WO2019003834A1 - 空気調和機の室外機、及び空気調和機 - Google Patents

空気調和機の室外機、及び空気調和機 Download PDF

Info

Publication number
WO2019003834A1
WO2019003834A1 PCT/JP2018/021659 JP2018021659W WO2019003834A1 WO 2019003834 A1 WO2019003834 A1 WO 2019003834A1 JP 2018021659 W JP2018021659 W JP 2018021659W WO 2019003834 A1 WO2019003834 A1 WO 2019003834A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter circuit
outdoor
wiring
compressor
air conditioner
Prior art date
Application number
PCT/JP2018/021659
Other languages
English (en)
French (fr)
Inventor
直哉 花野
孝 大石
真也 福田
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Publication of WO2019003834A1 publication Critical patent/WO2019003834A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Definitions

  • the present invention relates to an outdoor unit of an air conditioner, and an air conditioner.
  • Patent Document 1 the technology described in Patent Document 1 is known for a substrate on which a compressor inverter for driving a compressor of an outdoor unit, a fan inverter for driving an outdoor fan, and the like are mounted. That is, Patent Document 1 describes that “compressor inverter circuit,... A plurality of fan inverter circuits and... An arithmetic unit (microcomputer)” are mounted on a single inverter board.
  • the current flowing through the compressor inverter circuit is larger than the current flowing through the fan inverter circuit.
  • the reference potential (the potential of the bus) of the inverter circuit for the compressor and the inverter for a small current due to the difference in the magnitude of the current and the impedance of the wiring pattern of the substrate.
  • a potential difference may occur between the circuit and the reference potential (the potential of the bus).
  • This potential difference fluctuates temporally in small increments as the switching elements included in each inverter circuit are turned on / off, which may cause electrical noise and possibly cause malfunction of the fan inverter circuit etc. . Therefore, it is required to further improve the reliability of the air conditioner and to reduce the cost.
  • this invention makes it a subject to provide the outdoor unit etc. of an air conditioner with high reliability and low cost.
  • the present invention provides a large current inverter circuit whose rated current for driving a compressor is a predetermined value or more, and a rated current for driving an outdoor fan is less than the predetermined value.
  • the small current inverter circuit is mounted on a single control board, and the large current inverter circuit and the small current inverter circuit are wired to an AC / DC converter whose input side converts an AC voltage to a DC voltage.
  • the wiring is provided with a noise reduction element that reduces electrical noise.
  • the “wiring” described above includes the wiring pattern of the control substrate (printed substrate).
  • an outdoor unit or the like of an air conditioner having high reliability and low cost can be provided.
  • FIG. 1 is an explanatory view of a refrigerant circuit Q provided in the air conditioner W.
  • the solid line arrow of FIG. 1 has shown the flow of the refrigerant
  • the broken line arrow in FIG. 1 indicates the flow of the refrigerant during the cooling operation.
  • An air conditioner W illustrated in FIG. 1 is an apparatus that performs air conditioning by circulating a refrigerant in a refrigeration cycle (heat pump cycle).
  • the air conditioner W includes a compressor 1, an outdoor heat exchanger 2, an outdoor fan 3, a four-way valve 4, and an outdoor control circuit 5, and these devices are outdoor units. It is provided in Go.
  • the air conditioner W includes the expansion valve 6, the indoor heat exchanger 7, the indoor fan 8, and the indoor control circuit 9, and these devices are provided in the indoor unit Gi. It is done.
  • the compressor 1 is a device that compresses a low-temperature low-pressure gas refrigerant and discharges it as a high-temperature high-pressure gas refrigerant by driving a compressor motor 1a (denoted as "CM" in FIG. 2).
  • the outdoor heat exchanger 2 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer pipe (not shown) and the outside air sent from the outdoor fan 3.
  • the outdoor fan 3 is a fan that sends outside air to the outdoor heat exchanger 2 by driving of the outdoor fan motor 3a (described as “FM” in FIG. 2), and is installed near the outdoor heat exchanger 2.
  • the indoor heat exchanger 7 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the indoor air (air in the conditioned space) sent from the indoor fan 8 It is.
  • the indoor fan 8 is a fan that feeds indoor air to the indoor heat exchanger 7 by driving of the indoor fan motor 8 a and is installed near the indoor heat exchanger 7.
  • the expansion valve 6 has a function of decompressing the refrigerant condensed by the “condenser” (one of the outdoor heat exchanger 2 and the indoor heat exchanger 7).
  • the refrigerant decompressed in the expansion valve 6 is led to the "evaporator" (the other of the outdoor heat exchanger 2 and the indoor heat exchanger 7).
  • FIG. 1 shows an example in which the expansion valve 6 is installed in the indoor unit Gi, the expansion valve may be installed in the outdoor unit Go, and for each of the indoor unit Gi and the outdoor unit Go. The expansion valve may be installed appropriately.
  • the four-way valve 4 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner W. For example, at the time of cooling operation (see dashed arrow), the compressor 1, the outdoor heat exchanger 2 (condenser), the expansion valve 6, and the indoor heat exchanger 7 (evaporator) are connected via the four-way valve 4. In the refrigerant circuit Q sequentially connected in a ring shape, the refrigerant circulates in the refrigeration cycle.
  • the compressor 1, the indoor heat exchanger 7 (condenser), the expansion valve 6, and the outdoor heat exchanger 2 (evaporator) are connected via the four-way valve 4.
  • the refrigerant circuit Q sequentially connected in a ring shape the refrigerant circulates in the refrigeration cycle.
  • the outdoor control circuit 5 includes electronic circuits such as a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and various interfaces. Then, the program stored in the ROM is read and expanded in the RAM, and the CPU executes various processing.
  • the outdoor control circuit 5 uses the compressor motor 1a and the outdoor fan motor 3a based on data received from the indoor control circuit 9 through a communication line (not shown), detection values of each sensor (not shown), etc. , Control the four-way valve 4 and the like.
  • the indoor control circuit 9 includes electronic circuits such as a CPU, a ROM, a RAM, and various interfaces.
  • the indoor control circuit 9 is based on data received from the outdoor control circuit 5 via a communication line (not shown), detection values of each sensor (not shown), signals from a remote control (not shown), etc. , And the expansion valve 6 and the indoor fan motor 8a.
  • FIG. 2 is a block diagram of the outdoor control circuit 5 provided in the outdoor unit Go of the air conditioner W.
  • the outdoor control circuit 5 includes a noise filter 5a, an AC / DC converter 5b, and snubber capacitors 5c and 5d.
  • the outdoor control circuit 5 includes a compressor inverter circuit 5e, a fan inverter circuit 5f, and a common mode coil 5g (noise reduction element).
  • the outdoor control circuit 5 includes a current sensor 5h, a shunt resistor 5i, overcurrent detection circuits 5j and 5k, an instantaneous current detection circuit 5r, an MCU 5s (Micro Controller Unit), and driver ICs 5t and 5u (Integrated Circuit). And have.
  • the noise filter 5a shown in FIG. 2 is a filter circuit that attenuates the noise of the AC voltage applied from the three-phase AC power supply E.
  • the AC / DC converter 5b is a circuit that converts an AC voltage applied to itself via the noise filter 5a into a DC voltage.
  • the input side (AC side) of the AC / DC converter 5b is connected to the noise filter 5a.
  • the output side (DC side) of the AC / DC converter 5b is connected to the compressor inverter circuit 5e via the wirings p and q, and a fan inverter via a part of the wirings p and q and the wirings m and n. It is also connected to the circuit 5f.
  • the AC / DC converter 5 b includes a rectification circuit 51 b and a smoothing capacitor 52 b.
  • the rectifier circuit 51b is a known diode bridge circuit in which three pairs of diodes (not shown) are connected in a bridge configuration.
  • the smoothing capacitor 52b is an electrolytic capacitor for smoothing the voltage (pulsating DC voltage) applied from the rectifying circuit 51b.
  • the positive electrode of the smoothing capacitor 52b is connected to the wiring p, and the negative electrode is connected to the wiring q.
  • the snubber capacitor 5c is a capacitor that suppresses a surge voltage associated with switching of the compressor inverter circuit 5e, and is provided on the input side (DC side) of the compressor inverter circuit 5e.
  • the compressor inverter circuit 5e is a circuit that converts the DC voltage applied from the AC / DC converter 5b into a predetermined AC voltage and drives the compressor motor 1a with this AC voltage. That is, the input side of the compressor inverter circuit 5e is connected to the AC / DC converter 5b via the wirings p and q, and the output side is connected to the compressor motor 1a.
  • the compressor inverter circuit 5 e has a first leg, a second leg, and a third leg formed by connecting in series the switching element Su of the upper arm and the switching element Sd of the lower arm. It is the structure mutually connected in parallel.
  • the middle terminal of the first leg, the middle terminal of the second leg, and the middle terminal of the third leg are respectively connected to the winding (not shown) of the compressor motor 1a.
  • a free wheeling diode D is connected in anti-parallel to each of the switching elements Su and Sd.
  • the compressor inverter circuit 5e is a "high current inverter circuit" having a rated current (for example, 20 [A]) for driving the compressor 1 of a predetermined value (for example, 10 [A]) or more. Equivalent to.
  • the fan inverter circuit 5f is a circuit that converts the DC voltage applied from the AC / DC converter 5b into a predetermined AC voltage and drives the outdoor fan motor 3a with this AC voltage. That is, the input side of the fan inverter circuit 5f is connected to the AC / DC converter 5b via the wiring m, n and the like, and the output side is connected to the outdoor fan motor 3a.
  • the fan inverter circuit 5f has a configuration similar to that of the compressor inverter circuit 5e.
  • the fan inverter circuit 5 f is a “small current inverter circuit” whose rated current (for example, 0.5 [A]) for driving the outdoor fan 3 is less than a predetermined value (for example, 10 [A]). It corresponds to
  • the “wiring” connected to the input side of the compressor inverter circuit 5e and the fan inverter circuit 5f includes the “first wiring” and the “second wiring”.
  • the above-mentioned "first wiring” is the wirings p and q which connect the AC / DC converter 5b and the compressor inverter circuit 5e.
  • the “second wiring” is a wiring m, n having one end connected to the “first wiring” and the other end connected to the fan inverter circuit 5 f. More specifically, the wiring m on the positive side has one end connected to the wiring p (between the smoothing capacitor 52 b and the snubber capacitor 5 c) and the other end connected to the fan inverter circuit 5 f. Further, one end of the negative side wiring n is connected to the wiring q (between the smoothing capacitor 52b and the snubber capacitor 5c), and the other end is connected to the fan inverter circuit 5f.
  • the snubber capacitor 5d shown in FIG. 2 is a capacitor that suppresses a surge voltage accompanying the switching of the fan inverter circuit 5f, and is provided on the input side (DC side) of the fan inverter circuit 5f.
  • the common mode coil 5g is a noise filter coil that reduces electrical noise, and is provided on the wires m and n.
  • the common mode coil 5g has a configuration in which a part of the wirings m and n is wound so as to be an added polarity with respect to a ring-shaped core (not shown).
  • the “reference potential” of the compressor inverter circuit 5e is the potential on the emitter side of the switching element Sd constituting the lower arm of the compressor inverter circuit 5e. In the example shown in FIG. 1, the emitter side of the switching element Sd of the compressor inverter circuit 5e is grounded. Further, the “reference potential” of the fan inverter circuit 5f is the potential on the emitter side of the switching element Sd that constitutes the lower arm of the fan inverter circuit 5f.
  • the current sensor 5h is a sensor that detects the current flowing through the compressor inverter circuit 5e, and is provided between the snubber capacitor 5c and the compressor inverter circuit 5e on the wiring q.
  • the shunt resistor 5i is a sensor that detects the current flowing in the fan inverter circuit 5f, and is provided between the snubber capacitor 5d and the fan inverter circuit 5f in the wiring n.
  • the overcurrent detection circuit 5j is a circuit that determines (detects) whether or not the overcurrent flows in the compressor inverter circuit 5e based on the detection value of the current sensor 5h.
  • Another overcurrent detection circuit 5k is a circuit that determines (detects) whether or not overcurrent flows in the fan inverter circuit 5f based on the potential difference between both ends of the shunt resistor 5i.
  • the instantaneous current detection circuit 5r is a circuit that detects an instantaneous value of the current flowing in the fan inverter circuit 5f based on the potential difference between both ends of the shunt resistor 5i.
  • the MCU 5s outputs a predetermined control signal to the driver ICs 5t and 5u by PWM control (Pulse Width Modulation) based on detection values of the current sensor 5h and the instantaneous current detection circuit 5r.
  • the driver IC 5t switches on / off of the switching elements Su and Sd of the compressor inverter circuit 5e based on a control signal input from the MCU 5s.
  • Another driver IC 5 u switches on / off of the switching elements Su and Sd of the fan inverter circuit 5 f based on a control signal input from the MCU 5 s.
  • FIG. 3 is an explanatory view of a control board B on which the outdoor control circuit 5 of the air conditioner W is mounted.
  • the current sensor 5h, the shunt resistor 5i, the overcurrent detection circuits 5j and 5k, the instantaneous current detection circuit 5r, and the driver ICs 5t and 5u shown in FIG. 2 are omitted.
  • the control substrate B shown in FIG. 3 is a printed circuit board on which each electronic component constituting the outdoor control circuit 5 is mounted.
  • the wirings p, q, m, n and the like shown in FIG. 3 are formed as a wiring pattern of the control substrate B.
  • the common mode coil 5g is disposed near the center of the control substrate B, and other electronic components are disposed so as to surround the common mode coil 5g.
  • the length of the wiring pattern (wiring m, n, etc.) formed on the control substrate B can be shortened.
  • the impedance of the wiring pattern can be reduced, and consequently, the electrical noise associated with the switching operation of the compressor inverter circuit 5e and the like can be suppressed. Further, by mounting each circuit on one control board B, the size and cost of the control board B can be reduced.
  • the common mode coil 5g is provided on the wirings m and n on the fan inverter circuit 5f side, thereby reducing the potential difference between the reference potentials and suppressing the electrical noise.
  • the malfunction of the fan inverter circuit 5f and the like can be prevented, and the reliability of the air conditioner W can be improved as compared with the conventional case.
  • the common mode coil 5g is directly mounted on the control substrate B, unlike the ferrite core which is another type of noise reduction element. That is, since it is not necessary to connect the common mode coil 5g to the outside of the control board B via the wiring, the manufacturing cost can be reduced by not providing the external wiring. In addition, it is possible to miniaturize the electrical component box (not shown) that accommodates the control board B.
  • the compressor inverter circuit 5e and the fan inverter circuit 5f are mounted on the same control board B. If each inverter circuit is mounted on a separate control board, it becomes necessary to provide a harness (not shown) for electrically connecting the electronic components of each control board, but in the present embodiment, the above-mentioned harness needs to be provided. There is no Thus, the manufacturing cost of the outdoor unit Go can be reduced, and the size of the electrical component box (not shown) in which the control board B is accommodated can be reduced.
  • the compressor inverter circuit 5e and the fan inverter circuit 5f are controlled by one MCU 5s. Therefore, compared with the structure which provides several MCU, cost reduction of the air conditioner W can be achieved.
  • the air conditioner W includes two outdoor fans (not shown), and the two fan inverter circuits 51f and 52f (see FIG. 4) correspond one-on-one with the two outdoor fans.
  • the points provided are different from the first embodiment.
  • the other aspects are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the descriptions of the overlapping parts will be omitted.
  • FIG. 4 is an explanatory view of a control board BA on which the outdoor control circuit 5A of the air conditioner is mounted.
  • illustration of the current sensor 5h (see FIG. 2), the shunt resistor 5i, the overcurrent detection circuits 5j and 5k, the instantaneous current detection circuit 5r, and the driver ICs 5t and 5u described in the first embodiment is omitted.
  • the outdoor unit (not shown) of the air conditioner is equipped with two outdoor fans (not shown) as described above.
  • the outdoor fan motor 31a which is a drive source of one outdoor fan is connected to a fan inverter circuit 51f (small current inverter circuit).
  • the outdoor fan motor 32a which is a drive source of the other outdoor fan is connected to another fan inverter circuit 52f (small current inverter circuit).
  • the wires m and n are branched into two corresponding to the two fan inverter circuits 51 f and 52 f. More specifically, the wiring m on the positive side is connected to the wiring p at one end, branched to two at the other end, and the other end is connected to the inverter circuits 51 f and 52 f for a fan. Similarly, one end of the wiring n on the negative side is connected to the wiring q, the other end is branched into two, and the other end is connected to the fan inverter circuits 51 f and 52 f.
  • one common mode coil 5g (noise reduction element) is provided on one end side (wires p and q sides) of the branch points m1 and n1.
  • the common mode coil 5g can suppress, in particular, electrical noise of the fan inverter circuits 51f and 52f.
  • the cost of the air conditioner can be reduced as compared with the configuration in which one common mode coil is provided corresponding to the two fan inverter circuits 51 f and 52 f (that is, two common mode coils are provided). it can. Furthermore, miniaturization of the electrical component box (not shown) that accommodates the control board BA can be achieved.
  • the present invention is not limited thereto.
  • the number of outdoor fans and inverter circuits for fans may be three or more.
  • a plurality of fan inverter circuits corresponding to a plurality of outdoor fans in a one-to-one manner may be mounted on a single control board B together with the compressor inverter circuit 5e and the like.
  • the wires m and n (second wires) are branched into a plurality of corresponding to the plurality of inverter circuits for a fan, and one end side (wires p and q) of the wires m and n is more than each branch point It is preferable to provide one common mode coil 5g (noise reduction element) on the side). This is because electrical noise can be appropriately suppressed in each fan inverter circuit.
  • each embodiment demonstrated the structure in which one indoor unit Gi (refer FIG. 1) and one outdoor unit Go (refer FIG. 1) are provided, it does not restrict to this. That is, a plurality of indoor units connected in parallel may be provided, or a plurality of outdoor units connected in parallel may be provided.
  • the air conditioner W described in each embodiment can be applied to various types of air conditioners such as a multi air conditioner for a building, a package air conditioner for equipment, and a room air conditioner.
  • Compressor 2 Outdoor heat exchanger (condenser / evaporator) 3 outdoor fan 4 four-way valve 5, 5A outdoor control circuit 5b AC / DC converter 5e inverter circuit for compressor (inverter circuit for large current) 5f, 51f, 52f Fan inverter circuit (inverter circuit for small current) 5g common mode coil (noise reduction element) 6 Expansion valve 7 Indoor heat exchanger (evaporator / condenser) 8 indoor fan 9 indoor control circuit B, BA control board Go outdoor unit Gi indoor unit Q refrigerant circuit W air conditioner p, q wiring (first wiring) m, n wiring (second wiring) m1, n1 branch point

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Inverter Devices (AREA)

Abstract

信頼性が高く、低コストな空気調和機の室外機等を提供する。圧縮機を駆動するための定格電流が所定値以上である圧縮機用インバータ回路(5e)、及び、室外ファンを駆動するための定格電流が前記所定値未満であるファン用インバータ回路(5f)が、一枚の制御基板(B)に実装され、圧縮機用インバータ回路(5e)及びファン用インバータ回路(5f)は、交流電圧を直流電圧に変換する交直変換器(5b)に配線(p,q,m,n)を介して接続され、配線(m,n)には、電気ノイズを低減するコモンモードコイル(5g)が設けられている。

Description

空気調和機の室外機、及び空気調和機
 本発明は、空気調和機の室外機、及び空気調和機に関する。
 室外機の圧縮機を駆動するための圧縮機用インバータや、室外ファンを駆動するためのファン用インバータ等が実装される基板について、例えば、特許文献1に記載の技術が知られている。すなわち、特許文献1には、「圧縮機用インバータ回路、…複数のファン用インバータ回路及び…演算装置(マイコン)」を一枚のインバータ基板に実装することが記載されている。
国際公開第2016/006106号
 一般に、圧縮機用インバータ回路に流れる電流は、ファン用インバータ回路に流れる電流よりも大きい。特許文献1に記載の技術では、前記した電流の大きさの違いや、基板の配線パターンのインピーダンス等に起因して、圧縮機用インバータ回路の基準電位(母線の電位)と、小電流用インバータ回路の基準電位(母線の電位)と、の間に電位差が生じる可能性がある。この電位差は、各インバータ回路が備えるスイッチング素子のオン/オフに伴って時間的に小刻みに変動するため、電気ノイズが発生し、場合によっては、ファン用インバータ回路等の誤動作を引き起こす可能性がある。したがって、空気調和機の信頼性をさらに高め、また、低コスト化を図ることが求められている。
 そこで、本発明は、信頼性が高く、低コストな空気調和機の室外機等を提供することを課題とする。
 前記した課題を解決するために、本発明は、圧縮機を駆動するための定格電流が所定値以上である大電流用インバータ回路、及び、室外ファンを駆動するための定格電流が前記所定値未満である小電流用インバータ回路が、一枚の制御基板に実装され、前記大電流用インバータ回路及び前記小電流用インバータ回路は、その入力側が、交流電圧を直流電圧に変換する交直変換器に配線を介して接続され、前記配線には、電気ノイズを低減するノイズ低減素子が設けられることを特徴とする。なお、前記した「配線」には、制御基板(プリント基板)の配線パターンが含まれる。
 本発明によれば、信頼性が高く、低コストな空気調和機の室外機等を提供できる。
本発明の第1実施形態に係る空気調和機が備える冷媒回路の説明図である。 本発明の第1実施形態に係る空気調和機が備える室外制御回路の構成図である。 本発明の第1実施形態に係る空気調和機の室外機の制御基板に実装される回路部品の説明図である。 本発明の第2実施形態に係る空気調和機の室外機の制御基板に実装される回路部品の説明図である。
≪第1実施形態≫
<空気調和機の構成>
 図1は、空気調和機Wが備える冷媒回路Qの説明図である。
 なお、図1の実線矢印は、暖房運転時の冷媒の流れを示している。また、図1の破線矢印は、冷房運転時の冷媒の流れを示している。
 図1に示す空気調和機Wは、冷凍サイクル(ヒートポンプサイクル)で冷媒を循環させることによって、空調を行う機器である。
 図1に示すように、空気調和機Wは、圧縮機1と、室外熱交換器2と、室外ファン3と、四方弁4と、室外制御回路5と、を備え、これらの機器が室外機Goに設けられている。また、空気調和機Wは、前記した構成の他に、膨張弁6と、室内熱交換器7と、室内ファン8と、室内制御回路9と、を備え、これらの機器が室内機Giに設けられている。
 圧縮機1は、圧縮機モータ1a(図2では「CM」と記載)の駆動によって、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器である。
 室外熱交換器2は、その伝熱管(図示せず)を通流する冷媒と、室外ファン3から送り込まれる外気と、の間で熱交換が行われる熱交換器である。
 室外ファン3は、室外ファンモータ3a(図2では「FM」と記載)の駆動によって、室外熱交換器2に外気を送り込むファンであり、室外熱交換器2の付近に設置されている。
 室内熱交換器7は、その伝熱管(図示せず)を通流する冷媒と、室内ファン8から送り込まれる室内空気(被空調空間の空気)と、の間で熱交換が行われる熱交換器である。
 室内ファン8は、室内ファンモータ8aの駆動によって、室内熱交換器7に室内空気を送り込むファンであり、室内熱交換器7の付近に設置されている。
 膨張弁6は、「凝縮器」(室外熱交換器2及び室内熱交換器7の一方)で凝縮した冷媒を減圧する機能を有している。膨張弁6において減圧された冷媒は、「蒸発器」(室外熱交換器2及び室内熱交換器7の他方)に導かれる。なお、図1では、室内機Giに膨張弁6が設置される例を示しているが、室外機Goに膨張弁を設置してもよいし、また、室内機Gi及び室外機Goのそれぞれに膨張弁を適宜に設置してもよい。
 四方弁4は、空気調和機Wの運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(破線矢印を参照)には、圧縮機1、室外熱交換器2(凝縮器)、膨張弁6、及び室内熱交換器7(蒸発器)が、四方弁4を介して環状に順次接続されてなる冷媒回路Qにおいて、冷凍サイクルで冷媒が循環する。
 また、暖房運転時(実線矢印を参照)には、圧縮機1、室内熱交換器7(凝縮器)、膨張弁6、及び室外熱交換器2(蒸発器)が、四方弁4を介して環状に順次接続されてなる冷媒回路Qにおいて、冷凍サイクルで冷媒が循環する。
 すなわち、圧縮機1、「凝縮器」、膨張弁6、及び「蒸発器」を順次に介して、冷凍サイクルで冷媒が循環する冷媒回路Qにおいて、前記した「凝縮器」及び「蒸発器」の一方は室外熱交換器2であり、他方は室内熱交換器7である。
 室外制御回路5は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。室外制御回路5は、室内制御回路9から通信線(図示せず)を介して受信したデータや、各センサ(図示せず)の検出値等に基づいて、圧縮機モータ1a、室外ファンモータ3a、四方弁4等を制御する。
 室内制御回路9は、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成されている。室内制御回路9は、室外制御回路5から通信線(図示せず)を介して受信したデータや、各センサ(図示せず)の検出値、リモコン(図示せず)からの信号等に基づいて、膨張弁6や室内ファンモータ8aを制御する。
<室外制御回路の構成>
 図2は、空気調和機Wの室外機Goが備える室外制御回路5の構成図である。
 図2に示すように、室外制御回路5は、ノイズフィルタ5aと、交直変換器5bと、スナバコンデンサ5c,5dと、を備えている。また、室外制御回路5は、前記した構成の他に、圧縮機用インバータ回路5eと、ファン用インバータ回路5fと、コモンモードコイル5g(ノイズ低減素子)と、を備えている。さらに、室外制御回路5は、電流センサ5hと、シャント抵抗5iと、過電流検出回路5j,5kと、瞬時電流検出回路5rと、MCU5s(Micro Controller Unit)と、ドライバIC5t,5u(Integrated Circuit)と、を備えている。
 図2に示すノイズフィルタ5aは、三相の交流電源Eから印加される交流電圧のノイズを減衰させるフィルタ回路である。
 交直変換器5bは、ノイズフィルタ5aを介して自身に印加される交流電圧を直流電圧に変換する回路である。交直変換器5bの入力側(交流側)は、ノイズフィルタ5aに接続されている。交直変換器5bの出力側(直流側)は、配線p,qを介して圧縮機用インバータ回路5eに接続され、また、配線p,qの一部及び配線m,nを介してファン用インバータ回路5fにも接続されている。
 図2に示すように、交直変換器5bは、整流回路51bと、平滑コンデンサ52bと、を備えている。
 整流回路51bは、三対のダイオード(図示せず)がブリッジ形に接続された周知のダイオードブリッジ回路である。
 平滑コンデンサ52bは、整流回路51bから印加される電圧(脈動する直流電圧)を平滑化するための電解コンデンサである。平滑コンデンサ52bの正極は配線pに接続され、負極は配線qに接続されている。
 スナバコンデンサ5cは、圧縮機用インバータ回路5eのスイッチングに伴うサージ電圧を抑制するコンデンサであり、圧縮機用インバータ回路5eの入力側(直流側)に設けられている。
 圧縮機用インバータ回路5eは、交直変換器5bから印加される直流電圧を所定の交流電圧に変換し、この交流電圧によって圧縮機モータ1aを駆動する回路である。つまり、圧縮機用インバータ回路5eは、その入力側が、配線p,qを介して交直変換器5bに接続され、出力側が圧縮機モータ1aに接続されている。
 図2に示すように、圧縮機用インバータ回路5eは、上アームのスイッチング素子Suと、下アームのスイッチング素子Sdと、が直列接続されてなる第1レグ・第2レグ・第3レグが、互いに並列接続された構成になっている。前記した第1レグの中間端子、第2レグの中間端子、及び第3レグの中間端子は、それぞれ、圧縮機モータ1aの巻線(図示せず)に接続されている。また、各スイッチング素子Su,Sdには、それぞれ、還流ダイオードDが逆並列に接続されている。
 なお、圧縮機用インバータ回路5eは、圧縮機1を駆動するための定格電流(例えば、20[A])が所定値(例えば、10[A])以上である「大電流用インバータ回路」に相当する。
 ファン用インバータ回路5fは、交直変換器5bから印加される直流電圧を所定の交流電圧に変換し、この交流電圧によって室外ファンモータ3aを駆動する回路である。つまり、ファン用インバータ回路5fは、その入力側が、配線m,n等を介して交直変換器5bに接続され、出力側が室外ファンモータ3aに接続されている。ファン用インバータ回路5fは、圧縮機用インバータ回路5eと同様の構成になっている。
 なお、ファン用インバータ回路5fは、室外ファン3を駆動するための定格電流(例えば、0.5[A])が所定値(例えば、10[A])未満である「小電流用インバータ回路」に相当する。
 また、圧縮機用インバータ回路5eやファン用インバータ回路5fの入力側に接続される「配線」には、「第1配線」及び「第2配線」が含まれている。前記した「第1配線」は、交直変換器5bと圧縮機用インバータ回路5eとを接続する配線p,qである。
 また、前記した「第2配線」は、その一端が「第1配線」に接続され、他端がファン用インバータ回路5fに接続される配線m,nである。より詳しく説明すると、正側の配線mは、その一端が配線p(平滑コンデンサ52bとスナバコンデンサ5cとの間)に接続され、他端がファン用インバータ回路5fに接続されている。また、負側の配線nは、その一端が配線q(平滑コンデンサ52bとスナバコンデンサ5cとの間)に接続され、他端がファン用インバータ回路5fに接続されている。
 図2に示すスナバコンデンサ5dは、ファン用インバータ回路5fのスイッチングに伴うサージ電圧を抑制するコンデンサであり、ファン用インバータ回路5fの入力側(直流側)に設けられている。
 コモンモードコイル5gは、電気ノイズを低減するノイズフィルタコイルであり、配線m,nに設けられている。このコモンモードコイル5gは、環状を呈するコア(図示せず)に対して加極性となるように、配線m,nの一部が巻き付けられた構成になっている。そして、圧縮機用インバータ回路5eの「基準電位」と、ファン用インバータ回路5fの「基準電位」と、の電位差に起因する電流が流れた場合、コモンモードコイル5gに発生する磁束が強め合ってインダクタンスが増加し、前記した電流を減衰させるようになっている。
 なお、圧縮機用インバータ回路5eの「基準電位」とは、圧縮機用インバータ回路5eの下アームを構成するスイッチング素子Sdのエミッタ側の電位である。図1に示す例では、圧縮機用インバータ回路5eのスイッチング素子Sdのエミッタ側は、接地されている。また、ファン用インバータ回路5fの「基準電位」とは、ファン用インバータ回路5fの下アームを構成するスイッチング素子Sdのエミッタ側の電位である。
 電流センサ5hは、圧縮機用インバータ回路5eに流れる電流を検出するセンサであり、配線qにおいて、スナバコンデンサ5cと圧縮機用インバータ回路5eとの間に設けられている。
 シャント抵抗5iは、ファン用インバータ回路5fに流れる電流を検出するセンサであり、配線nにおいて、スナバコンデンサ5dとファン用インバータ回路5fとの間に設けられている。
 過電流検出回路5jは、電流センサ5hの検出値に基づき、圧縮機用インバータ回路5eに過電流が流れているか否かを判定(検出)する回路である。
 別の過電流検出回路5kは、シャント抵抗5iの両端の電位差に基づき、ファン用インバータ回路5fに過電流が流れているか否かを判定(検出)する回路である。
 瞬時電流検出回路5rは、シャント抵抗5iの両端の電位差に基づき、ファン用インバータ回路5fに流れている電流の瞬時値を検出する回路である。
 MCU5sは、電流センサ5hや瞬時電流検出回路5rの検出値等に基づき、PWM制御(Pulse Width Modulation)によって、ドライバIC5t,5uに所定の制御信号を出力する。
 ドライバIC5tは、MCU5sから入力される制御信号に基づいて、圧縮機用インバータ回路5eの各スイッチング素子Su,Sdのオン/オフを切り替える。
 別のドライバIC5uは、MCU5sから入力される制御信号に基づいて、ファン用インバータ回路5fの各スイッチング素子Su,Sdのオン/オフを切り替える。
 図3は、空気調和機Wの室外制御回路5が実装される制御基板Bの説明図である。
 なお、図3では、図2に示す電流センサ5h、シャント抵抗5i、過電流検出回路5j,5k、瞬時電流検出回路5r、及びドライバIC5t,5uの図示を省略している。
 図3に示す制御基板Bは、室外制御回路5を構成する各電子部品が実装されるプリント基板である。なお、図3に示す配線p,q,m,n等は、制御基板Bの配線パターンとして形成されている。
 図3に示すように、ノイズフィルタ5a、交直変換器5b、スナバコンデンサ5c,5d、コモンモードコイル5g、圧縮機用インバータ回路5e、ファン用インバータ回路5fや、MCU5s等の電子部品が、一枚の制御基板Bに実装されている。より詳しく説明すると、制御基板Bの中央付近にコモンモードコイル5gが設置され、このコモンモードコイル5gを取り囲むように、他の電子部品が配置されている。これによって、制御基板Bに形成される配線パターン(配線m,n等)の長さを短くすることができる。したがって、配線パターンのインピーダンスを低減し、ひいては、圧縮機用インバータ回路5e等のスイッチング動作に伴う電気ノイズを抑制できる。また、各回路を一枚の制御基板Bに実装することで、制御基板Bの小型化・低コスト化を図ることができる。
<作用・効果>
 圧縮機1(図1参照)が駆動されると、圧縮機用インバータ回路5eには比較的大きな(例えば、20[A]の)電流が流れる。また、室外ファンモータ3aが駆動すると、ファン用インバータ回路5fには比較的小さな(例えば、0.5[A]の)電流が流れる。ここで、配線p,q,m,n等の配線パターンは所定のインピーダンスを有しているため、前記したように、圧縮機用インバータ回路5eの基準電位と、ファン用インバータ回路5fの基準電位と、の間に電位差が生じる。この電位差は、圧縮機用インバータ回路5e等のスイッチング動作に伴って経時的に変動し、電気ノイズが発生する。特に、小電流が流れるファン用インバータ回路5fへの電気ノイズの悪影響が懸念されていた。
 そこで、本実施形態では、ファン用インバータ回路5f側の配線m,nにコモンモードコイル5gを設けることで、前記した基準電位の間の電位差を低減し、電気ノイズを抑制するようにしている。これによって、ファン用インバータ回路5f等の誤動作を防止し、空気調和機Wの信頼性を従来よりも高めることができる。
 また、コモンモードコイル5gは、別種類のノイズ低減素子であるフェライトコアとは異なり、制御基板Bに直接的に実装される。つまり、制御基板Bの外部に配線を介してコモンモードコイル5gを接続する必要がないため、外部の配線を設けないぶん製造コストを削減できる。また、制御基板Bを収容する電装品箱(図示せず)の小型化を図ることもできる。
 また、本実施形態では、圧縮機用インバータ回路5e及びファン用インバータ回路5fが、同一の制御基板Bに実装されている。仮に、各インバータ回路を別々の制御基板に実装すると、各制御基板の電子部品を電気的に接続するハーネス(図示せず)を設ける必要が生じるが、本実施形態では、前記したハーネスを設ける必要がない。これによって、室外機Goの製造コストを削減し、また、制御基板Bが収容される電装品箱(図示せず)の小型化を図ることができる。
 さらに、圧縮機用インバータ回路5e及びファン用インバータ回路5fが、一つのMCU5sによって制御される。したがって、複数のMCUを設ける構成に比べて、空気調和機Wの低コスト化を図ることができる。
≪第2実施形態≫
 第2実施形態は、空気調和機Wが2つの室外ファン(図示せず)を備え、2つの室外ファンと一対一で対応して、2つのファン用インバータ回路51f,52f(図4参照)が設けられる点が、第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図4は、空気調和機の室外制御回路5Aが実装される制御基板BAの説明図である。
 なお、図4では、第1実施形態で説明した電流センサ5h(図2参照)、シャント抵抗5i、過電流検出回路5j,5k、瞬時電流検出回路5r、及びドライバIC5t,5u等の図示を省略している。
 空気調和機の室外機(図示せず)は、前記したように、2つの室外ファン(図示せず)を備えている。一方の室外ファンの駆動源である室外ファンモータ31aは、ファン用インバータ回路51f(小電流用インバータ回路)に接続されている。他方の室外ファンの駆動源である室外ファンモータ32aは、別のファン用インバータ回路52f(小電流用インバータ回路)に接続されている。
 そして、圧縮機用インバータ回路5e、コモンモードコイル5g、MCU5s等の他に、2つの室外ファンと一対一で対応する2つのファン用インバータ回路51f,52fが、一枚の制御基板BAに実装されている。
 また、2つのファン用インバータ回路51f,52fに対応して、配線m,n(第2配線)が、それぞれ、2つに分岐している。より詳しく説明すると、正側の配線mは、一端が配線pに接続され、他端側で2つに分岐し、その他端がファン用インバータ回路51f,52fに接続されている。同様に、負側の配線nは、一端が配線qに接続され、他端側で2つに分岐し、その他端がファン用インバータ回路51f,52fに接続されている。これらの配線m,nにおいて、その分岐点m1,n1よりも一端側(配線p,q側)に、一つのコモンモードコイル5g(ノイズ低減素子)が設けられている。このコモンモードコイル5gによって、特にファン用インバータ回路51f,52fの電気ノイズを抑制できる。
<効果>
 第2実施形態によれば、制御基板BAに2つのファン用インバータ回路51f,52fが実装される構成においても、1つのコモンモードコイル5gによって電気ノイズを適切に抑制できる。
 また、2つのファン用インバータ回路51f,52fに対応して、ひとつずつコモンモードコイルを設ける(つまり、2つのコモンモードコイルを設ける)構成に比べて、空気調和機の低コスト化を図ることができる。さらに、制御基板BAを収容する電装品箱(図示せず)の小型化を図ることもできる。
≪変形例≫
 以上、本発明に係る空気調和機W等について実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、各実施形態では、電気ノイズを低減する「ノイズ低減素子」として、コモンモードコイル5gを用いる構成について説明したが、これに限らない。すなわち、コモンモードコイル5gに代えて、フェライトコア(ノイズ低減素子:図示せず)を用いてもよい。この場合には、配線m,nの一部を制御基板Bの外側に引き回し、制御基板Bの外側において配線m,nにフェライトコアを設置するようにすればよい。このような構成でも、ファン用インバータ回路5f等の電気ノイズを抑制できる。
 また、第2実施形態では、2つの室外ファン(図示せず)に一対一で対応する、2つのファン用インバータ回路51f,52f(図4参照)を設ける構成について説明したが、これに限らない。すなわち、室外ファンやファン用インバータ回路の個数は、3つ以上であってもよい。言い換えると、複数の室外ファンと一対一で対応する、複数のファン用インバータ回路を、圧縮機用インバータ回路5e等とともに一枚の制御基板Bに実装する構成であってもよい。このような構成において、複数のファン用インバータ回路に対応して、配線m,n(第2配線)が複数に分岐し、配線m,nにおいて、各分岐点よりも一端側(配線p,q側)に、一つのコモンモードコイル5g(ノイズ低減素子)を設けることが好ましい。これによって、それぞれのファン用インバータ回路において、電気ノイズを適切に抑制できるからである。
 また、各実施形態では、室内機Gi(図1参照)及び室外機Go(図1参照)が一台ずつ設けられる構成について説明したが、これに限らない。すなわち、並列接続された複数台の室内機を設けてもよいし、並列接続された複数台の室外機を設けてもよい。
 また、各実施形態で説明した空気調和機Wは、ビル用マルチエアコンや設備用パッケージエアコン、ルームエアコン等、様々な種類のエアコンに適用できる。
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
 1 圧縮機
 2 室外熱交換器(凝縮器/蒸発器)
 3 室外ファン
 4 四方弁
 5,5A 室外制御回路
 5b 交直変換器
 5e 圧縮機用インバータ回路(大電流用インバータ回路)
 5f,51f,52f ファン用インバータ回路(小電流用インバータ回路)
 5g コモンモードコイル(ノイズ低減素子)
 6 膨張弁
 7 室内熱交換器(蒸発器/凝縮器)
 8 室内ファン
 9 室内制御回路
 B,BA 制御基板
 Go 室外機
 Gi 室内機
 Q  冷媒回路
 W 空気調和機
 p,q 配線(第1配線)
 m,n 配線(第2配線)
 m1,n1 分岐点

Claims (5)

  1.  冷媒を圧縮する圧縮機と、冷媒と外気との間で熱交換が行われる室外熱交換器と、前記室外熱交換器に外気を送り込む室外ファンと、制御基板と、を備え、
     前記圧縮機を駆動するための定格電流が所定値以上である大電流用インバータ回路、及び、前記室外ファンを駆動するための定格電流が前記所定値未満である小電流用インバータ回路が、一枚の前記制御基板に実装され、
     前記大電流用インバータ回路及び前記小電流用インバータ回路は、その入力側が、交流電圧を直流電圧に変換する交直変換器に配線を介して接続され、
     前記配線には、電気ノイズを低減するノイズ低減素子が設けられること
     を特徴とする空気調和機の室外機。
  2.  前記ノイズ低減素子は、コモンモードコイルであり、
     前記大電流用インバータ回路、前記小電流用インバータ回路、及び前記コモンモードコイルが、一枚の前記制御基板に実装されること
     を特徴とする請求項1に記載の空気調和機の室外機。
  3.  前記配線は、
     前記交直変換器と前記大電流用インバータ回路とを接続する第1配線と、
     一端が前記第1配線に接続され、他端が前記小電流用インバータ回路に接続される第2配線と、を有し、
     前記ノイズ低減素子は、前記第2配線に設けられること
     を特徴とする請求項1又は請求項2に記載の空気調和機の室外機。
  4.  複数の前記室外ファンと一対一で対応する複数の前記小電流用インバータ回路が、一枚の前記制御基板に実装され、
     複数の前記小電流用インバータ回路に対応して、前記第2配線が複数に分岐しており、
     前記第2配線において、各分岐点よりも前記一端側に、一つの前記ノイズ低減素子が設けられること
     を特徴とする請求項3に記載の空気調和機の室外機。
  5.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して、冷凍サイクルで冷媒が循環する冷媒回路を備え、
     前記凝縮器及び前記蒸発器の一方は、室外機が有する室外熱交換器であり、他方は、室内機が有する室内熱交換器であり、
     前記室外機は、前記圧縮機及び前記室外熱交換器の他、前記室外熱交換器に外気を送り込む室外ファンを有するとともに、制御基板を有し、
     前記圧縮機を駆動するための定格電流が所定値以上である大電流用インバータ回路、及び、前記室外ファンを駆動するための定格電流が前記所定値未満である小電流用インバータ回路が、一枚の前記制御基板に実装され、
     前記大電流用インバータ回路及び前記小電流用インバータ回路は、その入力側が、交流電圧を直流電圧に変換する交直変換器に配線を介して接続され、
     前記配線には、電気ノイズを低減するノイズ低減素子が設けられること
     を特徴とする空気調和機。
PCT/JP2018/021659 2017-06-30 2018-06-06 空気調和機の室外機、及び空気調和機 WO2019003834A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128549 2017-06-30
JP2017128549A JP6785727B2 (ja) 2017-06-30 2017-06-30 空気調和機の室外機、及び空気調和機

Publications (1)

Publication Number Publication Date
WO2019003834A1 true WO2019003834A1 (ja) 2019-01-03

Family

ID=64740606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021659 WO2019003834A1 (ja) 2017-06-30 2018-06-06 空気調和機の室外機、及び空気調和機

Country Status (3)

Country Link
JP (1) JP6785727B2 (ja)
TW (1) TWI679382B (ja)
WO (1) WO2019003834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056983A (zh) * 2019-04-30 2019-07-26 邯郸美的制冷设备有限公司 空调系统、空调系统的控制方法及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11486600B2 (en) * 2018-03-26 2022-11-01 Mitsubishi Electric Corporation Air conditioner
JP7501322B2 (ja) 2020-11-25 2024-06-18 株式会社富士通ゼネラル 電子機器
WO2024053006A1 (ja) * 2022-09-07 2024-03-14 三菱電機株式会社 空気調和機の室外機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835713A (ja) * 1994-07-26 1996-02-06 Fujitsu General Ltd 空気調和機の制御方法およびその装置
JP2012124985A (ja) * 2010-12-06 2012-06-28 Daikin Ind Ltd 冷凍装置
JP2016038180A (ja) * 2014-08-08 2016-03-22 日立アプライアンス株式会社 室外機および空気調和機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059978A (ja) * 1983-09-12 1985-04-06 Toshiba Corp 空気調和機
JP2000050639A (ja) * 1998-07-23 2000-02-18 Toshiba Corp インバータ装置及びこれを用いた空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835713A (ja) * 1994-07-26 1996-02-06 Fujitsu General Ltd 空気調和機の制御方法およびその装置
JP2012124985A (ja) * 2010-12-06 2012-06-28 Daikin Ind Ltd 冷凍装置
JP2016038180A (ja) * 2014-08-08 2016-03-22 日立アプライアンス株式会社 室外機および空気調和機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056983A (zh) * 2019-04-30 2019-07-26 邯郸美的制冷设备有限公司 空调系统、空调系统的控制方法及存储介质

Also Published As

Publication number Publication date
TWI679382B (zh) 2019-12-11
JP2019011904A (ja) 2019-01-24
JP6785727B2 (ja) 2020-11-18
TW201905389A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
TWI679382B (zh) 空氣調和機之室外機、及空氣調和機
EP2063527A2 (en) Motor controller of air conditioner
JP6132912B2 (ja) 逆流防止装置、電力変換装置及び冷凍空気調和装置
CN109779892B (zh) 电控组件及空调器
JP2004364491A (ja) 電源システム及び空気調和装置
WO2019030842A1 (ja) 電動機の駆動装置及び冷凍サイクル装置
CN109155608B (zh) 电动机驱动装置以及空气调节机
JP7394196B2 (ja) 電気回路体及び冷凍サイクル装置
US10756647B2 (en) Power converter device having a capacitor and a reactor adjacent to each other on the same circuit board
US20200235693A1 (en) Inverter device, air conditioner, and ground connection method of inverter device
JP7170867B2 (ja) 電力変換装置、冷凍サイクル装置および空気調和装置
JP6537712B2 (ja) モータ駆動装置、冷凍サイクル装置及び空気調和機
CN210351047U (zh) 驱动控制集成器件及空调器
WO2018043258A1 (ja) 電力変換装置及びこれを備える空気調和機
JP6884007B2 (ja) 電力変換装置、及びこれを備える機器
WO2024029413A1 (ja) ノイズフィルタ及び冷凍サイクル装置
JP7325673B2 (ja) 電力変換装置及び空調機
KR102265320B1 (ko) 전력변환장치 및 이를 구비하는 홈 어플라이언스
CN215260398U (zh) 高集成智能功率模块以及空调器
CN210405132U (zh) 驱动控制集成器件及空调器
US20240175617A1 (en) Power converter and refrigeration cycle apparatus
CN117081413A (zh) 电力变换装置和空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824426

Country of ref document: EP

Kind code of ref document: A1