WO2019003728A1 - Harvesting machine - Google Patents

Harvesting machine Download PDF

Info

Publication number
WO2019003728A1
WO2019003728A1 PCT/JP2018/019781 JP2018019781W WO2019003728A1 WO 2019003728 A1 WO2019003728 A1 WO 2019003728A1 JP 2018019781 W JP2018019781 W JP 2018019781W WO 2019003728 A1 WO2019003728 A1 WO 2019003728A1
Authority
WO
WIPO (PCT)
Prior art keywords
crop
sensor
detection
unit
harvest
Prior art date
Application number
PCT/JP2018/019781
Other languages
French (fr)
Japanese (ja)
Inventor
林壮太郎
北原麻央
中林隆志
山岡京介
出口翔馬
日田定範
高原一浩
齊藤直
堀内真幸
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017124236A external-priority patent/JP7034609B2/en
Priority claimed from JP2017239075A external-priority patent/JP7072379B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to KR1020197030911A priority Critical patent/KR20200019598A/en
Priority to EP18824312.5A priority patent/EP3646705B1/en
Priority to CN201880029839.4A priority patent/CN110602942B/en
Priority to US16/618,921 priority patent/US11432464B2/en
Publication of WO2019003728A1 publication Critical patent/WO2019003728A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D57/00Delivering mechanisms for harvesters or mowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D61/00Elevators or conveyors for binders or combines

Definitions

  • the present invention relates to a harvester that harvests an established cereal straw.
  • a common-type combine which is an example of a harvester
  • cereal grains in the field are cut away by a reaper (corresponding to a harvester), and the reaped cereals are supplied from a reaper to a transport unit, and the transport unit It is supplied to the threshing device.
  • the transport unit is connected to the rear portion of the reaper, and the cereal crop sensor that detects the presence of the cereal crop on the right and left of the entrance of the transport unit. Is equipped.
  • the right cereal grain sensor when the right cereal grain sensor is in the detection state, it can be determined that the cereal grain cut off by the right part of the harvesting unit is supplied to the inlet of the transport unit.
  • the left forge sensor when the left forge sensor is in the detection state, it can be determined that the forage cut by the left part of the reaper is being supplied to the inlet of the transfer part.
  • a field management system has been proposed to improve harvesting by combining various field work data collected by rice planters (or planters), tractors and combines with GPS functions. .
  • Patent Document 2 disclosed as the above-mentioned field management system, one field is divided into a large number of small areas, and the planting data (seeding data) of seedlings by a rice planter (seeding machine) corresponding to each area of the field )
  • planting data seeding data
  • planting machine planting machine
  • the present invention aims to improve the performance of various tasks. Specifically, as disclosed in Patent Document 1, when detecting the harvest condition of the harvest area, it has been proposed to effectively utilize the detected harvest condition of the harvest area.
  • An object of the present invention is to effectively utilize the detected harvest condition of the harvest section when detecting the harvest condition of the harvest section in a harvester.
  • An object of the present invention is to improve the accuracy of field work data of a harvester by focusing on a harvester such as a combine in a field management system.
  • the harvester is A harvesting section, located at the front of the fuselage, for harvesting crops in the field, A plurality of crop sensors are provided in the harvest area at intervals in the left-right direction and in contact with the crops to detect the presence of crops.
  • the harvest section at the front of the airframe has a large width (left and right width)
  • a plurality of crop sensors are provided in the harvest section as in the present invention, which crop sensor detects a crop
  • a harvest width corresponding to a crop group harvested by an actual harvest operation can be detected. For example, if the harvest width is large, it can be judged that many crops are introduced to the harvest part, and if the harvest width is small, it can be judged that there are few crops to be introduced to the harvest part.
  • the present invention based on which crop sensor detects a crop, it is possible to detect in which part of the harvest area the crop is introduced within the width range of the harvest area. For example, determine whether the crop has been introduced to the right side of the harvest area, that the crop has been introduced to the left side of the harvest area, or that the crop has been introduced to the left and right center of the harvest area. Can.
  • the harvest width, which part of the harvest section the crop is introduced into, and the like are detected, and these detection data are added to the field operation data to obtain the harvester.
  • the precision of field work data can be improved.
  • a conveying unit for conveying a crop from the harvesting unit to the airframe side is connected to the rear of the harvesting unit;
  • a lateral transport body that is rotationally driven about an axis in the left-right direction so as to transport the crop toward the inlet of the transport portion along the lateral direction of the harvest section;
  • a frame body rotatably supporting the lateral transport body and connected to the transport portion.
  • the crop sensor is provided on the frame body.
  • the transport unit may be connected to the rear of the harvest unit, and crops in the field may be harvested and collected by the harvest unit and transported from the transport unit to the airframe side.
  • the crop section is provided with a frame body and a lateral transport body, and the harvested crop is transported laterally in the lateral transport body of the harvest section, collected at the entrance of the transport section, and transported by the transport section.
  • a crop sensor is provided on the frame of the harvester This can increase the certainty of crop detection by the crop sensor.
  • provision of the crop sensor on the frame body of the harvester, which is the existing structure, is advantageous in terms of simplifying the support structure of the crop sensor.
  • the crop sensor be provided at a portion of the frame body located below the lateral transport body.
  • the crop sensor is located on the lower side of the lateral carrier in the frame body of the harvester. To further enhance the certainty of detection of the crop by the crop sensor.
  • the crop sensor is provided at the bottom of the frame body.
  • the cropped crop can be cropped by the crop sensor while the harvested crop is likely to contact the lower portion of the frame body of the harvester.
  • the certainty of detection can be further enhanced.
  • the crop sensor be disposed at a position on the outer peripheral side of the rotation trajectory of the lateral transport body.
  • the lateral transport body at the harvest section does not interfere with the crop sensor even when driven to rotate, breakage of the crop sensor and breakage of the lateral transport body at the harvest section can be avoided without difficulty.
  • An opening is formed in the frame body, It is preferable that the detection unit of the crop sensor is provided in a state of protruding from the opening, and is configured to swing in contact with the crop.
  • Some contact type sensors include a main body portion and a detection portion pivotally supported by the main body portion.
  • the main body portion of the crop sensor can be protected by the frame body by projecting the detection portion of the crop sensor from the opening of the frame body and detecting the crop by the detection portion of the crop sensor. It is advantageous in terms of the durability of the crop sensor.
  • a gap filling member be provided to fill the gap between the detection unit and the opening.
  • the gap between the detection unit of the crop sensor and the opening of the frame is filled by the gap filling member. Therefore, it is possible to suppress the situation where the crop leaks through the above-mentioned gap.
  • a wall portion extending downward is provided on an outer peripheral portion of a portion protruding from the opening portion in the detection portion, and a portion protruding from the opening portion in the detection portion is formed in a box shape by the wall portion Is preferable.
  • the portion protruding from the opening in the detection unit is formed in a box shape, whereby the strength of the detection unit of the crop sensor can be improved.
  • the detection portion there are an upper stopper portion that determines the upper swing limit of the detection portion by hitting the frame body, and a lower stopper portion that determines the lower swing limit of the detection portion by hitting the frame body. It is preferable to be provided.
  • the upper stopper portion and the cropping unit may be shaken upward or downward more than necessary.
  • the lower stopper portion stops the detection portion of the crop sensor at the upper and lower swing limits, thereby avoiding breakage of the crop sensor due to excessive swing.
  • a conveying unit for conveying a crop from the harvesting unit to the airframe side is connected to the rear of the harvesting unit; It is preferable that the crop sensors are distributed and disposed at a position on the right side and a position on the left side in the harvest section with reference to the left and right centers of the inlet section of the transport section.
  • the transport unit may be connected to the rear of the harvest unit, and crops in the field may be harvested and collected by the harvest unit and transported from the transport unit to the airframe side.
  • the crop sensor is provided at the right position and the left position with reference to the left and right center of the entrance of the transport section in the harvest section, and is disposed in a wide range along the left and right direction of the harvest section. Therefore, it is possible to appropriately detect the harvest width, which part of the harvest section the crop has been introduced into, and the like.
  • the crop sensor is provided at a position on the right side with respect to the inlet, a position on the left with respect to the inlet, and a position on the front side of the inlet in the harvesting section.
  • the crop sensor is provided on the front side of the inlet of the transport unit in addition to the right and left positions with respect to the inlet of the transport unit, Since the sensors are arranged in a wide range along the lateral direction of the harvest area, it is possible to appropriately detect the harvest width and which part of the harvest area the crop is being introduced.
  • the crop sensor provided on the front side of the inlet in the harvesting part is provided on the front side of the crop sensor provided on the right side and the left of the inlet in the harvesting part Is preferable.
  • the crop sensor provided on the front side of the entrance portion of the guide unit is placed slightly apart on the front side from the front side portion of the entrance portion of the transport unit.
  • the crop sensor provided at a position on the right side and a position on the left side with respect to the inlet portion in the harvest section is provided with a detection unit that contacts the crop and swings around an axial center in the front-rear direction It is suitable.
  • Some crop sensors include a detection unit that contacts a crop, and when the crop contacts the detection unit, the detection unit is swung by the crop to detect the presence of the crop.
  • the detection of the crop sensors provided at the right and left positions with respect to the inlet of the transport.
  • the portion swings in the left and right direction around the longitudinal center axis.
  • the crop sensor provided on the front side of the inlet in the harvester be provided with a detector that contacts the crop and swings around an axial center in the left-right direction.
  • the crop harvested at the front portion of the inlet of the transport unit in the harvesting unit is transported to the rear side as it is and reaches the inlet of the transport unit.
  • the detection unit of the crop sensor provided on the front side of the inlet of the transport unit swings in the front-rear direction around the axial center in the left-right direction.
  • the detection unit of the crop sensor swings along the flow of conveyance of the crop, and the detection unit of the crop sensor does not interfere with the conveyance of the crop, and the detection unit of the crop sensor It does not develop into accumulation of crops or clogging of crops.
  • the harvester is A harvesting section provided at the front of the fuselage to harvest field crops, A harvest width detection unit that detects a harvest width corresponding to a crop group harvested by an actual harvesting operation among workable widths that can be harvested by the harvesting unit; A traveling transmission unit that changes the traveling speed of the aircraft; Based on the detection result of the harvest width detection unit, the speed control unit operates the traveling transmission unit to the low speed side as the harvest width is larger, and operates the traveling transmission unit to the high speed side as the harvest width is smaller. And are equipped.
  • the harvest width detection unit as in the present invention is provided, for example, if the harvest width is large, it can be determined that the number of crops introduced to the harvest unit is large. It can be determined that a large load is applied. Conversely, if the harvest width is small, it can be determined that the amount of crop introduced to the harvest section is small, and it can be determined that the load applied to the processing apparatus, engine, etc. is small.
  • the traveling speed of the airframe is automatically operated to the low speed side, the increase of the crop introduced into the harvest section is suppressed, and the load on the processing device or engine is increased.
  • Harvesting is carried out stably.
  • the traveling speed of the machine is automatically operated to the high speed side, the reduction of the crop introduced into the harvesting section is suppressed, and the processing device, the engine, etc. operate without waste.
  • the traveling speed of the machine is automatically operated based on the detection result of the harvest width, whereby the processing apparatus, the engine, etc. operate without waste while suppressing the increase of the load.
  • the working performance of the harvester can be improved.
  • the crop width detection unit is provided with a crop sensor that contacts the crop to detect the presence of the crop;
  • a crop sensor that contacts the crop to detect the presence of the crop;
  • two or more of the crop sensors are provided in the harvest section at intervals in the left-right direction.
  • the crop sensor is provided in the harvest unit to detect the presence of the crop, thereby directly detecting the crop introduced to the harvest unit. As a result, the detection accuracy of the harvest width can be enhanced.
  • two or more crop sensors are provided in the harvest section at an interval in the left-right direction, so the crop sensors do not waste the presence or absence of crops in the range extending to the right and left of the harvest section. It can be detected.
  • a transport unit connected to the rear of the harvester for transporting the harvested crop from the harvester to the machine side. It is preferable that a harvest crop sensor be provided at the inlet of the transport unit for detecting the presence of a crop by contacting the harvested crop.
  • the transport unit may be connected to the rear of the harvest unit, and crops in the field may be harvested and collected by the harvest unit and transported from the transport unit to the airframe side.
  • the harvest crop sensor is provided at the entrance of the transport unit.
  • the harvest crop sensor When it becomes a state where it does not detect, it can be judged that an abnormality has occurred in the crop width detection unit or crop crop sensor or the like.
  • the cropped crop sensor at the entrance of the transport unit in addition to the cropped width detection unit, it is possible to detect an abnormality.
  • the cropped crop sensor be provided on the right side and the left side of the inlet of the transport unit.
  • the crop introduced from the field to the right part of the harvest unit often passes through the right part of the harvest unit and the right part of the inlet of the transport unit.
  • the crop introduced from the left to the left of the harvest section often passes through the left of the harvest section and the left portion of the entrance of the transport section.
  • the cropped crop sensors are provided on the right and left portions of the inlet of the transport unit, for example, although the crop is detected by the cropping width detector at the right of the harvester, If the crop crop sensor on the right does not detect a crop, it can be determined that an abnormality has occurred in the cropping width detection unit or crop crop sensor or the like. As described above, by providing the cropped crop sensors on the right and left portions of the entrance of the transport unit in addition to the cropping width detector, various abnormalities can be detected.
  • the crop width detection unit is provided with a crop sensor that contacts the crop to detect the presence of the crop;
  • a crop sensor that contacts the crop to detect the presence of the crop;
  • Three or more of the crop sensors are arranged at intervals in the left-right direction in the harvest section, Preferably, at least one crop sensor located on the center side of the crop sensors is disposed on the front side of the inlet.
  • the crop sensor is provided on the front side of the inlet of the transport unit in addition to the right and left positions with respect to the inlet of the transport, the crop sensor It becomes a state arrange
  • FIG. 7 is a cross-sectional view of the vicinity of the crop sensor in the first state of the first embodiment.
  • 2nd form of Embodiment 1 it is sectional drawing of a crop sensor vicinity.
  • 3rd form of Embodiment 1 it is sectional drawing of a crop sensor vicinity.
  • Embodiment 1 it is sectional drawing of a crop sensor vicinity.
  • Embodiment 1 is a perspective view of a clearance gap filling member.
  • 4th form of Embodiment 1 it is a front view of the cross section of a crop sensor vicinity.
  • 4th form of Embodiment 1 it is a side view of the cross section of a crop sensor vicinity.
  • 4th form of Embodiment 1 it is a disassembled perspective view of the vicinity of a crop sensor.
  • the 5th form of Embodiment 1 it is a top view which shows arrangement
  • 7th form of Embodiment 1 it is a figure which shows the detection state of a crop sensor, and a non-detection state.
  • FIG. 13 is a conceptual diagram showing an association state between the control device and each part in the second embodiment.
  • FIGS. 1 to 18 show a common type combine for rice, which is an example of a harvester.
  • F indicates the “forward direction” of the airframe 1
  • B indicates the “rearward direction” of the airframe 1
  • U indicates the “upward direction” of the airframe 1
  • D indicates the “airflow direction of the airframe 1.
  • R indicates the “right direction” of the airframe 1
  • L indicates the “left direction” of the airframe 1.
  • an airframe 1 which is an airframe, is supported by right and left crawler-type traveling devices 2, and the transport unit 3 is supported so as to be able to swing vertically in the front of the airframe 1. It is done.
  • a reaper 4 (corresponding to a harvester) is provided, and a transport unit 3 is connected to the rear of the reaper 4.
  • a driving cabin 5 containing an operating unit is supported on the right of the front of the machine 1
  • a threshing device 6 is supported on the left of the machine 1
  • the right of the machine 1 is A gren tank 7 and a grain discharging device 8 are supported.
  • the airframe 1 advances, grain reeds (corresponding to crops) in the field are cut away by the reaper 4 and the cuts away are threshed from the reaper 4 through the conveying portion 3 It is supplied to the device 6.
  • the threshing device 6 the cereal grains are subjected to threshing treatment, the recovered grains are supplied to the gren tank 7, and the waste straw is discharged from the rear of the threshing device 6.
  • the grain tank 7 is full of grains, the grain of the grain tank 7 is discharged by the grain discharging device 8 to another transport vehicle (not shown) or the like.
  • the position detection system is a satellite navigation system (GNSS: Global Navigation Satellite System), and a representative example is GPS (Global Positioning System).
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the harvest amount sensor continuously detects the weight of grain recovered per unit time.
  • the reaping corresponding to a group of cereal crops reaped by an actual reaping operation It has a function of detecting the width W1 (harvest width) (see FIGS. 5 and 6) by the crop sensors 31, 32, 33, 34 (see FIG. 2).
  • W1 harvest width
  • the detection value of the yield sensor of each area of the field and the cutting width W1 of each area of the field can be collected and accumulated.
  • the reaper 4 is provided with a frame body 9 as a framework, and the frame body 9 is a bottom 10, a lateral side 11 connected to the right and left of the bottom 10, a bottom 10 and a rear side 12 connected to the rear of the lateral side 11.
  • the front portion (inlet portion 3a) of the transport unit 3 is connected to the rear side portion 12, and the transport unit 3 is connected to the rear portion of the reaper 4 There is.
  • the transport unit 3 is offset and connected to the rear of the reaper 4 so that the left and right center CL2 of the inlet 3a of the transport unit 3 is located on the left side from the left and right center CL1 of the reaper 4.
  • a hair clipper-type cutting device 13 is supported at the front of the bottom 10 along the left-right direction, and a divider 14 is connected to the front of the lateral side 11.
  • right and left arms 15 supported at the rear of the frame body 9 extend forward, and the reel 16 rotates around the horizontal axis P1 of the front of the arm 15 in the left-right direction. It is drivably supported.
  • the lateral conveyance body 17 is supported by the lateral side portion 11 so as to be rotatable around an axis P 2 in the left-right direction.
  • the lateral conveyance body 17 includes a cylindrical body 17a, a right spiral portion 17b and a left spiral portion 17c connected to the outer peripheral portion of the body 17a, and a bar-like scraping portion 17d.
  • the right spiral portion 17 b of the lateral conveyance body 17 is located on the right side of the entrance portion 3 a of the conveyance portion 3
  • the left spiral portion 17 c of the lateral conveyance body 17 is the entrance portion 3 a of the conveyance portion 3.
  • Located on the left side of the The scraping portion 17 d of the lateral conveyance body 17 is located on the front side of the inlet 3 a of the conveyance portion 3.
  • the grain between the right and left dividers 14 is scraped into the lateral carrier 17 by the reel 16, while the strain of the grain is separated.
  • the original is cut by the cutting device 13, and the cut grain is introduced between the lateral carrier 17 and the bottom 10 by the rotation of the lateral carrier 17.
  • the grain scale introduced in the vicinity of the right spiral portion 17 b of the lateral conveyance body 17 is conveyed to the left by the right spiral portion 17 b of the lateral conveyance body 17, and the scraped portion 17 d of the lateral conveyance body 17 Is supplied to the inlet 3 a of the transport unit 3.
  • the grain introduced in the vicinity of the left spiral portion 17c of the horizontal transfer body 17 is transferred to the right by the left spiral portion 17c of the horizontal transfer body 17, and the entrance portion of the transfer portion 3 by the scraping portion 17d of the horizontal transfer body 17. It is supplied to 3a.
  • the cereal grains introduced in the vicinity of the scraping portion 17 d of the lateral transport body 17 are transported to the rear side by the scraping portion 17 d of the lateral transport body 17 and supplied to the inlet portion 3 a of the transport portion 3.
  • the transport unit 3 includes a rectangular cylindrical support case 18 supported so as to be able to swing up and down in the front part of the machine body 1. Are connected to the rear side 12 of the reaper 4.
  • the transport unit 3 includes a rotating body 19 driven to rotate around an axis P 3 in the left-right direction and a right and left wound around the rotating body 19 inside the support case 18.
  • the transport chain 20 and the transport body 21 attached across the transport chain 20 are provided.
  • right and left crop crop sensors 22 and 23 are provided on the right and left portions of the inlet 3 a of the transport unit 3.
  • the cropped crop sensors 22, 23 are provided with arm-shaped detection portions 22a, 23a swingable back and forth around the axis P4 in the left-right direction, and the entrance portion of the transport portion 3 with respect to the transport chain 20 in plan view It is disposed on the side of the left and right center CL2 of 3a and is disposed on the front side of the rotary body 19 in a side view so as not to interfere with the rotation trajectory of the transport body 21.
  • the grain gravel is supplied from the reaper 4 to the inlet 3 a of the conveyance part 3, and the grain meal contacts the detection parts 22 a and 23 a of the crop sensors 22 and 23, Harvested crop sensors 22, 23 detect the presence of cereal grits.
  • the cropping width W1 (harvest width) (see FIGS. 5 and 6) corresponding to the group of cereal crops that were actually cut by the reaping work, among the workable widths that can be reaped by the reaping unit 4, It can be detected by the sensors 31 to 34 (see below (Detection pattern of cereal grains by crop sensor)).
  • the front side of the right spiral portion 17 b of the lateral conveyance body 17 (on the reaper 4 (harvest))
  • the crop sensors 31, 32 are provided in the position of.
  • a crop sensor 34 is provided on the front side of the left spiral portion 17 c of the horizontal conveyance body 17 (corresponding to the position on the left side with respect to the inlet 3 a of the conveyance portion 3 in the reaper 4 (harvest)).
  • a crop sensor 33 is provided on the front side of the scraping portion 17 d of the horizontal conveyance body 17 (corresponding to the position on the front side of the entrance 3 a of the conveyance unit 3 in the reaper 4 (harvest unit)).
  • the crop sensors 31 to 34 are provided in the reaper 4 (harvest) at intervals in the left-right direction, and in the reaper 4 (harvest)
  • the left and right center positions of the entrance portion 3a of the transport unit 3 are distributed to the right position and the left position, and are positioned below the horizontal transport body 17 in the frame body 9 It is in the state of being prepared for the part.
  • the crop sensors 31 and 32 overlap the rotation trajectory of the right spiral portion 17 b of the lateral transport body 17 in plan view, and the crop sensor 34 is a left spiral portion 17 c of the lateral transport body 17 in plan view. Overlapping the rotation trajectory of
  • the crop sensors 31, 32 and 34 are disposed on the front side (peripheral side) of the rotation trajectory of the right spiral portion 17 b and the left spiral portion 17 c of the lateral conveyance body 17 in side view. It does not interfere with the right spiral portion 17 b and the left spiral portion 17 c of the body 17. As shown in FIG. 2, since the crop sensors 31, 32, 34 and the scraping portion 17 d of the lateral transport body 17 are different in position in the left-right direction, the crop sensors 31, 32, 34 scrape the lateral transport body 17. It does not interfere with the insertion part 17d.
  • the crop sensors 33 (corresponding to the crop sensors provided on the front side of the entrance 3 a of the transport unit 3 in the reaper 4 (harvest))
  • the cropping unit 4 (harvesting unit) is provided on the front side of the crop sensor 4 (corresponding to a crop sensor provided on the right side and the left side with respect to the inlet 3a of the transport unit 3).
  • the crop sensor 33 is disposed on the front side (peripheral side) of the rotation trajectory of the scraping portion 17 d of the lateral conveyance body 17, and the crop sensor 33 is at the entrance 3 a of the conveyance portion 3 in plan view. It is disposed slightly to the right of the left and right center CL2 (crop sensors 31, 32) (the left and right center CL1 of the reaper 4).
  • the crop sensor 33 and the right spiral portion 17 b and the left spiral portion 17 c of the lateral conveyance body 17 are different in position in the left-right direction, the crop sensor 33 is a right spiral portion 17 b of the lateral conveyance body 17. And do not interfere with the left spiral portion 17c.
  • the crop sensors 31 to 34 include a main body 24 and a detection unit 25 supported so as to be pivotable around an axis P5 of the main body 24.
  • the detection unit 25 is in the form of an arm extending from the main body 24 and is biased upward (in the non-detection state) by a spring (not shown) installed in the main body 24.
  • an opening 10 a is formed in the bottom 10, and a clearance filling member 26 such as a soft rubber plate and a pressing plate 27 are provided.
  • a T-shaped slit 26 a is formed in the gap filling member 26, and an opening 27 a is formed in the pressing plate 27.
  • the gap filling member 26 is in contact with the lower surface of the bottom portion 10 so that the slit 26 a of the gap filling member 26 is positioned at the opening 10 a of the bottom portion 10.
  • the pressing plate 27 is abutted against the lower surface of the gap filling member 26 so that the opening 27a of the pressing plate 27 is positioned at the slit 26a of the gap filling member 26 and the opening 10a of the bottom 10, and the gap filling member 26 is pressed It is fixed to the lower surface of the bottom 10 by a plate 27.
  • the main body 24 of the crop sensors 31 to 34 is connected to the lower surface of the presser plate 27, and the detectors 25 of the crop sensors 31 to 34 fill the opening 27 a of the presser plate 27. It projects obliquely upward through the slit 26 a of the member 26 and the opening 10 a of the bottom 10.
  • the state shown in FIG. 3 is a state in which the grain scale is not in contact with the detection unit 25 of the crop sensors 31 to 34, and the crop sensors 31 to 34 do not detect the grain scale.
  • the gap between the detection portion 25 of the crop sensors 31 to 34 and the opening 10 a of the bottom 10 is filled by the gap filling member 26, the grain passes through the opening 10 a of the bottom 10 There is no leak.
  • the detection units 25 of the crop sensors 31 to 34 close the opening 10 a of the bottom 10, and the detection units 25 of the crop sensors 31 to 34 and the bottom 10
  • the upper surface is substantially flush with the upper surface.
  • the axial center P5 of the main body 24 of the crop sensors 31 and 32 points in the front-rear direction, and the detection unit 25 of the crop sensors 31 and 32 It is extended above the left and right center CL 1 side of the reaper 4 (the inlet 3 a side of the transport unit 3).
  • the axial center P5 of the main body 24 of the crop sensor 33 is directed in the left-right direction, and the detection unit 25 of the crop sensor 33 is diagonally It is extended to the upper side of 3a side).
  • the axial center P5 of the main body 24 of the crop sensor 34 is directed in the front-rear direction, and the detection unit 25 of the crop sensor 34 It is extended above the CL1 side (the inlet 3a side of the transport unit 3).
  • the cereal grits are introduced from the area A 1
  • the cereal grits are transported to the left by the right spiral portion 17 b of the lateral transport body 17 and the scraping portions 17 d of the lateral transport body 17
  • the grain scale contacts the crop sensor 31, and the crop sensor 31 detects the grain scale.
  • the crop sensor 32 since the grain scale contacts the crop sensor 31 and then the crop sensor 32, the crop sensor 32 also detects grain scale.
  • the cereal grits are introduced from the area A 2, the cereal grits are transported to the left by the right spiral portion 17 b of the lateral transport body 17, and the scraping portions 17 d of the lateral transport body 17 It is supplied to the inlet portion 3a, and the grain scale contacts the crop sensor 32, and the crop sensor 32 detects the grain scale.
  • the cereal grits are introduced from the area A 3, the cereal grits are transported to the rear side by the scraping portion 17 d of the lateral transport body 17 and come into contact with the crop sensor 33. It is supplied to the inlet 3a, and the crop sensor 33 detects cereal grains.
  • the cereal grits are introduced from the area A 4, the cereal grits are transported to the right by the left spiral portion 17 c of the lateral transport body 17, and the scraping portions 17 d of the lateral transport body 17 It is supplied to the inlet 3a, and the grain scale contacts the crop sensor 34, and the crop sensor 34 detects the grain scale.
  • the crop sensor 33 since the crop sensor 33 is located on the slightly lateral side of the rotation trajectory of the scraping portion 17 d of the lateral transport body 17 in plan view, the crop sensor 17 of the lateral transport body 17 By turning, the grain scale is pressed against the crop sensor 33, and detection of the grain scale by the crop sensor 33 is highly reliable.
  • the right harvested crop sensor 22 detects the cereal flour
  • the crop crop sensor 23 on the left is in a state of detecting or not detecting a grain scale.
  • a grain scale is introduced from the area A3
  • at least one of the right and left crop sensor 22 and 23 detects the grain scale.
  • the right crop crop sensor 22 is in a state of detecting or non-detecting a grain scale
  • the left crop crop sensor 23 is in a state of detecting a grain crop.
  • the detection patterns B1 to B9 of grain scale by crop sensors 31 to 34 and harvest crop sensors 22 and 23 and the cutting width W1 which is the lateral width of the grain scale introduced from the field to the harvesting section 4 will be described as follows: Do. As shown in the detection pattern B1 of FIG. 5, when the crop sensors 31 to 34 are in the detection state ON and the right and left harvest crop sensors 22 and 23 are in the detection state ON, the cutting width W1 spans the areas A1 to A4 and It can be judged. In this case, when the right or left crop sensor 22 or 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the crop sensors 31 to 33 are in the detection state ON, the crop sensor 34 is in the non detection state OFF, the right crop crop sensor 22 is in the detection state ON, and the left crop crop sensor 23 is in the detection state
  • the ON state or the non-detection state is OFF, it can be judged that the cutting width W1 is a state extending over the regions A1 to A3.
  • the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the cutting width W1 It can be determined that the state is over the areas A2 to A4. In this case, when the right or left crop sensor 22 or 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the crop sensors 31, 32 are in the detection state ON
  • the crop sensors 33, 34 are in the non detection state OFF
  • the right crop crop sensor 22 is in the detection state ON
  • the left crop crop sensor 23 is
  • the detection state is ON or the non-detection state is OFF
  • the cutting width W1 is a state extending over the areas A1 and A2.
  • the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the crop sensors 31, 34 are in the non-detection state OFF, the crop sensors 32, 33 are in the detection state ON, the right crop crop sensor 22 is in the detection state ON, and the left crop crop sensor 23 is
  • the detection state is ON or the non-detection state is OFF, it can be determined that the cutting width W1 is a state extending over the areas A2 and A3.
  • the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the crop sensors 31, 32 are in the non-detection state OFF, the crop sensors 33, 34 are in the detection state ON, and the right crop crop sensor 22 is in the detection state ON or non-detection state OFF, left
  • the cutting width W1 is in the range of the areas A3 and A4.
  • the left crop sensor 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the cutting width W1 can be determined to be the state of the area A2. In this case, when the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the crop sensors 31, 32, 34 are in the non-detection state OFF, the crop sensor 33 is in the detection state ON, the right crop crop sensor 22 is in the detection state ON or non-detection state OFF, left
  • the cutting width W1 can be determined as the state of the area A3. In this case, when both of the right and left crop sensor 22 and 23 are in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the crop sensors 31 to 33 are in the non detection state OFF, the crop sensor 34 is in the detection state ON, and the right crop crop sensor 22 is in the detection state ON or non detection state OFF, the left crop
  • the cutting width W1 can be determined to be the state of the area A4. In this case, when the left crop sensor 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the structure relating to the crop sensors 31 to 34 may be configured as shown in FIG. As shown in FIG. 7, the slit 26 a of the gap filling member 26 is eliminated, and the gap filling member 26 is provided with the opening 26 b and the bellows portion 26 c.
  • the detection units 25 of the crop sensors 31 to 34 project upward through the opening 26 b of the gap filling member 26, and the lower side and the bottom of the detection units 25 of the crop sensors 31 to 34
  • the space between the opening 10 a and the opening 10 a is covered by the bellows 26 c of the gap filling member 26.
  • the bellows portion 26c of the gap filling member 26 is compressed.
  • the structure relating to the crop sensors 31 to 34 may be configured as shown in FIG.
  • the gap filling member 26 shown in FIGS. 4 and 7 is eliminated, and as shown in FIG. 8, the metal or hard rubber gap filling member 28 is connected to the detection unit 25 of the crop sensors 31 to 34. There is.
  • the detection units 25 of the crop sensors 31 to 34 project upward through the opening 10 a of the bottom portion 10.
  • the gap filling member 28 is located on the upper side together with the detection units 25 of the crop sensors 31 to 34, and the gap filling member 28 fills the opening 10 a of the bottom 10.
  • the gap filling member 28 separates downward from the opening 10 a of the bottom portion 10. At this time, the tips of the detection units 25 of the crop sensors 31 to 34 hit the bottom 10, and the openings 10a of the bottom 10 are filled with the detection units 25 of the crop sensors 31 to 34.
  • the structures relating to the crop sensors 31 to 34 may be configured as shown in FIGS.
  • the gap filling member 26 shown in FIGS. 4 and 7 is eliminated, and as shown in FIG. 11, gap filling members 29, 30 such as a soft rubber plate other than the gap filling member 26 are provided.
  • a channel-like slit 29a is formed in a plan view, and a cover portion 29b movable in the vertical direction is formed.
  • An opening 30 a is opened in the gap filling member 30, and two slits 30 b are formed from the opening 30 a to form a cover 30 c which is vertically movable.
  • the gap filling member 29 is disposed on the upper side
  • the gap filling member 30 is disposed on the lower side
  • the gap filling members 29 and 30 are fixed to the lower surface of the bottom 10 by the pressing plate 27. ing.
  • the detection unit 25 of the crop sensors 31 to 34 protrudes upward through the opening 30 a of the gap filling member 30, and the crop sensors 31 to 34 do not detect a grain scale In the state, the cover portion 29b of the gap filling member 29 is pushed upward.
  • the opening 30a of the gap filling member 30 is covered by the cover 29b of the gap filling member 29, and the cover 29b of the gap filling member 29 is pushed up to fill the gap.
  • the opening formed in the member 29 is filled with the cover 30 c of the gap filling member 30.
  • the detection unit 25 of the crop sensors 31 to 34 swings downward due to the contact of the grain crucible, the detection unit 25 of the crop sensors 31 to 34 covers the cover 30 c of the gap filling member 30.
  • the cover portion 29b of the gap filling member 29 moves downward so as to follow the detection portion 25 of the crop sensors 31 to 34.
  • the structures relating to the crop sensors 31 to 34 may be configured as shown in FIGS. 12, 13 and 14.
  • an upper part 25a In the detection unit 25 of the crop sensors 31 to 34, an upper part 25a, three wall parts 25b, 25c, 25d extending downward from the outer peripheral part of the upper part 25a, and an upper part extending laterally from the lower part of the wall 25b.
  • a stopper portion 25e, a lower stopper portion 25f extending laterally from the lower portion of the wall portions 25b, 25c, and a middle wall portion 25g fixed downward to the middle portion of the upper portion 25a are provided.
  • the detection unit 25 of the crop sensors 31 to 34 is formed by bending a plate material, and is formed in a box shape whose lower side in a rectangular shape is opened in a plan view by the upper portion 25a and the wall portions 25b, 25c, 25d (A portion of the detection unit 25 that protrudes from the opening 10a corresponds to a state in which the wall portions 25b, 25c, and 25d form a box shape).
  • the detection shaft 24 a of the main body 24 is inserted into an opening (not shown) opened in the wall 25 b and the middle wall 25 g of the detection unit 25 of the crop sensors 31 to 34, and the detection 25 is the main body 24. It is connected to the detection axis 24a of.
  • the detection shaft 24 a of the main body 24 of the crop sensors 31 to 34 is rotated, the detection unit 25 is swingably supported around the axis P 5 of the main body 24, and the spring installed in the main body 24 ( The detection unit 25 is biased to the upper side (non-detection state side) by the not shown).
  • a gap filling member 35 such as a soft rubber plate and a pressure plate 36 are provided.
  • a rectangular opening portion 35a is opened in the gap filling member 35, and a long extension portion 35b and a short extension portion 35c are formed on one and the other of the short sides of the opening portion 35a.
  • the holding plate 36 is formed of a metal plate and has a rectangular opening 36 a.
  • the holding plate 36 is provided with a receiving portion 36b bent in a U-shape, and the receiving portion 36b is connected near the end of the opening 36a.
  • the gap filling member 35 is in contact with the lower surface of the bottom 10 so that the opening 35 a of the gap filling member 35 is positioned at the opening 10 a of the bottom 10.
  • the opening 36 a of the pressing plate 36 is positioned at the opening 35 a of the gap filling member 35 and the opening 10 a of the bottom 10, and the receiving portion 36 b of the pressing plate 36 is below the extension 35 b of the gap filling member 35.
  • a pressure plate 36 is in contact with the lower surface of the gap filling member 35 so as to be positioned.
  • the pressure plate 36 is connected to the bottom 10 by a bolt 37, and the gap filling member 35 is fixed to the lower surface of the bottom 10 by the pressure plate 36 so as to be sandwiched between the bottom 10 and the pressure plate 36. .
  • the body portions 24 of the crop sensors 31 to 34 are connected to the lower surface of the presser plate 36 by bolts 37 in a co-clamped state, and the detection units 25 of the crop sensors 31 to 34 It projects obliquely upward through the opening 35 a of the member 35 and the opening 10 a of the bottom 10.
  • the detection of cereal grits by the crop sensors 31 to 34 will be described as follows.
  • the condition shown in FIG. 12 and FIG. 13 is a condition in which the cereal grits are not in contact with the detection unit 25 of the crop sensors 31 to 34, and the crop sensors 31 to 34 do not detect cereal grits.
  • the upper stopper portion 25e of the detection portion 25 of the crop sensors 31 to 34 is in contact with the edge of the opening 36a of the pressing plate 36 from the lower side, and is in contact with the frame 9 through the pressing plate 36 It is.
  • the detection units 25 of the crop sensors 31 to 34 are located at the upper swing limit, and can not swing further upward.
  • the extending portion 35b of the gap filling member 35 contacts the wall 25d of the detecting portion 25 of the crop sensors 31 to 34, and the extending portion 35c of the gap filling member 35 detects the crop sensors 31 to 34
  • the long side of the opening 35a of the gap filling member 35 is in contact with the walls 25b and 25c of the detection unit 25 of the crop sensors 31 to 34.
  • the gap between the detection part 25 of the crop sensors 31 to 34 and the opening 10 a of the bottom part 10 is formed by the wall parts 25 b, 25 c and 25 d of the detection parts 25 of the crop sensors 31 to 34 and the gap filling member 35 In the state of being buried, the grain does not leak through the opening 10 a of the bottom 10.
  • the lower stoppers 25 f of the detection units 25 of the crop sensors 31 to 34 and the lower sides of the walls 25 b and 25 c are the receiving portions 36 b of the pressing plate 36.
  • the detection unit 25 of the crop sensors 31 to 34 has reached the lower swing limit.
  • the lower stopper portion 25f of the detection portion 25 of the crop sensors 31 to 34 is in contact with the frame body 9 through the pressing plate 36 (receiving portion 36b), and can not be swung further downward. Become.
  • the detection units 25 of the crop sensors 31 to 34 reach the lower swing limit, the detection units 25 of the crop sensors 31 to 34 close the opening 35 a of the gap filling member 35 and the opening 10 a of the bottom 10. In this state, the upper portion 25a of the detection unit 25 of the crop sensors 31 to 34 and the upper surface of the bottom portion 10 become substantially flush. As a result, the flow of cereal grains is not inhibited by the detection unit 25 of the crop sensors 31 to 34, and the grains do not leak through the opening 10 a of the bottom 10.
  • two crop sensors 31 and 32 are provided in the reaper 4.
  • the crop sensor 31 is located on the front side of the right spiral portion 17 b of the lateral conveyance body 17 (corresponding to the position on the right side with respect to the entrance portion 3 a of the conveyance portion 3 in the harvesting portion 4 (harvesting portion)). Is equipped.
  • the crop sensor 32 is located on the front side of the left spiral portion 17 c of the lateral conveyance body 17 (corresponding to the position on the left side with respect to the entrance portion 3 a of the conveyance portion 3 in the harvesting portion 4 (harvesting portion)). Is equipped.
  • the crop sensors 31, 32 are provided in the reaper 4 (harvest) with a space in the left-right direction. That is, in the reaper 4 (the harvester), the right side and the left side are distributed and arranged with reference to the left and right center CL2 of the entrance 3a of the transport unit 3. Furthermore, the frame body 9 is provided in a portion located below the horizontal conveyance body 17.
  • the crop sensor 31 overlaps the rotation trajectory of the right spiral portion 17b of the horizontal conveyance body 17 in plan view
  • the crop sensor 32 overlaps the rotation trajectory of the left spiral portion 17c of the horizontal conveyance body 17 in plan view.
  • the crop sensors 31, 32 are disposed on the front side (peripheral side) of the rotational trajectory of the right spiral portion 17b and the left spiral portion 17c of the lateral conveyance body 17 in a side view, and the right spiral portion 17b and left side of the lateral conveyance body 17 It does not interfere with the spiral part 17c. Since the crop sensors 31 and 32 and the scraping portion 17 d of the lateral transport body 17 are different in position in the left-right direction, the crop sensors 31 and 32 do not interfere with the scraping portion 17 d of the lateral transport body 17.
  • the axial center P5 of the main body 24 of the crop sensor 31 is directed in the front-rear direction, and the detection unit 25 of the crop sensor 31 is on the diagonal left side (right and left center CL1 side of the reaper 4) It is extended to the upper side of 3a side).
  • the axis P5 of the main body 24 of the crop sensor 32 is directed in the front-rear direction, and the detection unit 25 of the crop sensor 32 is on the diagonal right side (right and left center CL1 side of the reaper 4) It is extended to the upper side of the part 3a side).
  • the cereal grits are introduced from the area A1
  • the cereal grits are conveyed to the left by the right spiral part 17b of the lateral conveyance body 17 and supplied to the inlet 3a of the conveyance part 3 by the scraping part 17d of the lateral conveyance body 17
  • the crop sensor 31 detects the clump.
  • the cereal grits When the cereal grits are introduced from the area A2, the cereal grits are supplied to the inlet 3a of the transporter 3 while being transported to the rear side by the scraping part 17d of the lateral transporter 17, and the right and left harvests
  • the crop sensors 22 and 23 detect grain defects.
  • the cereal grits When the cereal grits are introduced from the area A3, the cereal grits are conveyed to the right by the left spiral portion 17c of the lateral conveyance body 17, and are supplied to the inlet portion 3a of the conveyance portion 3 by the scraping portion 17d of the lateral conveyance body 17.
  • the crop sensor 32 detects the clump.
  • the right harvested crop sensor 22 detects the cereal flour and the left harvested crop sensor 23 detects the cereal flour It will be a state or a state not detected.
  • a grain scale is introduced from the area A2
  • at least one of the right and left crop sensor 22 and 23 detects a grain scale.
  • the right crop crop sensor 22 is in a state of detecting or non-detecting a grain crop
  • the left crop crop sensor 23 is in a state of detecting a grain crop.
  • detection patterns B11 to B14 of grain scale by crop sensors 31 and 32 and crop crop sensors 22 and 23 and a width W1 which is the lateral width of the grain scale introduced from the field to the harvesting unit 4 Become.
  • the cutting width W1 is determined to be a state extending over the areas A1, A2, A3. it can.
  • the right or left crop sensor 22 or 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the crop sensor 31 is in the detection state ON
  • the crop sensor 32 is in the non detection state OFF
  • the right crop crop sensor 22 is in the detection state ON
  • the left crop crop sensor 23 is in the detection state ON or non detection
  • it can be judged that the cropping width W1 is in the state across the areas A1 and A2 or in the state of the area A1.
  • the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the crop sensor 31 is in the non-detection state OFF
  • the crop sensor 32 is in the detection state ON
  • the right crop crop sensor 22 is in the detection state ON or non-detection state OFF
  • the left crop crop sensor 23 is in the detection state
  • the cutting width W1 is in the state extending over the areas A2 and A3 or in the state of the area A3.
  • the left crop sensor 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
  • the cropping width W1 can be determined as the state of the area A2.
  • the third crop sensor 33 is disposed on the front side of the scraping portion 17d of the lateral conveyance body 17 shown in FIG. 15 (on the front side of the inlet 3a of the conveyance portion 3). You may provide (refer the crop sensor 33 of FIG. 2).
  • the cutting width W1 when the crop sensor 33 is in the detection state ON, it can be determined that the cutting width W1 is a state extending over the areas A1 and A2.
  • the cutting width W1 can be determined to be the state of the area A1.
  • the cutting width W1 when the crop sensor 33 is in the detection state ON, it can be determined that the cutting width W1 is a state extending over the regions A2 and A3.
  • the cutting width W1 can be determined as the state of the area A3.
  • the detection of grain defects of the crop sensors 31 to 34 may be configured as follows.
  • the amount of grain scale introduced to the reaper 4 changes in each part of the field depending on the growing condition in the field, etc., and the grain scale is sufficient to bring the crop sensors 31 to 34 into the detection state ON sufficiently. However, it is not always introduced into the reaper 4. As a result, when reaping is performed by the reaper 4, the state in which the cereal grits introduced to the reaper 4 contact the crop sensors 31 to 34 and the non-contact state are repeated.
  • detection signals ON1, ON2, ON3, and ON4 are repeatedly output from the crop sensors 31 to 34 in the non-detection state OFF.
  • the detection signals ON2, ON3 and ON4 are output from the crop sensors 31 to 34 until the set time T elapses from the first detection signal ON1, the crop sensors 31 to 34 are output. Is determined to be the detection state ON (see the dotted line in FIG. 17).
  • the next detection signal ON1 is immediately output from the crop sensors 31 to 34, so the set time T is set again.
  • the crop sensors 31 to 34 are determined to be in the detection state ON.
  • the set time T may be set to a fixed time (for example, one second).
  • the set time T may be changed in conjunction with the traveling speed of the aircraft 1.
  • cereal grits exist (a possibility that the crop sensors 31 to 34 output the detection signal) from a point where the crop sensors 31 to 34 output the detection signal to a certain distance (for example, 2 m)
  • a certain distance for example, 2 m
  • the speed sensor (not shown) for detecting the traveling speed of the aircraft 1 is provided, and when the traveling speed of the aircraft 1 becomes high, the setting time T becomes The setting time T may be changed to the long side when the traveling speed of the airframe 1 is changed to the short side and the traveling speed of the aircraft 1 becomes low.
  • the reaper 4 is stopped and raised from the field to perform a turn at the edge and enter the next harvest stroke Repeat the task.
  • the process shown in FIG. 17 is performed in a state in which the reaper 4 performs cutting, that is, in a state in which a reaper clutch (not shown) for transmitting power to the reaper 4 is operated.
  • the processing shown in FIG. 17 is not performed in a state in which the cutting by the reaper 4 is not performed as in the case of turning on the ground, that is, in a state in which the cutting clutch is operated.
  • the signals ON1 to ON4 are stopped, the crop sensors 31 to 34 are determined to be in the non-detection state OFF.
  • the crop sensors 31 to 34 of FIGS. 4 and 7 to 11 may be provided with the upper stopper portion 25e and the lower stopper portion 25f of the crop sensors 31 to 34 described above.
  • the harvester (combine) which concerns on Embodiment 2 the structure which controls the travel speed of an airframe according to harvest width is demonstrated.
  • the harvester (combine) which concerns on this Embodiment can be implemented with the harvester (combine) which concerns on Embodiment 1, or independently.
  • detection signals of the crop sensors 31 to 34 and crop crop sensors 22 and 23 are input to the control device 130, and the cropping width detector 136 (corresponding to a cropping width detector) and the abnormality detector 137 Are included in the control device 130 as software.
  • the crop sensors 31 to 34 are attached to the cutting width detection unit 136, and are provided to the cutting width detection unit 136.
  • a display device 39 such as a liquid crystal display is provided in the driving unit.
  • the cutting width W1 is detected by the cutting width detection unit 136, and the detection result (cutting width W1) is displayed on the display device 39.
  • the anomaly detector 137 Based on the detection signals of the crop sensors 31 to 34 and the crop sensors 22, 23, the anomaly detector 137 detects an anomaly, and when an anomaly is detected, the detection result is displayed on the display device 39.
  • the power of the engine (not shown) is transmitted to the hydrostatic type continuously variable transmission 128 (corresponding to a traveling transmission unit), and from the geared sub transmission (not shown). , Right and left traveling devices 2.
  • the continuously variable transmission 128 can steplessly shift to the neutral position N, the forward side F, and the reverse side R.
  • the electric motor 129 operates the continuously variable transmission 128, and the control device 130 operates the electric motor 129.
  • the drive unit is provided with the shift lever 135, and the shift lever 135 can be operated to the neutral position N, the forward side F and the reverse side R, and the operation position of the shift lever 135 is input to the control device 130.
  • the speed control unit 38 is provided in the control device 130 as software.
  • a manual setting unit 40 capable of manually setting the speed control unit 38 into the operating state and the stop state is provided in the operating unit, and a signal of the manual setting unit 40 is input to the control device 130.
  • the stop state of the speed control unit 38 is displayed on the display device 39.
  • the electric motor 129 is operated by the control device 130 and the continuously variable transmission 128 is operated to the neutral position N.
  • the shift lever 135 is operated to the forward side F (reverse side R)
  • the electric motor 129 is operated by the control device 130
  • the continuously variable transmission 128 is operated to the forward side F (reverse side R).
  • the continuously variable transmission 128 is operated to the shift position corresponding to the operation position of the lever 135.
  • the continuously variable transmission 128 is automatically operated to the low speed side of the forward side F by the speed control unit 38 as the cutting width W1 is larger. As the cropping width W1 is smaller, the speed control unit 38 automatically operates the continuously variable transmission 128 to the high speed side of the forward side F. The shift position of the continuously variable transmission 128 is displayed on the display device 39.
  • the upper limit position on the high speed side is the operation position of the speed change lever 135.
  • the continuously variable transmission 128 is not operated to the high speed side of the forward side F beyond the shift position corresponding to the operation position.
  • the shift lever 135 the upper limit position on the high speed side can be arbitrarily changed.
  • the speed control unit 38 causes the continuously variable transmission 128 to operate more rapidly than the operation to the low speed side of the continuously variable transmission 128 during reaping work. It is operated to the low speed side of the forward side F.
  • the speed control unit 38 makes the continuously variable transmission 128 more gentle than the operation to the high speed side of the continuously variable transmission 128 during the reaping operation. It is operated to the high speed side of the forward side F.
  • the driver may not recognize the state of the reaper 4 even if the driver looks at the front of the reaper 4 from the driver.
  • the driver visually checks the display device 39 to determine in which areas A1 to A4 of the cropping unit 4 the grain gravel has been introduced. It can be confirmed.
  • the cutting width W1 displayed on the display device 39 can be effectively used for correcting the orientation of the machine 1 during the reaping operation.
  • Embodiment 2 Instead of operating the continuously variable transmission 128 by the electric motor 129 to automatically control the traveling speed of the machine 1, the electric motor 129 operates the accelerator of the engine (corresponding to the traveling transmission unit) to operate the machine. The traveling speed of 1 may be controlled automatically.
  • the electric motor 129 operates the gear shift lever 135 to operate the continuously variable transmission 128, thereby
  • the traveling speed may be controlled automatically.
  • the transport unit 3 may be offset and connected to the rear of the reaper 4 so that the left and right center CL2 of the inlet 3a of the transport unit 3 is positioned slightly to the right of the left and right center CL1 of the reaper 4.
  • the arrangement of the right spiral portion 17b and the left spiral portion 17c, the scraping portion 17d, and the crop sensors 31 to 34 of the horizontal conveyance body 17 is reversed from the state shown in FIG. 2 and FIG. It should be placed in
  • the transport unit 3 is connected to the rear of the reaper 4 so that the left and right center CL2 of the inlet 3a of the transport unit 3 is located at the left and right center CL1 of the reaper 4 and the right spiral of the lateral transport 17
  • the 17 b and the left spiral portion 17 c may have the same length.
  • the crop sensors 33 are disposed to be located at the left and right center CL2 of the entrance 3a of the transport unit 3, and the crop sensors of the same number are provided on the front side of the right spiral 17b and the left spiral 17c of the horizontal conveyor 17. 31, 32 and 34 may be disposed so as to be symmetrical with respect to the left and right center CL 1 of the reaper 4.
  • the number of crop sensors 31 to 34 may be five or more instead of four, or three or less.
  • the crop sensor 33 located on the front side of the inlet 3a of the transport unit 3 may be eliminated.
  • the crop sensors 31 to 34 may be provided on the rear side 12 instead of the bottom 10.
  • the crop sensors 31 to 34 may be provided on the lower side portion (corresponding to the portion positioned below the horizontal conveyance body in the frame body) below the axial core P2 of the horizontal conveyance body 17 in the rear side portion 12 .
  • the pressure receiving surface is provided by a rubber body or the like instead of the detection unit 25 of the crop sensors 31 to 34, and the pressure on the pressure receiving surface is increased.
  • the right and left portions of the inlet 3a of the transport unit 3 are not provided with the right and left crop sensor 22 and 23, but one at the bottom 18a of the support case 18 at the inlet 3a of the transport 3 Harvest crop sensor (not shown). Thereby, it is possible to determine that an abnormality has occurred in the crop sensors 31, 32, 33, 34 by one crop sensor.
  • a cropped crop sensor (not shown) may be provided at the left and right center CL2 of the inlet 3a of the transport unit 3 at the bottom 18a of the support case 18, and the left and right center of the inlet 3a of the transport 3
  • a cropped crop sensor (not shown) may be provided at a position slightly right or left from CL2.
  • the present invention is applicable not only to ordinary rice combine, but also to harvester such as corn harvester, sugar cane harvester, cotton harvester, etc.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Combines (AREA)

Abstract

Provided are: a harvesting part 4 which is disposed on the front of a machine body, and harvests agricultural crops; and a plurality of crop sensors 31, 32, 33, 34 which are arranged on the harvesting part 4 with spaces therebetween in the left/right direction, and detect the presence of a crop upon contact with the same. The present invention may also provide: a harvesting width detector which detects, from among workable widths at which the harvesting part 4 can carry out harvesting work, a harvesting width corresponding to a crop group actually being harvested; a travel speed changer which changes the travel speed of the machine body; and a speed controller which operates the travel speed changer at a lower speed as the harvesting width increases, and operates the travel speed changer at a higher speed as the harvesting width decreases, on the basis of the detection result from the harvesting width detector.

Description

収穫機Harvester
 本発明は、植立穀稈を収穫する収穫機に関する。 TECHNICAL FIELD The present invention relates to a harvester that harvests an established cereal straw.
 収穫機の一例である普通型のコンバインでは、圃場の穀稈が刈取部(収穫部に相当)によって刈り取られ、刈り取られた穀稈が、刈取部から搬送部に供給され、搬送部により機体の脱穀装置に供給される。 In a common-type combine, which is an example of a harvester, cereal grains in the field are cut away by a reaper (corresponding to a harvester), and the reaped cereals are supplied from a reaper to a transport unit, and the transport unit It is supplied to the threshing device.
 前述のような普通型のコンバインにおいて、特許文献1では、刈取部の後部に搬送部が連結されており、搬送部の入口部の右及び左部に、穀稈の存在を検出する穀稈センサーが備えられている。 In the ordinary type combine as described above, in Patent Document 1, the transport unit is connected to the rear portion of the reaper, and the cereal crop sensor that detects the presence of the cereal crop on the right and left of the entrance of the transport unit. Is equipped.
 これにより、右の穀稈センサーが検出状態になると、刈取部の右部で刈り取られた穀稈が搬送部の入口部に供給されていると判断できる。左の穀稈センサーが検出状態になると、刈取部の左部で刈り取られた穀稈が搬送部の入口部に供給されていると判断できる。 As a result, when the right cereal grain sensor is in the detection state, it can be determined that the cereal grain cut off by the right part of the harvesting unit is supplied to the inlet of the transport unit. When the left forge sensor is in the detection state, it can be determined that the forage cut by the left part of the reaper is being supplied to the inlet of the transfer part.
 また、例えば稲作においては、田植機(又は播種機)、トラクタ及びコンバインにおいて収集される各種の圃場作業データと、GPS機能とを融合させて、収穫の向上を図る圃場管理システムが提案されている。 In addition, for example, in rice farming, a field management system has been proposed to improve harvesting by combining various field work data collected by rice planters (or planters), tractors and combines with GPS functions. .
 前述の圃場管理システムとして開示される特許文献2では、一つの圃場を多数の小さな領域に区分し、圃場の各領域に対応して、田植機(播種機)による苗の植付データ(播種データ)、トラクタによる耕耘データ、コンバインによる収穫データ(収穫量や食味)等の圃場作業データを収集して蓄積することにより、次年度での田植機(播種機)による苗の植え付け(播種)、トラクタによる耕耘等の改善が行われている。 In Patent Document 2 disclosed as the above-mentioned field management system, one field is divided into a large number of small areas, and the planting data (seeding data) of seedlings by a rice planter (seeding machine) corresponding to each area of the field ) By collecting and accumulating field work data such as tillage data by tractor, harvest data (harvest amount and taste) by combine, planting (seeding) of seedlings by rice planter (seeding machine) in the next fiscal year, tractor Improvement of tillage by
特開2017-46642号公報(段落番号0012,0051参照)JP, 2017-46642, A (refer to paragraph number 0012 and 0051) 特開2017-68533号公報JP, 2017-68533, A
 本発明は、各種作業の性能を向上することを目的とする。
 具体的には、特許文献1に開示されているように、収穫部の収穫状態を検出する場合、検出された収穫部の収穫状態を有効に利用することが、提案され始めている。
 本発明は、収穫機において収穫部の収穫状態を検出する場合において、検出された収穫部の収穫状態を有効に利用することを1つの目的としている。
The present invention aims to improve the performance of various tasks.
Specifically, as disclosed in Patent Document 1, when detecting the harvest condition of the harvest area, it has been proposed to effectively utilize the detected harvest condition of the harvest area.
An object of the present invention is to effectively utilize the detected harvest condition of the harvest section when detecting the harvest condition of the harvest section in a harvester.
 また、前述のような圃場管理システムにおいて、性能向上を図る為には、田植機(播種機)、トラクタ及びコンバインによる圃場作業データの精度を向上させる必要がある。
 本発明は、圃場管理システムにおいて、コンバイン等の収穫機に着目して、収穫機の圃場作業データの精度の向上を図ることを1つの目的としている。
Moreover, in the field management system as described above, in order to improve the performance, it is necessary to improve the accuracy of field work data by a rice transplanter (seeding machine), a tractor and a combine.
An object of the present invention is to improve the accuracy of field work data of a harvester by focusing on a harvester such as a combine in a field management system.
 本発明の一実施形態に係る収穫機は、
 機体の前部に設けられて、圃場の作物を収穫する収穫部と、
 前記収穫部に左右方向に間隔を空けて配置され、作物に接触して作物の存在を検出する複数の作物センサーとが備えられている。
The harvester according to an embodiment of the present invention is
A harvesting section, located at the front of the fuselage, for harvesting crops in the field,
A plurality of crop sensors are provided in the harvest area at intervals in the left-right direction and in contact with the crops to detect the presence of crops.
 収穫機において機体の前部の収穫部は大きな横幅(左右幅)を備えているので、本発明のように複数の作物センサーを収穫部に備えると、どの作物センサーが作物を検出しているかに基づいて、収穫部によって収穫作業が可能な作業可能幅のうち、実際に行っている収穫作業によって収穫された作物群に対応する収穫幅を検出することができる。
 例えば収穫幅が大きければ、収穫部に導入される作物が多いと判断できるのであり、収穫幅が小さければ、収穫部に導入される作物が少ないと判断できる。
In the harvester, since the harvest section at the front of the airframe has a large width (left and right width), when a plurality of crop sensors are provided in the harvest section as in the present invention, which crop sensor detects a crop On the basis of the workable widths that can be harvested by the harvester, a harvest width corresponding to a crop group harvested by an actual harvest operation can be detected.
For example, if the harvest width is large, it can be judged that many crops are introduced to the harvest part, and if the harvest width is small, it can be judged that there are few crops to be introduced to the harvest part.
 本発明によると、どの作物センサーが作物を検出しているかに基づいて、収穫部の横幅の範囲のうち、収穫部のどの部分に作物が導入されているのかを検出することができる。例えば、収穫部の右側部分に作物が導入されている状態や、収穫部の左側部分に作物が導入されている状態、収穫部の左右中央部分に作物が導入されている状態等を判断することができる。 According to the present invention, based on which crop sensor detects a crop, it is possible to detect in which part of the harvest area the crop is introduced within the width range of the harvest area. For example, determine whether the crop has been introduced to the right side of the harvest area, that the crop has been introduced to the left side of the harvest area, or that the crop has been introduced to the left and right center of the harvest area. Can.
 以上のように、本発明によると、収穫幅や、収穫部のどの部分に作物が導入されているのか等を検出して、これらの検出データを圃場作業データに加味することによって、収穫機の圃場作業データの精度の向上を図ることができる。 As described above, according to the present invention, the harvest width, which part of the harvest section the crop is introduced into, and the like are detected, and these detection data are added to the field operation data to obtain the harvester. The precision of field work data can be improved.
 本発明において、
 作物を前記収穫部から機体側に搬送する搬送部が、前記収穫部の後部に連結され、
 前記収穫部に、
 作物を前記搬送部の入口部に向けて、前記収穫部の左右方向に沿って搬送するように、左右方向の軸芯周りに回転駆動される横搬送体と、
 前記横搬送体を回転自在に支持し、且つ前記搬送部が連結されるフレーム体とが備えられ、
 前記作物センサーが、前記フレーム体に備えられていると好適である。
In the present invention,
A conveying unit for conveying a crop from the harvesting unit to the airframe side is connected to the rear of the harvesting unit;
In the harvest section,
A lateral transport body that is rotationally driven about an axis in the left-right direction so as to transport the crop toward the inlet of the transport portion along the lateral direction of the harvest section;
And a frame body rotatably supporting the lateral transport body and connected to the transport portion.
Preferably, the crop sensor is provided on the frame body.
 収獲機では、収穫部の後部に搬送部が連結されて、圃場の作物が収穫部に収穫され集められ、搬送部から機体側に搬送されることがある。この場合、収穫部にフレーム体及び横搬送体を備えて、収穫された作物が、収穫部の横搬送体により左右方向に搬送されて、搬送部の入口部に集められ、搬送部によって機体側に搬送されるものがある。 In the harvester, the transport unit may be connected to the rear of the harvest unit, and crops in the field may be harvested and collected by the harvest unit and transported from the transport unit to the airframe side. In this case, the crop section is provided with a frame body and a lateral transport body, and the harvested crop is transported laterally in the lateral transport body of the harvest section, collected at the entrance of the transport section, and transported by the transport section. Are transported to
 収穫された作物は、収穫部の横搬送体に接触して搬送されるのと同時に、収穫部のフレーム体にも接触するので、本発明のように、収穫部のフレーム体に作物センサーを備えることにより、作物センサーによる作物の検出の確実性を高めることができる。
 本発明によると、既存の構造である収穫部のフレーム体に、作物センサーを備えることによって、作物センサーの支持構造の簡素化の面で有利なものとなる。
Since the harvested crop is transported in contact with the lateral transport of the harvester and at the same time it contacts the frame of the harvester, as in the present invention, a crop sensor is provided on the frame of the harvester This can increase the certainty of crop detection by the crop sensor.
According to the present invention, provision of the crop sensor on the frame body of the harvester, which is the existing structure, is advantageous in terms of simplifying the support structure of the crop sensor.
 本発明において、
 前記作物センサーが、前記フレーム体における前記横搬送体の下側に位置する部分に備えられていると好適である。
In the present invention,
It is preferable that the crop sensor be provided at a portion of the frame body located below the lateral transport body.
 収穫された作物は、収穫部のフレーム体の下側部分に接触する可能性が高いので、本発明のように、収穫部のフレーム体における横搬送体の下側に位置する部分に、作物センサーを備えることにより、作物センサーによる作物の検出の確実性をさらに高めることができる。 Since the harvested crop is likely to come into contact with the lower part of the frame body of the harvester, as in the present invention, the crop sensor is located on the lower side of the lateral carrier in the frame body of the harvester. To further enhance the certainty of detection of the crop by the crop sensor.
 本発明において、
 前記作物センサーが、前記フレーム体の底部に備えられていると好適である。
In the present invention,
Preferably, the crop sensor is provided at the bottom of the frame body.
 収獲された作物が、収穫部のフレーム体の下側部分に接触する可能性が高い状態において、本発明のように、作物センサーを収穫部のフレーム体の底部に備えることにより、作物センサーによる作物の検出の確実性をさらに高めることができる。 According to the present invention, by providing the crop sensor at the bottom of the frame portion of the harvester, the cropped crop can be cropped by the crop sensor while the harvested crop is likely to contact the lower portion of the frame body of the harvester. The certainty of detection can be further enhanced.
 本発明において、
 前記作物センサーが、前記横搬送体の回転軌跡の外周側の位置に配置されていると好適である。
In the present invention,
It is preferable that the crop sensor be disposed at a position on the outer peripheral side of the rotation trajectory of the lateral transport body.
 本発明によると、収穫部の横搬送体は、回転駆動されても作物センサーと干渉しないので、作物センサーの破損や収穫部の横搬送体の破損を無理なく避けることができる。 According to the present invention, since the lateral transport body at the harvest section does not interfere with the crop sensor even when driven to rotate, breakage of the crop sensor and breakage of the lateral transport body at the harvest section can be avoided without difficulty.
 本発明において、
 前記フレーム体に開口部が形成され、
 前記作物センサーの検知部が、前記開口部から突出した状態で設けられると共に、作物に接触して揺動するように構成されていると好適である。
In the present invention,
An opening is formed in the frame body,
It is preferable that the detection unit of the crop sensor is provided in a state of protruding from the opening, and is configured to swing in contact with the crop.
 接触型式のセンサーでは、本体部と、本体部に揺動自在に支持された検出部とを備えたものがある。
 本発明によると、作物センサーの検出部をフレーム体の開口部から突出させて、作物センサーの検出部により作物を検出することにより、作物センサーの本体部をフレーム体により保護することができるので、作物センサーの耐久性という面で有利なものとなる。
Some contact type sensors include a main body portion and a detection portion pivotally supported by the main body portion.
According to the present invention, the main body portion of the crop sensor can be protected by the frame body by projecting the detection portion of the crop sensor from the opening of the frame body and detecting the crop by the detection portion of the crop sensor. It is advantageous in terms of the durability of the crop sensor.
 本発明において、
 前記検知部と前記開口部との間の隙間を埋める隙間埋め部材が備えられていると好適である。
In the present invention,
It is preferable that a gap filling member be provided to fill the gap between the detection unit and the opening.
 作物センサーの検知部がフレーム体の開口部から突出した状態で揺動する場合に、本発明によると、作物センサーの検知部とフレーム体の開口部との間の隙間が、隙間埋め部材によって埋められるので、作物が前述の隙間を通って漏れ出るという状態を抑えることができる。 According to the present invention, when the detection unit of the crop sensor swings in a state of protruding from the opening of the frame, according to the present invention, the gap between the detection unit of the crop sensor and the opening of the frame is filled by the gap filling member. Therefore, it is possible to suppress the situation where the crop leaks through the above-mentioned gap.
 本発明において、
 前記検知部における前記開口部から突出した部分の外周部に、下側に延びた壁部が備えられ、前記検知部における前記開口部から突出した部分が、前記壁部により箱状に形成されていると好適である。
In the present invention,
A wall portion extending downward is provided on an outer peripheral portion of a portion protruding from the opening portion in the detection portion, and a portion protruding from the opening portion in the detection portion is formed in a box shape by the wall portion Is preferable.
 本発明によると、作物センサーにおいて、検知部における開口部から突出した部分が箱状に形成されることにより、作物センサーの検知部の強度の向上を図ることができる。
 作物センサーの検知部がフレーム体の開口部から突出する場合、本発明によると、作物センサーの検知部とフレーム体の開口部との間に隙間が生じても、この隙間は壁部によって狭いものであるので、作物が前述の隙間を通って漏れ出るという状態を抑えることができる。
According to the present invention, in the crop sensor, the portion protruding from the opening in the detection unit is formed in a box shape, whereby the strength of the detection unit of the crop sensor can be improved.
When the detection part of the crop sensor protrudes from the opening of the frame body, according to the present invention, even if a gap is generated between the detection part of the crop sensor and the opening of the frame body, the gap is narrowed by the wall Therefore, the situation where the crop leaks through the above-mentioned gap can be suppressed.
 本発明において、
 前記検知部に、前記フレーム体に当たることにより前記検知部の上側の揺動限度を決める上ストッパー部と、前記フレーム体に当たることにより前記検知部の下側の揺動限度を決める下ストッパー部とが備えられていると好適である。
In the present invention,
In the detection portion, there are an upper stopper portion that determines the upper swing limit of the detection portion by hitting the frame body, and a lower stopper portion that determines the lower swing limit of the detection portion by hitting the frame body. It is preferable to be provided.
 本発明によると、収穫部に導入された作物が作物センサーの検知部に接触する際、作物が作物センサーの検知部を必要以上に上側や下側に揺動させようとしても、上ストッパー部及び下ストッパー部により、作物センサーの検知部が上側及び下側の揺動限度で止められるので、必要以上の揺動による作物センサーの破損が避けられる。 According to the present invention, when the crop introduced into the harvesting unit comes into contact with the detection unit of the crop sensor, the upper stopper portion and the cropping unit may be shaken upward or downward more than necessary. The lower stopper portion stops the detection portion of the crop sensor at the upper and lower swing limits, thereby avoiding breakage of the crop sensor due to excessive swing.
 本発明において、
 作物を前記収穫部から機体側に搬送する搬送部が、前記収穫部の後部に連結され、
 前記作物センサーが、前記収穫部において、前記搬送部の入口部の左右中央を基準として、右側の位置と左側の位置とに振り分けて配置されていると好適である。
In the present invention,
A conveying unit for conveying a crop from the harvesting unit to the airframe side is connected to the rear of the harvesting unit;
It is preferable that the crop sensors are distributed and disposed at a position on the right side and a position on the left side in the harvest section with reference to the left and right centers of the inlet section of the transport section.
 収獲機では、収穫部の後部に搬送部が連結されて、圃場の作物が収穫部に収穫され集められ、搬送部から機体側に搬送されることがある。
 本発明によると、収穫部において、搬送部の入口部の左右中央を基準として、作物センサーが右側の位置と左側の位置とに備えられ、収穫部の左右方向に沿って広い範囲に配置されるので、収穫幅や、収穫部のどの部分に作物が導入されている状態なのか等の検出を適切に行うことができる。
In the harvester, the transport unit may be connected to the rear of the harvest unit, and crops in the field may be harvested and collected by the harvest unit and transported from the transport unit to the airframe side.
According to the present invention, the crop sensor is provided at the right position and the left position with reference to the left and right center of the entrance of the transport section in the harvest section, and is disposed in a wide range along the left and right direction of the harvest section. Therefore, it is possible to appropriately detect the harvest width, which part of the harvest section the crop has been introduced into, and the like.
 本発明において、
 前記作物センサーが、前記収穫部において、前記入口部に対して右側の位置と、前記入口部に対して左側の位置と、前記入口部の前側の位置とに備えられていると好適である。
In the present invention,
It is preferable that the crop sensor is provided at a position on the right side with respect to the inlet, a position on the left with respect to the inlet, and a position on the front side of the inlet in the harvesting section.
 本発明によると、収穫部において、作物センサーが、搬送部の入口部に対して右側の位置と左側の位置とに加えて、搬送部の入口部の前側の位置にも備えられており、作物センサーが収穫部の左右方向に沿って広い範囲に配置されるので、収穫幅や、収穫部のどの部分に作物が導入されている状態なのか等の検出を適切に行うことができる。 According to the present invention, in the harvesting unit, the crop sensor is provided on the front side of the inlet of the transport unit in addition to the right and left positions with respect to the inlet of the transport unit, Since the sensors are arranged in a wide range along the lateral direction of the harvest area, it is possible to appropriately detect the harvest width and which part of the harvest area the crop is being introduced.
 本発明において、
 前記収穫部において前記入口部の前側に備えられた前記作物センサーが、前記収穫部において前記入口部に対して右側の位置と左側の位置とに備えられた前記作物センサーよりも、前側に備えられていると好適である。
In the present invention,
The crop sensor provided on the front side of the inlet in the harvesting part is provided on the front side of the crop sensor provided on the right side and the left of the inlet in the harvesting part Is preferable.
 収穫された作物が、収穫部の横搬送体により左右方向に搬送されて、搬送部の入口部に集められ、搬送部によって機体側に搬送される場合、搬送部の入口部の前側部分に、作物が集中することになる。 When the harvested crop is transported in the lateral direction by the lateral transport body of the harvesting unit, collected at the entrance of the transport unit, and transported to the machine by the transport unit, the front side portion of the entrance of the transport unit The crops will be concentrated.
 本発明によると、案内部の入口部の前側に備えられた作物センサーが、搬送部の入口部の前側部分から、少し前側に離れて配置される状態となる。
 これにより、搬送部の入口部の前側部分に作物が集中しても、作物が作物センサーによって滞留して作物の詰まりに発展するようなことがなく、作物が円滑に搬送部の入口部に集められて搬送部により機体側に搬送されるようになる。
According to the present invention, the crop sensor provided on the front side of the entrance portion of the guide unit is placed slightly apart on the front side from the front side portion of the entrance portion of the transport unit.
As a result, even if crops are concentrated on the front side of the inlet of the transport unit, the crops are not retained by the crop sensor and develop into clogging of the crop, and the crops are collected smoothly at the inlet of the transport. It is transported to the machine side by the transport unit.
 本発明において、
 前記収穫部において前記入口部に対して右側の位置と左側の位置とに備えられた前記作物センサーに、作物に接触して前後方向の軸芯周りに揺動する検知部が備えられていると好適である。
In the present invention,
The crop sensor provided at a position on the right side and a position on the left side with respect to the inlet portion in the harvest section is provided with a detection unit that contacts the crop and swings around an axial center in the front-rear direction It is suitable.
 作物センサーとしては、作物に接触する検知部を備えて、作物が検知部に接触すると、作物により検知部が揺動して、作物の存在を検出するものがある。 Some crop sensors include a detection unit that contacts a crop, and when the crop contacts the detection unit, the detection unit is swung by the crop to detect the presence of the crop.
 収穫された作物が収穫部の横搬送体により左右方向に搬送される場合に、本発明によると、搬送部の入口部に対して右側の位置と左側の位置とに備えられた作物センサーの検知部が、前後方向の軸芯周りに左右方向に揺動する。
 これにより、作物センサーの検知部が、作物の搬送の流れに沿って揺動する状態となるのであり、作物センサーの検知部が作物の搬送の妨げになることはなく、作物センサーの検知部による作物の滞留や作物の詰まりに発展するようなことがない。
According to the invention, when the harvested crop is transported laterally by the lateral transport of the harvester, according to the invention the detection of the crop sensors provided at the right and left positions with respect to the inlet of the transport. The portion swings in the left and right direction around the longitudinal center axis.
As a result, the detection unit of the crop sensor swings along the flow of conveyance of the crop, and the detection unit of the crop sensor does not interfere with the conveyance of the crop, and the detection unit of the crop sensor It does not develop into accumulation of crops or clogging of crops.
 本発明において、
 前記収穫部において前記入口部の前側に備えられた前記作物センサーに、作物に接触して左右方向の軸芯周りに揺動する検知部が備えられていると好適である。
In the present invention,
It is preferable that the crop sensor provided on the front side of the inlet in the harvester be provided with a detector that contacts the crop and swings around an axial center in the left-right direction.
 収穫部における搬送部の入口部の前側部分で収穫された作物は、そのまま後側に搬送されて、搬送部の入口部に達するような状態となる。
 本発明によると、搬送部の入口部の前側に備えられた作物センサーの検知部が、左右方向の軸芯周りに前後方向に揺動する。
 これにより、作物センサーの検知部が、作物の搬送の流れに沿って揺動する状態となるのであり、作物センサーの検知部が作物の搬送の妨げになることはなく、作物センサーの検知部による作物の滞留や作物の詰まりに発展するようなことがない。
The crop harvested at the front portion of the inlet of the transport unit in the harvesting unit is transported to the rear side as it is and reaches the inlet of the transport unit.
According to the present invention, the detection unit of the crop sensor provided on the front side of the inlet of the transport unit swings in the front-rear direction around the axial center in the left-right direction.
As a result, the detection unit of the crop sensor swings along the flow of conveyance of the crop, and the detection unit of the crop sensor does not interfere with the conveyance of the crop, and the detection unit of the crop sensor It does not develop into accumulation of crops or clogging of crops.
 本発明の一実施形態に係る収穫機は、
 機体の前部に設けられて圃場の作物を収穫する収穫部と、
 前記収穫部によって収穫作業が可能な作業可能幅のうち、実際に行っている収穫作業によって収穫された作物群に対応する収穫幅を検出する収穫幅検出部と、
 機体の走行速度を変速する走行変速部と、
 前記収穫幅検出部の検出結果に基づいて、前記収穫幅が大きいほど、前記走行変速部を低速側に操作し、前記収穫幅が小さいほど、前記走行変速部を高速側に操作する速度制御部とが備えられている。
The harvester according to an embodiment of the present invention is
A harvesting section provided at the front of the fuselage to harvest field crops,
A harvest width detection unit that detects a harvest width corresponding to a crop group harvested by an actual harvesting operation among workable widths that can be harvested by the harvesting unit;
A traveling transmission unit that changes the traveling speed of the aircraft;
Based on the detection result of the harvest width detection unit, the speed control unit operates the traveling transmission unit to the low speed side as the harvest width is larger, and operates the traveling transmission unit to the high speed side as the harvest width is smaller. And are equipped.
 本発明のような収穫幅検出部を備えた場合、例えば収穫幅が大きければ、収穫部に導入される作物が多いと判断できるのであり、収穫された作物を処理する処理装置やエンジン等に、大きな負荷が掛かると判断できる。
 逆に収穫幅が小さければ、収穫部に導入される作物が少ないと判断できるのであり、処理装置やエンジン等に掛かる負荷は小さいと判断できる。
When the harvest width detection unit as in the present invention is provided, for example, if the harvest width is large, it can be determined that the number of crops introduced to the harvest unit is large. It can be determined that a large load is applied.
Conversely, if the harvest width is small, it can be determined that the amount of crop introduced to the harvest section is small, and it can be determined that the load applied to the processing apparatus, engine, etc. is small.
 本発明によると、収穫幅が大きくなるほど、機体の走行速度が自動的に低速側に操作されて、収穫部に導入される作物の増大が抑えられ、処理装置やエンジン等に掛かる負荷の増大が抑えられて、収穫作業が安定して行われる。
 収穫幅が小さくなるほど、機体の走行速度が自動的に高速側に操作されて、収穫部に導入される作物の減少が抑えられ、処理装置やエンジン等が無駄なく作動する。
According to the present invention, as the harvest width is increased, the traveling speed of the airframe is automatically operated to the low speed side, the increase of the crop introduced into the harvest section is suppressed, and the load on the processing device or engine is increased. Harvesting is carried out stably.
As the harvest width becomes smaller, the traveling speed of the machine is automatically operated to the high speed side, the reduction of the crop introduced into the harvesting section is suppressed, and the processing device, the engine, etc. operate without waste.
 以上のように、本発明によると、収穫幅の検出結果に基づいて、機体の走行速度が自動的に操作されることにより、負荷の増大を抑えながら、処理装置やエンジン等が無駄なく作動するようになって、収穫機の作業性能を向上させることができる。 As described above, according to the present invention, the traveling speed of the machine is automatically operated based on the detection result of the harvest width, whereby the processing apparatus, the engine, etc. operate without waste while suppressing the increase of the load. Thus, the working performance of the harvester can be improved.
 本発明において、
 前記収穫幅検出部に、作物に接触して作物の存在を検出する作物センサーが備えられ、
 2個以上の前記作物センサーが、左右方向に間隔を空けて前記収穫部に備えられていると好適である。
In the present invention,
The crop width detection unit is provided with a crop sensor that contacts the crop to detect the presence of the crop;
Preferably, two or more of the crop sensors are provided in the harvest section at intervals in the left-right direction.
 収穫幅検出部により収穫幅を検出する場合、本発明によると、作物に接触して作物の存在を検出する作物センサーを、収穫部に備えることにより、収穫部に導入される作物を直接に検出することができるので、収穫幅の検出精度を高めることができる。 When the harvest width is detected by the harvest width detection unit, according to the present invention, the crop sensor is provided in the harvest unit to detect the presence of the crop, thereby directly detecting the crop introduced to the harvest unit. As a result, the detection accuracy of the harvest width can be enhanced.
 本発明によると、2個以上の作物センサーが左右方向に間隔を空けて収穫部に備えられているので、収穫部の右部及び左部に亘る範囲において、作物センサーにより作物の存否を無駄なく検出することができる。 According to the present invention, two or more crop sensors are provided in the harvest section at an interval in the left-right direction, so the crop sensors do not waste the presence or absence of crops in the range extending to the right and left of the harvest section. It can be detected.
 本発明において、
 前記収穫部の後部に連結され、収穫された作物を前記収穫部から機体側に搬送する搬送部が備えられ、
 前記搬送部の入口部に、収穫された作物に接触して作物の存在を検出する収穫作物センサーが備えられていると好適である。
In the present invention,
There is provided a transport unit connected to the rear of the harvester for transporting the harvested crop from the harvester to the machine side.
It is preferable that a harvest crop sensor be provided at the inlet of the transport unit for detecting the presence of a crop by contacting the harvested crop.
 収獲機では、収穫部の後部に搬送部が連結されて、圃場の作物が収穫部に収穫され集められ、搬送部から機体側に搬送されることがある。
 本発明によると、収穫幅検出部に加えて、搬送部の入口部に収穫作物センサーが備えられているので、例えば、収穫幅検出部により作物が検出されているのに、収穫作物センサーが作物を検出しない状態になると、収穫幅検出部又は収穫作物センサー等に異常が発生したと判断できる。このように、収穫幅検出部に加えて、搬送部の入口部に収穫作物センサーを備えることにより、異常の検出を行うことができる。
In the harvester, the transport unit may be connected to the rear of the harvest unit, and crops in the field may be harvested and collected by the harvest unit and transported from the transport unit to the airframe side.
According to the present invention, in addition to the harvest width detection unit, the harvest crop sensor is provided at the entrance of the transport unit. For example, although the crop is detected by the harvest width detection unit, the harvest crop sensor When it becomes a state where it does not detect, it can be judged that an abnormality has occurred in the crop width detection unit or crop crop sensor or the like. As described above, by providing the cropped crop sensor at the entrance of the transport unit in addition to the cropped width detection unit, it is possible to detect an abnormality.
 本発明において、
 前記収穫作物センサーは、前記搬送部の入口部の右側部分及び左側部分に備えられていると好適である。
In the present invention,
It is preferable that the cropped crop sensor be provided on the right side and the left side of the inlet of the transport unit.
 収穫機において、前述のような搬送部を備えた場合、圃場から収穫部の右部に導入された作物は、収穫部の右部及び搬送部の入口部の右側部分を通ることが多く、圃場から収穫部の左部に導入された作物は、収穫部の左部及び搬送部の入口部の左側部分を通ることが多い。 In the harvester, when the transport unit as described above is provided, the crop introduced from the field to the right part of the harvest unit often passes through the right part of the harvest unit and the right part of the inlet of the transport unit. The crop introduced from the left to the left of the harvest section often passes through the left of the harvest section and the left portion of the entrance of the transport section.
 本発明によると、搬送部の入口部の右側部分及び左側部分に、収穫作物センサーが備えられているので、例えば、収穫部の右部において収穫幅検出部により作物が検出されているのに、右の収穫作物センサーが作物を検出しない状態になると、収穫幅検出部又は収穫作物センサー等に異常が発生したと判断できる。このように、収穫幅検出部に加えて、搬送部の入口部の右側部分及び左側部分に収穫作物センサーを備えることにより、各種の異常の検出を行うことができる。 According to the present invention, since the cropped crop sensors are provided on the right and left portions of the inlet of the transport unit, for example, although the crop is detected by the cropping width detector at the right of the harvester, If the crop crop sensor on the right does not detect a crop, it can be determined that an abnormality has occurred in the cropping width detection unit or crop crop sensor or the like. As described above, by providing the cropped crop sensors on the right and left portions of the entrance of the transport unit in addition to the cropping width detector, various abnormalities can be detected.
 本発明において、
 前記収穫幅検出部に、作物に接触して作物の存在を検出する作物センサーが備えられ、
 前記収穫部に、3個以上の前記作物センサーが左右方向に間隔を空けて配置され、
 前記作物センサーのうち中央側に位置する少なくとも1つの作物センサーは、前記入口部の前側に配置されていると好適である。
In the present invention,
The crop width detection unit is provided with a crop sensor that contacts the crop to detect the presence of the crop;
Three or more of the crop sensors are arranged at intervals in the left-right direction in the harvest section,
Preferably, at least one crop sensor located on the center side of the crop sensors is disposed on the front side of the inlet.
 本発明によると、収穫部において、作物センサーが、搬送部の入口部に対して右側の位置と左側の位置とに加えて、搬送部の入口部の前側の位置にも備えられ、作物センサーが収穫部の左右方向に沿って広い範囲に配置される状態となるのであり、収穫部の右部及び左部に亘る範囲において、作物センサーにより作物の存否を無駄なく検出することができる。 According to the present invention, in the harvesting unit, the crop sensor is provided on the front side of the inlet of the transport unit in addition to the right and left positions with respect to the inlet of the transport, the crop sensor It becomes a state arrange | positioned in a wide range along the left-right direction of a harvesting part, and the crop sensor can detect the presence or absence of a crop without a loss in the range over right part and left part of a harvesting part.
コンバインの全体側面図である。It is a whole side view of a combine. 刈取部及び搬送部の横断平面図である。It is a cross-sectional top view of a reaper part and a conveyance part. 刈取部及び搬送部の縦断側面図である。It is a vertical side view of a mowing part and a conveyance part. 作物センサーの支持構造を示す分解斜視図である。It is a disassembled perspective view which shows the support structure of a crop sensor. 作物センサーによる穀稈の検出パターンを示す図である。It is a figure which shows the detection pattern of the cereal grain by a crop sensor. 作物センサーによる穀稈の検出パターンを示す図である。It is a figure which shows the detection pattern of the cereal grain by a crop sensor. 実施の形態1の第1態において、作物センサーの付近の断面図である。FIG. 7 is a cross-sectional view of the vicinity of the crop sensor in the first state of the first embodiment. 実施の形態1の第2形態において、作物センサーの付近の断面図である。In 2nd form of Embodiment 1, it is sectional drawing of a crop sensor vicinity. 実施の形態1の第3形態において、作物センサーの付近の断面図である。In 3rd form of Embodiment 1, it is sectional drawing of a crop sensor vicinity. 実施の形態1の第3形態において、作物センサーの付近の断面図である。In 3rd form of Embodiment 1, it is sectional drawing of a crop sensor vicinity. 実施の形態1の第3形態において、隙間埋め部材の斜視図である。In 3rd form of Embodiment 1, it is a perspective view of a clearance gap filling member. 実施の形態1の第4形態において、作物センサーの付近の断面の正面図である。In 4th form of Embodiment 1, it is a front view of the cross section of a crop sensor vicinity. 実施の形態1の第4形態において、作物センサーの付近の断面の側面図である。In 4th form of Embodiment 1, it is a side view of the cross section of a crop sensor vicinity. 実施の形態1の第4形態において、作物センサーの付近の分解斜視図である。In 4th form of Embodiment 1, it is a disassembled perspective view of the vicinity of a crop sensor. 実施の形態1の第5形態において、作物センサーの配置を示す平面図である。In the 5th form of Embodiment 1, it is a top view which shows arrangement | positioning of a crop sensor. 実施の形態1の第5形態において、作物センサーによる穀稈の検出パターンを示す図である。In the 5th form of Embodiment 1, it is a figure which shows the detection pattern of a grain meal by a crop sensor. 実施の形態1の第7形態において、作物センサーの検出状態及び非検出状態を示す図である。In 7th form of Embodiment 1, it is a figure which shows the detection state of a crop sensor, and a non-detection state. 実施の形態2における制御装置と各部との連係状態を示す概念図である。FIG. 13 is a conceptual diagram showing an association state between the control device and each part in the second embodiment.
 図1~図18に、収穫機の一例である稲用の普通型のコンバインが示されている。
 図1~図18において、Fは機体1の「前方向」を示し、Bは機体1の「後方向」を示して、Uは機体1の「上方向」を示し、Dは機体1の「下方向」を示している。Rは機体1の「右方向」を示し、Lは機体1の「左方向」を示している。
FIGS. 1 to 18 show a common type combine for rice, which is an example of a harvester.
1 to 18, F indicates the “forward direction” of the airframe 1, B indicates the “rearward direction” of the airframe 1, U indicates the “upward direction” of the airframe 1, and D indicates the “airflow direction of the airframe 1. "Downward" is shown. R indicates the “right direction” of the airframe 1 and L indicates the “left direction” of the airframe 1.
(コンバインの全体構成)
 図1に示すように、機体フレームである機体1が、右及び左のクローラ型式の走行装置2により支持されており、機体1の前部に、搬送部3が上下に揺動駆動自在に支持されている。刈取部4(収穫部に相当)が備えられており、刈取部4の後部に搬送部3が連結されている。
(Overall configuration of combine)
As shown in FIG. 1, an airframe 1, which is an airframe, is supported by right and left crawler-type traveling devices 2, and the transport unit 3 is supported so as to be able to swing vertically in the front of the airframe 1. It is done. A reaper 4 (corresponding to a harvester) is provided, and a transport unit 3 is connected to the rear of the reaper 4.
 図1に示すように、機体1の前部の右部に、運転部を収容する運転キャビン5が支持されており、機体1の左部に脱穀装置6が支持され、機体1の右部にグレンタンク7及び穀粒排出装置8が支持されている。 As shown in FIG. 1, a driving cabin 5 containing an operating unit is supported on the right of the front of the machine 1, a threshing device 6 is supported on the left of the machine 1, and the right of the machine 1 is A gren tank 7 and a grain discharging device 8 are supported.
 図1に示すように、機体1の前進に伴って、圃場の穀稈(作物に相当)が刈取部4によって刈り取られ、刈り取られた穀稈が刈取部4から搬送部3を通って、脱穀装置6に供給される。脱穀装置6において穀稈が脱穀処理され、回収された穀粒がグレンタンク7に供給されて、排ワラが脱穀装置6の後部から排出される。グレンタンク7が穀粒で満杯になると、グレンタンク7の穀粒を穀粒排出装置8により別の運搬車(図示せず)等に排出する。 As shown in FIG. 1, as the airframe 1 advances, grain reeds (corresponding to crops) in the field are cut away by the reaper 4 and the cuts away are threshed from the reaper 4 through the conveying portion 3 It is supplied to the device 6. In the threshing device 6, the cereal grains are subjected to threshing treatment, the recovered grains are supplied to the gren tank 7, and the waste straw is discharged from the rear of the threshing device 6. When the grain tank 7 is full of grains, the grain of the grain tank 7 is discharged by the grain discharging device 8 to another transport vehicle (not shown) or the like.
(コンバインの制御機能)
 このコンバインでは、機体1の位置及び機体1の方位を検出する位置検出システム(図示せず)と、脱穀装置6により回収された穀粒の量を検出する収穫量センサー(図示せず)とが備えられている。
(Control function of combine)
In this combine, a position detection system (not shown) for detecting the position of the airframe 1 and the orientation of the airframe 1, and a yield sensor (not shown) for detecting the amount of grains collected by the threshing device 6 It is equipped.
 位置検出システムは、衛星測位システム(GNSS:Global Navigation Satellite System)であり、代表的なものとしてGPS(Global Positioning System)が挙げられる。収獲量センサーは、単位時間当たりに回収される穀粒の重量を連続的に検出するものである。 The position detection system is a satellite navigation system (GNSS: Global Navigation Satellite System), and a representative example is GPS (Global Positioning System). The harvest amount sensor continuously detects the weight of grain recovered per unit time.
 このコンバインでは、前述の位置検出システム及び収穫量センサーに加えて、刈取部4によって刈取作業が可能な作業可能幅のうち、実際に行っている刈取作業によって刈り取られた穀稈群に対応する刈取幅W1(収穫幅)(図5及び図6参照)を、作物センサー31,32,33,34(図2参照)により検出する機能を備えている。
 これにより、一つの圃場を多数の小さな領域に区分した場合、圃場の各領域の収穫量センサーの検出値、及び圃場の各領域の刈取幅W1を、収集及び蓄積することができる。
In this combine, in addition to the above-mentioned position detection system and harvest amount sensor, of the workable widths that can be reaped by the reaper 4, the reaping corresponding to a group of cereal crops reaped by an actual reaping operation It has a function of detecting the width W1 (harvest width) (see FIGS. 5 and 6) by the crop sensors 31, 32, 33, 34 (see FIG. 2).
Thereby, when one field is divided into a large number of small areas, the detection value of the yield sensor of each area of the field and the cutting width W1 of each area of the field can be collected and accumulated.
(刈取部の構成)
 図1,2,3に示すように、刈取部4は骨格となるフレーム体9を備えており、フレーム体9は、底部10、底部10の右及び左に連結された横側部11、底部10及び横側部11の後部に連結された後側部12を備えている。
(Configuration of reaper)
As shown in FIGS. 1, 2 and 3, the reaper 4 is provided with a frame body 9 as a framework, and the frame body 9 is a bottom 10, a lateral side 11 connected to the right and left of the bottom 10, a bottom 10 and a rear side 12 connected to the rear of the lateral side 11.
 図2及び図3に示すように、搬送部3の前部(入口部3a)が、後側部12に連結されており、搬送部3が刈取部4の後部に連結された状態となっている。刈取部4の左右中央CL1から左側の位置に、搬送部3の入口部3aの左右中央CL2が位置するように、搬送部3が刈取部4の後部にオフセットされて連結されている。 As shown in FIGS. 2 and 3, the front portion (inlet portion 3a) of the transport unit 3 is connected to the rear side portion 12, and the transport unit 3 is connected to the rear portion of the reaper 4 There is. The transport unit 3 is offset and connected to the rear of the reaper 4 so that the left and right center CL2 of the inlet 3a of the transport unit 3 is located on the left side from the left and right center CL1 of the reaper 4.
 図2及び図3に示すように、底部10の前部に左右方向に沿って、バリカン型式の切断装置13が支持され、横側部11の前部にデバイダ14が連結されている。図1に示すように、フレーム体9の後部に支持された右及び左のアーム15が前側に延出されており、アーム15の前部の左右方向の軸芯P1周りに、リール16が回転駆動自在に支持されている。 As shown in FIG. 2 and FIG. 3, a hair clipper-type cutting device 13 is supported at the front of the bottom 10 along the left-right direction, and a divider 14 is connected to the front of the lateral side 11. As shown in FIG. 1, right and left arms 15 supported at the rear of the frame body 9 extend forward, and the reel 16 rotates around the horizontal axis P1 of the front of the arm 15 in the left-right direction. It is drivably supported.
 図1,2,3に示すように、フレーム体9において、横搬送体17が、左右方向の軸芯P2周りに回転駆動自在に、横側部11に支持されている。横搬送体17は、円筒状の胴部17a、胴部17aの外周部に連結された右螺旋部17b及び左螺旋部17c、棒状の掻き込み部17dを備えている。 As shown in FIGS. 1, 2, and 3, in the frame body 9, the lateral conveyance body 17 is supported by the lateral side portion 11 so as to be rotatable around an axis P 2 in the left-right direction. The lateral conveyance body 17 includes a cylindrical body 17a, a right spiral portion 17b and a left spiral portion 17c connected to the outer peripheral portion of the body 17a, and a bar-like scraping portion 17d.
 図2に示すように、横搬送体17の右螺旋部17bが、搬送部3の入口部3aの右側に位置して、横搬送体17の左螺旋部17cが、搬送部3の入口部3aの左側に位置している。横搬送体17の掻き込み部17dが、搬送部3の入口部3aの前側に位置している。 As shown in FIG. 2, the right spiral portion 17 b of the lateral conveyance body 17 is located on the right side of the entrance portion 3 a of the conveyance portion 3, and the left spiral portion 17 c of the lateral conveyance body 17 is the entrance portion 3 a of the conveyance portion 3. Located on the left side of the The scraping portion 17 d of the lateral conveyance body 17 is located on the front side of the inlet 3 a of the conveyance portion 3.
 図1,2,3に示すように、機体1の前進に伴って、右及び左のデバイダ14の間の穀稈が、リール16により横搬送体17側に掻き込まれながら、穀稈の株元が切断装置13により切断されて、刈り取られた穀稈が、横搬送体17の回転により横搬送体17と底部10との間に導入される。 As shown in FIGS. 1, 2 and 3, with the advancement of the airframe 1, the grain between the right and left dividers 14 is scraped into the lateral carrier 17 by the reel 16, while the strain of the grain is separated. The original is cut by the cutting device 13, and the cut grain is introduced between the lateral carrier 17 and the bottom 10 by the rotation of the lateral carrier 17.
 図2に示すように、横搬送体17の右螺旋部17bの付近に導入された穀稈は、横搬送体17の右螺旋部17bにより左側に搬送され、横搬送体17の掻き込み部17dにより搬送部3の入口部3aに供給される。
 横搬送体17の左螺旋部17cの付近に導入された穀稈は、横搬送体17の左螺旋部17cにより右側に搬送され、横搬送体17の掻き込み部17dにより搬送部3の入口部3aに供給される。
 横搬送体17の掻き込み部17dの付近に導入された穀稈は、横搬送体17の掻き込み部17dにより後側に搬送されて、搬送部3の入口部3aに供給される。
As shown in FIG. 2, the grain scale introduced in the vicinity of the right spiral portion 17 b of the lateral conveyance body 17 is conveyed to the left by the right spiral portion 17 b of the lateral conveyance body 17, and the scraped portion 17 d of the lateral conveyance body 17 Is supplied to the inlet 3 a of the transport unit 3.
The grain introduced in the vicinity of the left spiral portion 17c of the horizontal transfer body 17 is transferred to the right by the left spiral portion 17c of the horizontal transfer body 17, and the entrance portion of the transfer portion 3 by the scraping portion 17d of the horizontal transfer body 17. It is supplied to 3a.
The cereal grains introduced in the vicinity of the scraping portion 17 d of the lateral transport body 17 are transported to the rear side by the scraping portion 17 d of the lateral transport body 17 and supplied to the inlet portion 3 a of the transport portion 3.
(搬送部の構成)
 図1,2,3に示すように、搬送部3は、機体1の前部に上下に揺動駆動自在に支持された角筒状の支持ケース18を備えており、支持ケース18の前部が刈取部4の後側部12に連結されている。
(Configuration of transport unit)
As shown in FIGS. 1, 2, and 3, the transport unit 3 includes a rectangular cylindrical support case 18 supported so as to be able to swing up and down in the front part of the machine body 1. Are connected to the rear side 12 of the reaper 4.
 図1,2,3に示すように、搬送部3は、支持ケース18の内部において、左右方向の軸芯P3周りに回転駆動される回転体19、回転体19に巻き掛けられた右及び左の搬送チェーン20、搬送チェーン20に亘って取り付けられた搬送体21を備えている。 As shown in FIGS. 1, 2, and 3, the transport unit 3 includes a rotating body 19 driven to rotate around an axis P 3 in the left-right direction and a right and left wound around the rotating body 19 inside the support case 18. The transport chain 20 and the transport body 21 attached across the transport chain 20 are provided.
 図2及び図3に示すように、回転体19が回転駆動されることにより、搬送体21が支持ケース18の底部18aに沿って脱穀装置6に向けて移動する。
 前項の(刈取部の構成)に記載のように、穀稈が刈取部4から搬送部3の入口部3aに供給されると、穀稈が搬送体21により支持ケース18の底部18aに沿って搬送されて脱穀装置6に供給される。
As shown in FIG. 2 and FIG. 3, as the rotating body 19 is rotationally driven, the transport body 21 moves toward the threshing device 6 along the bottom 18 a of the support case 18.
As described in (Configuration of reaper) in the preceding paragraph, when a reed is fed from the reaper 4 to the entrance 3a of the transport portion 3, the reed along the bottom 18a of the support case 18 by the transport 21. It is conveyed and supplied to the threshing device 6.
 図2及び図3に示すように、搬送部3の入口部3aの右側部分及び左側部分に、右及び左の収穫作物センサー22,23が備えられている。
 収穫作物センサー22,23は、左右方向の軸芯P4周りに前後に揺動自在なアーム状の検知部22a,23aを備えており、平面視で搬送チェーン20に対して搬送部3の入口部3aの左右中央CL2側に配置され、搬送体21の回転軌跡に干渉しないように、側面視で回転体19の前側に配置されている。
As shown in FIGS. 2 and 3, right and left crop crop sensors 22 and 23 are provided on the right and left portions of the inlet 3 a of the transport unit 3.
The cropped crop sensors 22, 23 are provided with arm-shaped detection portions 22a, 23a swingable back and forth around the axis P4 in the left-right direction, and the entrance portion of the transport portion 3 with respect to the transport chain 20 in plan view It is disposed on the side of the left and right center CL2 of 3a and is disposed on the front side of the rotary body 19 in a side view so as not to interfere with the rotation trajectory of the transport body 21.
 図2及び図3に示すように、穀稈が刈取部4から搬送部3の入口部3aに供給されて、穀稈が収穫作物センサー22,23の検知部22a,23aに接触することにより、収穫作物センサー22,23が穀稈の存在を検出する。 As shown in FIG. 2 and FIG. 3, the grain gravel is supplied from the reaper 4 to the inlet 3 a of the conveyance part 3, and the grain meal contacts the detection parts 22 a and 23 a of the crop sensors 22 and 23, Harvested crop sensors 22, 23 detect the presence of cereal grits.
(刈取部における作物センサーの配置)
 前項の(刈取部の構成)に記載のように、右及び左のデバイダ14の間の穀稈が刈り取られて刈取部4に導入される状態において、刈り取られた穀稈に接触して穀稈の存在を検出する4個の作物センサー31,32,33,34が、以下の説明のように刈取部4に備えられている。
(Arrangement of crop sensors in the reaper)
As described in the above paragraph (arrangement of the reaper), in a state where the reed between the right and left dividers 14 is reaped and introduced to the reaping portion 4, the reed is brought into contact with the reaped rasp Four crop sensors 31, 32, 33, 34 are provided in the reaper 4 as described below to detect the presence of.
 刈取部4によって刈取作業が可能な作業可能幅のうち、実際に行っている刈取作業によって刈り取られた穀稈群に対応する刈取幅W1(収穫幅)(図5及び図6参照)を、作物センサー31~34により検出することができる(後述の(作物センサーによる穀稈の検出パターン)参照)。 The cropping width W1 (harvest width) (see FIGS. 5 and 6) corresponding to the group of cereal crops that were actually cut by the reaping work, among the workable widths that can be reaped by the reaping unit 4, It can be detected by the sensors 31 to 34 (see below (Detection pattern of cereal grains by crop sensor)).
 図2及び図3に示すように、フレーム体9の底部10において、横搬送体17の右螺旋部17bの前側(刈取部4(収穫部)において、搬送部3の入口部3aに対して右側の位置に相当)に、作物センサー31,32が備えられている。
 横搬送体17の左螺旋部17cの前側(刈取部4(収穫部)において、搬送部3の入口部3aに対して左側の位置に相当)に、作物センサー34が備えられている。
 横搬送体17の掻き込み部17dの前側(刈取部4(収穫部)において、搬送部3の入口部3aの前側の位置に相当)に、作物センサー33が備えられている。
As shown in FIGS. 2 and 3, in the bottom portion 10 of the frame body 9, the front side of the right spiral portion 17 b of the lateral conveyance body 17 (on the reaper 4 (harvest)) The crop sensors 31, 32 are provided in the position of.
A crop sensor 34 is provided on the front side of the left spiral portion 17 c of the horizontal conveyance body 17 (corresponding to the position on the left side with respect to the inlet 3 a of the conveyance portion 3 in the reaper 4 (harvest)).
A crop sensor 33 is provided on the front side of the scraping portion 17 d of the horizontal conveyance body 17 (corresponding to the position on the front side of the entrance 3 a of the conveyance unit 3 in the reaper 4 (harvest unit)).
 これにより、図2及び図3に示すように、作物センサー31~34が、左右方向に間隔を空けて、刈取部4(収穫部)に備えられた状態となり、刈取部4(収穫部)において、搬送部3の入口部3aの左右中央CL2を基準として、右側の位置と左側の位置とに振り分けて配置された状態となっており、フレーム体9における横搬送体17の下側に位置する部分に備えられた状態となっている。 As a result, as shown in FIG. 2 and FIG. 3, the crop sensors 31 to 34 are provided in the reaper 4 (harvest) at intervals in the left-right direction, and in the reaper 4 (harvest) The left and right center positions of the entrance portion 3a of the transport unit 3 are distributed to the right position and the left position, and are positioned below the horizontal transport body 17 in the frame body 9 It is in the state of being prepared for the part.
 図2に示すように、作物センサー31,32は、平面視で横搬送体17の右螺旋部17bの回転軌跡に重複し、作物センサー34は、平面視で横搬送体17の左螺旋部17cの回転軌跡に重複している。 As shown in FIG. 2, the crop sensors 31 and 32 overlap the rotation trajectory of the right spiral portion 17 b of the lateral transport body 17 in plan view, and the crop sensor 34 is a left spiral portion 17 c of the lateral transport body 17 in plan view. Overlapping the rotation trajectory of
 図3に示すように、作物センサー31,32,34は、側面視で横搬送体17の右螺旋部17b及び左螺旋部17cの回転軌跡の前側(外周側)に配置されており、横搬送体17の右螺旋部17b及び左螺旋部17cに干渉しない。
 図2に示すように、作物センサー31,32,34と、横搬送体17の掻き込み部17dとは、左右方向で位置が異なるので、作物センサー31,32,34は横搬送体17の掻き込み部17dに干渉しない。
As shown in FIG. 3, the crop sensors 31, 32 and 34 are disposed on the front side (peripheral side) of the rotation trajectory of the right spiral portion 17 b and the left spiral portion 17 c of the lateral conveyance body 17 in side view. It does not interfere with the right spiral portion 17 b and the left spiral portion 17 c of the body 17.
As shown in FIG. 2, since the crop sensors 31, 32, 34 and the scraping portion 17 d of the lateral transport body 17 are different in position in the left-right direction, the crop sensors 31, 32, 34 scrape the lateral transport body 17. It does not interfere with the insertion part 17d.
 図2及び図3に示すように、作物センサー33(刈取部4(収穫部)において搬送部3の入口部3aの前側に備えられた作物センサーに相当)は、作物センサー31,32,34(刈取部4(収穫部)において搬送部3の入口部3aに対して右側の位置と左側の位置とに備えられた作物センサーに相当)よりも、前側に備えられている。 As shown in FIGS. 2 and 3, the crop sensors 33 (corresponding to the crop sensors provided on the front side of the entrance 3 a of the transport unit 3 in the reaper 4 (harvest)) The cropping unit 4 (harvesting unit) is provided on the front side of the crop sensor 4 (corresponding to a crop sensor provided on the right side and the left side with respect to the inlet 3a of the transport unit 3).
 図2及び図3に示すように、作物センサー33は、横搬送体17の掻き込み部17dの回転軌跡の前側(外周側)に配置されており、平面視で搬送部3の入口部3aの左右中央CL2よりも少し右側(作物センサー31,32側)(刈取部4の左右中央CL1側)に配置されている。 As shown in FIGS. 2 and 3, the crop sensor 33 is disposed on the front side (peripheral side) of the rotation trajectory of the scraping portion 17 d of the lateral conveyance body 17, and the crop sensor 33 is at the entrance 3 a of the conveyance portion 3 in plan view. It is disposed slightly to the right of the left and right center CL2 (crop sensors 31, 32) (the left and right center CL1 of the reaper 4).
 図2に示すように、作物センサー33と、横搬送体17の右螺旋部17b及び左螺旋部17cとは、左右方向で位置が異なるので、作物センサー33は横搬送体17の右螺旋部17b及び左螺旋部17cに干渉しない。 As shown in FIG. 2, since the crop sensor 33 and the right spiral portion 17 b and the left spiral portion 17 c of the lateral conveyance body 17 are different in position in the left-right direction, the crop sensor 33 is a right spiral portion 17 b of the lateral conveyance body 17. And do not interfere with the left spiral portion 17c.
(作物センサーの構造)
 図4に示すように、作物センサー31~34は、本体部24と、本体部24の軸芯P5周りに揺動自在に支持された検知部25と備えている。検知部25は、本体部24から延出されたアーム状となっており、本体部24に内装されたバネ(図示せず)により上側(非検出状態側)に付勢されている。
(Structure of crop sensor)
As shown in FIG. 4, the crop sensors 31 to 34 include a main body 24 and a detection unit 25 supported so as to be pivotable around an axis P5 of the main body 24. The detection unit 25 is in the form of an arm extending from the main body 24 and is biased upward (in the non-detection state) by a spring (not shown) installed in the main body 24.
 図4に示すように、フレーム体9において、底部10に開口部10aが形成されて、軟らかいゴム板等の隙間埋め部材26、及び押え板27が備えられている。隙間埋め部材26にT字状のスリット26aが形成され、押え板27に開口部27aが形成されている。 As shown in FIG. 4, in the frame body 9, an opening 10 a is formed in the bottom 10, and a clearance filling member 26 such as a soft rubber plate and a pressing plate 27 are provided. A T-shaped slit 26 a is formed in the gap filling member 26, and an opening 27 a is formed in the pressing plate 27.
 図4に示すように、隙間埋め部材26のスリット26aが底部10の開口部10aに位置するように、隙間埋め部材26が底部10の下面に当て付けられている。押え板27の開口部27aが隙間埋め部材26のスリット26a及び底部10の開口部10aに位置するように、押え板27が隙間埋め部材26の下面に当て付けられて、隙間埋め部材26が押え板27により底部10の下面に固定されている。 As shown in FIG. 4, the gap filling member 26 is in contact with the lower surface of the bottom portion 10 so that the slit 26 a of the gap filling member 26 is positioned at the opening 10 a of the bottom portion 10. The pressing plate 27 is abutted against the lower surface of the gap filling member 26 so that the opening 27a of the pressing plate 27 is positioned at the slit 26a of the gap filling member 26 and the opening 10a of the bottom 10, and the gap filling member 26 is pressed It is fixed to the lower surface of the bottom 10 by a plate 27.
 図4に示すように、作物センサー31~34の本体部24が、押え板27の下面に連結されており、作物センサー31~34の検知部25が、押え板27の開口部27a、隙間埋め部材26のスリット26a及び底部10の開口部10aを通って、斜め上側に突出している。 As shown in FIG. 4, the main body 24 of the crop sensors 31 to 34 is connected to the lower surface of the presser plate 27, and the detectors 25 of the crop sensors 31 to 34 fill the opening 27 a of the presser plate 27. It projects obliquely upward through the slit 26 a of the member 26 and the opening 10 a of the bottom 10.
 図3に示す状態は、作物センサー31~34の検知部25に穀稈が接触していない状態であり、作物センサー31~34が穀稈を検出しない状態である。この状態において、作物センサー31~34の検知部25と底部10の開口部10aとの間の隙間が、隙間埋め部材26によって埋められているので、穀粒が底部10の開口部10aを通って漏れ出ることはない。 The state shown in FIG. 3 is a state in which the grain scale is not in contact with the detection unit 25 of the crop sensors 31 to 34, and the crop sensors 31 to 34 do not detect the grain scale. In this state, since the gap between the detection portion 25 of the crop sensors 31 to 34 and the opening 10 a of the bottom 10 is filled by the gap filling member 26, the grain passes through the opening 10 a of the bottom 10 There is no leak.
 図3に示す状態において、作物センサー31~34の検知部25に穀稈が接触すると、作物センサー31~34の検知部25が、穀稈により下側に押され、隙間埋め部材26のスリット26aに入り込むように揺動して、作物センサー31~34が穀稈を検出する状態となる。 In the state shown in FIG. 3, when the cereal grains contact the detection parts 25 of the crop sensors 31 to 34, the detection parts 25 of the crop sensors 31 to 34 are pushed downward by the cereal grains, and the slits 26a of the gap filling member 26 The crop sensors 31 to 34 are in a state of detecting a grain scale so as to enter into the
 作物センサー31~34が穀稈を検出する状態において、作物センサー31~34の検知部25が底部10の開口部10aを塞ぐような状態となり、作物センサー31~34の検知部25と底部10の上面とが略面一の状態となる。これにより、作物センサー31~34の検知部25により穀稈の流れが阻害されることはないのであり、穀粒が底部10の開口部10aを通って漏れ出ることはない。 In a state where the crop sensors 31 to 34 detect grain defects, the detection units 25 of the crop sensors 31 to 34 close the opening 10 a of the bottom 10, and the detection units 25 of the crop sensors 31 to 34 and the bottom 10 The upper surface is substantially flush with the upper surface. As a result, the flow of cereal grains is not inhibited by the detection unit 25 of the crop sensors 31 to 34, and the grains do not leak through the opening 10 a of the bottom 10.
 図2~4に示すように、作物センサー31,32において、作物センサー31,32の本体部24の軸芯P5が前後方向に向いて、作物センサー31,32の検知部25が、斜め左側(刈取部4の左右中央CL1側)(搬送部3の入口部3a側)の上側に延出されている。 As shown in FIGS. 2 to 4, in the crop sensors 31 and 32, the axial center P5 of the main body 24 of the crop sensors 31 and 32 points in the front-rear direction, and the detection unit 25 of the crop sensors 31 and 32 It is extended above the left and right center CL 1 side of the reaper 4 (the inlet 3 a side of the transport unit 3).
 図2~4に示すように、作物センサー33において、作物センサー33の本体部24の軸芯P5が左右方向に向いて、作物センサー33の検知部25が斜め後側(搬送部3の入口部3a側)の上側に延出されている。 As shown in FIGS. 2 to 4, in the crop sensor 33, the axial center P5 of the main body 24 of the crop sensor 33 is directed in the left-right direction, and the detection unit 25 of the crop sensor 33 is diagonally It is extended to the upper side of 3a side).
 図2~4に示すように、作物センサー34において、作物センサー34の本体部24の軸芯P5が前後方向に向いて、作物センサー34の検知部25が、斜め右側(刈取部4の左右中央CL1側)(搬送部3の入口部3a側)の上側に延出されている。 As shown in FIGS. 2 to 4, in the crop sensor 34, the axial center P5 of the main body 24 of the crop sensor 34 is directed in the front-rear direction, and the detection unit 25 of the crop sensor 34 It is extended above the CL1 side (the inlet 3a side of the transport unit 3).
(作物センサー及び収穫作物センサーによる穀稈の検出)
 図2に示すように、右及び左のデバイダ14の間を、4つの領域A1,A2,A3,A4に区分した場合、作物センサー31が領域A1に対応し、作物センサー32が領域A2に対応し、作物センサー33が領域A3に対応し、作物センサー34が領域A4に対応する。
(Detection of grains by crop sensor and cropped crop sensor)
As shown in FIG. 2, when the division between the right and left dividers 14 is divided into four areas A1, A2, A3 and A4, the crop sensor 31 corresponds to the area A1, and the crop sensor 32 corresponds to the area A2. The crop sensor 33 corresponds to the area A3, and the crop sensor 34 corresponds to the area A4.
 図2に示すように、領域A1から穀稈が導入されると、穀稈は横搬送体17の右螺旋部17bにより左側に搬送され、横搬送体17の掻き込み部17dにより搬送部3の入口部3aに供給されるのであり、穀稈が作物センサー31に接触して、作物センサー31が穀稈を検出する。この場合、穀稈は作物センサー31に接触した後、作物センサー32に接触するので、作物センサー32も穀稈を検出する。 As shown in FIG. 2, when the cereal grits are introduced from the area A 1, the cereal grits are transported to the left by the right spiral portion 17 b of the lateral transport body 17 and the scraping portions 17 d of the lateral transport body 17 It is supplied to the inlet part 3a, and the grain scale contacts the crop sensor 31, and the crop sensor 31 detects the grain scale. In this case, since the grain scale contacts the crop sensor 31 and then the crop sensor 32, the crop sensor 32 also detects grain scale.
 図2に示すように、領域A2から穀稈が導入されると、穀稈は横搬送体17の右螺旋部17bにより左側に搬送され、横搬送体17の掻き込み部17dにより搬送部3の入口部3aに供給されるのであり、穀稈が作物センサー32に接触して、作物センサー32が穀稈を検出する。 As shown in FIG. 2, when the cereal grits are introduced from the area A 2, the cereal grits are transported to the left by the right spiral portion 17 b of the lateral transport body 17, and the scraping portions 17 d of the lateral transport body 17 It is supplied to the inlet portion 3a, and the grain scale contacts the crop sensor 32, and the crop sensor 32 detects the grain scale.
 図2に示すように、領域A3から穀稈が導入されると、穀稈は横搬送体17の掻き込み部17dにより後側に搬送されながら、作物センサー33に接触して、搬送部3の入口部3aに供給されるのであり、作物センサー33が穀稈を検出する。 As shown in FIG. 2, when the cereal grits are introduced from the area A 3, the cereal grits are transported to the rear side by the scraping portion 17 d of the lateral transport body 17 and come into contact with the crop sensor 33. It is supplied to the inlet 3a, and the crop sensor 33 detects cereal grains.
 図2に示すように、領域A4から穀稈が導入されると、穀稈は横搬送体17の左螺旋部17cにより右側に搬送され、横搬送体17の掻き込み部17dにより搬送部3の入口部3aに供給されるのであり、穀稈が作物センサー34に接触して、作物センサー34が穀稈を検出する。 As shown in FIG. 2, when the cereal grits are introduced from the area A 4, the cereal grits are transported to the right by the left spiral portion 17 c of the lateral transport body 17, and the scraping portions 17 d of the lateral transport body 17 It is supplied to the inlet 3a, and the grain scale contacts the crop sensor 34, and the crop sensor 34 detects the grain scale.
 図2に示すように、作物センサー31,32,34が、平面視で横搬送体17の右螺旋部17b及び左螺旋部17cの回転軌跡に重複しているので、横搬送体17の右螺旋部17b及び左螺旋部17cの回転により、穀稈が作物センサー31,32,34に押し付けられる状態となって、作物センサー31,32,34による穀稈の検出は確実性の高いものとなる。 As shown in FIG. 2, since the crop sensors 31, 32 and 34 overlap with the rotation loci of the right spiral portion 17b and the left spiral portion 17c of the horizontal conveyance body 17 in plan view, the right spiral of the horizontal conveyance body 17 The rotation of the portion 17b and the left spiral portion 17c causes the cereal grains to be pressed against the crop sensors 31, 32, 34, and the cereal grains detected by the crop sensors 31, 32, 34 become highly reliable.
 同様に図2に示すように、作物センサー33が、平面視で横搬送体17の掻き込み部17dの回転軌跡の少し横側に位置しているので、横搬送体17の掻き込み部17dの回転により、穀稈が作物センサー33に押し付けられる状態となって、作物センサー33による穀稈の検出は確実性の高いものとなる。 Similarly, as shown in FIG. 2, since the crop sensor 33 is located on the slightly lateral side of the rotation trajectory of the scraping portion 17 d of the lateral transport body 17 in plan view, the crop sensor 17 of the lateral transport body 17 By turning, the grain scale is pressed against the crop sensor 33, and detection of the grain scale by the crop sensor 33 is highly reliable.
 図2及び図3に示すように、領域A1,A2,A4から導入された穀稈が、横搬送体17の右螺旋部17b(左螺旋部17c)により左側(右側)に搬送される場合、作物センサー33が作物センサー31,32,34よりも前側に位置しているので、穀稈は作物センサー33に接触することはなく、作物センサー33は穀稈を検出しない。 As shown in FIG.2 and FIG.3, when the cereal grain introduced from area | region A1, A2, A4 is conveyed by the right spiral part 17b (left spiral part 17c) of the horizontal conveyance body 17 to the left side (right side), Since the crop sensor 33 is located on the front side of the crop sensors 31, 32, 34, the grain can not contact the crop sensor 33, and the crop sensor 33 does not detect the grain.
 図2及び図3に示すように、右及び左の収穫作物センサー22,23において、領域A1,A2から穀稈が導入されると、右の収穫作物センサー22は穀稈を検出する状態となり、左の収穫作物センサー23は穀稈を検出する状態又は検出しない状態となる。
 領域A3から穀稈が導入されると、右及び左の収穫作物センサー22,23の少なくとも一方が、穀稈を検出する状態となる。
 領域A4から穀稈が導入されると、右の収穫作物センサー22は穀稈を検出する状態又は検出しない状態となり、左の収穫作物センサー23は穀稈を検出する状態となる。
As shown in FIG. 2 and FIG. 3, in the right and left cropped crop sensors 22, 23, when the cereal straw is introduced from the areas A1 and A2, the right harvested crop sensor 22 detects the cereal flour, The crop crop sensor 23 on the left is in a state of detecting or not detecting a grain scale.
When a grain scale is introduced from the area A3, at least one of the right and left crop sensor 22 and 23 detects the grain scale.
When a grain scale is introduced from the area A4, the right crop crop sensor 22 is in a state of detecting or non-detecting a grain scale, and the left crop crop sensor 23 is in a state of detecting a grain crop.
(作物センサーによる穀稈の検出パターン)
 作物センサー31~34及び収穫作物センサー22,23による穀稈の検出パターンB1~B9、並びに、圃場から刈取部4に導入される穀稈の左右幅である刈取幅W1について、以下のように説明する。
 図5の検出パターンB1に示すように、作物センサー31~34が検出状態ON、右及び左の収穫作物センサー22,23が検出状態ONになると、刈取幅W1は領域A1~A4に亘る状態と判断できる。この場合、右又は左の収穫作物センサー22,23が非検出状態OFFになると、異常が発生したと判断できる。
(Detection pattern of cereal grains by crop sensor)
The detection patterns B1 to B9 of grain scale by crop sensors 31 to 34 and harvest crop sensors 22 and 23 and the cutting width W1 which is the lateral width of the grain scale introduced from the field to the harvesting section 4 will be described as follows: Do.
As shown in the detection pattern B1 of FIG. 5, when the crop sensors 31 to 34 are in the detection state ON and the right and left harvest crop sensors 22 and 23 are in the detection state ON, the cutting width W1 spans the areas A1 to A4 and It can be judged. In this case, when the right or left crop sensor 22 or 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 図5の検出パターンB2に示すように、作物センサー31~33が検出状態ON、作物センサー34が非検出状態OFF、右の収穫作物センサー22が検出状態ON、左の収穫作物センサー23が検出状態ON又は非検出状態OFFになると、刈取幅W1は領域A1~A3に亘る状態と判断できる。この場合、右の収穫作物センサー22が非検出状態OFFになると、異常が発生したと判断できる。 As shown in the detection pattern B2 in FIG. 5, the crop sensors 31 to 33 are in the detection state ON, the crop sensor 34 is in the non detection state OFF, the right crop crop sensor 22 is in the detection state ON, and the left crop crop sensor 23 is in the detection state When the ON state or the non-detection state is OFF, it can be judged that the cutting width W1 is a state extending over the regions A1 to A3. In this case, when the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 図5の検出パターンB3に示すように、作物センサー31が非検出状態OFF、作物センサー32~34が検出状態ON、右及び左の収穫作物センサー22,23が検出状態ONになると、刈取幅W1は領域A2~A4に亘る状態と判断できる。この場合、右又は左の収穫作物センサー22,23が非検出状態OFFになると、異常が発生したと判断できる。 As shown in the detection pattern B3 of FIG. 5, when the crop sensor 31 is in the non-detection state OFF, the crop sensors 32 to 34 are in the detection state ON, and the right and left harvest crop sensors 22 and 23 are in the detection state ON, the cutting width W1 It can be determined that the state is over the areas A2 to A4. In this case, when the right or left crop sensor 22 or 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 図5の検出パターンB4に示すように、作物センサー31,32が検出状態ON、作物センサー33,34が非検出状態OFF、右の収穫作物センサー22が検出状態ON、左の収穫作物センサー23が検出状態ON又は非検出状態OFFになると、刈取幅W1は領域A1,A2に亘る状態と判断できる。この場合、右の収穫作物センサー22が非検出状態OFFになると、異常が発生したと判断できる。 As shown in detection pattern B4 in FIG. 5, the crop sensors 31, 32 are in the detection state ON, the crop sensors 33, 34 are in the non detection state OFF, the right crop crop sensor 22 is in the detection state ON, and the left crop crop sensor 23 is When the detection state is ON or the non-detection state is OFF, it can be determined that the cutting width W1 is a state extending over the areas A1 and A2. In this case, when the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 図5の検出パターンB5に示すように、作物センサー31,34が非検出状態OFF、作物センサー32,33が検出状態ON、右の収穫作物センサー22が検出状態ON、左の収穫作物センサー23が検出状態ON又は非検出状態OFFになると、刈取幅W1は領域A2,A3に亘る状態と判断できる。この場合、右の収穫作物センサー22が非検出状態OFFになると、異常が発生したと判断できる。 As shown in the detection pattern B5 in FIG. 5, the crop sensors 31, 34 are in the non-detection state OFF, the crop sensors 32, 33 are in the detection state ON, the right crop crop sensor 22 is in the detection state ON, and the left crop crop sensor 23 is When the detection state is ON or the non-detection state is OFF, it can be determined that the cutting width W1 is a state extending over the areas A2 and A3. In this case, when the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 図5の検出パターンB6に示すように、作物センサー31,32が非検出状態OFF、作物センサー33,34が検出状態ON、右の収穫作物センサー22が検出状態ON又は非検出状態OFF、左の収穫作物センサー23が検出状態ONになると、刈取幅W1は領域A3,A4に亘る状態と判断できる。この場合、左の収穫作物センサー23が非検出状態OFFになると、異常が発生したと判断できる。 As shown in the detection pattern B6 of FIG. 5, the crop sensors 31, 32 are in the non-detection state OFF, the crop sensors 33, 34 are in the detection state ON, and the right crop crop sensor 22 is in the detection state ON or non-detection state OFF, left When the cropped crop sensor 23 is in the detection state ON, it can be determined that the cutting width W1 is in the range of the areas A3 and A4. In this case, when the left crop sensor 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 図6の検出パターンB7に示すように、作物センサー31,33,34が非検出状態OFF、作物センサー32が検出状態ON、右の収穫作物センサー22が検出状態ON、左の収穫作物センサー23が検出状態ON又は非検出状態OFFになると、刈取幅W1は領域A2の状態と判断できる。この場合、右の収穫作物センサー22が非検出状態OFFになると、異常が発生したと判断できる。 As shown in detection pattern B7 in FIG. 6, the crop sensors 31, 33, 34 are in the non detection state OFF, the crop sensor 32 is in the detection state ON, the right crop crop sensor 22 is in the detection state ON, and the left crop crop sensor 23 is When the detection state ON or the non-detection state OFF, the cutting width W1 can be determined to be the state of the area A2. In this case, when the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 図6の検出パターンB8に示すように、作物センサー31,32,34が非検出状態OFF、作物センサー33が検出状態ON、右の収穫作物センサー22が検出状態ON又は非検出状態OFF、左の収穫作物センサー23が検出状態ON又は非検出状態OFFになると、刈取幅W1は領域A3の状態と判断できる。この場合、右及び左の収穫作物センサー22,23の両方が非検出状態OFFになると、異常が発生したと判断できる。 As shown in the detection pattern B8 in FIG. 6, the crop sensors 31, 32, 34 are in the non-detection state OFF, the crop sensor 33 is in the detection state ON, the right crop crop sensor 22 is in the detection state ON or non-detection state OFF, left When the cropped crop sensor 23 is in the detection state ON or in the non-detection state OFF, the cutting width W1 can be determined as the state of the area A3. In this case, when both of the right and left crop sensor 22 and 23 are in the non-detection state OFF, it can be determined that an abnormality has occurred.
 図6の検出パターンB9に示すように、作物センサー31~33が非検出状態OFF、作物センサー34が検出状態ON、右の収穫作物センサー22が検出状態ON又は非検出状態OFF、左の収穫作物センサー23が検出状態ONになると、刈取幅W1は領域A4の状態と判断できる。この場合に、左の収穫作物センサー23が非検出状態OFFになると、異常が発生したと判断できる。 As shown in the detection pattern B9 of FIG. 6, the crop sensors 31 to 33 are in the non detection state OFF, the crop sensor 34 is in the detection state ON, and the right crop crop sensor 22 is in the detection state ON or non detection state OFF, the left crop When the sensor 23 is in the detection state ON, the cutting width W1 can be determined to be the state of the area A4. In this case, when the left crop sensor 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
[実施の形態1]
 以下、実施の形態1として、作物センサーの様々な構成例について説明する。
First Embodiment
Hereinafter, various configuration examples of the crop sensor will be described as the first embodiment.
[実施の形態1の第1形態]
 作物センサー31~34に関する構造において、図7に示すように構成してもよい。
 図7に示すように、隙間埋め部材26のスリット26aが廃止されて、隙間埋め部材26に、開口部26b及びジャバラ部26cが備えられている。
First Embodiment of First Embodiment
The structure relating to the crop sensors 31 to 34 may be configured as shown in FIG.
As shown in FIG. 7, the slit 26 a of the gap filling member 26 is eliminated, and the gap filling member 26 is provided with the opening 26 b and the bellows portion 26 c.
 図7に示すように、作物センサー31~34の検知部25が、隙間埋め部材26の開口部26bを通って上側に突出するのであり、作物センサー31~34の検知部25の下側と底部10の開口部10aとの間が、隙間埋め部材26のジャバラ部26cによって覆われる。穀稈が接触して、作物センサー31~34の検知部25が下側に揺動するのに伴って、隙間埋め部材26のジャバラ部26cが圧縮される。 As shown in FIG. 7, the detection units 25 of the crop sensors 31 to 34 project upward through the opening 26 b of the gap filling member 26, and the lower side and the bottom of the detection units 25 of the crop sensors 31 to 34 The space between the opening 10 a and the opening 10 a is covered by the bellows 26 c of the gap filling member 26. As the detection members 25 of the crop sensors 31 to 34 swing downward due to the contact of the grain scale, the bellows portion 26c of the gap filling member 26 is compressed.
[実施の形態1の第2形態]
 作物センサー31~34に関する構造において、図8に示すように構成してもよい。
 図4及び図7に示す隙間埋め部材26が廃止されて、図8に示すように、作物センサー31~34の検知部25に、金属製又は硬質のゴム製の隙間埋め部材28が連結されている。
Second Embodiment of First Embodiment
The structure relating to the crop sensors 31 to 34 may be configured as shown in FIG.
The gap filling member 26 shown in FIGS. 4 and 7 is eliminated, and as shown in FIG. 8, the metal or hard rubber gap filling member 28 is connected to the detection unit 25 of the crop sensors 31 to 34. There is.
 図8に示すように、作物センサー31~34が穀稈を検出しない状態において、作物センサー31~34の検知部25が、底部10の開口部10aを通って上側に突出する。この際、隙間埋め部材28が作物センサー31~34の検知部25と一緒に上側に位置して、隙間埋め部材28により底部10の開口部10aが埋められている。 As shown in FIG. 8, in a state where the crop sensors 31 to 34 do not detect a grain scale, the detection units 25 of the crop sensors 31 to 34 project upward through the opening 10 a of the bottom portion 10. At this time, the gap filling member 28 is located on the upper side together with the detection units 25 of the crop sensors 31 to 34, and the gap filling member 28 fills the opening 10 a of the bottom 10.
 図8に示すように、穀稈の接触により作物センサー31~34の検知部25が下側に揺動すると、隙間埋め部材28が底部10の開口部10aから下側に離れる。この際、作物センサー31~34の検知部25の先端部が底部10に当たって、作物センサー31~34の検知部25により底部10の開口部10aが埋められる。 As shown in FIG. 8, when the detection portion 25 of the crop sensors 31 to 34 swings downward due to the contact of the grain crucible, the gap filling member 28 separates downward from the opening 10 a of the bottom portion 10. At this time, the tips of the detection units 25 of the crop sensors 31 to 34 hit the bottom 10, and the openings 10a of the bottom 10 are filled with the detection units 25 of the crop sensors 31 to 34.
[実施の形態1の第3形態]
 作物センサー31~34に関する構造において、図9,10,11に示すように構成してもよい。
 図4及び図7に示す隙間埋め部材26が廃止されて、図11に示すように、隙間埋め部材26とは別の軟らかいゴム板等の隙間埋め部材29,30が備えられている。
Third Embodiment of First Embodiment
The structures relating to the crop sensors 31 to 34 may be configured as shown in FIGS.
The gap filling member 26 shown in FIGS. 4 and 7 is eliminated, and as shown in FIG. 11, gap filling members 29, 30 such as a soft rubber plate other than the gap filling member 26 are provided.
 図11に示すように、隙間埋め部材29に、平面視でチャンネル状のスリット29aが形成されて、上下に移動自在なカバー部29bが形成されている。隙間埋め部材30に、開口部30aが開口され、開口部30aから2本のスリット30bが形成されて、上下に移動自在なカバー部30cが形成されている。 As shown in FIG. 11, in the gap filling member 29, a channel-like slit 29a is formed in a plan view, and a cover portion 29b movable in the vertical direction is formed. An opening 30 a is opened in the gap filling member 30, and two slits 30 b are formed from the opening 30 a to form a cover 30 c which is vertically movable.
 図9及び図11に示すように、隙間埋め部材29が上側に配置され、隙間埋め部材30が下側に配置されて、隙間埋め部材29,30が押え板27により底部10の下面に固定されている。 As shown in FIGS. 9 and 11, the gap filling member 29 is disposed on the upper side, the gap filling member 30 is disposed on the lower side, and the gap filling members 29 and 30 are fixed to the lower surface of the bottom 10 by the pressing plate 27. ing.
 図9及び図11に示すように、作物センサー31~34の検知部25が、隙間埋め部材30の開口部30aを通って上側に突出するのであり、作物センサー31~34が穀稈を検出しない状態において、隙間埋め部材29のカバー部29bを上側に押し上げている。 As shown in FIGS. 9 and 11, the detection unit 25 of the crop sensors 31 to 34 protrudes upward through the opening 30 a of the gap filling member 30, and the crop sensors 31 to 34 do not detect a grain scale In the state, the cover portion 29b of the gap filling member 29 is pushed upward.
 図9及び図11に示すように、隙間埋め部材30の開口部30aが、隙間埋め部材29のカバー部29bにより覆われており、隙間埋め部材29のカバー部29bが押し上げられたことにより隙間埋め部材29に生じる開口部が、隙間埋め部材30のカバー部30cにより埋められている。 As shown in FIGS. 9 and 11, the opening 30a of the gap filling member 30 is covered by the cover 29b of the gap filling member 29, and the cover 29b of the gap filling member 29 is pushed up to fill the gap. The opening formed in the member 29 is filled with the cover 30 c of the gap filling member 30.
 図10及び図11に示すように、穀稈の接触により作物センサー31~34の検知部25が下側に揺動すると、作物センサー31~34の検知部25が隙間埋め部材30のカバー部30cを押し下げるのであり、隙間埋め部材29のカバー部29bが、作物センサー31~34の検知部25に追従するように下側に移動する。 As shown in FIG. 10 and FIG. 11, when the detection unit 25 of the crop sensors 31 to 34 swings downward due to the contact of the grain crucible, the detection unit 25 of the crop sensors 31 to 34 covers the cover 30 c of the gap filling member 30. The cover portion 29b of the gap filling member 29 moves downward so as to follow the detection portion 25 of the crop sensors 31 to 34.
 図10及び図11に示すように、隙間埋め部材30のカバー部30cが押し下げられたことにより、隙間埋め部材30の開口部30aからカバー部30cに亘って生じる開口部が、作物センサー31~34の検知部25、及び隙間埋め部材29のカバー部29bにより覆われる。 As shown in FIGS. 10 and 11, when the cover 30 c of the gap filling member 30 is pushed down, the opening that extends from the opening 30 a to the cover 30 c of the gap filling member 30 is the crop sensors 31 to 34. And the cover portion 29 b of the gap filling member 29.
[実施の形態1の第4形態]
 作物センサー31~34に関する構造において、図12,13,14に示すように構成してもよい。
Fourth Embodiment of the First Embodiment
The structures relating to the crop sensors 31 to 34 may be configured as shown in FIGS. 12, 13 and 14.
 作物センサー31~34の構造について以下のように説明する。
 作物センサー31~34の検知部25に、上側部25a、上側部25aの外周部から下側に延びた3個の壁部25b,25c,25d、壁部25bの下部から横側に延びた上ストッパー部25e、壁部25b,25cの下部から横側に延びた下ストッパー部25f、上側部25aの中間部に下向きに固定された中壁部25gが備えられている。
The structures of the crop sensors 31 to 34 will be described as follows.
In the detection unit 25 of the crop sensors 31 to 34, an upper part 25a, three wall parts 25b, 25c, 25d extending downward from the outer peripheral part of the upper part 25a, and an upper part extending laterally from the lower part of the wall 25b. A stopper portion 25e, a lower stopper portion 25f extending laterally from the lower portion of the wall portions 25b, 25c, and a middle wall portion 25g fixed downward to the middle portion of the upper portion 25a are provided.
 作物センサー31~34の検知部25は、板材を折り曲げて形成されており、上側部25a及び壁部25b,25c,25dにより、平面視で長方形状の下側が開放された箱状に形成されている(検知部25における開口部10aから突出した部分が、壁部25b,25c,25dにより箱状に形成された状態に相当)。 The detection unit 25 of the crop sensors 31 to 34 is formed by bending a plate material, and is formed in a box shape whose lower side in a rectangular shape is opened in a plan view by the upper portion 25a and the wall portions 25b, 25c, 25d (A portion of the detection unit 25 that protrudes from the opening 10a corresponds to a state in which the wall portions 25b, 25c, and 25d form a box shape).
 作物センサー31~34の検知部25の壁部25b及び中壁部25gに開口された開口部(図示せず)に、本体部24の検出軸24aが挿入されて、検知部25が本体部24の検出軸24aに連結されている。作物センサー31~34の本体部24の検出軸24aが回転することにより、検知部25が本体部24の軸芯P5周りに揺動自在に支持されており、本体部24に内装されたバネ(図示せず)によって、検知部25が上側(非検出状態側)に付勢されている。 The detection shaft 24 a of the main body 24 is inserted into an opening (not shown) opened in the wall 25 b and the middle wall 25 g of the detection unit 25 of the crop sensors 31 to 34, and the detection 25 is the main body 24. It is connected to the detection axis 24a of. When the detection shaft 24 a of the main body 24 of the crop sensors 31 to 34 is rotated, the detection unit 25 is swingably supported around the axis P 5 of the main body 24, and the spring installed in the main body 24 ( The detection unit 25 is biased to the upper side (non-detection state side) by the not shown).
 軟らかいゴム板等の隙間埋め部材35、及び押え板36が備えられている。隙間埋め部材35に、長方形状の開口部35aが開口されており、開口部35aの短辺部の一方及び他方に、長い延出部35b及び短い延出部35cが形成されている。 A gap filling member 35 such as a soft rubber plate and a pressure plate 36 are provided. A rectangular opening portion 35a is opened in the gap filling member 35, and a long extension portion 35b and a short extension portion 35c are formed on one and the other of the short sides of the opening portion 35a.
 押え板36は、金属製の板材によって形成されており、長方形状の開口部36aが開口されている。押え板36は、U字状に折り曲げられた受け部36bが備えられて、受け部36bが開口部36aの端部付近に連結されている。 The holding plate 36 is formed of a metal plate and has a rectangular opening 36 a. The holding plate 36 is provided with a receiving portion 36b bent in a U-shape, and the receiving portion 36b is connected near the end of the opening 36a.
 隙間埋め部材35の開口部35aが底部10の開口部10aに位置するように、隙間埋め部材35が底部10の下面に当て付けられている。
 押え板36の開口部36aが、隙間埋め部材35の開口部35a及び底部10の開口部10aに位置し、押え板36の受け部36bが、隙間埋め部材35の延出部35bの下側に位置するように、押え板36が隙間埋め部材35の下面に当て付けられている。
The gap filling member 35 is in contact with the lower surface of the bottom 10 so that the opening 35 a of the gap filling member 35 is positioned at the opening 10 a of the bottom 10.
The opening 36 a of the pressing plate 36 is positioned at the opening 35 a of the gap filling member 35 and the opening 10 a of the bottom 10, and the receiving portion 36 b of the pressing plate 36 is below the extension 35 b of the gap filling member 35. A pressure plate 36 is in contact with the lower surface of the gap filling member 35 so as to be positioned.
 ボルト37により押え板36が底部10に連結されており、隙間埋め部材35が、底部10と押え板36との間に挟まれるようにして、押え板36により底部10の下面に固定されている。 The pressure plate 36 is connected to the bottom 10 by a bolt 37, and the gap filling member 35 is fixed to the lower surface of the bottom 10 by the pressure plate 36 so as to be sandwiched between the bottom 10 and the pressure plate 36. .
 作物センサー31~34の本体部24が押え板36の下面に、ボルト37によって共締め状態で連結されており、作物センサー31~34の検知部25が、押え板36の開口部36a、隙間埋め部材35の開口部35a及び底部10の開口部10aを通って、斜め上側に突出している。 The body portions 24 of the crop sensors 31 to 34 are connected to the lower surface of the presser plate 36 by bolts 37 in a co-clamped state, and the detection units 25 of the crop sensors 31 to 34 It projects obliquely upward through the opening 35 a of the member 35 and the opening 10 a of the bottom 10.
 作物センサー31~34による穀稈の検出について以下のように説明する。
 図12及び図13に示す状態は、作物センサー31~34の検知部25に穀稈が接触していない状態であり、作物センサー31~34が穀稈を検出しない状態である。
The detection of cereal grits by the crop sensors 31 to 34 will be described as follows.
The condition shown in FIG. 12 and FIG. 13 is a condition in which the cereal grits are not in contact with the detection unit 25 of the crop sensors 31 to 34, and the crop sensors 31 to 34 do not detect cereal grits.
 この状態において、作物センサー31~34の検知部25の上ストッパー部25eが、押え板36の開口部36aの縁部に下側から当たっており、押え板36を介してフレーム体9に当たっている状態である。この状態は、作物センサー31~34の検知部25が、上側の揺動限度に位置している状態であり、これ以上に上側に揺動できない状態である。 In this state, the upper stopper portion 25e of the detection portion 25 of the crop sensors 31 to 34 is in contact with the edge of the opening 36a of the pressing plate 36 from the lower side, and is in contact with the frame 9 through the pressing plate 36 It is. In this state, the detection units 25 of the crop sensors 31 to 34 are located at the upper swing limit, and can not swing further upward.
 この状態において、隙間埋め部材35の延出部35bが、作物センサー31~34の検知部25の壁部25dに接触し、隙間埋め部材35の延出部35cが、作物センサー31~34の検知部25の上側部25aに接触しており、隙間埋め部材35の開口部35aの長辺部が、作物センサー31~34の検知部25の壁部25b,25cに接触している。 In this state, the extending portion 35b of the gap filling member 35 contacts the wall 25d of the detecting portion 25 of the crop sensors 31 to 34, and the extending portion 35c of the gap filling member 35 detects the crop sensors 31 to 34 The long side of the opening 35a of the gap filling member 35 is in contact with the walls 25b and 25c of the detection unit 25 of the crop sensors 31 to 34.
 これにより、作物センサー31~34の検知部25と底部10の開口部10aとの間の隙間が、作物センサー31~34の検知部25の壁部25b,25c,25dと、隙間埋め部材35によって埋められた状態となっており、穀粒が底部10の開口部10aを通って漏れ出ることはない。 Thereby, the gap between the detection part 25 of the crop sensors 31 to 34 and the opening 10 a of the bottom part 10 is formed by the wall parts 25 b, 25 c and 25 d of the detection parts 25 of the crop sensors 31 to 34 and the gap filling member 35 In the state of being buried, the grain does not leak through the opening 10 a of the bottom 10.
 図12及び図13に示す状態において、作物センサー31~34の検知部25に穀稈が接触すると、作物センサー31~34の検知部25が、穀稈により下側に押され、隙間埋め部材26の開口部35aに入り込むように揺動して、作物センサー31~34が穀稈を検出する状態となる。 In the state shown in FIG. 12 and FIG. 13, when the gravel comes in contact with the detection parts 25 of the crop sensors 31 to 34, the detection parts 25 of the crop sensors 31 to 34 are pushed downward by the gravel and the gap filling member 26 The crop sensors 31 to 34 are in a state of detecting a grain scale by swinging so as to enter the opening 35 a of the
 作物センサー31~34の検知部25が下側に揺動した場合、作物センサー31~34の検知部25の下ストッパー部25f及び壁部25b,25cの下辺部が、押え板36の受け部36bに上側から当たると、作物センサー31~34の検知部25が下側の揺動限度に達した状態となる。
 この状態は、作物センサー31~34の検知部25の下ストッパー部25fが、押え板36(受け部36b)を介してフレーム体9に当たる状態であり、これ以上に下側に揺動できない状態となる。
When the detection unit 25 of the crop sensors 31 to 34 swings downward, the lower stoppers 25 f of the detection units 25 of the crop sensors 31 to 34 and the lower sides of the walls 25 b and 25 c are the receiving portions 36 b of the pressing plate 36. The detection unit 25 of the crop sensors 31 to 34 has reached the lower swing limit.
In this state, the lower stopper portion 25f of the detection portion 25 of the crop sensors 31 to 34 is in contact with the frame body 9 through the pressing plate 36 (receiving portion 36b), and can not be swung further downward. Become.
 作物センサー31~34の検知部25が下側の揺動限度に達すると、作物センサー31~34の検知部25が、隙間埋め部材35の開口部35a及び底部10の開口部10aを塞ぐような状態となり、作物センサー31~34の検知部25の上側部25aと、底部10の上面とが、略面一の状態となる。
 これにより、作物センサー31~34の検知部25により穀稈の流れが阻害されることはないのであり、穀粒が底部10の開口部10aを通って漏れ出ることはない。
When the detection units 25 of the crop sensors 31 to 34 reach the lower swing limit, the detection units 25 of the crop sensors 31 to 34 close the opening 35 a of the gap filling member 35 and the opening 10 a of the bottom 10. In this state, the upper portion 25a of the detection unit 25 of the crop sensors 31 to 34 and the upper surface of the bottom portion 10 become substantially flush.
As a result, the flow of cereal grains is not inhibited by the detection unit 25 of the crop sensors 31 to 34, and the grains do not leak through the opening 10 a of the bottom 10.
[実施の形態1の第5形態]
 図4に示す作物センサー31~34、及び[実施の形態1の第1別形態]~[実施の形態1の第4形態]において、作物センサー31~34を、図15に示すように配置してもよい。
Fifth Embodiment of the First Embodiment
In the crop sensors 31 to 34 shown in FIG. 4 and [the first alternative form of the first embodiment] to [the fourth form of the first embodiment], the crop sensors 31 to 34 are arranged as shown in FIG. May be
 図15に示すように、2個の作物センサー31,32が、刈取部4に備えられている。
 フレーム体9の底部10において、横搬送体17の右螺旋部17bの前側(刈取部4(収穫部)において、搬送部3の入口部3aに対して右側の位置に相当)に、作物センサー31が備えられている。
As shown in FIG. 15, two crop sensors 31 and 32 are provided in the reaper 4.
In the bottom portion 10 of the frame body 9, the crop sensor 31 is located on the front side of the right spiral portion 17 b of the lateral conveyance body 17 (corresponding to the position on the right side with respect to the entrance portion 3 a of the conveyance portion 3 in the harvesting portion 4 (harvesting portion)). Is equipped.
 フレーム体9の底部10において、横搬送体17の左螺旋部17cの前側(刈取部4(収穫部)において、搬送部3の入口部3aに対して左側の位置に相当)に、作物センサー32が備えられている。 In the bottom portion 10 of the frame body 9, the crop sensor 32 is located on the front side of the left spiral portion 17 c of the lateral conveyance body 17 (corresponding to the position on the left side with respect to the entrance portion 3 a of the conveyance portion 3 in the harvesting portion 4 (harvesting portion)). Is equipped.
 これにより、作物センサー31,32が、左右方向に間隔を空けて、刈取部4(収穫部)に備えられた状態となっている。すなわち、刈取部4(収穫部)において、搬送部3の入口部3aの左右中央CL2を基準として、右側の位置と左側の位置とに振り分けて配置された状態となっている。さらに、フレーム体9における横搬送体17の下側に位置する部分に備えられた状態となっている。 Thus, the crop sensors 31, 32 are provided in the reaper 4 (harvest) with a space in the left-right direction. That is, in the reaper 4 (the harvester), the right side and the left side are distributed and arranged with reference to the left and right center CL2 of the entrance 3a of the transport unit 3. Furthermore, the frame body 9 is provided in a portion located below the horizontal conveyance body 17.
 作物センサー31は、平面視で横搬送体17の右螺旋部17bの回転軌跡に重複し、作物センサー32は、平面視で横搬送体17の左螺旋部17cの回転軌跡に重複している。
 作物センサー31,32は、側面視で横搬送体17の右螺旋部17b及び左螺旋部17cの回転軌跡の前側(外周側)に配置されており、横搬送体17の右螺旋部17b及び左螺旋部17cに干渉しない。作物センサー31,32と、横搬送体17の掻き込み部17dとは、左右方向で位置が異なるので、作物センサー31,32は横搬送体17の掻き込み部17dに干渉しない。
The crop sensor 31 overlaps the rotation trajectory of the right spiral portion 17b of the horizontal conveyance body 17 in plan view, and the crop sensor 32 overlaps the rotation trajectory of the left spiral portion 17c of the horizontal conveyance body 17 in plan view.
The crop sensors 31, 32 are disposed on the front side (peripheral side) of the rotational trajectory of the right spiral portion 17b and the left spiral portion 17c of the lateral conveyance body 17 in a side view, and the right spiral portion 17b and left side of the lateral conveyance body 17 It does not interfere with the spiral part 17c. Since the crop sensors 31 and 32 and the scraping portion 17 d of the lateral transport body 17 are different in position in the left-right direction, the crop sensors 31 and 32 do not interfere with the scraping portion 17 d of the lateral transport body 17.
 作物センサー31において、作物センサー31の本体部24の軸芯P5が前後方向に向いて、作物センサー31の検知部25が斜め左側(刈取部4の左右中央CL1側)(搬送部3の入口部3a側)の上側に延出されている。 In the crop sensor 31, the axial center P5 of the main body 24 of the crop sensor 31 is directed in the front-rear direction, and the detection unit 25 of the crop sensor 31 is on the diagonal left side (right and left center CL1 side of the reaper 4) It is extended to the upper side of 3a side).
 作物センサー32において、作物センサー32の本体部24の軸芯P5が前後方向に向いて、作物センサー32の検知部25が、斜め右側(刈取部4の左右中央CL1側)(搬送部3の入口部3a側)の上側に延出されている。 In the crop sensor 32, the axis P5 of the main body 24 of the crop sensor 32 is directed in the front-rear direction, and the detection unit 25 of the crop sensor 32 is on the diagonal right side (right and left center CL1 side of the reaper 4) It is extended to the upper side of the part 3a side).
 作物センサー31,32及び収穫作物センサー22,23による穀稈の検出について説明する。
 図15に示すように、右及び左のデバイダ14の間を、3つの領域A1,A2,A3に区分した場合、作物センサー31が領域A1に対応し、収穫作物センサー22,23が領域A2に対応し、作物センサー32が領域A3に対応する。
The detection of grain defects by the crop sensors 31, 32 and the cropped crop sensors 22, 23 will be described.
As shown in FIG. 15, when the division between the right and left dividers 14 is divided into three areas A1, A2 and A3, the crop sensor 31 corresponds to the area A1, and the crop sensor 22 and 23 corresponds to the area A2. In response, the crop sensor 32 corresponds to the area A3.
 領域A1から穀稈が導入されると、穀稈は横搬送体17の右螺旋部17bにより左側に搬送され、横搬送体17の掻き込み部17dにより搬送部3の入口部3aに供給されるのであり、穀稈が作物センサー31に接触して、作物センサー31が穀稈を検出する。 When the cereal grits are introduced from the area A1, the cereal grits are conveyed to the left by the right spiral part 17b of the lateral conveyance body 17 and supplied to the inlet 3a of the conveyance part 3 by the scraping part 17d of the lateral conveyance body 17 When the grain casket contacts the crop sensor 31, the crop sensor 31 detects the clump.
 領域A2から穀稈が導入されると、穀稈は横搬送体17の掻き込み部17dにより後側に搬送されながら、搬送部3の入口部3aに供給されるのであり、右及び左の収穫作物センサー22,23が穀稈を検出する。 When the cereal grits are introduced from the area A2, the cereal grits are supplied to the inlet 3a of the transporter 3 while being transported to the rear side by the scraping part 17d of the lateral transporter 17, and the right and left harvests The crop sensors 22 and 23 detect grain defects.
 領域A3から穀稈が導入されると、穀稈は横搬送体17の左螺旋部17cにより右側に搬送され、横搬送体17の掻き込み部17dにより搬送部3の入口部3aに供給されるのであり、穀稈が作物センサー32に接触して、作物センサー32が穀稈を検出する。 When the cereal grits are introduced from the area A3, the cereal grits are conveyed to the right by the left spiral portion 17c of the lateral conveyance body 17, and are supplied to the inlet portion 3a of the conveyance portion 3 by the scraping portion 17d of the lateral conveyance body 17. When the grain casket contacts the crop sensor 32, the crop sensor 32 detects the clump.
 右及び左の収穫作物センサー22,23において、領域A1から穀稈が導入されると、右の収穫作物センサー22は穀稈を検出する状態となり、左の収穫作物センサー23は穀稈を検出する状態又は検出しない状態となる。
 領域A2から穀稈が導入されると、右及び左の収穫作物センサー22,23の少なくとも一方が、穀稈を検出する状態となる。
 領域A3から穀稈が導入されると、右の収穫作物センサー22は穀稈を検出する状態又は検出しない状態となり、左の収穫作物センサー23は穀稈を検出する状態となる。
In the right and left cropped crop sensors 22 and 23, when the cereal straw is introduced from the area A1, the right harvested crop sensor 22 detects the cereal flour and the left harvested crop sensor 23 detects the cereal flour It will be a state or a state not detected.
When a grain scale is introduced from the area A2, at least one of the right and left crop sensor 22 and 23 detects a grain scale.
When a grain scale is introduced from the area A3, the right crop crop sensor 22 is in a state of detecting or non-detecting a grain crop, and the left crop crop sensor 23 is in a state of detecting a grain crop.
 作物センサー31,32及び収穫作物センサー22,23による穀稈の検出パターンについて説明する。
 作物センサー31,32及び収穫作物センサー22,23による穀稈の検出パターンB11~B14、並びに、圃場から刈取部4に導入される穀稈の左右幅である刈取幅W1は図16に示すようになる。
The detection pattern of the grain scale by the crop sensors 31, 32 and the crop crop sensors 22, 23 will be described.
As shown in FIG. 16, detection patterns B11 to B14 of grain scale by crop sensors 31 and 32 and crop crop sensors 22 and 23 and a width W1 which is the lateral width of the grain scale introduced from the field to the harvesting unit 4 Become.
 検出パターンB11に示すように、作物センサー31,32が検出状態ON、右及び左の収穫作物センサー22,23が検出状態ONになると、刈取幅W1は領域A1,A2,A3に亘る状態と判断できる。この場合、右又は左の収穫作物センサー22,23が非検出状態OFFになると、異常が発生したと判断できる。 As shown in the detection pattern B11, when the crop sensors 31, 32 are in the detection state ON and the right and left harvest crop sensors 22, 23 are in the detection state, the cutting width W1 is determined to be a state extending over the areas A1, A2, A3. it can. In this case, when the right or left crop sensor 22 or 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 検出パターンB12に示すように、作物センサー31が検出状態ON、作物センサー32が非検出状態OFF、右の収穫作物センサー22が検出状態ON、左の収穫作物センサー23が検出状態ON又は非検出状態OFFになると、刈取幅W1は領域A1,A2に亘る状態、又は領域A1の状態と判断できる。この場合、右の収穫作物センサー22が非検出状態OFFになると、異常が発生したと判断できる。 As shown in the detection pattern B12, the crop sensor 31 is in the detection state ON, the crop sensor 32 is in the non detection state OFF, the right crop crop sensor 22 is in the detection state ON, and the left crop crop sensor 23 is in the detection state ON or non detection When it becomes OFF, it can be judged that the cropping width W1 is in the state across the areas A1 and A2 or in the state of the area A1. In this case, when the right cropped crop sensor 22 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 検出パターンB13に示すように、作物センサー31が非検出状態OFF、作物センサー32が検出状態ON、右の収穫作物センサー22が検出状態ON又は非検出状態OFF、左の収穫作物センサー23が検出状態ONになると、刈取幅W1は領域A2,A3に亘る状態、又は領域A3の状態と判断できる。この場合、左の収穫作物センサー23が非検出状態OFFになると、異常が発生したと判断できる。 As shown in the detection pattern B13, the crop sensor 31 is in the non-detection state OFF, the crop sensor 32 is in the detection state ON, the right crop crop sensor 22 is in the detection state ON or non-detection state OFF, and the left crop crop sensor 23 is in the detection state When turned ON, it can be judged that the cutting width W1 is in the state extending over the areas A2 and A3 or in the state of the area A3. In this case, when the left crop sensor 23 is in the non-detection state OFF, it can be determined that an abnormality has occurred.
 検出パターンB14に示すように、作物センサー31,32が非検出状態OFF、右及び左の収穫作物センサー22,23が検出状態ONになると、刈取幅W1は領域A2の状態と判断できる。 As shown in the detection pattern B14, when the crop sensors 31, 32 are in the non-detection state OFF and the right and left harvest crop sensors 22, 23 are in the detection state, the cropping width W1 can be determined as the state of the area A2.
[実施の形態1の第6形態]
 前述の[実施の形態1の第5形態]において、図15に示す横搬送体17の掻き込み部17dの前側(搬送部3の入口部3aの前側)に、3個目の作物センサー33を備えてもよい(図2の作物センサー33参照)。
Sixth Embodiment of the First Embodiment
In the fifth embodiment of the first embodiment described above, the third crop sensor 33 is disposed on the front side of the scraping portion 17d of the lateral conveyance body 17 shown in FIG. 15 (on the front side of the inlet 3a of the conveyance portion 3). You may provide (refer the crop sensor 33 of FIG. 2).
 この構造によると、図16の検出パターンB12において、作物センサー33が検出状態ONであると、刈取幅W1は領域A1,A2に亘る状態と判断できる。作物センサー33が非検出状態OFFであると、刈取幅W1は領域A1の状態と判断できる。 According to this structure, in the detection pattern B12 of FIG. 16, when the crop sensor 33 is in the detection state ON, it can be determined that the cutting width W1 is a state extending over the areas A1 and A2. When the crop sensor 33 is in the non-detection state OFF, the cutting width W1 can be determined to be the state of the area A1.
 図16の検出パターンB13において、作物センサー33が検出状態ONであると、刈取幅W1は領域A2,A3に亘る状態と判断できる。作物センサー33が非検出状態OFFであると、刈取幅W1は領域A3の状態と判断できる。 In the detection pattern B13 of FIG. 16, when the crop sensor 33 is in the detection state ON, it can be determined that the cutting width W1 is a state extending over the regions A2 and A3. When the crop sensor 33 is in the non-detection state OFF, the cutting width W1 can be determined as the state of the area A3.
[実施の形態1の第7形態]
 作物センサー31~34の穀稈の検出について、以下のように構成してもよい。
 刈取部4に導入される穀稈の量は、圃場での生育状態等により圃場の各部分で変化するものであり、作物センサー31~34を充分に検出状態ONとするに足る量の穀稈が、刈取部4に導入されるとは限らない。
 これにより、刈取部4による刈り取りが行われる場合、刈取部4に導入された穀稈が作物センサー31~34に接触する状態及び接触しない状態が繰り返されてしまう。
Seventh Embodiment of the First Embodiment
The detection of grain defects of the crop sensors 31 to 34 may be configured as follows.
The amount of grain scale introduced to the reaper 4 changes in each part of the field depending on the growing condition in the field, etc., and the grain scale is sufficient to bring the crop sensors 31 to 34 into the detection state ON sufficiently. However, it is not always introduced into the reaper 4.
As a result, when reaping is performed by the reaper 4, the state in which the cereal grits introduced to the reaper 4 contact the crop sensors 31 to 34 and the non-contact state are repeated.
 前述の状態において図17に示すように、非検出状態OFFの作物センサー31~34から、検出信号ON1,ON2,ON3,ON4が繰り返して出力されたとする。
 この場合、最初の検出信号ON1から設定時間Tが経過するまでの間は、作物センサー31~34から検出信号ON2,ON3,ON4が出力されたり停止したりしても、この作物センサー31~34は検出状態ONであると判断される(図17の点線参照)。
In the above-described state, as shown in FIG. 17, it is assumed that detection signals ON1, ON2, ON3, and ON4 are repeatedly output from the crop sensors 31 to 34 in the non-detection state OFF.
In this case, even if the detection signals ON2, ON3 and ON4 are output from the crop sensors 31 to 34 until the set time T elapses from the first detection signal ON1, the crop sensors 31 to 34 are output. Is determined to be the detection state ON (see the dotted line in FIG. 17).
 設定時間Tが経過しても、刈取部4による刈り取りが行われていれば、直ぐに作物センサー31~34から次の検出信号ON1が出力されるので、再び設定時間Tが設定されるのであり、作物センサー31~34は検出状態ONであると判断される。 Even if the set time T has passed, if the cutting by the reaper 4 is performed, the next detection signal ON1 is immediately output from the crop sensors 31 to 34, so the set time T is set again. The crop sensors 31 to 34 are determined to be in the detection state ON.
 これにより、刈取部4による刈り取りが行われている間は、穀稈が導入される領域A1~A4において、穀稈が作物センサー31~34に接触する状態及び接触しない状態が繰り返されても、作物センサー31~34は検出状態ONであると判断される。 As a result, while the harvesting by the harvesting unit 4 is being performed, in the areas A1 to A4 where the cereals are introduced, even if the cereals contact and not come in contact with the crop sensors 31 to 34, The crop sensors 31 to 34 are determined to be in the detection state ON.
 設定時間Tは、一定時間(例えば1秒等)に設定されていてもよい。
 設定時間Tを、機体1の走行速度に連動して変更するように構成してもよい。
 つまり、作物センサー31~34が検出信号を出力した地点から、一定距離(例えば2m等)の間は、穀稈が存在する可能性(作物センサー31~34が検出信号を出力する可能性)が高いという考えに基づくと、機体1が一定距離を走行する場合、機体1の異なる走行速度に応じて設定時間Tを変更する必要がある。
The set time T may be set to a fixed time (for example, one second).
The set time T may be changed in conjunction with the traveling speed of the aircraft 1.
In other words, there is a possibility that cereal grits exist (a possibility that the crop sensors 31 to 34 output the detection signal) from a point where the crop sensors 31 to 34 output the detection signal to a certain distance (for example, 2 m) Based on the idea of being high, when the aircraft 1 travels a fixed distance, it is necessary to change the set time T according to the different traveling speeds of the aircraft 1.
 設定時間Tを機体1の走行速度に連動して変更する場合、機体1の走行速度を検出する速度センサー(図示せず)を備えて、機体1の走行速度が高速になると、設定時間Tが短側に変更され、機体1の走行速度が低速になると、設定時間Tが長側に変更されるようにすればよい。 When the setting time T is changed in conjunction with the traveling speed of the aircraft 1, the speed sensor (not shown) for detecting the traveling speed of the aircraft 1 is provided, and when the traveling speed of the aircraft 1 becomes high, the setting time T becomes The setting time T may be changed to the long side when the traveling speed of the airframe 1 is changed to the short side and the traveling speed of the aircraft 1 becomes low.
 コンバインでは、圃場の一辺に沿った1回の刈取行程を終了して畦際に達すると、刈取部4を停止させて圃場から上昇させ、畦際での旋回を行い、次の刈取行程に入るという作業を繰り返す。 In the combine, when one harvest stroke along one side of the field is finished and reached the edge, the reaper 4 is stopped and raised from the field to perform a turn at the edge and enter the next harvest stroke Repeat the task.
 これにより、刈取部4による刈り取りが行われている状態、つまり、刈取部4に動力を伝達する刈取クラッチ(図示せず)が入り操作された状態において、図17に示す処理が行われる。 Thus, the process shown in FIG. 17 is performed in a state in which the reaper 4 performs cutting, that is, in a state in which a reaper clutch (not shown) for transmitting power to the reaper 4 is operated.
 畦際での旋回等のように、刈取部4による刈り取りが行われていない状態、つまり、刈取クラッチが切り操作された状態では、図17に示す処理は行われず、作物センサー31~34から検出信号ON1~ON4が停止すると、作物センサー31~34は非検出状態OFFであると判断される。 As shown in FIG. 17, the processing shown in FIG. 17 is not performed in a state in which the cutting by the reaper 4 is not performed as in the case of turning on the ground, that is, in a state in which the cutting clutch is operated. When the signals ON1 to ON4 are stopped, the crop sensors 31 to 34 are determined to be in the non-detection state OFF.
[実施の形態1の別形態]
 前述の作物センサー31~34の上ストッパー部25e及び下ストッパー部25fを、図4及び図7~図11の作物センサー31~34に備えてもよい。
[Another Embodiment of Embodiment 1]
The crop sensors 31 to 34 of FIGS. 4 and 7 to 11 may be provided with the upper stopper portion 25e and the lower stopper portion 25f of the crop sensors 31 to 34 described above.
[実施の形態2] Second Embodiment
 以下、実施の形態2に係る収穫機(コンバイン)において、収穫幅に応じて機体の走行速度を制御する構成について説明する。本実施の形態に係る収穫機(コンバイン)は、実施の形態1に係る収穫機(コンバイン)と共に、あるいは独立して実施することができる。 Hereinafter, in the harvester (combine) which concerns on Embodiment 2, the structure which controls the travel speed of an airframe according to harvest width is demonstrated. The harvester (combine) which concerns on this Embodiment can be implemented with the harvester (combine) which concerns on Embodiment 1, or independently.
(刈取幅及び異常の検出に関する構成)
 図18に示すように、作物センサー31~34及び収穫作物センサー22,23の検出信号が制御装置130に入力されており、刈取幅検出部136(収穫幅検出部に相当)及び異常検出部137が、ソフトウェアとして制御装置130に備えられている。作物センサー31~34は、刈取幅検出部136に付属するものであり、刈取幅検出部136に備えられるものである。液晶ディスプレイ等の表示装置39が、運転部に備えられている。
(Configuration for detection of cutting width and abnormalities)
As shown in FIG. 18, detection signals of the crop sensors 31 to 34 and crop crop sensors 22 and 23 are input to the control device 130, and the cropping width detector 136 (corresponding to a cropping width detector) and the abnormality detector 137 Are included in the control device 130 as software. The crop sensors 31 to 34 are attached to the cutting width detection unit 136, and are provided to the cutting width detection unit 136. A display device 39 such as a liquid crystal display is provided in the driving unit.
 作物センサー31~34の検出信号に基づいて、刈取幅検出部136により、刈取幅W1が検出されて、検出結果(刈取幅W1)が表示装置39に表示される。 Based on the detection signals of the crop sensors 31 to 34, the cutting width W1 is detected by the cutting width detection unit 136, and the detection result (cutting width W1) is displayed on the display device 39.
 作物センサー31~34及び収穫作物センサー22,23の検出信号に基づいて、異常検出部137により異常の検出が行われて、異常が検出されると、検出結果が表示装置39に表示される。 Based on the detection signals of the crop sensors 31 to 34 and the crop sensors 22, 23, the anomaly detector 137 detects an anomaly, and when an anomaly is detected, the detection result is displayed on the display device 39.
(走行変速系の構成)
 図18に示すように、エンジン(図示せず)の動力が、静油圧型式の無段変速装置128(走行変速部に相当)に伝達され、ギヤ変速型式の副変速装置(図示せず)から、右及び左の走行装置2に伝達される。無段変速装置128は、中立位置N、前進側F及び後進側Rに無段階に変速自在である。
(Configuration of traveling transmission system)
As shown in FIG. 18, the power of the engine (not shown) is transmitted to the hydrostatic type continuously variable transmission 128 (corresponding to a traveling transmission unit), and from the geared sub transmission (not shown). , Right and left traveling devices 2. The continuously variable transmission 128 can steplessly shift to the neutral position N, the forward side F, and the reverse side R.
 電動モータ129により無段変速装置128が操作され、制御装置130により電動モータ129が作動する。運転部に変速レバー135が備えられて、変速レバー135は中立位置N、前進側F及び後進側Rに操作自在であり、変速レバー135の操作位置が制御装置130に入力されている。 The electric motor 129 operates the continuously variable transmission 128, and the control device 130 operates the electric motor 129. The drive unit is provided with the shift lever 135, and the shift lever 135 can be operated to the neutral position N, the forward side F and the reverse side R, and the operation position of the shift lever 135 is input to the control device 130.
 速度制御部38が、ソフトウェアとして制御装置130に備えられている。速度制御部38を作動状態及び停止状態に手動で設定可能な手動設定部40が、運転部に備えられており、手動設定部40の信号が制御装置130に入力されている。 The speed control unit 38 is provided in the control device 130 as software. A manual setting unit 40 capable of manually setting the speed control unit 38 into the operating state and the stop state is provided in the operating unit, and a signal of the manual setting unit 40 is input to the control device 130.
 手動設定部40により速度制御部38が停止状態に設定されると、速度制御部38の停止状態が表示装置39に表示される。速度制御部38の停止状態において、変速レバー135を中立位置Nに操作すると、制御装置130により電動モータ129が作動して、無段変速装置128が中立位置Nに操作される。変速レバー135を前進側F(後進側R)に操作すると、制御装置130により電動モータ129が作動して、無段変速装置128が前進側F(後進側R)に操作されるのであり、変速レバー135の操作位置に対応する変速位置に、無段変速装置128が操作される。 When the speed control unit 38 is set to the stop state by the manual setting unit 40, the stop state of the speed control unit 38 is displayed on the display device 39. When the shift lever 135 is operated to the neutral position N while the speed control unit 38 is stopped, the electric motor 129 is operated by the control device 130 and the continuously variable transmission 128 is operated to the neutral position N. When the shift lever 135 is operated to the forward side F (reverse side R), the electric motor 129 is operated by the control device 130, and the continuously variable transmission 128 is operated to the forward side F (reverse side R). The continuously variable transmission 128 is operated to the shift position corresponding to the operation position of the lever 135.
(機体の走行速度の自動制御)
 図18に示すように、手動設定部40により速度制御部38が作動状態に設定されると、速度制御部38の作動状態が表示装置39に表示される。刈取幅検出部136の検出結果(刈取幅W1)に基づいて、速度制御部38により電動モータ129が作動して無段変速装置128が自動的に操作される。
(Automatic control of the traveling speed of the aircraft)
As shown in FIG. 18, when the speed control unit 38 is set to the operation state by the manual setting unit 40, the operation state of the speed control unit 38 is displayed on the display device 39. Based on the detection result (the cutting width W1) of the cutting width detection unit 136, the speed control unit 38 operates the electric motor 129 to automatically operate the continuously variable transmission 128.
 速度制御部38の作動状態において、刈取幅W1が大きいほど、速度制御部38により無段変速装置128が自動的に前進側Fの低速側に操作される。刈取幅W1が小さいほど、速度制御部38により無段変速装置128が自動的に前進側Fの高速側に操作される。無段変速装置128の変速位置は表示装置39に表示される。 In the operating state of the speed control unit 38, the continuously variable transmission 128 is automatically operated to the low speed side of the forward side F by the speed control unit 38 as the cutting width W1 is larger. As the cropping width W1 is smaller, the speed control unit 38 automatically operates the continuously variable transmission 128 to the high speed side of the forward side F. The shift position of the continuously variable transmission 128 is displayed on the display device 39.
 速度制御部38の作動状態において、速度制御部38により無段変速装置128が自動的に高速側に操作される場合、高速側の上限位置は変速レバー135の操作位置であり、変速レバー135の操作位置に対応する変速位置を越えて、無段変速装置128が前進側Fの高速側に操作されることはない。これにより、変速レバー135を操作することによって、前述の高速側の上限位置を任意に変更することができる。 In the operating state of the speed control unit 38, when the continuously variable transmission 128 is automatically operated to the high speed side by the speed control unit 38, the upper limit position on the high speed side is the operation position of the speed change lever 135. The continuously variable transmission 128 is not operated to the high speed side of the forward side F beyond the shift position corresponding to the operation position. Thus, by operating the shift lever 135, the upper limit position on the high speed side can be arbitrarily changed.
 速度制御部38の作動状態において、変速レバー135を後進側Rに操作すると、速度制御部38が一時的に停止状態となって、変速レバー135の操作位置に対応する後進側Rの変速位置に無段変速装置128が操作される。次に、変速レバー135を前進側Fに操作すると、速度制御部38が作動状態に復帰する。 When the shift lever 135 is operated to the reverse side R when the speed control unit 38 is in operation, the speed control unit 38 is temporarily stopped, and the shift position on the reverse side R corresponding to the operation position of the shift lever 135 The continuously variable transmission 128 is operated. Next, when the shift lever 135 is operated to the forward side F, the speed control unit 38 returns to the operating state.
 例えば、1回の刈取行程の最初の状態のように、圃場の穀稈に刈取部4を突入させる場合、刈取幅W1が存在しない状態から急に刈取幅W1が発生する状態となる。
 速度制御部38の作動状態において、前述のような状態が生じると、速度制御部38により無段変速装置128が、刈取作業中での無段変速装置128の低速側への操作よりも急速に前進側Fの低速側に操作される。
For example, as in the first state of one reaping stroke, in the case where the reaper 4 is made to plunge into the grain of the field, the reaping width W1 is suddenly generated from the state where the reaping width W1 does not exist.
In the operating state of the speed control unit 38, when the above-mentioned state occurs, the speed control unit 38 causes the continuously variable transmission 128 to operate more rapidly than the operation to the low speed side of the continuously variable transmission 128 during reaping work. It is operated to the low speed side of the forward side F.
 例えば、1回の刈取行程の終了の状態のように、刈取部4が圃場の穀稈を刈り取らなくなる場合、刈取幅W1が存在する状態から急に刈取幅W1が消失する状態となり、この後に機体1を旋回させることが多い。
 速度制御部38の作動状態において、前述のような状態が生じると、速度制御部38により無段変速装置128が、刈取作業中での無段変速装置128の高速側への操作よりも緩やかに前進側Fの高速側に操作される。
For example, when the reaper 4 does not reap the grain of the field, as in the case of the end of one reaping stroke, the reaping width W1 suddenly disappears from the state where the reaping width W1 exists, and thereafter the fuselage It is often made to turn one.
When the above-mentioned state occurs in the operating state of the speed control unit 38, the speed control unit 38 makes the continuously variable transmission 128 more gentle than the operation to the high speed side of the continuously variable transmission 128 during the reaping operation. It is operated to the high speed side of the forward side F.
 圃場の穀稈が倒伏していたり密集していたりすると、運転者が運転部から前方の刈取部4を目視しても、刈取部4の状態を認識できないことがある。この場合、検出された刈取幅W1が表示装置39に表示されるので、運転者は表示装置39を目視することにより、刈取部4のどの領域A1~A4に穀稈が導入されているのかを確認することができる。これにより、刈取作業中での機体1の向きの修正等に、表示装置39に表示される刈取幅W1を有効に利用することができる。 When the grain baskets in the field are fallen down or densely packed, the driver may not recognize the state of the reaper 4 even if the driver looks at the front of the reaper 4 from the driver. In this case, since the detected cropping width W1 is displayed on the display device 39, the driver visually checks the display device 39 to determine in which areas A1 to A4 of the cropping unit 4 the grain gravel has been introduced. It can be confirmed. As a result, the cutting width W1 displayed on the display device 39 can be effectively used for correcting the orientation of the machine 1 during the reaping operation.
[実施の形態2の別形態]
 電動モータ129により無段変速装置128を操作して、機体1の走行速度を自動的に制御するのではなく、電動モータ129によりエンジンのアクセル(走行変速部に相当)を操作することによって、機体1の走行速度を自動的に制御してもよい。
[Another Embodiment of Embodiment 2]
Instead of operating the continuously variable transmission 128 by the electric motor 129 to automatically control the traveling speed of the machine 1, the electric motor 129 operates the accelerator of the engine (corresponding to the traveling transmission unit) to operate the machine. The traveling speed of 1 may be controlled automatically.
 変速レバー135と無段変速装置128とが、連係リンク等により機械的に接続されている場合、電動モータ129により変速レバー135を操作して無段変速装置128を操作することによって、機体1の走行速度を自動的に制御してもよい。 When the gear shift lever 135 and the continuously variable transmission 128 are mechanically connected by a linkage link or the like, the electric motor 129 operates the gear shift lever 135 to operate the continuously variable transmission 128, thereby The traveling speed may be controlled automatically.
[実施の形態1,2の別形態]
 刈取部4の左右中央CL1から少し右側の位置に、搬送部3の入口部3aの左右中央CL2が位置するように、搬送部3を刈取部4の後部にオフセットして連結してもよい。
 この構造によると、横搬送体17の右螺旋部17b及び左螺旋部17c、掻き込み部17d、作物センサー31~34の配置を、図2及び図15に示す状態から左右逆の状態となるように配置すればよい。
[Another Embodiment of Embodiments 1 and 2]
The transport unit 3 may be offset and connected to the rear of the reaper 4 so that the left and right center CL2 of the inlet 3a of the transport unit 3 is positioned slightly to the right of the left and right center CL1 of the reaper 4.
According to this structure, the arrangement of the right spiral portion 17b and the left spiral portion 17c, the scraping portion 17d, and the crop sensors 31 to 34 of the horizontal conveyance body 17 is reversed from the state shown in FIG. 2 and FIG. It should be placed in
 刈取部4の左右中央CL1の位置に、搬送部3の入口部3aの左右中央CL2が位置するように、搬送部3を刈取部4の後部に連結して、横搬送体17の右螺旋部17b及び左螺旋部17cが、同じ長さとなるようにしてもよい。 The transport unit 3 is connected to the rear of the reaper 4 so that the left and right center CL2 of the inlet 3a of the transport unit 3 is located at the left and right center CL1 of the reaper 4 and the right spiral of the lateral transport 17 The 17 b and the left spiral portion 17 c may have the same length.
 この構造によると、作物センサー33を搬送部3の入口部3aの左右中央CL2に位置するように配置し、横搬送体17の右螺旋部17b及び左螺旋部17cの前側に、同数の作物センサー31,32,34を、刈取部4の左右中央CL1に対して左右対称となるように配置すればよい。 According to this structure, the crop sensors 33 are disposed to be located at the left and right center CL2 of the entrance 3a of the transport unit 3, and the crop sensors of the same number are provided on the front side of the right spiral 17b and the left spiral 17c of the horizontal conveyor 17. 31, 32 and 34 may be disposed so as to be symmetrical with respect to the left and right center CL 1 of the reaper 4.
 作物センサー31~34を、4個ではなく5個以上としてもよく、3個以下としてもよい。搬送部3の入口部3aの前側に位置する作物センサー33を廃止してもよい。
 刈取部4のフレーム体9において、作物センサー31~34を、底部10ではなく、後側部12に備えてもよい。この場合、後側部12における横搬送体17の軸芯P2よりも下側部分(フレーム体における横搬送体の下側に位置する部分に相当)に、作物センサー31~34を備えればよい。
The number of crop sensors 31 to 34 may be five or more instead of four, or three or less. The crop sensor 33 located on the front side of the inlet 3a of the transport unit 3 may be eliminated.
In the frame body 9 of the reaper 4, the crop sensors 31 to 34 may be provided on the rear side 12 instead of the bottom 10. In this case, the crop sensors 31 to 34 may be provided on the lower side portion (corresponding to the portion positioned below the horizontal conveyance body in the frame body) below the axial core P2 of the horizontal conveyance body 17 in the rear side portion 12 .
 作物センサー31~34を後側部12に備える場合、作物センサー31~34の検知部25に代えて、ゴム体等による受圧面を備え、穀稈が受圧面に当たって、受圧面が受ける圧力の上昇により作物を検出するようにすればよい。 When the crop sensors 31 to 34 are provided on the rear side 12, the pressure receiving surface is provided by a rubber body or the like instead of the detection unit 25 of the crop sensors 31 to 34, and the pressure on the pressure receiving surface is increased The crop should be detected by
 搬送部3の入口部3aの右側部分及び左側部分に、右及び左の収穫作物センサー22,23を備えるのではなく、搬送部3の入口部3aにおいて、支持ケース18の底部18aに、1個の収穫作物センサー(図示せず)を備えてもよい。これにより、1個の収穫作物センサーによって、作物センサー31,32,33,34に異常が発生したことを判断することができる。
 この場合、支持ケース18の底部18aにおいて、搬送部3の入口部3aの左右中央CL2の位置に、収穫作物センサー(図示せず)を備えればよく、搬送部3の入口部3aの左右中央CL2から少し右側又は左側の位置に、収穫作物センサー(図示せず)を備えてもよい。
The right and left portions of the inlet 3a of the transport unit 3 are not provided with the right and left crop sensor 22 and 23, but one at the bottom 18a of the support case 18 at the inlet 3a of the transport 3 Harvest crop sensor (not shown). Thereby, it is possible to determine that an abnormality has occurred in the crop sensors 31, 32, 33, 34 by one crop sensor.
In this case, a cropped crop sensor (not shown) may be provided at the left and right center CL2 of the inlet 3a of the transport unit 3 at the bottom 18a of the support case 18, and the left and right center of the inlet 3a of the transport 3 A cropped crop sensor (not shown) may be provided at a position slightly right or left from CL2.
 本発明は普通型の稲用のコンバインばかりではなく、自脱型の稲用のコンバインや、トウモロコシ収穫機、サトウキビ収穫機、コットンハーベスタ等の収穫機にも適用できる。 The present invention is applicable not only to ordinary rice combine, but also to harvester such as corn harvester, sugar cane harvester, cotton harvester, etc.
 1           機体
 3           搬送部
 3a          入口部
 4           収穫部
 9           フレーム体
 10          底部
 10a         開口部
 17          横搬送体
 22,23       収穫作物センサー
 25          検知部
 25b,25c,25d 壁部
 25e         上ストッパー部
 25f         下ストッパー部
 26,29,30,35 隙間埋め部材
 128         走行変速部
 31,32,33,34 作物センサー
 36          収穫幅検出部
 38          速度制御部
 CL2         左右中央
 P2          軸芯
 P5          軸芯
 W1          収穫幅
 
DESCRIPTION OF SYMBOLS 1 airframe 3 conveyance part 3a entrance part 4 harvesting part 9 frame body 10 bottom part 10a opening part 17 horizontal conveyance body 22 and 23 harvest crop sensor 25 detection part 25b, 25c, 25d wall part 25e upper stopper part 25f lower stopper part 26, 29 , 30, 35 gap filling member 128 traveling transmission unit 31, 32, 33, 34 crop sensor 36 cropping width detection unit 38 speed control unit CL2 left and right center P2 axis core P5 axis core W1 cropping width

Claims (19)

  1.  機体の前部に設けられて、圃場の作物を収穫する収穫部と、
     前記収穫部に左右方向に間隔を空けて配置され、作物に接触して作物の存在を検出する複数の作物センサーとが備えられている収穫機。
    A harvesting section, located at the front of the fuselage, for harvesting crops in the field,
    A harvester provided with a plurality of crop sensors which are arranged at intervals in the lateral direction in the harvest part and which contact the crops to detect the presence of crops.
  2.  作物を前記収穫部から機体側に搬送する搬送部が、前記収穫部の後部に連結され、
     前記収穫部に、
     作物を前記搬送部の入口部に向けて、前記収穫部の左右方向に沿って搬送するように、左右方向の軸芯周りに回転駆動される横搬送体と、
     前記横搬送体を回転自在に支持し、且つ前記搬送部が連結されるフレーム体とが備えられ、
     前記作物センサーが、前記フレーム体に備えられている請求項1に記載の収穫機。
    A conveying unit for conveying a crop from the harvesting unit to the airframe side is connected to the rear of the harvesting unit;
    In the harvest section,
    A lateral transport body that is rotationally driven about an axis in the left-right direction so as to transport the crop toward the inlet of the transport portion along the lateral direction of the harvest section;
    And a frame body rotatably supporting the lateral transport body and connected to the transport portion.
    The harvester according to claim 1, wherein the crop sensor is provided on the frame body.
  3.  前記作物センサーが、前記フレーム体における前記横搬送体の下側に位置する部分に備えられている請求項2に記載の収穫機。 The harvester according to claim 2, wherein the crop sensor is provided in a portion of the frame body located below the lateral transport body.
  4.  前記作物センサーが、前記フレーム体の底部に備えられている請求項2又は3に記載の収穫機。 The harvester according to claim 2 or 3, wherein the crop sensor is provided at the bottom of the frame body.
  5.  前記作物センサーが、前記横搬送体の回転軌跡の外周側の位置に配置されている請求項2~4のうちのいずれか一項に記載の収穫機。 The harvester according to any one of claims 2 to 4, wherein the crop sensor is arranged at a position on an outer peripheral side of a rotation trajectory of the horizontal conveyance body.
  6.  前記フレーム体に開口部が形成され、
     前記作物センサーの検知部が、前記開口部から突出した状態で設けられると共に、作物に接触して揺動するように構成されている請求項2~5のうちのいずれか一項に記載の収穫機。
    An opening is formed in the frame body,
    The harvest according to any one of claims 2 to 5, wherein the detection unit of the crop sensor is provided in a state of protruding from the opening, and is configured to swing in contact with the crop. Machine.
  7.  前記検知部と前記開口部との間の隙間を埋める隙間埋め部材が備えられている請求項6に記載の収穫機。 The harvester according to claim 6, further comprising: a gap filling member filling the gap between the detection unit and the opening.
  8.  前記検知部における前記開口部から突出した部分の外周部に、下側に延びた壁部が備えられ、前記検知部における前記開口部から突出した部分が、前記壁部により箱状に形成されている請求項6又は7に記載の収穫機。 A wall portion extending downward is provided on an outer peripheral portion of a portion protruding from the opening portion in the detection portion, and a portion protruding from the opening portion in the detection portion is formed in a box shape by the wall portion The harvester according to claim 6 or 7, wherein
  9.  前記検知部に、前記フレーム体に当たることにより前記検知部の上側の揺動限度を決める上ストッパー部と、前記フレーム体に当たることにより前記検知部の下側の揺動限度を決める下ストッパー部とが備えられている請求項6~8のうちのいずれか一項に記載の収穫機。 In the detection portion, there are an upper stopper portion that determines the upper swing limit of the detection portion by hitting the frame body, and a lower stopper portion that determines the lower swing limit of the detection portion by hitting the frame body. A harvester according to any one of claims 6 to 8 provided.
  10.  作物を前記収穫部から機体側に搬送する搬送部が、前記収穫部の後部に連結され、
     前記作物センサーが、前記収穫部において、前記搬送部の入口部の左右中央を基準として、右側の位置と左側の位置とに振り分けて配置されている請求項1~9のうちのいずれか一項に記載の収穫機。
    A conveying unit for conveying a crop from the harvesting unit to the airframe side is connected to the rear of the harvesting unit;
    10. The crop sensor according to any one of claims 1 to 9, wherein the crop sensor is disposed at a position on the right side and a position on the left side with respect to the left and right center of the entrance portion of the transport unit in the harvesting unit. Harvester described in.
  11.  前記作物センサーが、前記収穫部において、前記入口部に対して右側の位置と、前記入口部に対して左側の位置と、前記入口部の前側の位置とに備えられている請求項10に記載の収穫機。 The crop sensor according to claim 10, wherein the crop sensor is provided at a position to the right of the inlet, a position to the left of the inlet, and a position on the front of the inlet at the harvester. Harvester.
  12.  前記収穫部において前記入口部の前側に備えられた前記作物センサーが、前記収穫部において前記入口部に対して右側の位置と左側の位置とに備えられた前記作物センサーよりも、前側に備えられている請求項11に記載の収穫機。 The crop sensor provided on the front side of the inlet in the harvesting part is provided on the front side of the crop sensor provided on the right side and the left of the inlet in the harvesting part The harvester according to claim 11.
  13.  前記収穫部において前記入口部に対して右側の位置と左側の位置とに備えられた前記作物センサーに、作物に接触して前後方向の軸芯周りに揺動する検知部が備えられている請求項11又は12に記載の収穫機。 The crop sensor provided at a position on the right side and a position on the left side with respect to the inlet portion in the harvesting section is provided with a detection unit that is in contact with the crop and swings around an axial center in the front-rear direction. Item 13. A harvester according to item 11 or 12.
  14.  前記収穫部において前記入口部の前側に備えられた前記作物センサーに、作物に接触して左右方向の軸芯周りに揺動する検知部が備えられている請求項11~13のうちのいずれか一項に記載の収穫機。 The crop sensor provided on the front side of the inlet in the harvester is provided with a detection unit that is in contact with the crop and swings around an axial center in the left-right direction. Harvester according to one item.
  15.  機体の前部に設けられて圃場の作物を収穫する収穫部と、
     前記収穫部によって収穫作業が可能な作業可能幅のうち、実際に行っている収穫作業によって収穫された作物群に対応する収穫幅を検出する収穫幅検出部と、
     機体の走行速度を変速する走行変速部と、
     前記収穫幅検出部の検出結果に基づいて、前記収穫幅が大きいほど、前記走行変速部を低速側に操作し、前記収穫幅が小さいほど、前記走行変速部を高速側に操作する速度制御部とが備えられている収穫機。
    A harvesting section provided at the front of the fuselage to harvest field crops,
    A harvest width detection unit that detects a harvest width corresponding to a crop group harvested by an actual harvesting operation among workable widths that can be harvested by the harvesting unit;
    A traveling transmission unit that changes the traveling speed of the aircraft;
    Based on the detection result of the harvest width detection unit, the speed control unit operates the traveling transmission unit to the low speed side as the harvest width is larger, and operates the traveling transmission unit to the high speed side as the harvest width is smaller. And a harvester equipped.
  16.  前記収穫幅検出部に、作物に接触して作物の存在を検出する作物センサーが備えられ、
     2個以上の前記作物センサーが、左右方向に間隔を空けて前記収穫部に備えられている請求項15に記載の収穫機。
    The crop width detection unit is provided with a crop sensor that contacts the crop to detect the presence of the crop;
    The harvester according to claim 15, wherein two or more of the crop sensors are provided in the harvest section at intervals in the left-right direction.
  17.  前記収穫部の後部に連結され、収穫された作物を前記収穫部から機体側に搬送する搬送部が備えられ、
     前記搬送部の入口部に、収穫された作物に接触して作物の存在を検出する収穫作物センサーが備えられている請求項15又は16に記載の収穫機。
    There is provided a transport unit connected to the rear of the harvester for transporting the harvested crop from the harvester to the machine side.
    17. The harvester according to claim 15, wherein a harvest crop sensor is provided at an inlet of the transport unit for detecting the presence of a crop in contact with the harvested crop.
  18.  前記収穫作物センサーは、前記搬送部の入口部の右側部分及び左側部分に備えられている請求項17に記載の収穫機。 18. The harvester according to claim 17, wherein the crop sensor is provided on the right and left portions of the inlet of the transport unit.
  19.  前記収穫幅検出部に、作物に接触して作物の存在を検出する作物センサーが備えられ、
     前記収穫部に、3個以上の前記作物センサーが左右方向に間隔を空けて配置され、
     前記作物センサーのうち中央側に位置する少なくとも1つの作物センサーは、前記収穫部の入口部の前側に配置されている請求項15又は18に記載の収穫機。
     
    The crop width detection unit is provided with a crop sensor that contacts the crop to detect the presence of the crop;
    Three or more of the crop sensors are arranged at intervals in the left-right direction in the harvest section,
    19. The harvester according to claim 15, wherein at least one crop sensor located on the center side of the crop sensors is disposed in front of an inlet of the harvester.
PCT/JP2018/019781 2017-06-26 2018-05-23 Harvesting machine WO2019003728A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197030911A KR20200019598A (en) 2017-06-26 2018-05-23 harvest
EP18824312.5A EP3646705B1 (en) 2017-06-26 2018-05-23 Harvesting machine
CN201880029839.4A CN110602942B (en) 2017-06-26 2018-05-23 Harvesting machine
US16/618,921 US11432464B2 (en) 2017-06-26 2018-05-23 Harvesting machine with crop detection and harvesting width detection

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017124236A JP7034609B2 (en) 2017-06-26 2017-06-26 Harvester
JP2017124237 2017-06-26
JP2017-124236 2017-06-26
JP2017-124237 2017-06-26
JP2017-239075 2017-12-13
JP2017239075A JP7072379B2 (en) 2017-06-26 2017-12-13 Harvester

Publications (1)

Publication Number Publication Date
WO2019003728A1 true WO2019003728A1 (en) 2019-01-03

Family

ID=64740540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019781 WO2019003728A1 (en) 2017-06-26 2018-05-23 Harvesting machine

Country Status (1)

Country Link
WO (1) WO2019003728A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553447B2 (en) * 1984-11-16 1993-08-10 Yanmar Agricult Equip
JP2532858Y2 (en) * 1990-02-20 1997-04-16 ヤンマー農機株式会社 Harvester
JP2736884B2 (en) * 1996-08-27 1998-04-02 ヤンマー農機株式会社 Harvester vehicle speed control device
JP2001078542A (en) * 2000-08-29 2001-03-27 Yanmar Agricult Equip Co Ltd Combine harvester
JP2002360036A (en) * 2001-06-07 2002-12-17 Iseki & Co Ltd Reaper of combine harvester
JP2009077674A (en) * 2007-09-27 2009-04-16 Iseki & Co Ltd Reaping and conveying device of combine harvester
JP2017046642A (en) 2015-09-02 2017-03-09 株式会社クボタ Combine-harvester
JP2017068533A (en) 2015-09-30 2017-04-06 株式会社クボタ Agricultural field management system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553447B2 (en) * 1984-11-16 1993-08-10 Yanmar Agricult Equip
JP2532858Y2 (en) * 1990-02-20 1997-04-16 ヤンマー農機株式会社 Harvester
JP2736884B2 (en) * 1996-08-27 1998-04-02 ヤンマー農機株式会社 Harvester vehicle speed control device
JP2001078542A (en) * 2000-08-29 2001-03-27 Yanmar Agricult Equip Co Ltd Combine harvester
JP2002360036A (en) * 2001-06-07 2002-12-17 Iseki & Co Ltd Reaper of combine harvester
JP2009077674A (en) * 2007-09-27 2009-04-16 Iseki & Co Ltd Reaping and conveying device of combine harvester
JP2017046642A (en) 2015-09-02 2017-03-09 株式会社クボタ Combine-harvester
JP2017068533A (en) 2015-09-30 2017-04-06 株式会社クボタ Agricultural field management system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3646705A4

Similar Documents

Publication Publication Date Title
CN110602942B (en) Harvesting machine
EP2997811A1 (en) Multi-purpose spreader of an agricultural vehicle
JP7072379B2 (en) Harvester
JP5139900B2 (en) Cutting and harvesting structure of a harvesting and harvesting machine
WO2019003728A1 (en) Harvesting machine
JP7034609B2 (en) Harvester
JP5324845B2 (en) Mowing and transporting structure for self-detaching combine
JP5057575B2 (en) Harvesting machine
JP2002112616A (en) Grain culm separatory device for combine harvester
JP2008061619A (en) Combine harvester
JP2000342049A (en) Reaping device for combine harvester
US20240196774A1 (en) Systems and methods for controlling speed and direction of a lateral conveyor of an agricultural header
JP5457083B2 (en) Combine
JP5448869B2 (en) Combine
US3365865A (en) Forage harvester
JPH06292438A (en) Forced grass divider of combine harvester
JP2024006219A (en) Automatic travel method, work vehicle, and automatic travel system
JP2002101734A (en) Apparatus for separating grain culm of combine harvester
JP2023039132A (en) Automatic traveling method, working vehicle, and automatic traveling system
JP2022152934A (en) Working machine
JP5940870B2 (en) Combine
CN117461465A (en) Automatic travel method, work vehicle, and automatic travel system
JP2005000012A (en) Direction controller for combine harvester or the like
JP2536051B2 (en) Combine harvester
JP5324843B2 (en) Mowing and transporting structure for self-detaching combine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197030911

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018824312

Country of ref document: EP

Effective date: 20200127