WO2019004416A1 - 最適航路探索方法及び装置 - Google Patents

最適航路探索方法及び装置 Download PDF

Info

Publication number
WO2019004416A1
WO2019004416A1 PCT/JP2018/024775 JP2018024775W WO2019004416A1 WO 2019004416 A1 WO2019004416 A1 WO 2019004416A1 JP 2018024775 W JP2018024775 W JP 2018024775W WO 2019004416 A1 WO2019004416 A1 WO 2019004416A1
Authority
WO
WIPO (PCT)
Prior art keywords
sea weather
sea
weather
optimal route
forecast data
Prior art date
Application number
PCT/JP2018/024775
Other languages
English (en)
French (fr)
Inventor
哲也 濱野
成子 大橋
恭平 石上
久之輔 河田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2019004416A1 publication Critical patent/WO2019004416A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Definitions

  • the present invention relates to an optimal route search method and apparatus for searching for an optimal route.
  • Weather routing predicts the sea weather that a ship encounters during a voyage from the sea weather forecast data indicating the current and future weather and sea conditions (hereinafter referred to as "sea weather"), and the ship in the forecasted sea weather
  • This is a technology to select the most suitable route from given routes in consideration of the speed performance of the vehicle, the motion of the hull, fuel consumption and the like.
  • a safest route a shortest time route, a minimum fuel consumption route, a maximum economic route, and a combination thereof are proposed.
  • Weather routing predicts the sea weather encountered by ships from the departure time to the arrival time based on long-term sea weather forecast data.
  • Long-term sea weather forecast data is generally based on the calculation results of a numerical forecast model. Therefore, the forecast value for the same time may change between the sea weather forecast data used at the time of calculation of the optimal route before the voyage and the sea weather forecast data obtained thereafter.
  • an arrival point from a certain sea area is determined based on individual ship performance data unique to the ship and a forecasted value of sea weather forecast data indicating a long-term sea weather condition.
  • the forecast value of the sea weather forecast data that changes temporally and spatially at the position of the calculated vessel is used every time a predetermined time elapses until the arrival point is reached. .
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a technique for searching for an optimal route by weather routing in consideration of prediction accuracy of sea weather forecast data which decreases with the passage of time. It is to do.
  • an optimum route search method that optimizes a predetermined evaluation index by weather routing based on individual ship performance data specific to a ship and sea weather forecast data indicating sea weather conditions.
  • An optimal route search method for searching The sea weather forecast data is characterized by weighting so that the weight decreases as time passes over the forecast period.
  • an optimal route searching device is A storage device storing individual ship performance data specific to the ship; A storage device storing sea weather forecast data indicating sea weather conditions; A route calculation for searching for an optimum route that optimizes a predetermined evaluation index by weather routing based on the sea weather prediction data and the individual ship performance data weighted so that the weight decreases with the passage of time over the prediction period And an apparatus.
  • the evaluation index is that the prediction accuracy of the sea weather forecast data decreases with the passage of time, in other words, the uncertainty of the sea weather forecast data is It is reflected that it increases with progress. Therefore, it is possible to make the influence of the large uncertainty part of the sea weather forecast data on the optimal route calculation smaller than the influence of the small uncertainty part on the optimal route calculation.
  • the difference between the sea weather forecast data and the average sea weather may be weighted.
  • sea weather after the expected period is regarded as average sea weather, it is possible to smoothly and continuously predict the predicted period and the evaluation value after the expected period.
  • the weight may be changed correspondingly to the prediction probability of the sea weather forecast data.
  • an optimum route search method that optimizes a predetermined evaluation index by weather routing based on individual ship performance data specific to a ship and sea weather forecast data indicating sea weather conditions.
  • An optimal route search method for searching Addition from the departure time to the arrival time of the evaluation function in which the evaluation index includes, as a control variable, a predicted sea weather based on the sea weather forecast data and a weight that decreases as time passes over the forecast period of the sea weather forecast data It is characterized in that it is a value or an integral value.
  • an optimal route searching device is A storage device storing individual ship performance data specific to the ship; A storage device storing sea weather forecast data indicating sea weather conditions; And a route calculation device for searching for an optimum route which optimizes a predetermined evaluation index by weather routing based on the individual ship performance data and the sea weather forecast data.
  • the evaluation index includes, as a control variable, a predicted sea weather based on the sea weather forecast data and a weight that decreases as time passes over the forecast period of the sea weather forecast data It is characterized in that it is a value or an integral value.
  • the evaluation index is that the prediction accuracy of the sea weather forecast data decreases with the passage of time, in other words, the uncertainty of the sea weather forecast data is It is reflected that it increases with progress. Therefore, it is possible to make the influence of the large uncertainty part of the sea weather forecast data on the optimal route calculation smaller than the influence of the small uncertainty part on the optimal route calculation.
  • the weight may be changed correspondingly to the prediction probability of the sea weather forecast data.
  • the weight may be attached to the difference between the evaluation value in the predicted sea weather and the evaluation value in the plain water.
  • the weight may be attached to the difference between the estimated value in the predicted sea weather and the estimated value in the average sea weather in the above-described optimal route searching method and optimal route searching apparatus.
  • FIG. 1 is a block diagram showing an overall configuration of a suitable route searching apparatus according to an embodiment of the present invention.
  • (A) to (g) of FIG. 2 are tables showing examples of weighting functions.
  • FIG. 3 is a chart showing the change over time of the evaluation value, FIG. 3 (a) shows a weighted evaluation value, and FIG. 3 (b) shows a non-weighted evaluation value for comparison.
  • FIG. 4 is a chart showing the change with time of the evaluation value, where FIG. 4 (a) shows a weighted evaluation value, and FIG. 4 (b) shows a non-weighted evaluation value for comparison.
  • FIG. 5 is a chart showing time-dependent changes in weighted predicted sea weather.
  • FIG. 6 is a chart showing time-dependent changes in weighted predicted sea weather.
  • FIG. 1 is a block diagram showing the overall configuration of an optimal route searching device 1 according to an embodiment of the present invention.
  • the optimum route searching device 1 shown in FIG. 1 includes a communication device 11, a processing device 12, an input device 21, a display device 22, and various storage devices M1 to M4.
  • Each of the storage devices M1 to M4 may be configured by separate storage devices, or a plurality of storage devices may be configured by one storage device.
  • the processing device 12 is a computer having an arithmetic unit such as a CPU and a storage unit such as a ROM and a RAM, and the CPU executes a predetermined program (such as an optimal route search program) stored in advance in the storage unit. By this, the operation of each part of the optimal route searching device 1 is controlled.
  • the processing unit 12 functions as a sea weather forecast data acquisition unit 15 and a route calculation unit 16 by the CPU executing an optimum route search program.
  • the input device 21 is configured by a mouse or a keyboard, and is a unit that receives an input by a user operation.
  • the input device 21 outputs, to the processing device 12, input information by the operation of the user.
  • the display device 22 is configured by a display device such as a liquid crystal display, and displays information according to display data given from the processing device 12 on the screen.
  • the communication device 11 is connected to the network 7.
  • the processing device 12 controls the communication device 11, acquires information from the server 50 of the external organization 5 via the network 7, and stores the information in the storage devices M1 to M3.
  • the servers 50 of the external organization 5 communicably connected to the processing device 12 may be of a plurality or plural types.
  • the communication device 11 can mutually communicate with the boat maneuvering device 20 mounted on the vessel 2 via the inter-land communication system 9.
  • the processing device 12 controls the communication device 11 to transmit the information related to the optimal navigation route to the ship maneuvering device 20 of the ship 2 via the ship-land communication system 9, and acquires information such as actual sea weather conditions.
  • the optimum route searching device 1 is installed on land, but may be installed on the ship 2.
  • the storage device M1 stores individual ship performance data unique to the ship 2.
  • the individual vessel performance data may be, for example, a hull performance model.
  • the hull performance model is a numerical model or a simulation model for determining the in-underwater characteristics of the hull and the in-wave response characteristics (drag increase characteristics and hull motion characteristics) of the hull.
  • This hull performance model has the performance of the hull in plain water plus the influence of disturbances in the actual sea area such as wind, waves and waves.
  • the processing device 12 may, for example, determine a real-time response surface such as a short-term response surface indicating a hull resistance increase distribution (sea margin distribution), a short-term response surface of a wave load distribution, and a short-term response surface indicating vertical acceleration distribution.
  • Sea area performance can be determined.
  • the increase in ship resistance is a function of [incident wave direction, wave period, wave height, ship speed, drainage volume or draft, trim, wind direction, wind speed, propeller rotation speed, heading]. It is found from exercise.
  • Sea weather forecast data is stored in the storage device M2.
  • the sea weather forecast data acquisition unit 15 acquires sea weather forecast data updated a plurality of times a day (for example, six times) and stores the sea weather forecast data in the storage device M2.
  • the sea weather forecast data includes, for example, weather forecast and sea condition forecast of 30 minutes to 6 hours interval from 8 to 10 days ahead.
  • sea weather forecast and sea condition forecast for example, wind speed (mean wind speed), wind direction (mean wind direction), wind wave height (wind wave significant wave height), wind wave period (wind wave mean wave period), wind wave direction (wind wave mean wave direction), swell Wave height (sweep significant wave height), swell wave cycle (sweep average wave cycle), undulation wave direction (sweep average wave direction), ocean current velocity, ocean current direction, tide current velocity, tide current direction, water temperature, Each item of temperature and solar radiation is included.
  • Such sea weather forecast data is represented, for example, as a space-time-time map of sea weather at six-hour intervals from 8 to 10 days ahead, wave height prediction on sea surface distribution, and time series table of wave height distribution prediction. Good.
  • the sea area where the ship travels is subdivided by mesh, and the velocity of the ocean current at each point on the mesh, direction, wind wave height, wave direction, wave period, wave height, wave direction, wave of swell Information such as a cycle, wind direction / speed, tide flow velocity / direction, water temperature, air temperature, solar radiation amount, etc. may be indicated.
  • the storage device M3 stores, in addition to the data stored in the storage devices M1 and M2, data necessary for executing the optimal route search program.
  • the data may include, for example, a chart around the voyage, tidal stream temperature statistical data storing tidal stream temperature statistical information on the nautical area around the voyage, and depth information on the marine area around the voyage.
  • the storage device M4 stores data created when the optimal route search program is executed, that is, the optimal route and the like.
  • the processing unit 12 of the optimum route search device 1 first has a departure point X0 (departure port), an arrival point Xf (arrival port), a departure time T0, an arrival time Tf, constraints considering safety operation, and a type of optimum course calculation. And acquire selection conditions such as the vessel's planned route. Constraint conditions in consideration of safe operation include the upper limit value of encounter wave height, the upper limit value of ship motion, and the like.
  • the type of optimal route calculation is selected from, for example, solutions of known optimal route problems such as isochronous method, dynamic programming, Dijkstra method, variational method and the like. These selection conditions may be input by the operation of the input device 21 by the user, or the processing device 12 may read out the information stored in advance in the storage device M3.
  • the route calculation unit 16 of the processing unit 12 uses the weather routing technology to obtain an optimum route based on the acquired selection conditions, the sea weather forecast data read from the storage devices M1 to M3, and information such as the ship performance model. Search for The processing unit 12 stores the searched optimum route in the storage unit M4. In this way, the optimum route found in this way can be sent from the optimum route searching device 1 to the boat maneuvering device 20 according to a few times a day or in response to a request from the boat maneuvering device 20 mounted on the vessel 2. Delivered through.
  • the "optimal route” refers to an optimal route of a navigation unit that runs from the departure point X0 (departure port) to the arrival point Xf (arrival port).
  • the optimal route in the case of rerouting refers to the optimal route to the arrival point Xf starting from the ship position at a certain time.
  • the “optimum” route is a route which makes the predetermined evaluation index the optimum, and types such as the safest route, the shortest time route, the minimum fuel consumption route, and the maximum economic route have been proposed.
  • the optimal route described here is the minimum fuel consumption route which arrives at arrival time Tf at arrival point Xf and makes a predetermined evaluation index F described later the optimal value (ie, the minimum value). The type is not limited to this.
  • the route calculation unit 16 of the processing device 12 is configured with a simulation model that performs weather routing for optimal route search.
  • This weather routing simulation model is not limited to the minimization of fuel consumption, but includes constraints such as main engine output restriction and operation limits considering safe operation, and is not limited to natural reduction of ship speed, and stormy weather avoidance etc.
  • the conscious slowdown of is also modeled and incorporated.
  • Weather routing simulation uses ship performance models and sea weather forecast data to predict ship speed, main engine output, and ship movement under sea weather conditions that change from time to time during a voyage, and from departure point X0 An optimal route is selected from a plurality of given routes up to the arrival point Xf. Since the fuel consumption per unit time is proportional to the main aircraft output, weather routing simulation for searching the minimum fuel consumption route predicts the main aircraft output during the voyage and calculates the total fuel consumption to the destination .
  • the selected route minimizes the evaluation index F.
  • the evaluation index F the prediction accuracy of sea weather prediction data, which decreases with the passage of time, is taken into consideration. Below, a specific example is given and explained about evaluation index F in which prediction accuracy of sea weather forecast data which falls with progress of time was considered.
  • Example 1 of evaluation index F In the evaluation index F according to the first example, the evaluation function f i is weighted by a weight g i (t) representing a decrease in prediction accuracy with the passage of time from the forecast of the weather prediction data.
  • the evaluation index F of Equation 1 is a value obtained by integrating the evaluation function f i at time t from the departure time T0 to the arrival time Tf.
  • the evaluation index F of Expression 2 is a value obtained by adding the evaluation function f i from the departure time T0 to the arrival time Tf.
  • the evaluation index F is represented by the equation 1 or 2 and any may be adopted.
  • the evaluation function f i uses the predicted sea weather w j (t), the navigation condition u k (t), and the weight g i (t) as control variables.
  • the evaluation function f i is the evaluation function f 1 relating to fuel consumption, but the evaluation function f 2 relating to the safest operation, the evaluation function f 3 relating to the sea margin, the evaluation function f 4 relating to the hull condition,. -It may be an evaluation function of various evaluation targets such as.
  • the predicted sea weather w j (t) is the wind direction at time t, wind speed, wave height, wave cycle, wave direction, ocean current velocity, ocean current direction, tide current velocity, tide current direction, ocean temperature, air temperature, and It represents sea weather forecast data including the amount of solar radiation, etc. or sea weather forecasted based thereon.
  • the predicted sea weather w j may be various sea weathers such as wind direction w 1 , wind speed w 2 , wind wave height w 3 ,.
  • the voyage conditions u k (t) represent voyage conditions such as the planned speed, the planned number of revolutions, and the planned main aircraft output at time t.
  • the sailing conditions u k (t) may be various sailing conditions such as, for example, a planned boat speed u 1 , a planned rotation number u 2 , a planned horsepower u 3 ,.
  • the weight g i (t) is a weighting function for each of the predicted sea weather w j (t) and the voyage conditions u k (t), which represents a decrease in prediction accuracy with the passage of time of forecast sea weather at time t. is there.
  • the weighting function may be set individually for the evaluation target (i) of the evaluation function f i .
  • the weight g i (t) is a decreasing function that decreases over time over the forecast period of the sea weather forecast data.
  • the weight g i (t) may be a decreasing function with which the decreasing rate decreases.
  • the weight g i (t) may be a decreasing function in which the decreasing rate increases.
  • the weight g i (t) may be a decreasing function having a constant decreasing rate, that is, a linear function.
  • the weight g i (t) may be a decreasing function having an inflection point.
  • the weight g i (t) may be a step-like decreasing function.
  • the weights g i (t) as described above may be determined, for example, by statistics.
  • the weight g i (t) may correspond to the prediction probability associated with the sea weather forecast data provided by the provider of the sea condition / weather information.
  • the evaluation function f i defined in this way is the fuel consumption per unit time, ship speed, horsepower, ship resistance, ship movement, sea weather, solar power generation, sea margin, BOGR of the gas ship It may represent a value such as Rate) itself, or an evaluation value in consideration of the fuel price, the degree of safety impact of the hull and the load, or an evaluation value combining them.
  • Example 1 In Application 1 of Example 1, it is assumed that the predicted sea weather w j (t) after the forecast period (for example, 8 days) of the sea weather prediction data has passed is the sea weather in the sea-free plain water. And in this application, the weight g i (t) is attached to the difference between the evaluation value in predicted sea weather and the evaluation value in plain water. In the case of the ocean weather in the plain water, the ocean current, the wave height of wind waves, the wave height / wave period of the swell, the wind speed, and the tide are all zero.
  • the evaluation value in the case of weighting decreases with the passage of time, and becomes close to or the same as the evaluation value of the plain water in the middle or at the end of the forecast period. After the forecast period, it converges to the evaluation value in plain water.
  • the evaluation value of the forecast period and the evaluation value after the forecast period are smoothly continuous.
  • the evaluation index F weighted so that the future evaluation value approaches the evaluation value in plain water is obtained.
  • the weight g i (t) may be attached to the difference between the evaluation value in predicted sea weather and the evaluation value in plain water.
  • sea weather monthly, seasonal, or yearly mean sea weather of the local sea area including the area where the sea weather is predicted may be used.
  • monthly, seasonal, or annual average sea weather of the ocean including the area where the sea weather is predicted may be used as the "mean sea weather”.
  • predicted sea weather for example, last predicted sea weather at the end of the forecasting period
  • a constant value arbitrarily determined by the operator or designer of weather routing may be used.
  • the evaluation value in the case of weighting decreases with the passage of time, and in the middle or the end of the forecast period, it is close to or the same value as the evaluation value in average sea weather After the forecast period, it converges on the average sea meteorological evaluation value.
  • the evaluation value of the forecast period and the evaluation value after the forecast period are smoothly continuous.
  • the evaluation index F weighted in such a manner that the future evaluation value approaches the evaluation value in the average sea weather is obtained.
  • the weight g i (t) may be attached to the difference between the evaluation value in predicted sea weather and the evaluation value in average sea weather.
  • the predicted sea weather w j (t) after the forecast period (for example, 8 days) of the sea weather forecast data has passed is the average sea margin of the sea area and the corresponding sea weather (hereinafter referred to as “ It is assumed that it is called "average sea margin corresponding sea weather”. And in this application, the weight g i (t) is attached to the difference between the evaluation value in the predicted sea weather and the evaluation value in the sea weather corresponding to the average sea margin.
  • the “average sea margin” the monthly, seasonal, or annual average sea margin of the local sea area including the area where the sea weather is predicted may be used.
  • the monthly, seasonal, or annual average sea margin of the ocean, including the region where sea weather is predicted may be used as the “average sea margin”.
  • a constant value arbitrarily determined by the weather routing operator or designer may be used as the “average sea margin”.
  • the sea margin is the horsepower due to the influence of the disturbance from the horsepower necessary to sail at ship speed Vs in flat water, of the horsepower necessary to move the actual sea area at the same ship speed Vs as ship speed Vs in plain water. Represents the rate of increase.
  • the sea margin is expressed as a ratio of "increase in horsepower by disturbance" and "horsepower required to run at ship speed Vs in plain water".
  • the horsepower required to run at boat speed Vs in plain water can be determined using the individual ship performance model. Also, the increase in horsepower due to disturbance can be determined using the individual ship performance model and sea weather. Therefore, it is possible to obtain sea weather compatible with average sea margin from the average sea margin.
  • the weight g i (t) may be attached to the difference between the evaluation value in predicted sea weather and the evaluation value in sea weather corresponding to the average sea margin.
  • the weight g i (t) is between the evaluation value in the predicted sea weather and the average sea margin so that the evaluation value after passing the forecast period (for example, 8 days) of the sea weather forecast data becomes the average sea margin. It is attached to the difference.
  • the weight g i (t) may be attached to the difference between the evaluation value (ie, the sea margin) in the predicted sea weather and the average sea margin.
  • the optimal route search method is based on the individual ship performance data specific to the ship 2 and the sea weather forecast data indicating the sea weather condition, and the predetermined evaluation index is weathered in the weather routing.
  • the optimum route searching device 1 includes a storage device M1 storing individual ship performance data unique to the ship 2, a storage device M2 storing sea weather forecast data indicating a sea weather condition, and an individual ship. It has a route calculation unit 16 (a route calculation device) for searching for an optimum route which makes a predetermined evaluation index optimum by weather routing based on performance data and sea weather forecast data.
  • evaluation index F includes, as control variables, predicted sea weather w j (t) based on sea weather forecast data and weight g i (t) that decreases with the passage of time over the forecast period of the sea weather forecast data. It is characterized in that it is an added value or an integrated value from the departure time T0 of the function f i to the arrival time Tf.
  • marine weather forecast data has a difference in information distributed by providers. Even in that case, in the latest forecast from the forecast time, the difference in forecast from each provider is relatively small, and the difference in forecast from each provider tends to increase as time passes from the forecast. Therefore, in the above optimal route search method and optimal route search device 1, the evaluation index F indicates that the prediction accuracy of the sea weather forecast data decreases with the passage of time, in other words, the uncertainty of the sea weather forecast data Is to be reflected as it increases over time. As a result, the portion of the forecasted sea weather having a large degree of uncertainty has less influence on the optimal route calculation. Therefore, the influence on the optimal route by the difference in the provider of the sea weather forecast data is reduced. In addition, it is possible to calculate an optimum route which can appropriately avoid stormy weather while suppressing fuel consumption without calculating a route which detours excessively due to future uncertain forecasted sea weather.
  • the weight g i (t) may change in correspondence with the prediction probability of the sea weather forecast data.
  • the forecasting probability provided by the provider of oceanic weather forecasting data is highly relevant to the uncertainty of the oceanic weather forecasting data, and by weighting based on such forecasting probability, the uncertainty of forecasting ocean weather is more It is possible to accurately reflect the optimal route calculation.
  • Example 2 of evaluation index F In the evaluation index F according to Example 2, using the predicted sea weather W j (t) weighted by the weight g j (t) representing the decrease in the prediction accuracy with the passage of time from the forecast time of the sea weather forecast data.
  • the evaluation function f i is obtained.
  • the sea weather forecast data used in the weather routing is weighted such that the weight decreases as time passes over the forecast period of the sea weather forecast data.
  • the evaluation index F of Equation 3 is a value obtained by integrating the evaluation function f i at time t from the departure time T0 to the arrival time Tf.
  • the evaluation index F of Expression 4 is a value obtained by adding the evaluation function f i from the departure time T0 to the arrival time Tf.
  • the evaluation index F according to Example 2 is expressed by Formula 3 or Formula 4, and any may be adopted.
  • the evaluation function f i takes the predicted sea weather W j (t) weighted by the weight g j (t) and the navigation condition u k (t) as control variables.
  • the addition value from the departure time T0 of the evaluation function f i to the arrival time Tf is the evaluation index F.
  • weighted predicted sea weather W j (t) [predicted sea weather w j (t)] ⁇ [weight g j (t)]
  • the weight g j (t) represents a decrease in prediction accuracy with the passage of time of sea weather forecast data at time t.
  • the weight g j (t) may change correspondingly to the prediction probability of the sea weather forecast data.
  • the weighted forecasted ocean weather W j (t) is the wind direction at time t, wind speed, wave height, wave period, wave direction, ocean current velocity, ocean current direction, tide current velocity, tide current direction, ocean Ocean weather forecast data including water temperature, air temperature, and solar radiation amount or ocean weather forecasted based on it, represents the flow velocity of the ocean current, the direction of the ocean current, the velocity of the tide current, and the direction of the tide flow from the forecasted time
  • the prediction accuracy does not decrease even after the lapse of time, so they may not be weighted.
  • the predicted sea weather W j (t) weighted with the difference between the predicted sea weather and the average sea weather decreases with the passage of time, and the average sea weather at the end of the forecasting period It converges to m j .
  • the predicted sea weather W j (t) weighted with the difference between the predicted sea weather and the average sea margin compatible sea weather decreases with the passage of time, and the average sea margin is supported at the end of the forecast period. It converges to sea weather.
  • an evaluation function f i including such weighted predicted sea weather W j (t) as a control variable future predicted sea weather is weighted so as to approach average sea margin compatible sea weather An evaluation index F is obtained.
  • the optimal route search method is based on the individual ship performance data specific to the ship 2 and the sea weather forecast data indicating the sea weather condition, and the predetermined evaluation index is weathered in the weather routing.
  • the optimal route search device 1 includes a storage device M1 storing individual ship performance data specific to the vessel 2, a storage device M2 storing sea weather forecast data indicating a sea weather condition, and a forecasting period
  • the route calculation unit 16 searches for an optimum route that optimizes a predetermined evaluation index in weather routing based on sea weather forecast data and individual ship performance data weighted so that the weight decreases with the passage of time over time. And computing devices).
  • the evaluation index may be that the prediction accuracy of the sea weather forecast data decreases with the passage of time, in other words, the uncertainty of the sea weather forecast data is time Increase with the passage of time.
  • the influence of the large uncertainty part of the sea weather forecast data on the optimal route calculation smaller than the influence of the small uncertainty part on the optimal route calculation. Therefore, the influence on the optimal route by the difference in the provider of the sea weather forecast data is reduced.
  • Optimal route search device 2 Ship 20: Ship handling device 5: External engine 50: Server 7: Network 9: Ship to land communication system 11: Communication device 12: Processing device 15: Sea weather forecast data acquisition part 16: Route calculation Unit 21: Input device 22: Display device M1 to M4: Storage device

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Educational Technology (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)
  • Traffic Control Systems (AREA)

Abstract

船舶に固有の個船性能データと海気象状況を示す海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する最適航路探索方法において、海気象予測データを、予報期間にわたって時間の経過に従って重みが小さくなるように重み付けする。

Description

最適航路探索方法及び装置
 本発明は、最適な航路を探索する最適航路探索方法及び装置に関する。
 近年、造船海運業界において、ウェザールーティングと呼ばれる航路選定技術の重要性が高まってきている。ウェザールーティングは、現在及び将来の気象及び海象(以下、「海気象」と称する)の状況を示す海気象予測データから船舶が航海中に遭遇する海気象を予測し、その予測海気象中における船の速力性能や船体運動、燃料消費量などを考慮して、所与の複数の航路から最適な航路を選定する技術である。ここで、最適な航路とは、最安全航路、最短時間航路、最小燃料消費航路、最大経済性航路、及びそれらの組み合わせなどが提案されている。
 ウェザールーティングでは、長期間の海気象予測データに基づいて、出発時刻から到着時刻までに船舶が遭遇する海気象を予測する。長期間の海気象予測データは、一般に、数値予報モデルの計算結果に基づいている。従って、航海前の最適航路の演算時に利用した海気象予測データと、その後に入手した海気象予測データとでは、同時刻に対する予報値が変化することもある。
 そこで、特許文献1に記載された最適航路探索方法では、船舶に固有の個船性能データと長期の海気象状況を示す海気象予測データの予報値とに基づいて或海域の出発点から到着点までの最適航路を計算する際に、到着点に到達するまで一定時間経過毎に、演算上の船舶の位置において時間的及び空間的に変化する海気象予測データの予報値を用いるようにしている。
特開2008-145312号公報
 長期の海気象予測データは、予報期間中の時間の経過に伴って予測精度が低下する。つまり、予測時(計算時)から一日先よりも二日先の予測精度は低く、二日先よりも数日先の予測精度は低い。しかしながら、特許文献1を含む従来の最適航路探索技術では、計算に使用する海気象予測データの予測精度が時間の経過に伴って低下することは考慮されていない。
 本発明は以上の事情に鑑みてされたものであり、その目的は、時間の経過に伴って低下する海気象予測データの予測精度を考慮して、ウェザールーティングによって最適航路を探索する技術を提供することにある。
 本発明の一態様に係る最適航路探索方法は、船舶に固有の個船性能データと海気象状況を示す海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する最適航路探索方法であって、
前記海気象予測データを、予報期間にわたって時間の経過に従って重みが小さくなるように重み付けすることを特徴としている。
 また、本発明の一態様に係る最適航路探索装置は、
船舶に固有の個船性能データを記憶した記憶装置と、
海気象状況を示す海気象予測データを記憶した記憶装置と、
予測期間にわたって時間の経過に従って重みが小さくなるように重み付けられた前記海気象予測データと前記個船性能データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する航路計算装置とを備えることを特徴としている。
 上記最適航路探索方法及び最適航路探索装置によれば、評価指標に、海気象予測データの予測精度が時間の経過に伴って低下すること、換言すれば、海気象予測データの不確かさが時間の経過に伴って増加することが反映される。よって、海気象予測データのうち不確かさの大きな部分が最適航路計算に与える影響を、不確かさの小さな部分が最適航路計算に与える影響よりも小さくすることができる。
 上記最適航路探索方法及び最適航路探索装置において、前記海気象予測データのうち平均海気象との差分に重み付けをしてよい。
 これにより、予想期間経過後の海気象を平均海気象と見做す場合に、予想期間中と予想期間経過後の評価値とを滑らかに連続させることができる。
 上記最適航路探索方法及び最適航路探索装置において、前記重みが、前記海気象予測データの予測確率と対応して変化してよい。
 これにより、海気象予測データの不確かさをより正確に最適航路計算に反影させることができる。
 本発明の一態様に係る最適航路探索方法は、船舶に固有の個船性能データと海気象状況を示す海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する最適航路探索方法であって、
 前記評価指標が、前記海気象予測データに基づく予測海気象と、前記海気象予測データの予報期間にわたって時間の経過に従って小さくなる重みとを制御変数として含む評価関数の出発時刻から到着時刻までの加算値又は積分値であることを特徴としている。
 また、本発明の一態様に係る最適航路探索装置は、
船舶に固有の個船性能データを記憶した記憶装置と、
海気象状況を示す海気象予測データを記憶した記憶装置と、
前記個船性能データと前記海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する航路計算装置とを備え、
前記評価指標が、前記海気象予測データに基づく予測海気象と、前記海気象予測データの予報期間にわたって時間の経過に従って小さくなる重みとを制御変数として含む評価関数の出発時刻から到着時刻までの加算値又は積分値であることを特徴としている。
 上記最適航路探索方法及び最適航路探索装置によれば、評価指標に、海気象予測データの予測精度が時間の経過に伴って低下すること、換言すれば、海気象予測データの不確かさが時間の経過に伴って増加することが反映される。よって、海気象予測データのうち不確かさの大きな部分が最適航路計算に与える影響を、不確かさの小さな部分が最適航路計算に与える影響よりも小さくすることができる。
 上記最適航路探索方法及び最適航路探索装置において、前記重みが、前記海気象予測データの予測確率と対応して変化してよい。
 これにより、海気象予測データの不確かさをより正確に最適航路計算に反影させることができる。
 上記最適航路探索方法及び最適航路探索装置において、前記重みが前記予測海気象中の評価値と平水中の評価値との差分に対して付けられていてよい。
 これにより、予想期間経過後の海気象を平水中の海気象と見做して評価指標を算出する場合に、予想期間中と予想期間経過後の評価値とを滑らかに連続させることができる。
 或いは、上記最適航路探索方法及び最適航路探索装置において、前記重みが前記予測海気象中の評価値と平均海気象中の評価値との差分に対して付けられていてよい。
 これにより、予想期間経過後の海気象を平均海気象と見做して評価指標を算出する場合に、予想期間中と予想期間経過後の評価値とを滑らかに連続させることができる。
 本発明によれば、時間の経過に伴って低下する海気象予測データの予測精度を考慮して、ウェザールーティングによって最適航路を探索する技術を提供することができる。
図1は、本発明の一実施形態に係る適航路探索装置の全体的な構成を示すブロック図である。 図2の(a)~(g)は重み関数の例を示す図表である。 図3は評価値の経時変化を表す図表であり、図3の(a)は重み付けされた評価値を表し、図3の(b)は比較用の重み付けされていない評価値を表す。 図4は評価値の経時変化を表す図表であり、図4(a)のは重み付けされた評価値を表し、図4の(b)は比較用の重み付けされていない評価値を表す。 図5は、重み付けされた予想海気象の経時変化を表す図表である。 図6は、重み付けされた予想海気象の経時変化を表す図表である。
〔最適航路探索装置1の構成〕
 図1は、本発明の一実施形態に係る最適航路探索装置1の全体的な構成を示すブロック図である。図1に示す最適航路探索装置1は、通信装置11、処理装置12、入力装置21、表示装置22、及び各種の記憶装置M1~M4を備えている。各記憶装置M1~M4は別々の記憶装置で構成されてもよいし、複数の記憶装置が1つの記憶装置で構成されていてもよい。
 処理装置12は、CPU等の演算部と、ROM及びRAMなどの記憶部等を有するコンピュータであり、CPUが記憶部に予め記憶されている所定のプログラム(最適航路探索プログラム等)を実行することにより、最適航路探索装置1の各部の動作を制御する。この処理装置12は、CPUが最適航路探索プログラムを実行することにより、海気象予測データ取得部15、航路計算部16等として機能する。
 入力装置21は、マウスやキーボードよって構成され、ユーザの操作による入力を受け付ける手段である。入力装置21は、ユーザの操作による入力情報を処理装置12へ出力する。
 表示装置22は、液晶ディスプレイなどの表示装置で構成され、処理装置12から与えられる表示データに応じた情報を画面に表示する。
 通信装置11は、ネットワーク7に接続されている。処理装置12は通信装置11を制御して、ネットワーク7を介して外部機関5のサーバ50から情報を取得し、記憶装置M1~M3に記憶する。図1では1つの外部機関5が代表して図示されているが、処理装置12と通信可能に接続されている外部機関5のサーバ50は複数又は複数種類であってよい。
 また、通信装置11は、船陸間通信システム9を介して船舶2に搭載された操船装置20と相互に通信可能である。処理装置12は通信装置11を制御して、船陸間通信システム9を介して船舶2の操船装置20へ最適航路に係る情報を送信し、また、実遭遇海気象などの情報を取得する。なお、本実施形態においては、最適航路探索装置1は陸上に設置されているが、船舶2に搭載されていてもよい。
 記憶装置M1には、船舶2に固有の個船性能データが記憶されている。個船性能データは、例えば、船体性能モデルであってよい。船体性能モデルは、船体の平水中特性や、船体の波浪中応答特性(抵抗増加特性及び船体運動特性)を求める数値モデル又はシミュレーションモデルである。この船体性能モデルは、平水中の船体の性能に風,風浪,うねりなどの実海域における外乱の影響を加えた性能を備えている。
 この船体性能モデルを用いて、処理装置12は、例えば、船体抵抗増加分布(シーマージン分布)を示す短期応答曲面、波浪荷重分布の短期応答曲面、及上下加速度分布を示す短期応答曲面などの実海域性能を求めることができる。なお、船体抵抗増加は、[入射波向き、波周期、波高、船速、排水量又は喫水、トリム、風向、風速、プロペラ回転数、船首方位]の関数であって、波浪荷重及び上下加速度は船体運動から求まる。
 記憶装置M2には、海気象予測データが記憶されている。海気象予測データ取得部15は、1日に複数回(例えば、6回)更新される海気象予測データを取得して、記憶装置M2に記憶する。海気象予測データは、例えば、8~10日先までの30分~6時間間隔の気象予報及び海象予報を含んでいる。気象予報及び海象予報には、例えば、風速(平均風速)、風向(平均風向)、風波高(風波有義波高)、風波周期(風波平均波周期)、風波向(風波平均波向)、うねり波高(うねり有義波高)、うねり波周期(うねり平均波周期)、及び、うねり波向(うねり平均波向)、海流の流速、海流の向き、潮汐流の流速、潮汐流の向き、水温、気温、日射量の各項目が含まれる。このような海気象予測データは、例えば、8~10日先までの6時間間隔の海気象の時空マップ、波高予測海域面上分布、及び、波高分布予測の時系列表として表わされていてよい。海気象の時空マップは、船舶が航行する海域がメッシュで細分化され、そのメッシュ上の各ポイントの海流の流速・向き、風波の波高・波向・波周期、うねりの波高・波向・波周期、風向・風速、潮汐の流速・向き、水温、気温、日射量などの情報が示されたものであってよい。
 記憶装置M3には、記憶装置M1,M2に記憶されているデータ以外で、最適航路探索プログラムを実行する上で必要となるデータが記憶されている。そのデータには、例えば、航海周辺海図、航海周辺海域の潮流水温統計情報を格納した潮流水温統計データ、及び、航海周辺海域の水深情報などが含まれていてよい。
 記憶装置M4には、最適航路探索プログラムを実行した際に作成されるデータ、即ち、最適航路などが記憶される。
〔計画航路探索処理の流れ〕
 ここで、上記構成の最適航路探索装置1による計画航路探索処理の流れを説明する。最適航路探索装置1の処理装置12は、まず、出発点X0(出発港)、到着点Xf(到着港)、出発時刻T0、到着時刻Tf、安全運航を考慮した制約条件、最適航路計算の種類、及び、本船計画航路などの選定条件を取得する。安全運航を考慮した制約条件には、遭遇波高の上限値、船体運動の上限値などが含まれる。最適航路計算の種類は、例えば、等時間曲線法,ダイナミック・プログラミング,Dijkstra法,変分法などの公知の最適経路問題の解法から選択される。これらの選定条件は、ユーザの入力装置21の操作によって入力されてもよいし、処理装置12が予め記憶装置M3に記憶された情報から読み出してもよい。
 処理装置12の航路計算部16は、取得した選定条件、記憶装置M1~M3から読み出した海気象予測データ、及び、船体性能モデルなどの情報に基づいて、ウェザールーティングの技術を利用して最適航路を探索する。処理装置12は、探索した最適航路を記憶装置M4に格納する。このように探索された最適航路は、1日数回若しくは船舶2に搭載された操船装置20からの要求に応じて、最適航路探索装置1から操船装置20へネットワーク7又は船陸間通信システム9を介して配信される。
 上記において「最適航路」とは、出発点X0(出発港)から到着点Xf(到着港)までを航海するような航海単位の最適な航路をいう。但し、リルーティングの場合の最適航路は、或時刻の船位を出発点とした到着点Xfまでの最適な航路を指す。そして、「最適」な航路とは、所定の評価指標を最適とする航路であって、最安全航路、最短時間航路、最小燃料消費航路、最大経済性航路などの種類が提案されている。ここで説明する最適航路は、到着点Xfに到着時刻Tfに到着し、後述する所定の評価指標Fを最適な値(即ち、最小の値)とする最小燃料消費航路であるが、最適航路の種類はこれに限定されない。
 処理装置12の航路計算部16には、最適航路探索のためにウェザールーティングを行うシミュレーションモデルが構築されている。このウェザールーティング・シミュレーションモデルには、燃費の最小化に限られず、主機出力制限、安全運航を考慮した運航限界などの制約条件が含まれ、また、船速の自然減に限られず、荒天回避などの意識的減速もモデル化して組み込まれている。ウェザールーティング・シミュレーションでは、船体性能モデルと海気象予測データとを用いて、航海中に時々刻々と変化する海気象下での船速、主機出力、及び船体運動などを予測し、出発点X0から到着点Xfまでの間の所与の複数の航路のなかから最適な航路を選択する。なお、単位時間当たりの燃料消費量は主機出力に比例するので、最小燃料消費航路の探索するウェザールーティング・シミュレーションでは、航海中の主機出力を予測して目的地までの総燃料消費量を計算する。
 選択された航路(即ち、最適航路)は、評価指標Fを最小にする。評価指標Fは、例えば、燃料消費量を表す評価関数fi(i=1)の出発時刻T0から到着時刻Tfまでの積算値又は加算値であって、評価指標Fを最小にする航路は即ち燃料消費量が最小となる航路となる。評価指標Fには、時間の経過に伴って低下する海気象予測データの予測精度が考慮されている。以下では、時間の経過に伴って低下する海気象予測データの予測精度が考慮された評価指標Fについて、具体的な例を挙げて説明する。
〔評価指標Fの例1〕
 例1に係る評価指標Fは、気象予測データの予報時からの時間の経過に伴う予測精度の低下を表す重みgi(t)で評価関数fiが重み付けされている。
Figure JPOXMLDOC01-appb-M000002
 数1の評価指標Fは、評価関数fiを出発時刻T0から到着時刻Tfまで時間tで積分した値である。数2の評価指標Fは、評価関数fiを出発時刻T0から到着時刻Tfまで加算した値である。評価指標Fは、数1又は数2の式で表され、いずれが採用されてもよい。評価関数fiは、予測海気象wj(t)と、航海条件uk(t)と、重みgi(t)とを制御変数とする。
 評価関数fiは、本実施形態では、燃料消費量に関する評価関数f1であるが、最安全運航に関する評価関数f2、シーマージンに関する評価関数f3、船体抵に関する評価関数f4、・・・などの各種の評価対象の評価関数であってよい。予測海気象wj(t)は、時間tの風向、風速、波高、波周期、波向角、海流の流速、海流の向き、潮汐流の流速、潮汐流の向き、海水温、気温、及び日射量などを含む海気象予報データ又はそれに基づいて予報された海気象を表す。予測海気象wjは、例えば、風向w1、風速w2、風浪波高w3、・・・などの各種の海気象であってよい。また、航海条件uk(t)は、時間tにおける計画速力、計画回転数、計画主機出力などの航海条件を表す。航海条件uk(t)は、例えば、計画船速u1、計画回転数u2、計画馬力u3、・・・などの各種の航海条件であってよい。
 重みgi(t)は、時刻tにおける予報海気象の時間の経過に伴う予測精度の低下を表す、予測海気象wj(t)と航海条件uk(t)との各々に対する重み関数である。重み関数は、評価関数fiの評価対象(i)に対し個別に設定されてよい。重みgi(t)は、海気象予測データの予報期間にわたって時間の経過に従って小さくなる減少関数である。例えば、図2(a)に示すように、重みgi(t)は減少率が減少する減少関数であってよい。また、例えば、図2(b)に示すように、重みgi(t)は減少率が増加する減少関数であってよい。また、例えば、図2(c)に示すように、重みgi(t)は減少率が一定の減少関数、即ち、一次関数であってよい。また、例えば、図2(d)や図2(e)に示すように、重みgi(t)は変曲点を持つ減少関数であってよい。また、例えば、図2(f)や図2(g)に示すように、重みgi(t)はステップ状の減少関数であってよい。
 上記のような重みgi(t)は、例えば、統計値によって決定されてよい。また、重みgi(t)は、海象・気象情報の提供会社から提供される、海気象予測データと関連づけられた予測確率と対応していてよい。
 このように規定される評価関数fiは、単位時間当たりの燃料消費量、船速、馬力、船体抵抗、船体運動、海気象、太陽光発電量、シーマージン、ガス船のBOGR(Boil Off Gas Rate)などの値そのもの、或いは、燃料価格、船体及び積荷の安全への影響度などを考慮した評価値、又は、それらを複合した評価値を表してよい。
〔例1の適用1〕
 例1の適用1では、海気象予測データの予報期間(例えば、8日)を経過したあとの予測海気象wj(t)が、波浪の無い平水中の海気象と仮定されている。そして、本適用では、重みgi(t)が予測海気象中の評価値と平水中の評価値との差分に対して付けられている。なお、平水中の海気象では、海流、風波の波高、うねりの波高・波周期,風速,潮汐はいずれもゼロである。
 図3(a)は、縦軸を評価値、横軸を出発時刻T0からの経過時間t(即ち、航海日数)として、重みgi(t)が1から0まで変化する場合(即ち、重み付けされた場合)の評価値(即ち、評価関数fiの演算結果)の経時変化を表している。また、図3(b)は、比較用として、縦軸を評価値、横軸を出発時刻T0からの経過時間t(即ち、航海日数)として、重みgi(t)が1で固定された場合(即ち、重み付けされていない場合)の評価値の経時変化を表している。図3(a)及び図3(b)においては、航海条件uk(t)を一定と仮定しており、平水中の評価値を鎖線で表している。平水中の評価値は、予測海気象wj(t)を0とし、重みgi(t)を1として、評価関数fi(0,uk(t),1)を計算したものである。
 図3(a)に示すように、重み付けされている場合の評価値は、時間の経過に伴って減少し、予報期間の途中又は終盤で、平水中の評価値と近い又は同一の値となり、予報期間経過後は平水中の評価値に収束する。予報期間の評価値と予報期間経過後の評価値とは、滑らかに連続している。このように、将来の評価値が平水中の評価値に近づくように重み付けされた評価指標Fが得られる。
 一方、図3(b)に示すように、重み付けされていない場合の評価値は、予報期間の評価値と予報期間経過後の評価値とが、不連続となる。
 以上に示すように、重みgi(t)は予測海気象中の評価値と平水中の評価値との差分に対して付けられていてよい。これにより、予想期間経過後の海気象を平水と見做して評価指標を算出する場合に、予想期間中と予想期間経過後の評価値とを滑らかに連続させることができる。
〔例1の適用2〕
 例1の適用2では、海気象の予報期間(例えば、8日)を経過したあとの予測海気象wj(t)が、平均海気象と仮定されている。そして、本適用では、重みgi(t)が予測海気象中の評価値と平均海気象中の評価値との差分に対して付けられている。
 ここで「平均海気象」として、海気象が予報された領域を含む局所的な海域の月間、季節間、又は年間の平均海気象が用いられてよい。或いは、「平均海気象」として、海気象が予報された領域を含む大洋の月間、季節間、又は年間の平均海気象が用いられてよい。或いは、「平均海気象」として、予報日の翌日以降且つ予報期間内の或る時刻の予測海気象(例えば、予報期間の最後の予測海気象)が用いられてよい。或いは、「平均海気象」として、後述する平均シーマージンに対応する平均海気象、ウェザールーティングの運用者や設計者が任意に定めた一定の値が用いられてよい。
 図4(a)は、縦軸を評価値、横軸を出発時刻T0からの経過時間t(即ち、航海日数)として、重みgi(t)が1から0まで変化する場合(即ち、重み付けされた場合)の評価値(即ち、評価関数fiの演算結果)の経時変化を表している。また、図4(b)は、比較用として、縦軸を評価値、横軸を出発時刻T0からの経過時間t(即ち、航海日数)として、重みgi(t)が1で固定された場合(即ち、重み付けされていない場合)の評価値の経時変化を表している。図4(a)及び図4(b)において、航海条件uk(t)を一定と仮定しており、平均海気象中の評価値を鎖線で表している。平均海気象中の評価値は、予測海気象wj(t)をmjとし、重みgi(t)を1として、評価関数fi(mj,uk(t),1)を計算したものである。
 図4(a)に示すように、重み付けされている場合の評価値は、時間の経過に伴って減少し、予報期間の途中又は終盤で、平均海気象中の評価値と近い又は同一の値となり、予報期間経過後は平均海気象の評価値に収束する。予報期間の評価値と予報期間経過後の評価値とは、滑らかに連続している。このように、将来の評価値が平均海気象中の評価値に近づくように重み付けされた評価指標Fが得られる。
 一方、図4(b)に示すように、重み付けされていない場合の評価値は、予報期間の評価値と予報期間経過後の評価値とが、不連続となる。
 以上に示すように、重みgi(t)は予測海気象中の評価値と平均海気象中の評価値との差分に対して付けられていてよい。これにより、予想期間経過後の海気象を平均海気象と見做して評価指標を算出する場合に、予想期間中と予想期間経過後の評価値とを滑らかに連続させることができる。
〔例1の適用3〕
 例1の適用3では、海気象予測データの予報期間(例えば、8日)を経過したあとの予測海気象wj(t)が、その海域の平均シーマージンと対応する海気象(以下、「平均シーマージン対応海気象」と称する)と仮定されている。そして、本適用では、重みgi(t)は予測海気象中の評価値と平均シーマージン対応海気象中の評価値との差分に対して付けられている。なお、「平均シーマージン」として、海気象が予報された領域を含む局所的な海域の月間、季節間、又は年間の平均シーマージンが用いられてよい。或いは、「平均シーマージン」として、海気象が予報された領域を含む大洋の月間、季節間、又は年間の平均シーマージンが用いられてよい。又は、「平均シーマージン」として、ウェザールーティングの運用者や設計者が任意に定めた一定の値が用いられてよい。
 シーマージンは、平水中の船速Vsと同じ船速Vsで実海域を航送する場合に必要な馬力の、平水中において船速Vsで航送するために必要な馬力からの外乱影響による馬力増加の割合を表す。シーマージンは、「外乱による馬力増加」と「平水中において船速Vsで航走するために必要な馬力」の比率として表わされる。
 平水中において船速Vsで航走するために必要な馬力は、個船性能モデルを用いて求めることができる。また、外乱による馬力増加は、個船性能モデルと海気象を用いて求めることができる。従って、平均シーマージンから、平均シーマージン対応海気象を求めることができる。
 以上に示すように、重みgi(t)は予測海気象中の評価値と平均シーマージン対応海気象中の評価値との差分に対して付けられていてよい。これにより、予想期間経過後の海気象を平均シーマージン対応海気象と見做して評価指標を算出する場合に、予想期間中と予想期間経過後の評価値とを滑らかに連続させることができる。
〔例1の適用4〕
 例1の適用4では、評価関数fiは時刻tにおけるシーマージン(例えば、i=3)の評価値を求める関数であり、求めた評価値(即ち、シーマージン)に対して重みgi(t)が付けられる。重みgi(t)は、海気象予測データの予報期間(例えば、8日)を経過したあとの評価値が平均シーマージンとなるように、予測海気象中の評価値と平均シーマージンとの差分に対して付けられる。
 以上に示すように、重みgi(t)は予測海気象中の評価値(即ち、シーマージン)と平均シーマージンとの差分に対して付けられていてよい。これにより、予想期間経過後のシーマージンを平均シーマージンと見做して評価指標を算出する場合に、予想期間中と予想期間経過後の評価値とを滑らかに連続させることができる。
 以上に説明したように、本実施形態に係る最適航路探索方法は、船舶2に固有の個船性能データと海気象状況を示す海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する最適航路探索方法であって、評価指標Fが、海気象予測データに基づく予測海気象wj(t)と、海気象予測データの予報期間にわたって時間の経過に従って小さくなる重みgi(t)とを制御変数として含む評価関数fiの出発時刻T0から到着時刻Tfまでの加算値又は積算値であることを特徴としている。
 また、本実施形態に係る最適航路探索装置1は、船舶2に固有の個船性能データを記憶した記憶装置M1と、海気象状況を示す海気象予測データを記憶した記憶装置M2と、個船性能データと海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する航路計算部16(航路計算装置)とを備えている。そして、評価指標Fが、海気象予測データに基づく予測海気象wj(t)と、海気象予測データの予報期間にわたって時間の経過に従って小さくなる重みgi(t)とを制御変数として含む評価関数fiの出発時刻T0から到着時刻Tfまでの加算値又は積算値であることを特徴としている。
 一般に、海気象予測データは、提供会社によって配信している情報に差がある。それであっても、予測時から直近の予報では各提供会社からの予報の差は比較的小さく、予測時から時間が経過するに連れて各提供会社からの予報の差が大きくなる傾向がある。そこで、上記の最適航路探索方法及び最適航路探索装置1では、評価指標Fに、海気象予測データの予測精度が時間の経過に伴って低下すること、換言すれば、海気象予測データの不確かさが時間の経過に伴って増加することが反映されるようにしている。これにより、予報海気象のうち不確かさの大きい部分が最適航路計算に与える影響が小さくなる。よって、海気象予測データの提供会社の違いによる最適航路への影響が小さくなる。また、将来の不確かな予報海気象により過度に迂回をする航路が算出されることがなくなり、燃料消費量を抑えつつ、適切に荒天回避できる最適航路を算出することができる。
 本実施形態に係る最適航路探索方法及び最適航路探索装置1において、重みgi(t)が、海気象予測データの予測確率と対応して変化してよい。
 海気象予測データの提供会社から提供される予測確率は海気象予測データの不確かさと関連性が高く、このような予測確率に基づいて重み付けされることによれば、予報海気象の不確かさをより正確に最適航路計算に反影させることができる。
〔評価指標Fの例2〕
 例2に係る評価指標Fでは、海気象予測データの予報時からの時間の経過に伴う予測精度の低下を表す重みgj(t)で重み付けされた予測海気象Wj(t)を用いて評価関数fiを求めている。換言すれば、ウェザールーティングで利用する海気象予測データを、当該海気象予測データの予報期間にわたって時間の経過に従って重みが小さくなるように重み付けしている。以下では、上記例1に係る評価指標Fと重複する説明は省略する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 数3の評価指標Fは、評価関数fiを出発時刻T0から到着時刻Tfまで時間tで積分した値である。数4の評価指標Fは、評価関数fiを出発時刻T0から到着時刻Tfまで加算した値である。例2に係る評価指標Fは、数3又は数4の式で表され、いずれが採用されてもよい。評価関数fiは、重みgj(t)で重み付けされた予測海気象Wj(t)と、航海条件uk(t)とを制御変数とする。この評価関数fiの出発時刻T0から到着時刻Tfまでの加算値が評価指標Fとなる。ここで、重み付けされた予測海気象Wj(t)は次式で求めることができる。
[重み付けされた予測海気象Wj(t)]=[予測海気象wj(t)]×[重みgj(t)]
 重みgj(t)は、時刻tにおける海気象予測データの時間の経過に伴う予測精度の低下を表す。重みgj(t)は、海気象予測データの予測確率と対応して変化してもよい。なお、重み付けされた予測海気象Wj(t)は、時間tの風向、風速、波高、波周期、波向角、海流の流速、海流の向き、潮汐流の流速、潮汐流の向き、海水温、気温、及び日射量などを含む海気象予報データ又はそれに基づいて予報された海気象を表すが、海流の流速、海流の向き、潮汐流の流速、及び潮汐流の向きは予測時から時間が経過しても予測精度は低下しないので、それらについては重み付けされなくてもよい。
 図5は、縦軸を重みgj(t)で重み付けされた予測海気象Wj(t)、横軸を出発時刻T0からの経過時間t(即ち、航海日数)として、予測海気象Wjの経時変化を表している。図5の図表に示すように、重みgj(t)で重み付けされた予測海気象Wj(t)は、時間の経過に伴って減少し、予報期間の終盤でゼロ(即ち、平水)に収束する。つまり、この重み付けされた予測海気象Wj(t)は、即ち、海気象予測データのうち平水中の海気象との差分に重み付けがされている。このような重み付けされた予測海気象Wj(t)を制御変数として含む評価関数fiを加算又は積分することで、将来の予測海気象が平水中の海気象に近づくように重み付けされた評価指標Fが得られる。
 なお、上記では、海気象予測データの予測値の全体に重み付けをしているが、海気象予測データの予測値のうち平均海気象との差分に重み付けをしてもよい。より詳細には、数2に示す評価関数fiにおいて、重み付けされた予測海気象Wj(t)は、海気象予測データに基づく予測海気象と平均海気象との差分に重みが付けられたものであってもよい。つまり、重み付けされた予測海気象Wj(t)を次式で求めてもよい。
[重み付けされた予測海気象Wj(t)]=[予測海気象wj(t)-平均海気象mj]×[重みgj(t)]+[平均海気象mj
 図6は、縦軸を重みgj(t)で重み付けされた予測海気象Wj(t)、横軸を出発時刻T0からの経過時間t(即ち、航海日数)として、予測海気象Wjの経時変化を表している。図6中、鎖線は平均海気象mjを表している。図6に示すように、予測海気象と平均海気象との差分に重みが付けられた予測海気象Wj(t)は、時間の経過に伴って減少し、予報期間の終盤で平均海気象mjに収束する。このような重み付けされた予測海気象Wj(t)を制御変数として含む評価関数fiを加算又は積分することで、将来の予測海気象が平均海気象に近づくように重み付けされた評価指標Fが得られる。これにより、予想期間経過後の海気象を平均海気象と見做す場合に、予想期間中と予想期間経過後の評価値とを滑らかに連続させることができる。
 また、海気象予測データの予測値のうち平均シーマージン対応海気象との差分に重み付けをしてもよい。より詳細には、数3又は4に示す評価関数fiにおいて、重み付けされた予測海気象Wj(t)は、海気象予測データに基づく予測海気象と平均シーマージン対応海気象との差分に重みが付けられたものであってもよい。つまり、重み付けされた予測海気象Wj(t)を次式で求めてもよい。
[重み付けされた予測海気象Wj(t)]=[予測海気象wj(t)-平均シーマージン対応海気象]×[重みgj(t)]+[平均シーマージン対応海気象]
 このように予測海気象と平均シーマージン対応海気象との差分に重みが付けられた予測海気象Wj(t)は、時間の経過に伴って減少し、予報期間の終盤で平均シーマージン対応海気象に収束する。このような重み付けされた予測海気象Wj(t)を制御変数として含む評価関数fiを加算又は積分することで、将来の予測海気象が平均シーマージン対応海気象に近づくように重み付けされた評価指標Fが得られる。これにより、予想期間経過後の海気象を平均シーマージン対応海気象と見做す場合に、予想期間中と予想期間経過後の評価値とを滑らかに連続させることができる。
 以上に説明したように、本実施形態に係る最適航路探索方法は、船舶2に固有の個船性能データと海気象状況を示す海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する最適航路探索方法であって、海気象予測データを、予報期間にわたって時間の経過に従って重みが小さくなるように重み付けすることを特徴としている。
 また、本実施形態に係る最適航路探索装置1は、船舶2に固有の個船性能データを記憶した記憶装置M1と、海気象状況を示す海気象予測データを記憶した記憶装置M2と、予報期間にわたって時間の経過に従って重みが小さくなるように重み付けられた海気象予測データと個船性能データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する航路計算部16(航路計算装置)とを備えることを特徴としている。
 上記最適航路探索方法及び最適航路探索装置1によれば、評価指標に、海気象予測データの予測精度が時間の経過に伴って低下すること、換言すれば、海気象予測データの不確かさが時間の経過に伴って増加することが反映される。これにより、海気象予測データのうち不確かさの大きな部分が最適航路計算に与える影響を、不確かさの小さな部分が最適航路計算に与える影響よりも小さくすることができる。よって、海気象予測データの提供会社の違いによる最適航路への影響が小さくなる。また、将来の不確かな予報海気象により過度に迂回をする航路が算出されることがなくなり、燃料消費量を抑えつつ、適切に荒天回避できる最適航路を算出することができる。
 以上に本発明の好適な実施の形態を説明したが、本発明の精神を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。
1  :最適航路探索装置
2  :船舶
20 :操船装置
5  :外部機関
50 :サーバ
7  :ネットワーク
9  :船陸間通信システム
11 :通信装置
12 :処理装置
15 :海気象予測データ取得部
16 :航路計算部
21 :入力装置
22 :表示装置
M1~M4  :記憶装置

Claims (14)

  1.  船舶に固有の個船性能データと海気象状況を示す海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する最適航路探索方法であって、
     前記海気象予測データを、予報期間にわたって時間の経過に従って重みが小さくなるように重み付けする、
    最適航路探索方法。
  2.  前記海気象予測データのうち平均海気象との差分に重み付けする、
    請求項1に記載の最適航路探索方法。
  3.  前記重みが、前記海気象予測データの予測確率と対応して変化する、
    請求項1又は2に記載の最適航路探索方法。
  4.  船舶に固有の個船性能データを記憶した記憶装置と、
     海気象状況を示す海気象予測データを記憶した記憶装置と、
     予報期間にわたって時間の経過に従って重みが小さくなるように重み付けられた前記海気象予測データと前記個船性能データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する航路計算装置とを備える、
    最適航路探索装置。
  5.  前記海気象予測データのうち平均海気象との差分に重み付けする、
    請求項4に記載の最適航路探索装置。
  6.  前記重みが、前記海気象予測データの予測確率と対応して変化する、
    請求項4又は5に記載の最適航路探索装置。
  7.  船舶に固有の個船性能データと海気象状況を示す海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する最適航路探索方法であって、
     前記評価指標が、前記海気象予測データに基づく予測海気象と、前記海気象予測データの予報期間にわたって時間の経過に従って小さくなる重みとを制御変数として含む評価関数の出発時刻から到着時刻までの加算値又は積分値である、
    最適航路探索方法。
  8.  前記重みが前記予測海気象中の評価値と平水中の評価値との差分に対して付けられている、
    請求項7に記載の最適航路探索方法。
  9.  前記重みが前記予測海気象中の評価値と平均海気象中の評価値との差分に対して付けられている、
    請求項7に記載の最適航路探索方法。
  10.  前記重みが、前記海気象予測データの予測確率と対応して変化する、
    請求項7~9のいずれか一項に記載の最適航路探索方法。
  11.  船舶に固有の個船性能データを記憶した記憶装置と、
     海気象状況を示す海気象予測データを記憶した記憶装置と、
     前記個船性能データと前記海気象予測データとに基づいて、ウェザールーティングで所定の評価指標を最適とする最適航路を探索する航路計算装置とを備え、
     前記評価指標が、前記海気象予測データに基づく予測海気象と、前記海気象予測データの予報期間にわたって時間の経過に従って小さくなる重みとを制御変数として含む評価関数の出発時刻から到着時刻までの加算値又は積分値である、
    最適航路探索装置。
  12.  前記重みが前記予測海気象中の評価値と平水中の評価値との差分に対して付けられている、
    請求項11に記載の最適航路探索装置。
  13.  前記重みが前記予測海気象中の評価値と平均海気象中の評価値との差分に対して付けられている、
    請求項11に記載の最適航路探索装置。
  14.  前記重みが、前記海気象予測データの予測確率と対応して変化する、
    請求項11~13のいずれか一項に記載の最適航路探索装置。
PCT/JP2018/024775 2017-06-30 2018-06-29 最適航路探索方法及び装置 WO2019004416A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-129212 2017-06-30
JP2017129212A JP6867898B2 (ja) 2017-06-30 2017-06-30 最適航路探索方法及び装置

Publications (1)

Publication Number Publication Date
WO2019004416A1 true WO2019004416A1 (ja) 2019-01-03

Family

ID=64742859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024775 WO2019004416A1 (ja) 2017-06-30 2018-06-29 最適航路探索方法及び装置

Country Status (2)

Country Link
JP (1) JP6867898B2 (ja)
WO (1) WO2019004416A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111428916A (zh) * 2020-03-12 2020-07-17 南京大学 一种海上救援船舶巡航路径规划方法
WO2020213547A1 (ja) * 2019-04-15 2020-10-22 亮太 菊地 気象予測データ作成プログラム、気象予測データ作成方法、及び、移動体
EP3940671A4 (en) * 2019-11-27 2022-05-11 Earth Weather Inc. VESSEL ROUTE PREDICTION SYSTEM, AND PROGRAM USED FOR SUCH ROUTE PREDICTION SYSTEM
WO2023145328A1 (ja) * 2022-01-31 2023-08-03 ソニーグループ株式会社 情報処理装置、情報処理方法およびプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6742549B1 (ja) * 2020-03-23 2020-08-19 ジャパンマリンユナイテッド株式会社 船舶の積付計画方法、積付計画システムおよび船舶
JP6793273B1 (ja) 2020-05-22 2020-12-02 ジャパンマリンユナイテッド株式会社 船舶の航行方法、航行システムおよび船舶

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055512A1 (ja) * 2009-11-04 2011-05-12 川崎重工業株式会社 操船制御方法及び操船制御システム
JP2013104690A (ja) * 2011-11-10 2013-05-30 Mitsui Eng & Shipbuild Co Ltd 船舶の最適航路計算システム、船舶の運航支援システム、船舶の最適航路計算方法、及び船舶の運航支援方法
JP2013134089A (ja) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd 最適航路計算装置及び最適航路計算方法
JP2014013145A (ja) * 2012-06-27 2014-01-23 Mitsui Eng & Shipbuild Co Ltd 船舶の最適航路計算システム、船舶の運航支援システム、船舶の最適航路計算方法、及び船舶の運航支援方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055512A1 (ja) * 2009-11-04 2011-05-12 川崎重工業株式会社 操船制御方法及び操船制御システム
JP2013104690A (ja) * 2011-11-10 2013-05-30 Mitsui Eng & Shipbuild Co Ltd 船舶の最適航路計算システム、船舶の運航支援システム、船舶の最適航路計算方法、及び船舶の運航支援方法
JP2013134089A (ja) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd 最適航路計算装置及び最適航路計算方法
JP2014013145A (ja) * 2012-06-27 2014-01-23 Mitsui Eng & Shipbuild Co Ltd 船舶の最適航路計算システム、船舶の運航支援システム、船舶の最適航路計算方法、及び船舶の運航支援方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213547A1 (ja) * 2019-04-15 2020-10-22 亮太 菊地 気象予測データ作成プログラム、気象予測データ作成方法、及び、移動体
JPWO2020213547A1 (ja) * 2019-04-15 2021-05-06 亮太 菊地 気象予測データ作成プログラム、気象予測データ作成方法、及び、移動体
EP3940671A4 (en) * 2019-11-27 2022-05-11 Earth Weather Inc. VESSEL ROUTE PREDICTION SYSTEM, AND PROGRAM USED FOR SUCH ROUTE PREDICTION SYSTEM
CN116234746A (zh) * 2019-11-27 2023-06-06 株式会社地球气象 船舶航线预测系统以及用于该航线预测系统的程序
US11761768B2 (en) 2019-11-27 2023-09-19 Earth Weather, Inc. Route navigation system for ships, and a program thereof
CN116234746B (zh) * 2019-11-27 2024-04-26 株式会社地球气象 船舶航线预测系统以及船舶航线预测方法
CN111428916A (zh) * 2020-03-12 2020-07-17 南京大学 一种海上救援船舶巡航路径规划方法
CN111428916B (zh) * 2020-03-12 2023-04-07 南京大学 一种海上救援船舶巡航路径规划方法
WO2023145328A1 (ja) * 2022-01-31 2023-08-03 ソニーグループ株式会社 情報処理装置、情報処理方法およびプログラム

Also Published As

Publication number Publication date
JP6867898B2 (ja) 2021-05-12
JP2019012029A (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
JP5276720B2 (ja) 操船制御方法及び操船制御システム
WO2019004416A1 (ja) 最適航路探索方法及び装置
Wang et al. A Three-Dimensional Dijkstra's algorithm for multi-objective ship voyage optimization
JP5420723B2 (ja) 船舶の最適航路計算システム、船舶の運航支援システム、船舶の最適航路計算方法、及び船舶の運航支援方法
US9262874B2 (en) Real-time performance models for vessels
EP3330747B1 (en) Apparatus, method, and computer program product for providing a metocean forecast
JP4934756B1 (ja) 船舶の最適航路計算システム、船舶の運航支援システム、船舶の最適航路計算方法、及び船舶の運航支援方法
JP5312425B2 (ja) 船舶運航支援システム
JP6895700B1 (ja) 船舶のルーティング予測システム、及び当該ルーティング予測システムに用いるプログラム
Simonsen et al. State-of-the-art within ship weather routing
Mannarini et al. VISIR-I: small vessels–least-time nautical routes using wave forecasts
CN110595472B (zh) 一种无人船双目标气象航线优化方法和系统
CN103196449A (zh) 基于潮流潮汐预报信息的船舶航路规划方法
JP2013134089A (ja) 最適航路計算装置及び最適航路計算方法
JP5649014B1 (ja) 船舶の航行速度を決定するための装置、プログラム、記録媒体および方法
JP6251842B2 (ja) 船舶の運航支援システム及び船舶の運航支援方法
KR20190054410A (ko) 연안 기상 및 해양정보 관련 빅데이터를 이용한 최적항로제공시스템
CN110969289B (zh) 一种无人船气象航线连续动态优化方法和系统
KR102109571B1 (ko) 선박의 최적항로 도출 시스템 및 방법, 동 방법을 컴퓨터에서 실행하기 위한 컴퓨터 프로그램이 기록된, 컴퓨터 판독 가능한 기록 매체
Shao Development of an intelligent tool for energy efficient and low environment impact shipping
Eskild Development of a method for weather routing of ships
Mannarini et al. VISIR-I: Small vessels, least-time nautical routes using wave forecasts
KR20200038915A (ko) 선박의 최적항로 도출 시스템 및 방법, 동 방법을 컴퓨터에서 실행하기 위한 컴퓨터 프로그램이 기록된, 컴퓨터 판독 가능한 기록 매체
Walther Development of a weather routing system for analysis and optimization of ship voyages
JPWO2019004362A1 (ja) 船舶の運航支援装置及び運航支援プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825246

Country of ref document: EP

Kind code of ref document: A1