensed water storage tank (69).
- the dehumidification facility removes moisture contained in the heat generated by the heat exchange in the gas cooler 60 of the carbonization gas and the cooling facility through the washing tower 62 and the condenser 64 of the washing facility.
- the dehumidifying apparatus includes a dehumidifier 65.
- the water dehumidified from the carbonized gas through the dehumidifier 65 is separated and discharged to the condensed water storage tank 69.
- the carbonized gas passing through the dehumidifier 65 is discharged to the atmosphere or discharged to the white smoke reduction facility.
- the white smoke reduction facility removes the particulate matter and the radioactive material contained in the carbonated gas from which the moisture has been removed by the dehumidifier 65 of the dehumidification facility, with a multi-stage HEPA filter 66.
- the gas passing through the gas cooler 60 of the cooling facility and the gas passing through the HEPA filter 66 are mixed in the mixing chamber 67 and finally discharged to the atmosphere through the blowing fan 68.
- the condensate storage tank (69) temporarily stores condensed water, particulate matter, water soluble gas and radioactive material separated from the cooling facility, the cleaning facility and the dehumidification facility.
- the carbonization processing facility is cooled, washed, condensed, dehumidified, filtered and reduced in white smoke by the control of the control panel 70.
- the waste liquid storage tank 80 stores liquid wastes including condensed water, particulate matter, water soluble gas and radioactive material separated from the cooling facility, the cleaning facility, and the dehumidification facility of the carbonation processing facility do.
- the waste liquid storage tank 80 is applied with a capacity of approximately 300 liters to the storage tank for stable supply to the evaporation drier 81.
- the waste liquid storage tank 80 is supplied with the liquid waste in the condensate tank 69 of the carbonation processing facility. Furthermore, the condensate tank 69 can be replaced with a waste liquid storage tank 80.
- the evaporator dryer 81 operates to evaporate water by receiving liquid waste from the waste liquid storage tank 80. When the evaporation operation is completed, the evaporator dryer 81 reduces the moisture content through the drying operation and discharges the granulated water.
- the evaporator dryer 81 includes an agitator 82, and the agitator 82 is operated at a low speed.
- a plurality of band heaters 83 are coupled to the lower surface of the evaporation drier 81 to heat the evaporation drier 81.
- the evaporator dryer 81 further includes a heater 84 that heats the inside of the evaporator dryer 81 through a circulation line. The heat heated by the heater 84 is supplied to the inside of the evaporator dryer 81 through the circulation line to the blower fan 89.
- the moisture separator 85 separates foreign matter and droplets contained in the vapor evaporated in the evaporation drier 81. Therefore, the moisture separator 85 includes a filter or the like for separating the nose.
- the regenerating heat exchanger 86 preheats the waste liquid supplied from the evaporator dryer 81 by using evaporative steam.
- the regeneration heat exchanger 86 exchanges regeneration heat of about 5,000 kcal or more per hour.
- the cooling condenser 87 condenses the steam generated in the evaporator dryer 81 by cooling and condensing it to water below a predetermined temperature.
- the cooling condensation capacity of the cooling condenser 87 is approximately 35,000 kcal or more per hour.
- the condensate tank 88 stores the condensed water that has been cooled after being cooled in the cooling condenser 87.
- the condensate tank 88 supplies the cooled condensate to the pump 91 in the cooling condenser 87 and discharges the condensed water stored in the condensate tank 88 through the pump 89.
- the air-cooling cooler 93 supplies the cooling water to the cooling condenser 87 after cooling the cooling water with the cooling fan.
- the crusher 12 is used to control the motor 11 capable of controlling the speed for operating the crusher 12.
- the crusher 12 is supplied to the carbonization furnace 20 of the carbonization facility with the crushed combustible middle and low-level radioactive waste.
- the wastes introduced into the carbonization furnace 20 are rotated by the motor 29 by the control of the carbonization facility control panel 30 and the screw 27 is rotated.
- the superheated steam of low pressure supplied from the reheat steam generator 55 is injected into the carburetor 20 through a plurality of injection nozzles 26 formed at a predetermined interval in the chamber 25. That is, the flammable medium / low-level radioactive waste put into the carbonization furnace 20 is supplied to the low-pressure superheated steam injected through the injection nozzle 26 formed in the chamber 25 while being horizontally moved with respect to the rotating direction of the screw 27 Direct contact causes carbonization.
- the rotation speed of the screw 27 of the carbonization furnace 20 can be adjusted to approximately 0.37 RPM.
- the rotational speed of the screw 27 of the carbonization furnace 20 is adjusted so that the carbonization by the low-pressure superheated steam injected until the combustible middle-low-level radioactive waste reaches the carbonization by- .
- the carbonized byproduct discharge port 23 also discharges flammable low-level radioactive waste through the double slide gate 15 and a hopper therebetween by the cross-operation of a solenoid valve provided with a timer under the control of the carbonization facility control panel 30 It is possible to block the outside air and obtain homogeneous carbonization by-products.
- the saturated steam generator 50 of the heat source equipment generates saturated steam of about 100 degrees or more by the operation of the electric heater 51, and supplies the saturated steam through the circulating blower 40 and the circulation line.
- the saturated steam generator 50 and the circulating blower 40 are operated under the control of the carbonization facility control panel 30, and the speed of the circulating blower 40 can be adjusted.
- the saturated steam generated in the saturated steam generator 50 is supplied to the carbonization furnace 20, the reheat steam generator 55, and the circulation line, respectively.
- the reheated steam generator 55 heats the saturated steam supplied from the saturated steam generator 50 to the electric heater 56 provided at each of the plurality of stages to produce the low pressure reheated steam of about 600 degrees or more, .
- the reheat steam generator 55 produces reheated steam at a temperature set by the control of the reheat steam generator control panel 57.
- the carbonated gas discharged from the carbonated gas outlet 24 of the carbonized furnace 20 flows into the reheated steam generator 55 through the circulating blower 40.
- the high temperature carbonized gas discharged from the carbonated gas discharge port 24 of the carbonization furnace 20 is treated through the control of the control panel 70 via the cooling facility, the cleaning facility, the dehumidification facility, and the white smoke reduction facility. That is, the high temperature carbonized gas generated in the carbonization furnace 20 and discharged through the carbonated gas discharge port 24 is heat-exchanged through the gas cooler 60 provided with the gas cooling fan 61 to be cooled.
- the cooled carbonized gas is supplied to the cleaning tower 62 of the cleaning facility and is cleaned with the cleaning liquid supplied from the spray pump 63. At this time, the dust contained in the carbonized gas is separated and collected by the generated liquid point, liquid film, bubble or the like.
- the dehumidifier 65 of the dehumidifying facility removes at least 90% of the moisture in the carbonized gas.
- the dehumidified carbonized gas is removed through the HEPA filter 66 composed of multi-stages in the white smoke reduction facility, and the particulate matter and the radioactive material are respectively removed.
- discharged into the atmosphere through the blowing fan 68 after passing through the mixing chamber 67. Further, the condensed water, particulate matter, water-soluble gas and radioactive material stored in the washing tower are discharged to the condensed water storage tank 69 and stored.
- the waste liquid is evaporated and dried using evaporation technology, which has a large volume reduction ratio of radioactive waste and a decontamination factor of 1,000 or more, for liquid waste generated in the carbonization process of the combustible waste by the superheated steam.
- the evaporation treatment capacity enables the waste liquid to be treated at approximately 50 liters / hour. Therefore, a waste liquid storage tank 80 is provided to stably supply the condensate stored in the condensate storage tank 69, that is, the liquid waste, to the evaporator dryer 81.
- the waste liquid storage tank 80 is approximately 300 liters in size.
- the evaporator dryer 81 continuously supplies the waste liquid from the waste liquid storage tank 80 and evaporates the liquid waste by the heat generated by the plurality of band heaters 83 and the heater 84.
- the evaporation operation is terminated and the drying operation is performed to reduce the moisture content to a large enough amount to make granules.
- the stirrer 82 is operated at a low speed do.
- the capacity of the evaporator dryer is approximately 250 liters.
- the waste liquid supplied from the evaporator dryer (81) is preheated in the regenerative heat exchanger (86) by using evaporative steam and heat exchanged at approximately 5,000 kcal per hour.
- the cooling condenser 87 also cools the vapor generated in the evaporator dryer 81 to condense it into water. At this time, the cooling condensation capacity is approximately 35,000 kcal per hour.
- the cooling condenser 87 is supplied with cooled cooling water from the air-cooling cooler 93. Thereafter, the condensed water cooled in the cooling condenser 87 is stored in the condensate tank 92, and is analyzed through analysis to check whether it is discharged, and then discharged to the environment.
- the carbonization system of the present invention can significantly reduce the volume and weight of the carbonized by-products produced in the carbonization process of the flammable medium low-level radioactive waste. That is, as a test condition, the garbage (3 Kg and 27 L), the gloves (1.3 Kg and 1 L), the waste paper (0.7 Kg and 0.8 L), the total weight of 5 Kg and the volume of 28.8 L were carbonized for approximately 3 hours and 20 minutes, Was reduced by 88% to 0.6 kg, and the volume was reduced to 82.6% by volume of 5 L.
- the apparatus for treating the waste liquid generated in the medium and low level radioactive waste carbonization system using the low pressure superheated steam according to the present invention is characterized in that the waste liquid generated in the process of carbonizing the low and intermediate level radioactive waste, It is possible to reduce the annual low- and mid-level radioactive waste drums generated by nuclear power plants by about one-fifth, thereby reducing the disposal cost of radioactive waste and the life span of the permanent repository, Availability is recognized.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Processing Of Solid Wastes (AREA)
- Gasification And Melting Of Waste (AREA)
Abstract
본 발명은 저압의 과열증기를 이용하여 중ㆍ저준위 방사성폐기물을 탄화시켜 감량화시키는 시스템에 관한 것으로, 원자력발전소에서 발생되는 중ㆍ저준위 방사성폐기물을 파쇄기로 파쇄한 후 탄화로에 공급하는 공급설비; 중ㆍ저준위 방사성폐기물에 저압의 과열증기를 직분사하여 탄화시킨 후 탄화부산물과 탄화가스를 분리하여 탄화부산물탱크와 송풍기로 각각 배출하는 탄화설비; 과열증기를 생산하여 탄화로와 재열증기발생기로 공급하는 포화증기발생기와, 포화증기발생기에서 발생된 포화증기를 재가열하여 일정 온도의 재열증기를 생산하여 탄화로에 공급하는 다단의 재열증기발생기와, 탄화로에서 배출된 순환증기와 포화증기발생기에서 생산된 포화증기를 재열증기발생기로 공급하는 송풍기가 구비된 열원설비; 탄화로에서 발생되어 분리된 고온의 탄화가스를 공랭식 열교환으로 냉각시키는 냉각설비; 냉각설비에서 냉각된 탄화가스에 세정액을 분사하여 액점, 액막, 기포에 의해서 탄화가스에 함유된 먼지를 분리하여 포집하는 세정설비; 세정설비를 거친 탄화가스와 냉각설비에서 열교환으로 발생된 열에 포함된 수분을 제거하는 제습설비; 제습설비에서 수분이 제거된 탄화가스에 포함된 입자상 물질과 방사능 물질을 다단으로 설치된 헤파필터로 제거하고 냉각설비를 통과한 가스와 헤파필터를 통과한 가스를 혼합하여 대기 중으로 최종 방출시키는 백연저감설비를 포함하는 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템을 제공한다.
Description
본 발명은 저압의 과열증기를 이용하여 중ㆍ저준위 방사성폐기물을 탄화하는 시스템에서 발생된 폐액을 처리하는 장치에 관한 것이다.
국내에서 중, 저준위 방사성 폐기물 영구 처분장이 경주에 건설되어 운영되고 있으나, 이미 처분장으로 인도된 방사성 폐기물을 포함하여 지금까지 원자력발전소에 보관중인 중, 저준위 방사성 폐기물 드럼을 모두 처분장으로 인도할 시점이 되면 처분장의 저장용량을 초과할 우려가 있어 신규 처분장의 건설계획을 앞당겨 마련해야 하는 상황이 될 수도 있기 때문에 원자력발전소에서 발생되는 방사성 폐기물의 감량화가 절실한 실정이다. 현재 방사성 폐기물 1개 드럼 처분비용으로 대략 1,300만원이 소요되고 있다. 향후 방사성 폐기물은 더욱 더 늘어날 것으로 예상되고 그 처분비용도 점점 더 불어날 것으로 예상되는 상황이다.
원자력발전소에서 발생되는 처분장 인도대상 방사성 폐기물은 농축폐액, 폐수지, 폐필터, 잡고체, 슬러지 등으로 이중에서 잡고체 발생량이 전체 방사성 폐기물 발생량의 대략 80%를 차지하고 있다. 잡고체 폐기물은 방호복, 양말, 장갑, 제염지, 비닐, 플라스틱, 목재, 금속류, 고무, 보온재 등으로 드럼에 압축하여 저장 및 보관하고 있다.
잡고체 방사성 폐기물 중에는 부피감량이 가능한 폐기물이 상당량 차지하고 있어 이들의 부피를 감량할 수 있다면 처분장 인도대상 드럼의 수량을 크게 줄일 수 있고 처분장의 수명을 연장할 수 있을 뿐만 아니라 처분비용도 절감할 수 있어 원자력발전소 운용에 따른 효율을 향상시킬 수 있을 것이다.
이와 관련된 종래기술로, 대한민국 등록특허공보 제10-1333499호(2013.11.28. 공개)가 있다.
본 발명은 상기 문제점을 해결하기 위한 것으로, 저압 과열증기를 이용하여 가연성 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 증발, 건조 및 분리하여 부피를 감소시키기 위한 것이 목적이다.
또한, 본 발명은 중ㆍ저준위 방사성폐기물을 탄화시킨 후 발생된 폐액의 부피를 저감시켜 환경과 재처리 문제를 최소화하기 위한 것이 다른 목적이다.
본 발명은 호퍼로 투입된 원자력발전소에서 발생되는 중ㆍ저준위 방사성폐기물을 파쇄기로 일정한 크기로 파쇄한 후 탄화로에 공급하는 공급설비; 상기 공급설비에서 일정 크기로 파쇄되어 공급된 중ㆍ저준위 방사성폐기물을 회전하는 스크류가 설치된 탄화로에서 수평으로 이송하는 동안 재열증기발생기에서 탄화로에 공급된 저압의 과열증기를 직분사하여 탄화시킨 후 탄화부산물과 탄화가스를 분리하여 탄화부산물탱크와 송풍기로 각각 배출하는 탄화설비; 일정 온도의 과열증기를 생산하여 상기 탄화로와 재열증기발생기로 공급하는 포화증기발생기와, 상기 포화증기발생기에서 발생된 포화증기를 재가열하여 일정 온도의 재열증기를 생산하여 탄화로에 공급하는 다단의 재열증기발생기와, 상기 탄화로에서 배출된 순환증기와 포화증기발생기에서 생산된 포화증기를 재열증기발생기로 공급하는 송풍기가 구비된 열원설비; 상기 탄화로에서 발생되어 분리된 고온의 탄화가스를 공랭식 열교환으로 냉각시키는 냉각설비; 상기 냉각설비에서 냉각된 탄화가스에 세정액을 분사하여 액점, 액막, 기포에 의해서 탄화가스에 함유된 먼지를 분리하여 포집하는 세정설비; 상기 세정설비를 거친 탄화가스와 냉각설비에서 열교환으로 발생된 열에 포함된 수분을 제거하는 제습설비; 상기 제습설비에서 수분이 제거된 탄화가스에 포함된 입자상 물질과 방사능 물질을 다단으로 설치된 헤파필터로 제거하고 상기 냉각설비를 통과한 가스와 헤파필터를 통과한 가스를 혼합하여 대기 중으로 최종 방출시키는 백연저감설비를 포함하는 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에 있어서, 상기 냉각설비, 세정설비 및 제습설비에서 각각 분리된 응축수, 입자상 물질, 수용성 가스 및 방사성 물질을 포함하는 액체폐기물을 저장하는 일정 용량의 폐액저장탱크; 상기 폐액저장탱크에서 액체폐기물을 공급받아 수분을 증발시키는 운전을 수행하고, 증발운전이 종료되면 건조운전을 통해 수분함유량을 저감시켜 과립물로 배출하는 증발건조기; 상기 증발건조기에서 증발된 증기 중에 포함된 이물질 및 비말을 분리하는 습분분리기; 상기 증발건조기에서 공급되는 폐액을 증발증기를 이용하여 예열하는 재생열교환기; 상기 증발건조기에서 발생된 증기를 냉각 응축시켜 일정 온도이하의 물로 응축하는 냉각응축기; 및 상기 냉각응축기에서 냉각된 후 배출된 응축수를 저장하는 일정 용량의 응축수탱크를 포함하여 이루어진 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치를 제공한 것이 특징이다.
본 발명에 따르면, 가연성 잡고체를 포함하는 중ㆍ저준위 방사성폐기물을 저압의 과열증기로 탄화하는 과정에서 발생되는 액체폐기물의 부피를 감량함으로써 원자력발전소에서 연간 발생하는 중ㆍ저준위 방사성폐기물 드럼을 대략 1/5가량 줄일 수 있어 방사성폐기물의 처분비용의 절감과 영구처분장의 사용수명 연장으로 건설비용을 절감할 수 있다. 또한, 영구처분장의 수명 연장으로 원자력발전소 운영의 안정성과 지역갈등 해소 및 방사성폐기물의 영구처분에 따른 추가적인 건설 필요성을 연장할 수 있는 이점이 있다.
도 1은 본 발명에 따른 실시 예로, 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 탄화설비를 나타낸 계통도이다.
도 2는 본 발명의 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템의 탄화설비를 나타낸 것이다.
도 3은 본 발명에 따른 실시 예로, 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 탄화로를 나타낸 것이다.
도 4는 본 발명에 따른 실시 예로, 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 탄화가스처리설비를 나타낸 계통도이다.
도 5는 본 발명의 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 탄화가스처리설비를 나타낸 것이다.
도 6은 본 발명의 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 폐액을 처리하는 장치를 나타낸 계통도이다.
이하, 본 발명에 따른 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
본 발명은 원자력발전소에서 발생되는 중ㆍ저준위 방사성폐기물을 탄화시키는 설비와 탄화과정에서 발생되는 탄화가스를 처리하는 설비, 그리고 탄화과정에서 발생되는 폐액을 처리하는 장치로 구분된다.
먼저, 가연성 중ㆍ저준위 방사성폐기물을 탄화시키는 설비로서, 도 1 내지 도 3에서, 공급설비는 원자력발전소에서 발생되는 중ㆍ저준위 방사성폐기물, 예컨대, 의류, 장갑, 폐지 등 가연성 폐기물을 호퍼(10)로 투입하고, 호퍼(10)에서 파쇄기(12)로 폐기물을 일정한 크기로 파쇄한 후에 탄화설비로 공급하는 것이다. 공급설비는 탄화설비의 탄화효율을 높이고 원활한 연속공정이 이루어지도록 파쇄기(12)를 이용한다. 파쇄기(12)는 파쇄기제어패널(13)의 작동(RUN) 및 정지(STOP) PBS(Push Button Switch)로 모터(11)를 구동시키고 파쇄기인버터에 의하여 속도조절이 가능하다. 더욱이 파쇄기(12)는 가연성 방사성폐기물을 일정한 크기로 파쇄한 후 호퍼(10)를 통해 탄화설비로 투입된다.
탄화설비는 공급설비에서 일정 크기로 파쇄된 중ㆍ저준위 방사성폐기물에 과열증기를 직분사하여 탄화시켜 부피를 감량한다. 탄화설비는 회전하는 스크류(27)가 설치된 탄화로(20)를 포함한다. 탄화로(20)는 대략 원통형의 하우징으로 구성되고 수평으로 설치된다. 탄화로(20)에는 중ㆍ저준위 방사성폐기물이 투입되는 투입구(21), 재열증기발생기(55)에서 재열증기가 투입되는 증기유입구(22), 탄화부산물이 배출되는 탄화부산물배출구(23) 및 탄화가스가 배출되는 탄화가스배출구(24)가 형성된다. 또한, 탄화로(20) 내측벽에 재열증기발생기(55)에서 유입된 재열증기를 좌우측면과 하측면에 걸쳐 분사하는 복수의 분사노즐(26)이 형성된 챔버(25)가 설치된다.
탄화로(20)에 설치된 스크류(27)는 모터(29)의 구동으로 작동된다. 모터(29)는 탄화설비제어패널(30)의 작동(RUN) 및 정지(STOP) PBS(Push Button Switch)로 구동되고 인버터에 의하여 스크류의 속도조절이 가능하다. 더욱이 모터(29)의 회전속도를 조절하여 가연성 방사성폐기물이 탄화부산물배출구(23)에 도달할 때까지 충분히 탄화될 수 있도록 하는 것이 좋다. 탄화로(20)는 중ㆍ저준위 방사성폐기물이 투입되는 투입구(21) 앞단, 즉, 파쇄기(12)와 탄화로(20) 사이에는 이중 슬라이드게이트(14)가 설치되고, 이중 슬라이드게이트(14) 사이에는 호퍼가 설치되어 탄화로(20)에 설치된 타이머에 각각의 솔레노이드밸브가 교차 동작하여 가연성 폐기물을 투입과 배출 때에 외부공기를 차단하고 연속적으로 투입할 수 있도록 한다. 또한, 탄화로(20)의 탄화부산물배출구(23)와 탄화부산물 저장탱크(28) 사이에 이중 슬라이드게이트(15)가 설치되고, 이중 슬라이드게이트(15) 사이에는 호퍼가 설치되어 탄화로(20)에 설치된 타이머에 각각의 솔레노이드밸브가 교차 동작하여 탄화부산물 저장탱크(28)에 탄화부산물을 배출 때에 외부공기를 차단하고 균질한 탄화물을 얻을 수 있도록 한다.
따라서 탄화로(20)는 공급된 중ㆍ저준위 방사성폐기물을 회전하는 스크류(27)로 수평으로 이송시키는 동안 재열증기발생기(55)에서 공급된 저압의 과열증기를 직분사하여 탄화시킨 후 탄화부산물과 탄화가스를 분리하여 각각의 배출구를 통해 탄화부산물탱크와 송풍기로 각각 배출한다.
열원설비는 일정 온도 이상의 과열증기를 생산하여 탄화로(20)에 필요한 열원을 공급하는 것이다. 즉, 열원설비는 500도 이상의 과열증기를 포화증기발생기(50)에서 생산하여 탄화로(20)와 재열증기발생기(55)로 공급한다. 포화증기발생기(50)는 공급된 시상수를 증발기를 통하여 일정 온도, 예컨대, 100도 이상의 포화증기를 생산한다. 증발기는 복수의 히터를 이용하여 시상수를 가열하여 포화증기로 생산한다. 포화증기발생기(50)는 탄화설비제어패널(30)의 작동(START) 및 정지(STOP) PBS(Push Button Switch)로 구동된다. 포화증기발생기(50)에서 생산된 포화증기는 순환 송풍기(40)를 통해 순환라인에 공급된다. 순환 송풍기(40)는 탄화설비제어패널(30)의 작동(START) 및 정지(STOP) PBS(Push Button Switch)로 구동되고 속도조절이 가능하도록 설계된다. 포화증기발생기(50)에서 발생된 포화증기는 탄화로(20), 재열증기발생기(55) 및 순환라인을 통해 공급된다.
또한, 재열증기발생기(55)는 포화증기발생기(50)에서 발생된 포화증기가 순환 송풍기(40)를 이용하여 순환라인을 통해 유입되면 이를 재가열하여 일정 온도, 예컨대, 500도 이상의 저압의 과열증기를 생산하여 탄화로(20) 및 순환라인에 공급한다. 재열증기발생기(55)는 다단으로 설치되어 각 단마다 복수의 전기히터(Flanged Immersion Heater)를 이용하여 이송되는 포화증기의 온도를 상승시킨다. 더욱이 재열증기발생기(55)에 설치된 재열증기발생기제어패널(57)로 각각의 전기히터를 작동(START) 및 정지(STOP) PBS(Push Button Switch)에 의하여 구동되도록 설계된다. 더욱이 재열증기발생기(55)의 입력온도와 지시계를 포함하는 온도 컨트롤러로 각각 설정되어 있는 온도 값에 따라 재열증기발생기(55) 각 단의 전기히터를 온 또는 오프하여 500도 이상의 저압 과열증기를 생산하여 순환 송풍기(40)로 순환시킨다.
다음으로, 가연성 중ㆍ저준위 방사성폐기물을 탄화설비로 탄화시키는 과정에서 발생되는 고온의 가스와 수분을 제거하고 배출가스로 인한 오염사고를 방지하기 위한 탄화가스, 즉, 폐가스를 처리하는 설비의 구성을 설명한다.
도 4 내지 도 5에서, 냉각설비는 탄화로(20)에서 발생되어 분리된 고온의 탄화가스를 공랭식 열교환으로 냉각시킨다. 냉각설비에는 가스냉각기(60)와 가스냉각팬(61)이 포함된다. 가스냉각기(60)는 열교환기로 탄화가스에 포함된 열을 모터로 구동되는 가스냉각팬(61)에서 송풍된 공기로 냉각시킨다. 가스냉각기(60)에서 열교환이 이루어지는 동안 응축수는 응축수 저장탱크(69)로 분리되어 배출되고 냉각된 탄화가스는 세정설비로 공급된다.
세정설비는 냉각설비에서 냉각된 탄화가스에 세정액을 분사하여 액점, 액막, 기포에 의해서 탄화가스에 함유된 먼지를 분리하여 포집한다. 세정설비에는 세정탑(62)과, 세정탑(62)에 세정액을 분무하는 복수의 스프레이펌프(63), 그리고 세정탑에서 세정된 탄화가스를 시상수로 냉각시키는 응축기(64)가 포함된다. 세정탑(62)은 벤튜리관으로 유입된 탄화가스를 스프레이펌프(63)에서 공급된 세정액으로 흡입한 후 스프레이펌프(63)에서 분사된 세정액을 탄화가스에 분무한다. 그리고 탄화가스에서 분리된 먼지는 세정탑(62) 하부에 침전되어 응축수 저장탱크(69)로 분리 배출된다. 그리고 세정탑(62)에서 먼지가 분리된 탄화가스는 응축기(64)로 공급되어 냉각된다. 응축기(64)에서 탄화가스를 응축하는 동안 발생되는 응축수는 응축수 저장탱크(69)로 분리 배출된다.
제습설비는 세정설비의 세정탑(62)과 응축기(64)를 거친 탄화가스와 냉각설비의 가스냉각기(60)에서 열교환으로 발생된 열에 포함된 수분을 제거하는 것이다. 제습설비는 제습기(65)를 포함한다. 제습기(65)를 통해 탄화가스에서 제습된 물은 응축수 저장탱크(69)로 분리 배출된다. 제습기(65)를 거친 탄화가스는 대기로 방출되거나 백연저감설비로 배출된다.
백연저감설비는 제습설비의 제습기(65)에서 수분이 제거된 탄화가스에 포함된 입자상 물질과 방사능 물질을 다단으로 설치된 헤파필터(66)로 제거한다. 그리고 냉각설비의 가스냉각기(60)를 통과한 가스와 헤파필터(66)를 통과한 가스를 믹싱챔버(67)에서 혼합하여 송풍팬(68)을 통해 대기 중으로 최종 방출시킨다.
응축수 저장탱크(69)는 냉각설비, 세정설비 및 제습설비에서 각각 분리된 응축수, 입자상 물질, 수용성 가스 및 방사성 물질을 임시 저장한다.
또한, 탄화가스처리설비는 컨트롤패널(70)의 제어로 냉각, 세정, 응축, 제습, 필터링 및 백연저감 등이 이루어진다.
다음으로, 가연성 중ㆍ저준위 방사성폐기물을 탄화설비로 탄화시키는 과정에서 발생되는 액체폐기물을 처리하여 부피를 저감시키는 장치의 구성을 설명한다.
도 6에서, 폐액 처리 장치로서, 폐액저장탱크(80)는 탄화가스처리설비의 냉각설비, 세정설비 및 제습설비 등에서 각각 분리된 응축수, 입자상 물질, 수용성 가스 및 방사성 물질을 포함하는 액체폐기물을 저장한다. 폐액저장탱크(80)는 증발건조기(81)로 안정적인 공급을 위하여 저장탱크로 대략 300리터의 용량이 적용된다. 폐액저장탱크(80)는 탄화가스처리설비의 응축수탱크(69)에서 액체폐기물을 공급받는다. 더욱이 응축수탱크(69)가 폐액저장탱크(80)로 대체될 수 있다.
증발건조기(81)는 폐액저장탱크(80)에서 액체폐기물을 공급받아 수분을 증발시키는 운전을 수행하고, 증발운전이 종료되면 건조운전을 통해 수분함유량을 저감시켜 과립물로 배출하는 것이다. 증발건조기(81)에는 교반기(82)가 포함되고, 교반기(82)는 저속 운전된다. 또한, 증발건조기(81) 하부 표면에는 복수의 밴드히터(83)가 결합되어 증발건조기(81)를 가열시킨다. 또한, 증발건조기(81)에는 순환라인을 통해 증발건조기(81) 내부의 온도를 가열시키는 가열기(84)가 더 구비된다. 가열기(84)에서 가열된 열기는 송풍팬(89)으로 순환라인을 거쳐 증발건조기(81) 내부로 공급된다.
습분분리기(85)는 증발건조기(81)에서 증발된 증기 중에 포함된 이물질 및 비말을 분리한다. 따라서 습분분리기(85)는 기수를 분리하는 필터 등이 포함된다.
재생열교환기(86)는 증발건조기(81)에서 공급되는 폐액을 증발증기를 이용하여 예열하는 것이다. 재생열교환기(86)는 시간당 대략 5,000kcal 이상의 재생열을 교환한다. 그리고 냉각응축기(87)는 증발건조기(81)에서 발생된 증기를 냉각 응축시켜 일정 온도이하의 물로 응축하는 것이다. 냉각응축기(87)의 냉각응축용량은 시간당 대략 35,000kcal 이상이다.
응축수탱크(88)는 냉각응축기(87)에서 냉각된 후 배출된 응축수를 저장한다. 응축수탱크(88)는 냉각응축기(87)에서 냉각응축수를 펌프(91)로 공급받고 응축수탱크(88)에 저수된 응축수를 펌프(89)를 통해 배출한다. 또한, 공랭식냉각기(93)는 냉각팬으로 냉각수를 냉각시킨 후에 냉각응축기(87)로 공급한다.
이와 같이 이루어진 본 발명의 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치의 작용을 설명한다.
우선, 원자력발전소의 운용 중에 필연적으로 발생되는 중ㆍ저준위 방사성폐기물을 수집한 후 탄화효율을 높이고 원활한 연속공정이 이루어질 수 있도록 공급설비의 호퍼(10)에 넣고 파쇄기(12)로 일정 크기로 파쇄한다. 이때, 파쇄기제어패널(13)을 이용하여 파쇄기(12)의 작동을 위하여 속도조절이 가능한 모터(11)를 제어한다. 파쇄기(12)는 파쇄된 가연성의 중ㆍ저준위 방사성폐기물는 탄화설비의 탄화로(20)로 공급된다. 탄화로(20)의 투입구(21)에는 이중 슬라이드게이트(14)와 호퍼를 탄화설비제어패널(30)의 제어로 타이머가 설치된 솔레노이드밸브의 교차 동작으로 가연성 중ㆍ저준위 방사성폐기물을 투입할 때에 외부공기를 차단하면서 파쇄된 폐기물을 연속적으로 투입한다.
탄화로(20)로 투입된 폐기물은 탄화설비제어패널(30)의 제어로 모터(29)의 구동으로 스크류(27)가 회전한다. 그리고 탄화로(20)에는 재열증기발생기(55)에서 공급된 저압의 과열증기가 챔버(25)에 일정 간격을 두고 복수로 형성된 분사노즐(26)을 통해 분사된다. 즉, 탄화로(20)에 투입된 가연성 중ㆍ저준위 방사성폐기물은 스크류(27)의 회전방향에 대하여 수평으로 이동되는 동안 챔버(25)에 형성된 분사노즐(26)을 통해 분사된 저압의 과열증기에 직접 접촉되어 탄화된다. 탄화로(20)의 스크류(27) 회전속도는 대략 0.37 RPM 내외로 조절할 수 있다. 이때, 탄화로(20)의 스크류(27) 회전속도를 조절하여 가연성 중ㆍ저준위 방사성폐기물이 탄화부산물배출구(23)에 도달할 때까지 분사된 저압 과열증기에 의해 충분히 탄화될 수 있도록 하는 것이 좋다. 그리고 탄화부산물배출구(23)에도 이중 슬라이드게이트(15)와 그 사이의 호퍼를 통해 탄화설비제어패널(30)의 제어로 타이머가 설치된 솔레노이드밸브의 교차 동작으로 가연성 중ㆍ저준위 방사성폐기물을 배출할 때에 외부공기를 차단하고 균질한 탄화부산물을 얻을 수 있다.
또한, 열원설비의 포화증기발생기(50)에서 전기히터(51)의 작동으로 대략 100도 이상의 포화증기를 생산하여 순환 송풍기(40)와 순환라인을 통해 공급한다. 이때, 포화증기발생기(50)와 순환 송풍기(40)는 탄화설비제어패널(30)의 제어로 작동되고, 순환 송풍기(40)는 속도의 조절이 가능한 것이 좋다. 포화증기발생기(50)에서 발생된 포화증기는 탄화로(20), 재열증기발생기(55) 및 순환라인으로 각각 공급된다. 재열증기발생기(55)는 포화증기발생기(50)에서 공급된 포화증기를 복수 단에 각각 설치된 전기히터(56)로 가열하여 대략 600도 이상의 저압 재열증기를 생산하여 탄화로(20) 및 순환라인으로 공급한다. 재열증기발생기(55)는 재열증기발생기제어패널(57)의 제어로 설정된 온도의 재열증기를 생산한다. 더욱이 재열증기발생기(55)로는 탄화로(20)의 탄화가스배출구(24)에서 배출된 탄화가스가 순환 송풍기(40)를 통해 유입된다.
다음으로, 탄화로(20)의 탄화가스배출구(24)에서 배출된 고온의 탄화가스는 냉각설비, 세정설비, 제습설비 및 백연저감설비를 거쳐 컨트롤패널(70)의 제어로 처리된다. 즉, 탄화로(20)에서 발생되어 탄화가스배출구(24)를 통해 배출된 고온의 탄화가스는 가스냉각팬(61)이 구비된 가스냉각기(60)를 거쳐 열교환되어 냉각된다. 냉각된 탄화가스는 세정설비의 세정탑(62)으로 공급되어 스프레이펌프(63)에서 공급된 세정액으로 세정된다. 이때, 생성되는 액점, 액막, 기포 등에 의해 탄화가스에 포함된 먼지가 분리 및 포집된다. 일부 제거되지 않은 기체 부산물은 응축기(64)를 통과하면서 남아 있는 수분과 수용성가스를 응축하여 제거한다. 그리고 헤파필터(66)의 성능 저하를 최소화하기 위하여 제습설비의 제습기(65)로 탄화가스 중 수분을 90% 이상 제거한다. 제습된 탄화가스는 백연저감설비에 다단으로 구성된 헤파필터(66)를 거쳐 입자상 물질과 방사능 물질이 각각 제거된다. 최종적으로 믹싱챔버(67)를 통과한 후에 송풍팬(68)을 통해 대기로 방출된다. 또한, 세정탑에 저장된 응축수와 입자상 물질, 수용성 가스와 방사성 물질 등은 응축수 저장탱크(69)로 배출되어 보관된다.
다음은 가연성 폐기물의 과열증기에 의한 탄화과정에서 생성된 액체폐기물에 대하여 액체 방사성폐기물 저감으로 방사성폐기물의 부피감량비가 크고 제염계수가 1,000 이상인 증발기술을 이용하여 폐액을 증발 건조시킨다. 증발처리용량은 폐액을 대략 50리터/시간으로 처리할 수 있도록 한다. 따라서 응축수 저장탱크(69)에 보관된 응축수, 즉, 액체폐기물을 증발건조기(81)에 안정적으로 공급하기 위하여 폐액저장탱크(80)가 구비된다. 폐액저장탱크(80)는 대략 300리터 규모이다. 증발건조기(81)는 폐액저장탱크(80)로부터 폐액을 지속적으로 공급받아 복수의 밴드히터(83)와 가열기(84)에 의해 발생된 열로 액체폐기물을 증발시킨다. 증발건조기(81) 내 액체폐기물이 일정 농축도 이상이 되면 증발운전은 종료하고 건조운전을 수행하여 수분함유량을 과립물을 만들 수 있을 만큼 크게 줄인 다음에 배출할 수 있도록 교반기(82)를 저속 운전한다. 증발건조기의 용량은 대략 250리터 규모이다.
또한, 증발건조기(81)에서 증발된 증기에는 이물질과 비말 등이 함께 배출되므로 습분분리기(85)에서 이를 각각 분리한다. 그리고 증발건조기(81)에서 공급되는 폐액을 증발증기를 이용하여 재생열교환기(86)에서 예열하여 시간당 대략 5,000kcal로 열교환한다. 또한, 냉각응축기(87)는 증발건조기(81)에서 발생된 증기를 냉각 응축시켜 물로 응축시킨다. 이때, 냉각 응축 용량은 시간당 대략 35,000kcal 이다. 냉각응축기(87)는 공랭식냉각기(93)로부터 냉각된 냉각수를 공급받는다. 이후, 냉각응축기(87)에서 냉각된 응축수는 응축수탱크(92)에 저장된 후 분석을 통해 배출 여부를 확인한 후 환경으로 배출한다.
이와 같이 본 발명의 탄화 시스템을 통해 가연성 중ㆍ저준위 방사성폐기물을 탄화과정에서 생성된 탄화부산물의 부피와 중량을 현저하게 저감시킬 수 있다. 즉, 실험조건으로 의류(3Kg 및 27L), 장갑(1.3Kg 및 1L), 폐지(0.7Kg 및 0.8L)의 총 중량 5Kg 및 부피 28.8L의 폐기물을 대략 3시간 20분 동안 탄화시킨 후 탄화부산물의 중량은 0.6Kg으로 88% 저감되었고, 부피는 5L 가량으로 82.6%로 저감되었다.
이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것을 이 기술분야에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.
본 발명에 따른 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치는 가연성 잡고체를 포함하는 중ㆍ저준위 방사성폐기물을 저압의 과열증기로 탄화하는 과정에서 발생되는 액체폐기물의 부피를 감량함으로써 원자력발전소에서 연간 발생하는 중ㆍ저준위 방사성폐기물 드럼을 대략 1/5가량 줄일 수 있어 방사성폐기물의 처분비용의 절감과 영구처분장의 사용수명 연장으로 건설비용을 절감할 수 있으므로 산업상 이용가능성이 인정된다.
Claims (3)
- 호퍼로 투입된 원자력발전소에서 발생되는 중ㆍ저준위 방사성폐기물을 파쇄기로 일정한 크기로 파쇄한 후 탄화로에 공급하는 공급설비; 상기 공급설비에서 일정 크기로 파쇄되어 공급된 중ㆍ저준위 방사성폐기물을 회전하는 스크류가 설치된 탄화로에서 수평으로 이송하는 동안 재열증기발생기에서 탄화로에 공급된 저압의 과열증기를 직분사하여 탄화시킨 후 탄화부산물과 탄화가스를 분리하여 탄화부산물탱크와 송풍기로 각각 배출하는 탄화설비; 일정 온도의 과열증기를 생산하여 상기 탄화로와 재열증기발생기로 공급하는 포화증기발생기와, 상기 포화증기발생기에서 발생된 포화증기를 재가열하여 일정 온도의 재열증기를 생산하여 탄화로에 공급하는 다단의 재열증기발생기와, 상기 탄화로에서 배출된 순환증기와 포화증기발생기에서 생산된 포화증기를 재열증기발생기로 공급하는 송풍기가 구비된 열원설비; 상기 탄화로에서 발생되어 분리된 고온의 탄화가스를 공랭식 열교환으로 냉각시키는 냉각설비; 상기 냉각설비에서 냉각된 탄화가스에 세정액을 분사하여 액점, 액막, 기포에 의해서 탄화가스에 함유된 먼지를 분리하여 포집하는 세정설비; 상기 세정설비를 거친 탄화가스와 냉각설비에서 열교환으로 발생된 열에 포함된 수분을 제거하는 제습설비; 상기 제습설비에서 수분이 제거된 탄화가스에 포함된 입자상 물질과 방사능 물질을 다단으로 설치된 헤파필터로 제거하고 상기 냉각설비를 통과한 가스와 헤파필터를 통과한 가스를 혼합하여 대기 중으로 최종 방출시키는 백연저감설비; 상기 파쇄기의 작동을 제어하는 파쇄기제어패널; 상기 탄화로, 송풍기 및 포화증기발생기의 작동을 제어하는 탄화설비제어패널; 상기 재열증기발생기의 작동을 제어하는 재열증기발생기제어패널을 포함하는 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에 있어서,상기 냉각설비, 세정설비 및 제습설비에서 각각 분리된 응축수, 입자상 물질, 수용성 가스 및 방사성 물질을 포함하는 액체폐기물을 저장하는 일정 용량의 폐액저장탱크;상기 폐액저장탱크에서 액체폐기물을 공급받아 수분을 증발시키는 운전을 수행하고, 증발운전이 종료되면 건조운전을 통해 수분함유량을 저감시켜 과립물로 배출하는 증발건조기;상기 증발건조기에서 증발된 증기 중에 포함된 이물질 및 비말을 분리하는 습분분리기;상기 증발건조기에서 공급되는 폐액을 증발증기를 이용하여 예열하는 재생열교환기;상기 증발건조기에서 발생된 증기를 냉각 응축시켜 일정 온도이하의 물로 응축하는 냉각응축기; 및상기 냉각응축기에서 냉각된 후 배출된 응축수를 저장하는 일정 용량의 응축수탱크를 포함하여 이루어진 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치.
- 청구항 1에 있어서,상기 증발건조기 표면에 복수의 밴드히터가 결합되고, 증발건조기 내부의 온도를 가열시키는 가열기를 더 포함하는 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치.
- 청구항 1에 있어서,상기 냉각응축기로 공급되는 냉각수를 공랭시키는 공랭식냉각기를 더 포함하는 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170081136A KR101833391B1 (ko) | 2017-06-27 | 2017-06-27 | 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치 |
KR10-2017-0081136 | 2017-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019004630A1 true WO2019004630A1 (ko) | 2019-01-03 |
Family
ID=61401163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/006582 WO2019004630A1 (ko) | 2017-06-27 | 2018-06-11 | 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101833391B1 (ko) |
WO (1) | WO2019004630A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111816341A (zh) * | 2020-08-04 | 2020-10-23 | 天津科技大学 | 一种基于界面蒸发放射性废水分离回收固液放射性废弃物的装置及方法 |
CN112275036A (zh) * | 2020-10-14 | 2021-01-29 | 太仓中化环保化工有限公司 | 一种用于制冷剂生产过程汇总副产物分离设备 |
CN112516725A (zh) * | 2020-11-19 | 2021-03-19 | 中国原子能科学研究院 | 一种钠气溶胶去除装置及其设计方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110748799A (zh) * | 2019-11-25 | 2020-02-04 | 成都天保节能环保工程有限公司 | 一种蒸汽重整装置冷凝液收集再利用系统及其工艺方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100498881B1 (ko) * | 2002-06-07 | 2005-07-04 | 현대모비스 주식회사 | 방사성폐기물의 소각·용융처리장치 및 공정 |
KR100721911B1 (ko) * | 2006-07-19 | 2007-05-28 | (주)청명씨에스 | 과열증기를 이용한 폐기물 열처리장치 |
KR101521622B1 (ko) * | 2014-09-29 | 2015-05-21 | 신한열기 주식회사 | 백연 방지 시스템 |
KR101530909B1 (ko) * | 2015-01-15 | 2015-06-23 | 주식회사 한국테크놀로지 | 과열증기를 이용한 저준위 방사성폐기물의 부피 감량 시스템 |
KR101585455B1 (ko) * | 2014-10-31 | 2016-01-15 | 한국수력원자력(주) | 액체 방사성 폐기물의 증발건조 처리장치 |
-
2017
- 2017-06-27 KR KR1020170081136A patent/KR101833391B1/ko active IP Right Grant
-
2018
- 2018-06-11 WO PCT/KR2018/006582 patent/WO2019004630A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100498881B1 (ko) * | 2002-06-07 | 2005-07-04 | 현대모비스 주식회사 | 방사성폐기물의 소각·용융처리장치 및 공정 |
KR100721911B1 (ko) * | 2006-07-19 | 2007-05-28 | (주)청명씨에스 | 과열증기를 이용한 폐기물 열처리장치 |
KR101521622B1 (ko) * | 2014-09-29 | 2015-05-21 | 신한열기 주식회사 | 백연 방지 시스템 |
KR101585455B1 (ko) * | 2014-10-31 | 2016-01-15 | 한국수력원자력(주) | 액체 방사성 폐기물의 증발건조 처리장치 |
KR101530909B1 (ko) * | 2015-01-15 | 2015-06-23 | 주식회사 한국테크놀로지 | 과열증기를 이용한 저준위 방사성폐기물의 부피 감량 시스템 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111816341A (zh) * | 2020-08-04 | 2020-10-23 | 天津科技大学 | 一种基于界面蒸发放射性废水分离回收固液放射性废弃物的装置及方法 |
CN112275036A (zh) * | 2020-10-14 | 2021-01-29 | 太仓中化环保化工有限公司 | 一种用于制冷剂生产过程汇总副产物分离设备 |
CN112516725A (zh) * | 2020-11-19 | 2021-03-19 | 中国原子能科学研究院 | 一种钠气溶胶去除装置及其设计方法 |
CN112516725B (zh) * | 2020-11-19 | 2022-03-11 | 中国原子能科学研究院 | 一种钠气溶胶去除装置及其设计方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101833391B1 (ko) | 2018-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019004630A1 (ko) | 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템에서 발생된 폐액을 처리하는 장치 | |
CN108947181B (zh) | 循环蒸汽再加热污泥干燥系统 | |
US10967323B2 (en) | Exhaust gas purifying and heat recovering system and method for sludge treatment | |
KR102171442B1 (ko) | 배기가스의 열회수를 이용한 염색업종 텐터 후단의 고점성 오염물질 처리공정 | |
KR101695473B1 (ko) | 배가스의 폐열회수 및 탈습겸용 장치 | |
CN1043176A (zh) | 干洗的方法和设备以及回收其中溶剂的方法和装置 | |
JP2868432B2 (ja) | 溶鉱炉溶滓の水砕システムにおける有害ガス処理方法および処理設備 | |
WO2018230898A1 (ko) | 저압 과열증기를 이용한 중ㆍ저준위 방사성폐기물 탄화 시스템 | |
CN108607532A (zh) | 活性炭吸附再生器及安装有吸附再生器的废气处理线 | |
WO2012093782A2 (ko) | 슬러지 건조시스템 | |
JP2000279756A (ja) | 排ガス処理方法及び処理設備 | |
JP4267210B2 (ja) | 廃棄物処理システム並びにその運転方法 | |
KR960014030B1 (ko) | 진공증발기 폐수처리설비 | |
KR102235341B1 (ko) | 유기성 폐수 건조자원화 및 유기산 분리 복합 시스템 | |
CN213288120U (zh) | 一种土壤热脱附近零排放系统 | |
CN208161311U (zh) | 活性炭VOCs处理器及安装有该处理器的废气处理线 | |
CN107090302A (zh) | 一种湿熄焦高温蒸汽处理装置 | |
JPS61209099A (ja) | 汚泥の乾燥・焼却方法および装置 | |
CN107218797A (zh) | 一种干燥装置及其应用 | |
KR101977211B1 (ko) | 유기성 폐기물 건조 시스템의 미세분진 제거장치 | |
CN102930913A (zh) | 放射性湿废物烘干系统 | |
CN212532713U (zh) | 连续式污泥干化装置 | |
CN217351155U (zh) | 污泥干化及尾气处理系统 | |
EP4215220A1 (en) | Liquid recovery system and waste disinfection apparatus | |
KR102321590B1 (ko) | 운영 또는 해체되는 원전에서의 방사성폐기물 처리 시에 발생되는 분진에 대한 배기처리장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18824130 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18824130 Country of ref document: EP Kind code of ref document: A1 |