WO2019003818A1 - 太陽電池およびその製造方法、ならびに太陽電池モジュール - Google Patents

太陽電池およびその製造方法、ならびに太陽電池モジュール Download PDF

Info

Publication number
WO2019003818A1
WO2019003818A1 PCT/JP2018/021431 JP2018021431W WO2019003818A1 WO 2019003818 A1 WO2019003818 A1 WO 2019003818A1 JP 2018021431 W JP2018021431 W JP 2018021431W WO 2019003818 A1 WO2019003818 A1 WO 2019003818A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
transparent resin
resin layer
plated metal
Prior art date
Application number
PCT/JP2018/021431
Other languages
English (en)
French (fr)
Inventor
稔 宮本
豊 柳原
孝章 三浦
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2019003818A1 publication Critical patent/WO2019003818A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell, a method of manufacturing the same, and a solar cell module.
  • a solar cell power generation is performed by extracting carriers (electrons and holes) generated by light irradiation to a photoelectric conversion unit having a semiconductor junction to an external circuit through a metal electrode provided on the surface of the photoelectric conversion unit.
  • metal electrodes are formed in a pattern to reduce shadow ingrowth.
  • a pattern of the metal electrode a grid pattern consisting of finger electrodes and bus bar electrodes is typical.
  • a patterned metal electrode may be formed on the back surface side as well.
  • a method of screen printing silver paste As a method of forming a patterned metal electrode, a method of screen printing silver paste is generally used.
  • silver paste has problems such as high cost of the material and high resistivity of the electrode because it contains a resin material.
  • a method of forming a metal electrode by a plating method has been developed for the purpose of reducing the material cost of the metal electrode and reducing the resistivity.
  • Patent Document 1 after a photocurable resin is applied to the entire surface of the transparent conductive layer, an opening is formed in a predetermined region of the resin layer by photolithography, and plating is performed on the transparent conductive layer exposed under the opening.
  • the example which formed the metal electrode by is described.
  • a metal electrode as a metal electrode, a 5 ⁇ m thick Ni layer, a 10 ⁇ m thick Cu layer, and a 2 ⁇ m thick Ni layer are formed by electrolytic plating.
  • Patent Document 2 after a resin film is attached to the entire surface of the transparent conductive layer, an opening is formed in the resin film by photolithography, and a metal electrode is formed by plating on the transparent conductive layer exposed under the opening.
  • a Ni layer of 1 ⁇ m in thickness is formed by electroless plating as a metal electrode, and a Cu layer is formed thereon by electrolytic plating, so that the Cu layer becomes thinner than the surface of the resist.
  • the solar cell includes a transparent conductive layer and a metal electrode on the main surface of the photoelectric conversion unit including the semiconductor substrate.
  • the metal electrode includes a plurality of finger electrodes extending in parallel.
  • the metal electrode may further include bus bar electrodes orthogonal to the finger electrodes.
  • the metal electrode includes a first plated metal layer in contact with the transparent conductive layer, and a second plated metal layer provided on the first plated metal layer.
  • the first plated metal layer is a nickel layer
  • the second plated metal layer is a copper layer.
  • An alloy of nickel and copper may be formed at the interface between the first plated metal layer and the second plated metal layer.
  • a transparent resin layer is provided in a region on the transparent conductive layer where the metal electrode is not provided.
  • the wall surface of the transparent resin layer is in contact with the finger electrode in a cross section orthogonal to the extending direction of the finger electrode.
  • the finger electrode has a cross-sectional shape that is tapered in the thickness direction from the surface side toward the transparent conductive layer side.
  • the wall surface of the transparent resin layer makes an angle of 30 ° or less with the substrate surface.
  • the finger electrode may be in contact with the wall surface of the transparent resin layer on the transparent conductive layer, and the side surface of the metal electrode may not be in contact with the transparent resin layer on the surface portion of the metal electrode.
  • the thickness of the finger electrode is preferably 10 to 30 ⁇ m, and the thickness of the first plated metal layer is preferably 50 to 1000 nm.
  • the thickness of the transparent resin layer is preferably 0.5 to 2 times the thickness of the finger electrode.
  • the thickness of the transparent resin layer is, for example, 5 to 30 ⁇ m.
  • the transparent resin layer having an opening is formed, for example, by screen printing. After screen printing, the transparent resin layer may be thermally cured or photocured before forming the first plated metal layer.
  • the first plated metal layer and the second plated metal layer are formed by electrolytic plating. After forming the second plated metal layer, heat annealing may be performed.
  • the present invention it is possible to form a patterned metal electrode on the light receiving surface side and / or the back surface side of the solar cell by a simple process.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a solar cell
  • FIG. 2 is a plan view of a first main surface (light receiving surface) of the solar cell.
  • the solar cell 200 includes the first transparent conductive layer 51 on the first main surface of the photoelectric conversion unit 40 including the semiconductor substrate 45, and the metal electrode 110 (111, 121) in the form of a pattern on the first transparent conductive layer 51.
  • the metal electrode 110 includes a plurality of finger electrodes 111 extending in parallel. In the embodiment shown in FIG. 2, three bus bar electrodes 112 extending in the x direction are provided to be orthogonal to the finger electrodes, and the finger electrodes 111 and the bus bar electrodes 112 constitute a grid-like pattern electrode 110.
  • the metal electrode of the second main surface may have the same pattern as that of the first main surface, or may be provided on the entire surface of the second main surface.
  • the shape of the pattern may be the same as or different from that of the first main surface. Since the back surface side of the solar cell is less affected by shadow ingrowth than the light receiving surface side, the area of the metal electrode formation region on the back surface side may be increased. For example, by setting the number of finger electrodes on the back surface side to about 1.5 to 3 times that on the light receiving surface side, the formation area of the metal electrodes on the back surface side may be relatively increased.
  • the photoelectric conversion unit 40 has a pn junction or a pin junction.
  • the solar cell 200 shown in FIG. 1 is a so-called heterojunction solar cell.
  • the photoelectric conversion unit 40 of the heterojunction solar cell has a pn junction formed between the conductive crystalline silicon substrate 45 and the conductive silicon-based thin films 41 and 42.
  • As the conductive crystalline silicon substrate 45 either an n-type crystalline silicon substrate or a p-type crystalline silicon substrate may be used.
  • An n-type single crystal silicon substrate is preferable in view of the carrier lifetime in the silicon substrate. From the viewpoint of enhancing the utilization efficiency of incident light by light confinement, it is preferable that a concavo-convex structure (not shown) having a height of about 0.5 to 5 ⁇ m be provided on the surface of the silicon substrate.
  • a first conductive silicon-based thin film 41 is provided on a first main surface of the silicon substrate 45, and a second conductive silicon-based thin film 42 is provided on a second main surface.
  • One of the conductive type silicon-based thin films 41 and 42 is p-type, and the other is n-type.
  • the heterojunction solar cell when the hetero junction on the light receiving surface side is a reverse junction, the separation and recovery efficiency of the photocarriers tends to be enhanced. Therefore, when an n-type crystalline silicon substrate is used as the silicon substrate 45, the first conductive silicon-based thin film 41 on the first main surface side, which is the light receiving surface, is p-type, and the second conductive silicon of the second main surface It is preferable that the system thin film 42 be n-type.
  • the film thickness of these conductive type thin films is about 2 to 20 nm.
  • intrinsic silicon-based thin films 43 and 44 be provided between the silicon substrate 45 and the conductive silicon-based thin films 41 and 42.
  • the intrinsic silicon-based thin films 43 and 44 are deposited, for example, by plasma CVD.
  • the heterojunction solar cell includes the first transparent conductive layer 51 on the first conductive silicon-based thin film 41 and the second transparent conductive layer 52 on the second conductive silicon-based thin film 42.
  • a conductive metal oxide such as indium tin oxide (ITO) is used.
  • the film thickness of the transparent conductive layer is about 20 to 120 nm.
  • the transparent conductive layer made of a metal oxide is formed, for example, by the MOCVD method or the sputtering method.
  • the first transparent conductive layer 51 is provided on the first main surface of the photoelectric conversion unit 40, and on the second main surface.
  • the substrate 11 provided with the second transparent conductive layer 52 is obtained.
  • the transparent conductive layers 51 and 52 are not provided on the peripheral edge of the substrate 11, and the outer peripheral edges 51 e and 52 e of the transparent conductive layers 51 and 52 are positioned inside the outer peripheral edge of the substrate 11 Is preferred.
  • the transparent conductive layer is formed in a state where the peripheral edge of the substrate is covered with a mask, the transparent conductive layer is not formed on the peripheral edge of the substrate.
  • the peripheral transparent conductive layer may be removed by etching or the like.
  • the formation of the transparent resin layer and the finger electrode on the first major surface of the substrate will be described below with reference to FIGS. 3B to 3D.
  • the transparent resin layer 91 having the opening 9a on the first main surface of the substrate 11 the substrate 12 to be plated shown in FIG. 3B is obtained.
  • the openings 9 a are provided at positions corresponding to the pattern shape of the electrodes.
  • FIG. 2 when forming a grid-like metal electrode composed of finger electrodes 111 and bus bar electrodes 112, grid-like openings corresponding to the patterns of these metal electrodes are formed.
  • the transparent resin layer 91 having the opening 9a is formed by a printing method. Screen printing is preferred because of easy formation of the pattern. In screen printing, a screen printing plate is used in which the mesh openings at the locations corresponding to the openings 9a are closed. In screen printing, since the printed resin solution flows, as shown in FIG. 3B, the wall surface of the transparent resin layer 91 has a curved surface shape at the edge portion in contact with the opening 9a.
  • the inclination angle of the wall surface of the edge contacting the opening 9a of the transparent resin layer is generally 30 ° or less.
  • the inclination angle of the wall surface of the transparent resin layer of thickness t is an angle ⁇ between the tangent of the wall surface at the position where the thickness is half (t / 2) and the substrate surface.
  • the width w 1 of the opening 9 a provided in the finger electrode 111 formation region is preferably 10 to 100 ⁇ m, and more preferably 15 to 50 ⁇ m.
  • the resin solution to flow, the width w 1 of the opening 9a is smaller than the width of the non-printing areas of the screen printing plate (area mesh opening is blocked).
  • a resin solution for the width w 2 is large, the large amount of the resin solution to be printed in the print area than the opening width w 1 (transparent resin layer forming area) Is easy to spread, and the width w 1 of the opening 9 a tends to be small. Therefore, it is preferable to adjust the printing width so that the opening 9a is surely formed in consideration of the viscosity of the resin solution, thixotropy, and the like.
  • the transparent resin layer 91 functions as a mask when forming a plated metal electrode.
  • the transparent resin layer 91 also functions as a protective layer on the surface of the completed solar cell, it is preferable that the transparent resin layer 91 has light transparency and high film strength.
  • the transparent resin layer is preferably thermosetting or photocurable in order to enhance the film strength and the chemical stability to acids and the like.
  • the transparent resin layer 91 is formed, for example, by printing an acrylic resin solution whose solution viscosity at room temperature (25 ° C.) is adjusted to a range of about 70 to 120 Pa ⁇ s on the transparent conductive layer.
  • the resin material constituting the transparent resin layer 91 is a thermosetting or photocurable material, after printing a resin solution on the transparent conductive layer 51 by screen printing or the like, before forming a metal layer by plating, It is preferable to cure the transparent resin layer.
  • the thickness t of the transparent resin layer 91 be large enough to uniformly cover the transparent conductive layer other than the plated metal region (opening 9a).
  • the thickness t of the transparent resin layer is preferably twice or more as high as the concavo-convex height of the substrate in order to reliably cover the tip of the convex portion. 5 micrometers or more are preferable and, as for thickness t of a transparent resin layer, 8 micrometers or more are more preferable.
  • the thickness t of the transparent resin layer 91 is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and still more preferably 15 ⁇ m or less.
  • the distance from the surface of the transparent conductive layer 51 to the surface of the transparent resin layer 91 at the place with the largest thickness (the central part of the printing area) is taken as the thickness t of the transparent resin layer 91.
  • the distance from the valley portion of the concavities and convexities of the transparent conductive layer 51 to the surface of the transparent resin layer 91 is taken as the thickness t of the transparent resin layer 91.
  • the transparent resin layer 91 covers the outer peripheral edge 51 e of the transparent conductive layer 51 at the periphery of the substrate first main surface.
  • the transparent resin layer 91 By covering the outer peripheral edge of the transparent conductive layer 51 with the transparent resin layer 91 so as not to expose the transparent conductive layer 51, it is possible to prevent the deposition of the undesired plated metal layer on the peripheral edge and the side surface of the substrate.
  • the outer peripheral edge 51 e of the transparent conductive layer 51 is covered with the transparent resin layer 91.
  • the transparent resin layer 91 is provided on the transparent conductive layer 51, and the transparent conductive layer 51 is exposed under the opening of the transparent resin layer 91.
  • the first plated metal layer 61 is deposited on the transparent conductive layer 51 exposed under the opening of the transparent resin layer 91 by electrolytic plating (FIG. 3C).
  • the finger electrode 111 including the first plated metal layer 61 and the second plated metal layer 62 is formed on the transparent conductive layer 51. Be done (FIG. 3D).
  • the thickness d of the finger electrode 111 is 10 to 30 ⁇ m.
  • the thickness d of the finger electrode is 10 ⁇ m or more, the resistance of the finger electrode can be reduced. If the thickness d of the finger electrode is 30 ⁇ m or less, the spread of the finger electrode in the width direction can be suppressed to reduce the shadow ingrowth.
  • the second plated metal layer 62 is a main path of current in the extending direction of the finger electrode. It becomes.
  • the contactability is improved.
  • Ni is formed by electrolytic plating as the first plated metal layer 61
  • Cu is formed by electrolytic plating as the second plated metal layer 62 thereon, so that contact with the transparent conductive layer 51 is good, And a low resistance finger electrode is obtained.
  • the first plated metal layer 61 may also have the function of suppressing migration of the metal in the second plated metal layer 62 to the transparent conductive layer 51.
  • Another plated metal layer may be further provided on the second plated metal layer 62.
  • Ni, Sn, Ag or the like may be provided.
  • the metal layer on the second plated metal layer 62 may be formed by either electrolytic plating or electroless plating (including substitution plating).
  • the thickness d 1 of the first plated metal layer is preferably 50 ⁇ 1000 nm, more preferably 60 ⁇ 500 nm.
  • the thickness d 2 of the second plated metal layer is preferably 10 ⁇ 30 [mu] m, more preferably 12 ⁇ 25 [mu] m.
  • the d 2 / d 1 is preferably 10 to 300 times, more preferably 15 to 200 times, and still more preferably 20 to 100 times.
  • the thickness variation depending on the place may occur due to a difference in distance from the feeding point at the time of plating (see, for example, JP-A 2014-232775).
  • the thickness of the above-mentioned metal layer is a measured value at the central portion in the plane of the substrate.
  • the thickness of the finger electrodes may be measured at the central portion between the two bus bars.
  • the resin layer at the edge portion in contact with the opening is an upright wall surface having an inclination angle of about 90 °.
  • the wall surface of the edge of the transparent resin layer 91 has a curved surface with an inclination angle ⁇ of 30 ° or less.
  • a metal grows isotropically from the surface of the transparent conductive layer 51 which is the starting point of plating, so the metal grows along the wall surface of the transparent resin layer 91, and the finger electrode 111 is transparent conductive layer 51 from the surface side. It becomes the cross-sectional shape tapered in the thickness direction toward the side.
  • the silicon substrate 45 has a concavo-convex structure on the surface, in the portion where the thickness of the edge of the transparent resin layer 91 is small, the concavities and convexities affected by the shape of the silicon substrate 45 are easily formed on the surface of the transparent resin layer 91.
  • the first plated metal layer 61 and the second plated metal layer 62 of the finger electrode have transparent resin layers 91 whose side surfaces are transparent over the entire thickness direction. And a cross-sectional shape in contact with the
  • the width of the finger electrode may be increased and the shadow ingrowth may be increased.
  • the side surface 62e of the second plated metal layer 62 is formed on the transparent resin layer 91 in the surface portion (portion above the dotted line in the figure) of the finger electrode. It is preferable to grow the second plated metal layer 62 so as not to be in contact with each other.
  • the second plated metal layer 62 can be formed so that the side surface does not contact the transparent resin layer 91 by performing anisotropic plating so that the metal selectively grows in the thickness direction.
  • anisotropic plating there is a step method in which the current density is gradually increased, and a pulse plating method in which the power on / off is repeated by millisecond and the current density is increased instantaneously (pulsewise). is there.
  • the step method and the pulse plating method may be combined.
  • electrolytic plating is performed at a high current density, metals tend to grow selectively in the thickness direction.
  • mass transfer in the liquid in the vicinity of the growth surface of the plating layer becomes rate-limiting, so the transparent resin layer 91 is formed at the end in the width direction (near the interface with the transparent resin layer 91).
  • the movement of metal ions in the plating solution is hindered by the Therefore, the deposition rate of the plated metal decreases near the interface with the transparent resin layer 91, and the deposition rate of the metal near the center in the width direction relatively increases, and as shown in FIG. 4B, the second near the surface An increase in the width of the plated metal layer 62 can be suppressed.
  • the current density for performing anisotropic plating differs depending on the composition of the plating solution and the like.
  • the current density in the case of performing an anisotropic plating by step method 10A / dm 2 or more is preferable, 15A / dm 2 or more is more preferable.
  • 20 A / dm ⁇ 2 > or more is preferable and, as for the current density in the case of performing anisotropic plating by a pulse plating method, 30 A / dm ⁇ 2 > or more is more preferable.
  • electrolytic plating is performed at a relatively low current density (for example, 9 A / dm 2 or less) at the initial stage of formation of the second plated metal layer 62 to uniformly deposit the second plated metal on the surface of the first plated metal layer 61 After that, it is preferable to increase the current density.
  • Plating with high current density may be performed by pulse plating.
  • the current density for relatively increasing the deposition rate of the plated metal in the thickness direction is preferably about 1.5 to 3 times the initial current density.
  • the thickness t of the transparent resin layer 91 may be smaller than the thickness d of the finger electrode 111 because the increase of the electrode width can be suppressed by promoting metal deposition in the thickness direction.
  • the thickness t of the transparent resin layer 91 is preferably 0.5 to 2 times the thickness d of the finger electrode 111, and more preferably 0.7 to 1.5 times.
  • a heat annealing process may be performed.
  • the finger electrode 111 tends to have a reduced resistance.
  • An alloy of Ni and Cu is formed at the interface between the first plated metal layer 61 and the second plated metal layer 62 as one factor of reducing the resistance by the heat annealing. 170 degreeC or more is preferable and, as for the heating temperature in heat annealing, in order to promote formation of the alloy to an interface, 175 degreeC or more is more preferable.
  • the heating annealing temperature is preferably 250 ° C. or less, more preferably 220 ° C. or less, and still more preferably 200 ° C. or less.
  • the heat annealing optimum time changes with annealing temperature etc. 20 minutes or more are preferable and 30 minutes or more are more preferable.
  • the metal electrode on the first main surface has been described above, but as described above, the pattern-shaped metal electrode having the first plated metal layer and the second plated metal layer also by electrolytic plating on the second main surface May be formed.
  • the metal electrode may be simultaneously formed on both surfaces of the first main surface and the second main surface by electrolytic plating. For example, after providing a transparent resin layer having an opening on each of the first transparent conductive layer 51 and the second transparent conductive layer 52, feeding points are provided on each of the first transparent conductive layer 51 and the second transparent conductive layer 52. By providing and performing electrolytic plating, plated metal is simultaneously deposited on both sides.
  • the outer peripheral edge 52e of the transparent conductive layer 52 is made of the transparent resin layer 92 also on the second main surface in order to suppress undesired metal deposition on the peripheral edge and side surfaces of the main surface of the substrate. It is preferable that the cover does not expose the transparent conductive layer 52.
  • the solar cell is preferably modularized in practical use.
  • a wiring material is connected on the electrode of the solar cell, and the solar cell string is formed by electrically connecting the adjacent solar cells.
  • the metal electrodes are in the form of a grid consisting of finger electrodes and bus bar electrodes
  • wiring members may be connected on the bus bar electrodes.
  • the wiring material may be arranged to be orthogonal to the extending direction of the finger electrode. Sealing is performed by arranging a sealing material on both sides of the solar cell string and performing thermocompression bonding.
  • the transparent resin layer When the transparent resin layer is provided on the transparent conductive layer of the substrate having irregularities on the surface, the irregularities are filled with the transparent resin layer, so that the light reflection at the interface may increase and the current may decrease in the solar cell alone.
  • the sealing material so as to be in contact with the transparent resin layer, the reflection at the interface is reduced and the light capture efficiency is enhanced. Therefore, the modularization of the solar cell of the present invention tends to increase the amount of current per unit area.
  • the present invention can also be applied to the formation of electrodes of solar cells other than heterojunction solar cells using a crystalline silicon substrate as a semiconductor substrate.
  • crystalline silicon solar cells other than heterojunction types solar cells using semiconductor substrates other than silicon such as GaAs, and the like can be mentioned.
  • An intrinsic amorphous silicon layer with a film thickness of 4 nm and a film thickness of 6 nm are formed by plasma CVD on one surface (first main surface) of a 6-inch n-type single crystal silicon substrate having texture (concave and convex structure) formed on the front and back.
  • a p-type amorphous silicon layer was formed.
  • a 5 nm thick intrinsic amorphous silicon layer and a 10 nm thick n-type amorphous silicon layer were formed by plasma CVD.
  • An ITO layer with a film thickness of 80 nm was formed by sputtering on each of the p layer and the n layer with the mask covering the peripheral region of 3 mm from the end of the main surface of the substrate.
  • a photocurable acrylic resin solution having a viscosity of about 100 Pa ⁇ s at room temperature was printed by screen printing on each of the front and back transparent conductive layers, and then the resin was photocured by UV irradiation to obtain a substrate to be plated.
  • a screen printing plate having a non-printing area of 80 ⁇ m in width in the finger electrode formation area and a non-printing area of 1.5 mm in width in the bus bar electrode formation area was used.
  • the substrate to be plated was immersed in a Ni plating bath, a feeding point was provided on the ITO layer exposed under the opening of the bus bar forming region of the substrate to be plated, and a 150 nm thick Ni layer was simultaneously formed on the front and back sides by electrolytic plating. Thereafter, the substrate to be plated is immersed in a Cu plating bath and plating is performed at a current density of 9 A / dm 2 for 200 seconds, and then plating is performed at a current density of 18 A / dm 2 for 290 seconds. It formed simultaneously on both sides.
  • FIG. 5 A transmission electron microscope (TEM) image of a cross section of the solar cell near the finger electrodes on the light receiving surface is shown in FIG.
  • the plated metal electrode is formed along the slope of the transparent resin layer in the vicinity of the interface with the substrate, but the side surface of the plated metal layer is not in contact with the transparent resin layer in the vicinity of the surface. It can be seen that it has a different shape.

Abstract

パターン状の金属電極(111)を備える太陽電池(200)を提供する。太陽電池(200)の金属電極(111)は、透明導電層(51)に接する第一めっき金属層(61)と前記第一めっき金属層上に設けられた第二めっき金属層(62)とを備える。透明導電層上の金属電極が設けられていない領域には、透明樹脂層(91)が設けられている。金属電極は表面側から透明導電層側に向かって厚み方向に先細りした断面形状を有する。透明樹脂層の壁面と金属電極は接しており、透明樹脂層の壁面は基板面とのなす角が30°以下である。

Description

太陽電池およびその製造方法、ならびに太陽電池モジュール
 本発明は、太陽電池およびその製造方法、ならびに太陽電池モジュールに関する。
 太陽電池では、半導体接合を有する光電変換部への光照射により発生したキャリア(電子および正孔)を、光電変換部の表面に設けられた金属電極を介して外部回路に取り出すことにより発電がおこなわれる。太陽電池の受光面では、シャドーイングロスを低減するために、金属電極がパターン状に形成される。金属電極のパターンとしては、フィンガー電極およびバスバー電極からなるグリッドパターンが典型的である。裏面側にも受光面と同様にパターン状の金属電極が形成される場合がある。
 パターン状の金属電極の形成方法としては、銀ペーストをスクリーン印刷する方法が一般的である。しかし、銀ペーストは、材料が高価であることや、樹脂材料を含むために電極の抵抗率が高い等の課題がある。金属電極の材料コストの低減および抵抗率の低減等を目的として、めっき法により金属電極を形成する方法が開発されている。
 例えば、特許文献1では、透明導電層上の全面に光硬化性樹脂を塗布した後、フォトリソグラフィーにより樹脂層の所定領域に開口を形成し、開口下に露出した透明導電層上に、めっき法により金属電極を形成した例が記載されている。特許文献1では、金属電極として、厚み5μmのNi層、厚み10μmのCu層、および厚み2μmのNi層を、電解めっきにより形成している。
 特許文献2では、透明導電層上の全面に樹脂フィルムを貼り合わせた後、フォトリソグラフィーにより樹脂フィルムに開口を形成し、開口下に露出した透明導電層上に、めっき法により金属電極を形成した例が記載されている。特許文献2では、金属電極として、無電解めっきにより厚み1μmのNi層を形成した後、その上に電解めっきによりCu層を形成しており、Cu層がレジストの表面よりも薄くなるように厚みを調整して、樹脂フィルムの表面からのCu層の幅方向へのはみ出しを防止し、電極幅の増大を抑制している。
WO2012/029847号国際公開パンフレット 特開2014-103259号公報
 特許文献1および特許文献2では、樹脂層や樹脂フィルムの金属電極形成領域に開口を設けるためにフォトリソグラフィーを利用している。フォトリソグラフィーは、工程が煩雑であるため、めっき法によるコスト低減効果を十分に享受できない。上記に鑑み、本発明はより簡素なプロセスでパターン状の金属電極を形成可能な太陽電池の提供を目的とする。
 太陽電池は、半導体基板を含む光電変換部の主面上に、透明導電層および金属電極を備える。金属電極は、平行に延在する複数のフィンガー電極を含む。金属電極は、さらにフィンガー電極に直交するバスバー電極を含んでいてもよい。金属電極は、透明導電層に接する第一めっき金属層と、第一めっき金属層上に設けられた第二めっき金属層とを含む。例えば、第一めっき金属層はニッケル層であり、第二めっき金属層が銅層である。第一めっき金属層と第二めっき金属層との界面には、ニッケルと銅の合金が形成されていてもよい。
 透明導電層上の金属電極が設けられていない領域には、透明樹脂層が設けられている。フィンガー電極の延在方向と直交する断面において、透明樹脂層の壁面とフィンガー電極とが接している。フィンガー電極は、表面側から透明導電層側に向かって厚み方向に先細りした断面形状を有する。透明樹脂層の壁面は、基板面とのなす角が30°以下である。フィンガー電極は、透明導電層上で透明樹脂層の壁面と接していればよく、金属電極の表面部分では、金属電極の側面が透明樹脂層と接していなくてもよい。
 フィンガー電極の厚みは10~30μmが好ましく、第一めっき金属層の厚みは50~1000nmが好ましい。透明樹脂層の厚みは、フィンガー電極の厚みの0.5~2倍が好ましい。透明樹脂層の厚みは、例えば5~30μmである。
 開口を有する透明樹脂層は、例えばスクリーン印刷により形成される。スクリーン印刷後、第一めっき金属層を形成する前に、透明樹脂層の熱硬化または光硬化を行ってもよい。第一めっき金属層および第二めっき金属層は、電解めっきにより形成される。第二めっき金属層を形成後に、加熱アニール処理を行ってもよい。
 本発明によれば、簡便な工程で、太陽電池の受光面側および/または裏面側にパターン状の金属電極を形成できる。
一実施形態の太陽電池の模式的断面図である。 一実施形態の太陽電池の平面図である。 光電変換部の構成例を示す断面図である。 被めっき基板の構成例を示す断面図である。 第一めっき金属層を形成後の被めっき基板を示す断面図である。 第二めっき金属層を形成後の被めっき基板を示す断面図である。 めっき金属電極の断面形状を説明するための図である。 実施例の太陽電池の断面TEM像である。
 図1は太陽電池の一実施形態を示す模式的断面図であり、図2は太陽電池の第一主面(受光面)の平面図である。太陽電池200は、半導体基板45を含む光電変換部40の第一主面上に、第一透明導電層51を備え、その上にパターン状の金属電極110(111,121)を備える。金属電極110は、平行に延在する複数のフィンガー電極111を含んでいる。図2に示す形態では、x方向に延在する3本のバスバー電極112がフィンガー電極と直交するように設けられ、フィンガー電極111とバスバー電極112がグリッド状のパターン電極110を構成している。
 第二主面の金属電極は、第一主面と同様のパターン状でもよく、第二主面の全面に設けられていてもよい。第二主面の金属電極がパターン状である場合、パターンの形状は第一主面と同様でもよく異なっていてもよい。太陽電池の裏面側は受光面側に比べてシャドーイングロスの影響が小さいため、裏面側の金属電極形成領域の面積を大きくしてもよい。例えば、裏面側のフィンガー電極の本数を、受光面側の1.5~3倍程度とすることにより、裏面側の金属電極の形成面積を相対的に大きくしてもよい。
 光電変換部40はpn接合またはpin接合を有する。図1に示す太陽電池200は、いわゆるヘテロ接合太陽電池である。ヘテロ接合太陽電池の光電変換部40は、導電型結晶シリコン基板45および導電型シリコン系薄膜41,42の間で形成されたpn接合を有する。導電型結晶シリコン基板45としては、n型結晶シリコン基板とp型結晶シリコン基板のいずれを用いてもよい。シリコン基板内のキャリア寿命の長さから、n型単結晶シリコン基板が好ましい。光閉じ込めにより入射光の利用効率を高める観点から、シリコン基板の表面には、高さが0.5~5μm程度の凹凸構造(不図示)が設けられていることが好ましい。
 シリコン基板45の第一主面には、第一導電型シリコン系薄膜41が設けられ、第二主面には第二導電型シリコン系薄膜42が設けられる。これらの導電型シリコン系薄膜41,42は、一方がp型であり、他方がn型である。ヘテロ接合太陽電池では、受光面側のへテロ接合が逆接合の場合に光キャリアの分離回収効率が高められる傾向がある。そのため、シリコン基板45としてn型結晶シリコン基板を用いる場合は、受光面である第一主面側の第一導電型シリコン系薄膜41がp型であり、第二主面の第二導電型シリコン系薄膜42がn型であることが好ましい。これらの導電型薄膜の膜厚は、2~20nm程度である。
 ヘテロ接合太陽電池では、シリコン基板45と導電型シリコン系薄膜41,42との間に、真性シリコン系薄膜43,44が設けられていることが好ましい。シリコン基板45の表面に真性シリコン系薄膜43,44が設けられることにより、シリコン基板45の表面欠陥が終端され、太陽電池の出力が向上する。これらのシリコン系薄膜は、例えばプラズマCVD法により製膜される。
 ヘテロ接合太陽電池は、第一導電型シリコン系薄膜41上に、第一透明導電層51を備え、第二導電型シリコン系薄膜42上に第二透明導電層52を備える。透明導電層51,52の材料としては、酸化インジウム錫(ITO)等の導電性金属酸化物が用いられる。透明導電層の膜厚は、20~120nm程度である。金属酸化物からなる透明導電層は、例えばMOCVD法やスパッタ法により製膜される。
 シリコン基板上にシリコン系薄膜および透明導電層を形成することにより、図3Aに示すように、光電変換部40の第一主面上に第一透明導電層51を備え、第二主面上に第二透明導電層52を備える基板11が得られる。図3Aに示すように、基板11の周縁には透明導電層51,52が設けられておらず、透明導電層51,52の外周縁51e,52eが、基板11の外周縁よりも内側に位置していることが好ましい。例えば、基板の周縁をマスクで覆った状態で透明導電層を製膜すれば、基板の周縁には透明導電層が形成されない。全面に透明導電層を設けた後、周縁の透明導電層をエッチング等により除去してもよい。
 以下では、図3B~Dを参照して、基板の第一主面上への透明樹脂層およびフィンガー電極の形成について説明する。基板11の第一主面上に開口9aを有する透明樹脂層91を設けることにより、図3Bに示す被めっき基板12が得られる。開口9aは、電極のパターン形状に対応した位置に設けられる。図2に示すように、フィンガー電極111およびバスバー電極112からなるグリッド状の金属電極を形成する場合は、これらの金属電極のパターンに対応したグリッド状の開口が形成される。
 開口9aを有する透明樹脂層91は印刷法により形成される。パターンの形成が容易であることからスクリーン印刷が好ましい。スクリーン印刷においては、開口9aに対応する箇所のメッシュ開口を塞いだスクリーン印刷版が用いられる。スクリーン印刷では、印刷された樹脂溶液が流動するため、図3Bに示すように、開口9aに接する縁部において、透明樹脂層91の壁面は曲面状となる。透明樹脂層の開口9aに接する縁部の壁面の傾斜角度は、一般には30°以下となる。厚みtの透明樹脂層の壁面の傾斜角度は、厚みが半分(t/2)の位置における壁面の接線と基板面とのなす角θである。
 フィンガー電極111形成領域に設けられる開口9aの幅wは、10~100μmが好ましく、15~50μmがより好ましい。樹脂溶液が流動するため、開口9aの幅wは、スクリーン印刷版の非印刷領域(メッシュ開口が塞がれている領域)の幅よりも小さくなる。特に、フィンガー電極形成領域に開口を形成する場合は、開口幅wに比して印刷領域(透明樹脂層形成領域)の幅wが大きく、印刷される樹脂溶液の量が多いため樹脂溶液が広がりやすく、開口9aの幅wが小さくなりやすい。そのため、樹脂溶液の粘度やチクソトロピー等を考慮して、開口9aが確実に形成されるように印刷幅を調整することが好ましい。
 透明樹脂層91は、めっき金属電極形成時のマスクとして機能する。また、透明樹脂層91は、完成後の太陽電池の表面の保護層としても機能するため、光透過性を有すると共に膜強度が高いことが好ましい。膜強度および酸等に対する化学的安定性を高めるために、透明樹脂層は、熱硬化性または光硬化性であることが好ましい。透明樹脂層91は、例えば、室温(25℃)における溶液粘度を70~120Pa・s程度の範囲に調整したアクリル系樹脂溶液を透明導電層上に印刷することにより形成される。
 透明樹脂層91を構成する樹脂材料が熱硬化性または光硬化性の材料である場合は、スクリーン印刷等により透明導電層51上に樹脂溶液を印刷後、めっきにより金属層を形成する前に、透明樹脂層を硬化することが好ましい。
 透明樹脂層91は、めっき金属領域(開口9a)以外の透明導電層を均一に被覆できる程度に厚みtが大きいことが好ましい。シリコン基板45の表面に凹凸構造が設けられている場合は、凸部の先端を確実に被覆するために、透明樹脂層の厚みtは、基板の凹凸高さの2倍以上が好ましい。透明樹脂層の厚みtは5μm以上が好ましく、8μm以上がより好ましい。透明樹脂層91の厚みが過度に大きいと、印刷時の溶液の広がり幅が大きくなり、これに伴って開口9aの幅wが小さくなるため、フィンガー電極の線細りや断線が生じる場合がある。また、透明樹脂層91の厚みが過度に大きいと、透明樹脂層の光吸収に起因するロスが大きくなり、太陽電池の電流量が低下する場合がある。そのため、透明樹脂層91の厚みtは、30μm以下が好ましく、20μm以下がより好ましく、15μm以下がさらに好ましい。厚みが最も大きい場所(印刷領域の中央部)における、透明導電層51の表面から透明樹脂層91の表面までの距離を、透明樹脂層91の厚みtとする。基板に凹凸構造が設けられている場合は、透明導電層51の凹凸の谷の部分から透明樹脂層91の表面までの距離を透明樹脂層91の厚みtとする。
 基板第一主面の周縁において、透明樹脂層91は、透明導電層51の外周縁51eを覆っていることが好ましい。透明導電層51の外周縁を透明樹脂層91により覆い、透明導電層51を露出させないことにより、基板の周縁および側面への不所望のめっき金属層の析出を防止できる。透明導電層51の外周縁51eが基板11の外周縁よりも内側に位置するように透明導電層51を形成し、透明導電層51の外周縁51eよりも外側まで透明樹脂層91を印刷することにより、透明導電層51の外周縁51eが透明樹脂層91により覆われる。
 被めっき基板12では、透明導電層51上に透明樹脂層91が設けられ、透明樹脂層91の開口下に透明導電層51が露出している。透明樹脂層91の開口下に露出した透明導電層51上に、電解めっきにより第一めっき金属層61を析出させる(図3C)。第一めっき金属層61上に、電解めっきにより第二めっき金属層62を析出させることにより、透明導電層51上に第一めっき金属層61と第二めっき金属層62を備えるフィンガー電極111が形成される(図3D)。フィンガー電極111の厚みdは、10~30μmである。フィンガー電極の厚みdが10μm以上であれば、フィンガー電極を低抵抗化できる。フィンガー電極の厚みdが30μm以下であれば、幅方向へのフィンガー電極の広がりを抑制してシャドーイングロスを低減できる。
 透明導電層51に接して第一めっき金属層61を備え、その上に第二めっき金属層62を備えるフィンガー電極では、第二めっき金属層62が、フィンガー電極の延在方向の電流の主経路となる。透明導電層51と第二めっき金属層62との間に、第一めっき金属層61を設けることにより、コンタクト性が向上する。特に、第一めっき金属層61として、Niを電解めっきにより形成し、その上に第二めっき金属層62としてCuを電解めっきにより形成することにより、透明導電層51とのコンタクト性が良好で、かつ低抵抗のフィンガー電極が得られる。第一めっき金属層61は、第二めっき金属層62中の金属の透明導電層51へのマイグレーションを抑制する作用も有し得る。
 第二めっき金属層62上には、さらに別のめっき金属層を設けてもよい。例えば、第二めっき金属層62からのCuの拡散を抑制するために、Ni,Sn,Ag等を設けてもよい。第二めっき金属層62上の金属層は、電解めっきおよび無電解めっき(置換めっきを含む)のいずれにより形成してもよい。
 透明導電層51とのコンタクト性を向上する観点から、第一めっき金属層の厚みdは50~1000nmが好ましく、60~500nmがより好ましい。第二めっき金属層の厚みdは、10~30μmが好ましく、12~25μmがより好ましい。d/dは、10~300倍が好ましく、15~200倍がより好ましく、20~100倍がさらに好ましい。
 電解めっきにより析出させた金属層は、めっき時の給電点からの距離の違い等に起因して場所による厚みバラツキが生じている場合がある(例えば、特開2014-232775号公報参照)。上記の金属層の厚みは、基板面内中央部での測定値である。金属電極がフィンガー電極とバスバー電極とを含むグリッド状である場合は、2本のバスバー間の中央部分で、フィンガー電極の厚みを測定すればよい。
 フォトリソグラフィーにより樹脂層に開口を形成した場合は、開口に接する縁部の樹脂層は、傾斜角が略90°の起立壁面となる。一方、スクリーン印刷により透明樹脂層の塗布時に開口を形成すると、透明樹脂層91の縁部の壁面は傾斜角θが30°以下の曲面となる。透明樹脂層91の縁部の厚みが小さく、曲面状の壁面を有する場合は、透明樹脂層の縁部が起立壁面である場合に比べて、縁部(フィンガー電極の近傍)における透明樹脂層の厚みが小さいため、透明樹脂層による光吸収を低減し、太陽電池への光取り込み量が増加する傾向がある。
 電解めっきでは、めっきの起点となる透明導電層51表面から等方的に金属が成長するため、透明樹脂層91の壁面に沿って金属が成長し、フィンガー電極111は表面側から透明導電層51側に向かって厚み方向に先細りした断面形状となる。シリコン基板45が表面に凹凸構造を有する場合、透明樹脂層91の縁部の厚みが小さい部分では、透明樹脂層91の表面にシリコン基板45の形状の影響を受けた凹凸が形成されやすい。そのため、フィンガー電極111(第一めっき金属層61)と透明樹脂層91とが接する部分では、透明樹脂層の凹凸によるアンカー効果が生じ、フィンガー電極111の密着性が向上する傾向がある。
 めっき金属が厚み方向の全体にわたって等方成長すると、図4Aに示すように、フィンガー電極の第一めっき金属層61および第二めっき金属層62は、厚み方向の全体にわたって、側面が透明樹脂層91とが接する断面形状となる。厚み方向の全体にわたってフィンガー電極の側面と透明樹脂層の壁面とが接するように、第二めっき金属層が等方成長すると、フィンガー電極の幅が増大し、シャドーイングロスが大きくなる場合がある。透明樹脂層91の縁部から離れた厚みの大きい領域では、シリコン基板45の表面形状を承継した凹凸が形成され難く、フィンガー電極と透明樹脂層との間のアンカー効果は期待できない。そのため、電極幅の増加を抑制することが好ましい。電極幅の増加を抑制するためには、図4Bに示すように、フィンガー電極の表面部分(図中の点線より上の部分)では、第二めっき金属層62の側面62eが透明樹脂層91に接しないように、第二めっき金属層62を成長させることが好ましい。
 例えば、金属が厚み方向に選択的に成長するように異方性めっきを実施することにより、側面が透明樹脂層91に接しないように第二めっき金属層62を形成できる。異方性めっきを実現する手法としては、電流密度を段階的に上昇させるステップ法、および電源のオン/オフをミリ秒単位で繰り返し瞬間的(パルス的)に電流密度を高めるパルスめっき法等がある。ステップ法とパルスめっき法を組み合わせてもよい。
 高電流密度で電解めっきを行えば、厚み方向に選択的に金属が成長する傾向がある。高電流密度で電解めっきを行うと、めっき層の成長表面近傍での液中の物質移動が律速となるため、幅方向の端部(透明樹脂層91との界面付近)では、透明樹脂層91によりめっき液中の金属イオンの移動が妨げられる。そのため、透明樹脂層91との界面付近ではめっき金属の析出速度が小さくなり、幅方向中央付近での金属の析出速度が相対的に高くなり、図4Bに示すように、表面付近での第二めっき金属層62の幅の増大を抑制できる。
 異方性めっきを行うための電流密度は、めっき液の組成等により異なる。硫酸銅メッキにおいて、ステップ法により異方性めっきを行う場合の電流密度は、10A/dm以上が好ましく、15A/dm以上がより好ましい。パルスめっき法により異方性めっきを行う場合の電流密度は、20A/dm以上が好ましく、30A/dm以上がより好ましい。
 第二めっき金属層62の形成初期の電流密度を高めると、局所的に金属が析出し、電極の厚みが不均一となったり、めっきヤケ等の不具合を生じる場合がある。そのため、第二めっき金属層62の形成初期は相対的に低電流密度(例えば9A/dm以下)で電解めっきを行い、第一めっき金属層61の表面に第二めっき金属を均一に析出させた後に、電流密度を高めることが好ましい。パルスめっき法により異方性めっきを行う場合、第二めっき金属層62の形成初期は非パルス電圧を印加し、第一めっき金属層61の表面に第二めっき金属を均一に析出させた後に、パルスめっきにより高電流密度のめっきを行ってもよい。電流密度を高めることにより、厚み方向へのめっき金属の析出速度を相対的が増大してフィンガー電極の幅の増大を抑制できるとともに、析出速度が増大するため、生産性を向上できる。厚み方向へのめっき金属の析出速度を相対的が増大させるための電流密度は、初期の電流密度の1.5~3倍程度が好ましい。
 厚み方向の金属析出を促進することにより、電極幅の増大を抑制できるため、透明樹脂層91の厚みtは、フィンガー電極111の厚みdより小さくてもよい。一方、透明樹脂層91の厚みtが過度に小さいと、めっき金属の形成初期の段階で電極幅が拡がりやすく、シャドーイングロスが大きくなる。そのため、透明樹脂層91の厚みtは、フィンガー電極111の厚みdの0.5~2倍が好ましく、0.7~1.5倍がより好ましい。
 透明導電層51上に第一めっき金属層61および第二めっき金属層62を形成後に、加熱アニール処理を行ってもよい。加熱アニールを実施することにより、フィンガー電極111が低抵抗化する傾向がある。加熱アニールによる低抵抗化の一要因として、第一めっき金属層61と第二めっき金属層62との界面に、NiとCuの合金が形成されることが挙げられる。界面への合金の形成を促進するために、加熱アニールにおける加熱温度は170℃以上が好ましく、175℃以上がより好ましい。加熱アニール温度の上限は特に制限されないが、加熱温度が過度に高いと、透明導電層51、シリコン系薄膜41,42、および透明樹脂層91等が劣化して、太陽電池の特性が低下する場合がある。そのため、加熱アニール温度は250℃以下が好ましく、220℃以下がより好ましく、200℃以下がさらに好ましい。加熱アニール最適時間は、アニール温度等により異なるが、20分以上が好ましく、30分以上がより好ましい。
 以上、第一主面への金属電極の形成について説明したが、前述のように、第二主面にも電解めっきにより、第一めっき金属層と第二めっき金属層を有するパターン状の金属電極を形成してもよい。第二主面にも電解めっきによりパターン状の金属電極を形成する場合は、第一主面と第二主面の両面に同時に電解めっきにより金属電極を形成してもよい。例えば、第一透明導電層51上および第二透明導電層52上のそれぞれに開口を有する透明樹脂層を設けた後、第一透明導電層51および第二透明導電層52のそれぞれに給電点を設けて電解めっきを行うことにより、両面に同時にめっき金属が析出する。基板の主面の周縁および側面への不所望の金属の析出を抑制するために、第二主面においても、第一主面と同様に透明導電層52の外周縁52eを透明樹脂層92により覆い、透明導電層52を露出させないことが好ましい。
 太陽電池は、実用に際してモジュール化することが好ましい。太陽電池の電極上に配線材を接続し、隣接する太陽電池間を電気的に接続することにより太陽電池ストリングが形成される。金属電極がフィンガー電極とバスバー電極とからなるグリッド状である場合は、バスバー電極上に配線材を接続すればよい。金属電極がフィンガー電極のみを有する場合は、フィンガー電極の延在方向と直交するように配線材を配置すればよい。太陽電池ストリングの両面に封止材を配置して、加熱圧着を行うことにより、封止が行われる。表面に凹凸を有する基板の透明導電層上に透明樹脂層が設けられると、透明樹脂層により凹凸が埋められるため、太陽電池単体では界面での光反射が増大して電流が低下する場合がある。一方、透明樹脂層に接するように封止材を設けることにより、界面での反射が低減して、光取り込み効率が高められる。そのため、本発明の太陽電池は、モジュール化により、単位面積あたりの電流量が増加する傾向がある。
 本発明は、半導体基板として結晶シリコン基板を用いたヘテロ接合太陽電池以外の太陽電池の電極形成にも適用できる。具体的には、ヘテロ接合型以外の結晶シリコン太陽電池や、GaAs等のシリコン以外の半導体基板を用いた太陽電池等が挙げられる。
 以下では、実施例を示して本発明をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。
[被めっき基板の作製]
 表裏にテクスチャ(凹凸構造)が形成された6インチn型単結晶シリコン基板の一方の面(第一主面)に、プラズマCVD法により膜厚4nmの真性非晶質シリコン層および膜厚6nmのp型非晶質シリコン層を形成した。その後、シリコン基板の他方の面(第二主面)に、プラズマCVD法により膜厚5nmの真性非晶質シリコン層および膜厚10nmのn型非晶質シリコン層を形成した。p層上およびn層上のそれぞれに、基板の主面の端部から3mmの周縁領域を覆うようにマスクを被覆した状態で、スパッタ法により膜厚80nmのITO層を製膜した。
 表裏の透明導電層上のそれぞれに、室温における粘度が約100Pa・sの光硬化型アクリル樹脂溶液をスクリーン印刷により印刷した後、UV照射により樹脂を光硬化して、被めっき基板を得た。スクリーン印刷には、フィンガー電極形成領域に幅が80μmの非印刷領域を有し、バスバー電極形成領域に幅1.5mmの非印刷領域を有するスクリーン印刷版を用いた。
[めっき金属電極の形成]
 被めっき基板をNiめっき浴に浸漬し、被めっき基板のバスバー形成領域の開口下に露出したITO層に給電点を設け、電解めっきにより、厚み150nmのNi層を表裏両面に同時に形成した。その後、被めっき基板をCuめっき浴に浸漬し、電流密度9A/dmで200秒間めっきを実施した後、電流密度18A/dmで290秒間めっきを実施して、厚み10μmのCu層を表裏両面に同時に形成した。
 受光面のフィンガー電極近傍の太陽電池の断面の透過型電子顕微鏡(TEM)像を図5に示す。図5に示すように、基板との界面近傍では透明樹脂層の傾斜に沿ってめっき金属電極が形成されているが、表面近傍ではめっき金属層の側面が透明樹脂層に接しておらず、盛り上がった形状となっていることが分かる。
[加熱アニール]
 上記で得られた太陽電池を、180℃で10分、15分、30分、60分加熱した後、出力特性を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、めっき金属電極層を形成後の加熱アニールを行うことにより、太陽電池の出力特性(主にFF)が大幅に向上する結果が得られた。これは、加熱アニールにより、フィンガー電極のライン抵抗が減少したことによるものである。TEM-EDXにより、例1(アニール前)と例5(アニール後)の金属電極の元素分析を実施したところ、アニール後は、Cu層とNi層の界面が不明確となっており、合金化されていることが確認された。
 上記の結果から、第一めっき金属層としてNi層、第二めっき金属層としてCu層を形成後に加熱アニールを行うと、界面にNi-Cu合金が形成され、電極の抵抗が減少し、太陽電池の出力が向上することが分かる。
 200    太陽電池
 12     被めっき基板
 40     光電変換部
 45     シリコン基板
 41,42  導電型シリコン系薄膜
 43,44  真性シリコン系薄膜
 51,52  透明電極層
 91,92  透明樹脂層
 61,71  第一めっき金属層
 62,72  第二めっき金属層
 111    フィンガー電極
 112    バスバー電極

 

Claims (14)

  1.  半導体基板を含む光電変換部、前記光電変換部の主面に設けられた透明導電層、および平行に延在する複数のフィンガー電極を備える太陽電池であって、
     前記フィンガー電極は、前記透明導電層に接する第一めっき金属層と前記第一めっき金属層上に設けられた第二めっき金属層とを備え、
     前記透明導電層上の前記フィンガー電極が設けられていない領域に、透明樹脂層が設けられており、
     前記フィンガー電極の延在方向と直交する断面において、前記透明樹脂層の壁面と前記フィンガー電極とが接しており、前記透明樹脂層の壁面は基板面とのなす角が30°以下であり、前記フィンガー電極は表面側から透明導電層側に向かって厚み方向に先細りした断面形状を有する、太陽電池。
  2.  前記透明導電層上では前記フィンガー電極の側面と前記透明樹脂層の壁面とが接しており、前記フィンガー電極の表面部分では、フィンガー電極の側面が前記透明樹脂層と接していない、請求項1に記載の太陽電池。
  3.  前記透明樹脂層の厚みが、5~30μmである、請求項1または2に記載の太陽電池。
  4.  第一主面の周縁には前記透明導電層が設けられておらず、前記透明導電層の外周縁が前記透明樹脂層に覆われている、請求項1~3のいずれか1項に記載の太陽電池。
  5.  前記フィンガー電極の厚みが10~30μmであり、前記第一めっき金属層の厚みが50~1000nmであり、前記透明樹脂層の厚みが前記フィンガー電極の厚みの0.5~2倍である、請求項1~4のいずれか1項に記載の太陽電池。
  6.  前記第一めっき金属層がニッケル層であり、前記第二めっき金属層が銅層である、請求項1~5のいずれか1項に記載の太陽電池。
  7.  前記第一めっき金属層と前記第二めっき金属層との界面に、ニッケルと銅の合金が形成されている、請求項6に記載の太陽電池。
  8.  前記光電変換部は、結晶シリコン基板と、前記結晶シリコン基板の第一主面上に設けられた第一導電型シリコン系薄膜と、前記結晶シリコン基板の第二主面上に設けられた第二導電型シリコン系薄膜とを備える、請求項1~7のいずれか1項に記載の太陽電池。
  9.  請求項1~8のいずれか1項に記載の太陽電池と、太陽電池の電極に接続された配線材と、前記太陽電池および前記配線材を封止する封止材とを備え、
     前記封止材が、前記透明樹脂層に接している、太陽電池モジュール。
  10.  請求項1~8のいずれか1項に記載の太陽電池を製造する方法であって、
     前記透明導電層上に、樹脂溶液をスクリーン印刷して、前記フィンガー電極の形成領域に開口を有する前記透明樹脂層を形成し、
     前記透明樹脂層の開口下に露出した前記透明導電層上に、電解めっき法により前記第一めっき金属層および前記第二めっき金属層が形成される、太陽電池の製造方法。
  11.  前記スクリーン印刷後、前記第一めっき金属層を形成する前に、前記透明樹脂層の熱硬化または光硬化が行われる、請求項10に記載の太陽電池の製造方法。
  12.  前記第二めっき金属層を形成後に、加熱アニール処理が行われる、請求項10または11に記載の太陽電池の製造方法。
  13.  前記加熱アニールの温度が170℃以上である、請求項12に記載の太陽電池の製造方法。
  14.  前記第二めっき金属層は、前記第一めっき金属層上に相対的に低電流密度で電解めっきにより金属を析出させた後、相対的に高電流密度で金属を析出させることにより形成される、請求項10~13のいずれか1項に記載の太陽電池の製造方法。
PCT/JP2018/021431 2017-06-26 2018-06-04 太陽電池およびその製造方法、ならびに太陽電池モジュール WO2019003818A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017124057 2017-06-26
JP2017-124057 2017-06-26

Publications (1)

Publication Number Publication Date
WO2019003818A1 true WO2019003818A1 (ja) 2019-01-03

Family

ID=64741492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021431 WO2019003818A1 (ja) 2017-06-26 2018-06-04 太陽電池およびその製造方法、ならびに太陽電池モジュール

Country Status (2)

Country Link
TW (1) TW201906187A (ja)
WO (1) WO2019003818A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825127B (zh) * 2019-07-17 2023-12-11 久盛光電股份有限公司 太陽能電池模組

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305311A (ja) * 2001-01-31 2002-10-18 Shin Etsu Handotai Co Ltd 太陽電池の製造方法および太陽電池
JP2014072222A (ja) * 2012-09-27 2014-04-21 Pi R & D Co Ltd 太陽電池およびその製造方法
WO2014071458A1 (en) * 2012-11-09 2014-05-15 Newsouth Innovations Pty Ltd Formation of metal contacts
JP2014103259A (ja) * 2012-11-20 2014-06-05 Mitsubishi Electric Corp 太陽電池、太陽電池モジュールおよびその製造方法
WO2015064634A1 (ja) * 2013-10-30 2015-05-07 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP2016195188A (ja) * 2015-03-31 2016-11-17 株式会社カネカ 太陽電池の製造方法および太陽電池モジュールの製造方法
WO2018056142A1 (ja) * 2016-09-23 2018-03-29 昭和電工株式会社 太陽電池セルの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305311A (ja) * 2001-01-31 2002-10-18 Shin Etsu Handotai Co Ltd 太陽電池の製造方法および太陽電池
JP2014072222A (ja) * 2012-09-27 2014-04-21 Pi R & D Co Ltd 太陽電池およびその製造方法
WO2014071458A1 (en) * 2012-11-09 2014-05-15 Newsouth Innovations Pty Ltd Formation of metal contacts
JP2014103259A (ja) * 2012-11-20 2014-06-05 Mitsubishi Electric Corp 太陽電池、太陽電池モジュールおよびその製造方法
WO2015064634A1 (ja) * 2013-10-30 2015-05-07 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP2016195188A (ja) * 2015-03-31 2016-11-17 株式会社カネカ 太陽電池の製造方法および太陽電池モジュールの製造方法
WO2018056142A1 (ja) * 2016-09-23 2018-03-29 昭和電工株式会社 太陽電池セルの製造方法

Also Published As

Publication number Publication date
TW201906187A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
AU2016231480B2 (en) Photovoltaic devices with electroplated metal grids
US9773928B2 (en) Solar cell with electroplated metal grid
EP2489076B1 (en) Device comprising electrical contacts and its production process
TWI614912B (zh) 太陽能電池金屬化之強化化學鍍導電性之方法
KR101570881B1 (ko) 태양 전지 및 그 제조 방법
JP2014220291A (ja) 光起電力装置およびその製造方法、光起電力モジュール
CN108886069B (zh) 晶体硅系太阳能电池及其制造方法、以及太阳能电池模块
JP2014103259A (ja) 太陽電池、太陽電池モジュールおよびその製造方法
CN104025308A (zh) 太阳能电池装置及其制造方法
WO2019003818A1 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP6502147B2 (ja) 太陽電池の製造方法および太陽電池モジュールの製造方法
WO2019181834A1 (ja) 太陽電池の製造方法、および、太陽電池
JP7183245B2 (ja) 太陽電池の製造方法
CN210040211U (zh) 一种薄膜光伏电池
JP7353865B2 (ja) 太陽電池の製造方法
CN114188431A (zh) 一种太阳能电池及其制备方法
TW201907573A (zh) 單面受光式太陽能電池及其製造方法
JP2014123587A (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP