WO2019003258A1 - カメラ装置、複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体 - Google Patents

カメラ装置、複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体 Download PDF

Info

Publication number
WO2019003258A1
WO2019003258A1 PCT/JP2017/023348 JP2017023348W WO2019003258A1 WO 2019003258 A1 WO2019003258 A1 WO 2019003258A1 JP 2017023348 W JP2017023348 W JP 2017023348W WO 2019003258 A1 WO2019003258 A1 WO 2019003258A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
image
resolution
high resolution
images
Prior art date
Application number
PCT/JP2017/023348
Other languages
English (en)
French (fr)
Inventor
康平 栗原
善隆 豊田
大祐 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/615,604 priority Critical patent/US10951817B2/en
Priority to JP2017549829A priority patent/JP6297234B1/ja
Priority to CN201780092291.3A priority patent/CN110771152B/zh
Priority to PCT/JP2017/023348 priority patent/WO2019003258A1/ja
Priority to DE112017007695.1T priority patent/DE112017007695T5/de
Publication of WO2019003258A1 publication Critical patent/WO2019003258A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to a camera device, a compound eye imaging device, and an image processing method.
  • the present invention relates to a camera apparatus that forms images of the same field of view in a plurality of imaging regions and acquires a plurality of images representing different types of information in the plurality of imaging regions.
  • the present invention also relates to a compound eye imaging apparatus comprising a processor for enhancing the resolution of a plurality of images acquired by the above camera apparatus.
  • the present invention further relates to an image processing method implemented by the above compound eye imaging device.
  • the present invention further relates to a program that causes a computer to execute the processing in the above-described compound eye imaging device or image processing method, and a recording medium recording the program.
  • RGB visible images In recent years, the requirements for imaging devices have become more and more diverse, and for example, it has become desirable to obtain not only RGB visible images but also additional information.
  • near infrared light is suitable for monitoring, object recognition, and the like because it has a high transmittance to atmospheric light and is invisible. Therefore, it is noted in the field of surveillance cameras, on-vehicle cameras, and the like.
  • images obtained only from light of a specific polarization direction are useful for the removal of reflected light on window glass, road surfaces, etc., and for recognition of unsightly objects such as black objects, transparent objects, etc. It is noted in the field of inspection cameras used in (factory automation).
  • heterogeneous information has generally been acquired as a substitute for a normal color image.
  • a camera array that arranges multiple cameras, but it is necessary to accurately position the cameras, increase the size of the device, installation costs, and maintenance costs. There is an issue called increase.
  • RGB-X sensors that is, sensors that can simultaneously acquire different kinds of information by providing a filter that transmits only near-infrared light in a color filter array.
  • RGB-X sensors that is, sensors that can simultaneously acquire different kinds of information by providing a filter that transmits only near-infrared light in a color filter array.
  • sensors require much cost and time for design and development, and also have many problems in terms of manufacturing.
  • Patent Document 1 As a small-sized apparatus for solving these problems, there has been proposed an apparatus in which an imaging device is divided into a plurality of imaging regions and an image is formed on each of the plurality of imaging regions (Patent Document 1). In this apparatus, different optical filters are provided for a plurality of imaging regions so that different types of information can be acquired simultaneously.
  • the device of Patent Document 1 can be manufactured by arranging a lens array on one imaging element, and has an advantage of being easy to miniaturize.
  • JP 2001-61109 A paragraphs 0061 and 0064
  • the present invention has been made to solve the above problems, and an object of the present invention is to obtain a plurality of different types of information and obtain high-priority information with high resolution. It is in providing the compound eye camera which can do.
  • the camera device of the present invention is With multiple imaging areas, A plurality of lenses for forming images of the same field of view on the plurality of imaging regions; With multiple optical filters,
  • the plurality of imaging regions include at least one first type imaging region and a plurality of second type imaging regions smaller in area and smaller in number of pixels than the first type imaging region,
  • the plurality of optical filters may be configured such that the images acquired in each of the second type of imaging regions represent different types of information from the images acquired in each of the first type of imaging regions. It is provided.
  • the compound-eye imaging apparatus of the present invention is Comprising the above camera apparatus and a processor provided with at least one resolution enhancement unit,
  • the at least one resolution increasing unit receives an image acquired in any of the first type imaging region as a reference image, and an image acquired in any of the second type imaging region is a low resolution image And the resolution of the low resolution image is enhanced using the high resolution component included in the reference image to generate a high resolution image.
  • the camera device of the present invention since the camera device has a plurality of imaging regions, it is possible to acquire an image representing a plurality of different types of information. Further, since the plurality of imaging regions include at least one first type imaging region and a plurality of second type imaging regions smaller in area and smaller in number of pixels than the first type imaging region Among the different types of information, assigning a relatively large imaging area to high priority information, that is, an image for which acquisition at high resolution is more strongly desired, enables acquisition of such images at high resolution Become.
  • the resolution enhancement unit performs resolution enhancement of a low resolution image, a high resolution image can be obtained even if the imaging area is relatively small.
  • FIG. (A) is a disassembled perspective view which shows the structure of the compound eye camera which comprises the camera apparatus which concerns on Embodiment 1 of this invention, (b) shows the magnitude
  • FIG. (A) to (d) are schematic views showing different examples of the method of dividing the imaging surface of the imaging device of the compound eye camera of FIG. 1 (a).
  • (E) And (f) is a schematic diagram which shows the different example of the dividing method of the imaging surface of the image pick-up element of the compound-eye camera of Fig.1 (a). It is a block diagram which shows the compound eye imaging device which concerns on Embodiment 2 of this invention.
  • FIG. 16 is a block diagram showing an example of a resolution increasing unit used in a second embodiment.
  • FIG. 16 is a block diagram showing another example of the resolution enhancement unit used in the second embodiment.
  • FIG. 16 is a block diagram showing another example of a processor used in a second embodiment.
  • FIG. 16 is a block diagram showing another example of a processor used in a second embodiment. It is a block diagram which shows an example of the processor used in Embodiment 3 of this invention.
  • FIG. 16 is a block diagram showing an example of a combining unit used in a third embodiment.
  • FIG. 16 is a block diagram showing another example of a processor used in a third embodiment. It is a block diagram which shows the processor used in Embodiment 4 of this invention.
  • (A) And (b) is a figure which shows the example of interpolation of the image information by the processor of Embodiment 4.
  • FIG. 16 is a block diagram showing another example of the resolution enhancement unit used in the second embodiment.
  • FIG. 16 is a block diagram showing another example of a processor used in a second embodiment.
  • It is a block
  • FIG. 21 is an exploded perspective view showing a configuration of a compound eye camera and a single eye camera according to Embodiment 6.
  • (A) And (b) is a schematic diagram which shows an example of the dividing method of the imaging surface of the imaging element of the compound-eye camera of FIG. It is a flowchart which shows the procedure of the process in the image processing method which concerns on Embodiment 7 of this invention.
  • FIG. 1A is an exploded perspective view showing an overview of a camera device 1 according to Embodiment 1 of the present invention.
  • the camera device 1 shown in FIG. 1A is configured of a compound eye camera 10.
  • the compound eye camera 10 includes an imaging element 11, a lens array 12, a filter array 13, and a partition 14.
  • the imaging device 11 has a rectangular imaging surface 11a, and the imaging surface 11a is divided into a plurality of rectangular imaging regions 15a to 15f, as shown in FIG. 2A, for example.
  • the lens array 12 includes a plurality of lenses 12a, 12b,... Provided corresponding to the respective imaging regions 15a, 15b,.
  • the lenses 12a, 12b,... are configured to form images of the same field of view on the corresponding imaging areas 15a, 15b,.
  • lenses corresponding to larger imaging areas have longer focal lengths.
  • the filter array 13 includes optical filters 13a, 13b,... Provided respectively for one or more imaging regions among the plurality of imaging regions.
  • the partition walls 14 are provided between the imaging regions 15a, 15b,... And prevent light from lenses other than the corresponding lenses from being incident on the respective imaging regions.
  • the imaging device 11 is preferably a sensor of a CMOS structure or a CCD structure capable of reading out the obtained image signal to the outside for each pixel.
  • CMOS structure CMOS structure
  • CCD structure complementary metal-oxide-semiconductor
  • the largest imaging area that is, the imaging area 15a having the largest number of pixels is called a high resolution imaging area
  • the other imaging areas 15b, 15c,... are called low resolution imaging areas.
  • the imaging surface 11a is a square (the number of pixels in the vertical direction is the same as the number of pixels in the horizontal direction), and the imaging regions 15a to 15f are also squares. 15f have the same size, and therefore the same number of pixels, and the imaging area 15a has twice the vertical and horizontal dimensions with respect to each of the imaging areas 15b to 15f.
  • the high resolution imaging area 15a has twice as many pixels in the vertical and horizontal directions as each of the low resolution imaging areas 15b, 15c,..., The high resolution imaging area 15a is shown in FIG.
  • the obtained image (high resolution image) D0 has twice the size (number of pixels) of the image (low resolution image) D1 obtained in each low resolution imaging area.
  • the high resolution imaging area and the low resolution imaging area are imaging areas having different resolutions, and the former has a higher resolution.
  • the former may be referred to as a first type of imaging area for distinction, and the latter may be referred to as a second type of imaging area.
  • the optical filters 13a, 13b,... Constituting the filter array 13 include optical filters of different optical characteristics, whereby different types of information (images representing different types of information) are obtained from the respective imaging regions. It is supposed to be
  • optical filters 13a, 13b, ... having different optical characteristics are provided in one or more of the imaging areas 15a, 15b, ..., thereby different types of information for each imaging area
  • An image to represent is acquired.
  • an optical filter having different optical characteristics for example, at least one of a spectral filter, a polarizing filter, and an ND filter (Neutral Density Filter) is used, and an image by light of different wavelength bands is used for each imaging region by using these. An image by light of different polarization directions and an image by imaging at different exposure amounts are obtained.
  • These optical filters may be used alone or in combination.
  • image by light of different wavelength bands means an image obtained by photoelectric conversion of light of a specific wavelength band
  • image by light of different polarization directions means light of a specific polarization direction. It means an image obtained by photoelectric conversion.
  • a G (green) transmission filter with high transmittance, an infrared light cut filter, or an optical filter of a complementary color system may be provided for the high resolution imaging area 15a, or no optical filter is provided (monochrome Region) may be used.
  • Complementary color optical filters are generally preferred because of their high light transmittance.
  • not providing an optical filter means not providing an optical filter for the purpose of acquiring different types of images, and optical filters for other purposes may be provided.
  • the aperture of the lens provided for the high resolution imaging area is larger than the low resolution imaging area, so the exposure amount may be large in the high resolution imaging area. If an optical filter such as an ND filter for reducing the amount of transmitted light is provided for the high resolution imaging area, the difference in exposure between the high resolution imaging area and the low resolution imaging area can be prevented from increasing. It is possible to eliminate the exposure amount saturation of the resolution imaging area and the insufficient exposure amount of the low resolution imaging area.
  • the method of dividing the imaging surface 11a into the imaging region is not limited to the example of FIG.
  • the number of imaging regions is increased, the number of filters having different optical characteristics or different combinations of filters having different optical characteristics can be increased, and therefore, the types of information obtained by the imaging device 11 can be increased.
  • FIGS. 2 (b) to 2 (d) and FIGS. 3 (a) and 3 (b) show a method of division different from FIG. 2 (a).
  • the imaging surface 11a is rectangular, the ratio of the dimension in the vertical direction to the dimension in the horizontal direction is 3: 4, and the imaging surface 11a is one high resolution imaging region 15a and three. It is divided into low resolution imaging regions 15b to 15d. Each of these imaging areas 15a to 15d is a square.
  • the low resolution imaging regions 15b to 15d are sequentially arranged in the vertical direction in a band-like portion occupying the left side 1/4 of the imaging surface 11a, and the high resolution imaging region 15a is disposed in the remaining portion.
  • the center of the low resolution imaging area 15c located at the center in the vertical direction and the center of the high resolution imaging area 15a are aligned in the horizontal direction. With such an arrangement, it is possible to obtain depth information by performing stereo matching using a positional shift due to parallax between an image obtained in the low resolution imaging region 15c and an image obtained in the high resolution imaging region 15a. It is possible.
  • both the imaging surface 11a and the imaging regions 15a, 15b are divided into one high resolution imaging region 15a and seven low resolution imaging regions 15b to 15h. Specifically, low-resolution imaging regions 15b to 15h are arranged in a band-shaped portion that occupies the left 1/4 and a band-shaped portion that occupies the lower 1/4 of the imaging surface 11a, and the remaining portions are high.
  • a resolution imaging area 15a is disposed.
  • the imaging surface 11a of FIG. 2 (c) is larger than the imaging surface 11a of FIG. 2 (a), and the high resolution imaging region 15a of FIG.
  • the center of the low resolution imaging area 15c positioned second from the top and the center of the high resolution imaging area 15a are laterally aligned in the left belt-like portion, and the lower belt-like portion from the right 2
  • the center of the low resolution imaging area 15g located at the second position and the center of the high resolution imaging area 15a are aligned in the vertical direction, and by performing multi-view stereo matching, accurate depth information in both the horizontal direction and the vertical direction You can get
  • the imaging surface 11a is divided into one high resolution imaging region 15a and twelve low resolution imaging regions 15b to 15m. Specifically, a band-shaped portion that occupies the left quarter, a band-shaped portion that occupies the lower quarter, a band-shaped portion that occupies the right quarter, and an upper 1 / of the imaging surface 11a. Low-resolution imaging regions 15b to 15m are arranged in order in the vertical direction in a band-shaped portion that occupies four, and high-resolution imaging regions 15a are disposed in the remaining portions. If the size of the imaging surface 11a is the same in the example of FIG. 2 (c) and the example of FIG. 2 (d), the high resolution imaging area 15a of FIG. 2 (d) has the high resolution of FIG. It is smaller than the imaging area 15a. Instead, more low resolution imaging areas 15b to 15m are provided, and it is possible to acquire an image D1 having more different types of information.
  • the imaging area has a plurality of high resolution imaging areas and a plurality of low resolution imaging areas.
  • the imaging surface 11a is divided into three high resolution imaging regions 15a to 15c and four low resolution imaging regions 15d to 15g. Because of such division, the imaging surface 11a is divided into two each in the vertical direction and the horizontal direction, and the high resolution imaging regions 15a to 15c are disposed in the upper left, upper right, and lower right quarters. There is. Furthermore, the lower left 1/4 portion is divided into two each in the vertical direction and the horizontal direction, and four low resolution imaging regions 15d to 15g are configured in each divided region.
  • RGB information which is basic color information is acquired in the high resolution imaging areas 15a to 15c, and wavelength information of other narrow bands or polarization in the low resolution imaging areas 15d to 15g It can be used to obtain information. By doing this, it is possible to acquire a high resolution image having more natural color and color information.
  • an R transmission filter, a G transmission filter, and a B transmission filter may be provided in the high resolution imaging regions 15a to 15c.
  • a narrow band transmission filter may be provided, and in order to acquire polarization information in a specific direction, a polarization component in that direction is transmitted and a polarization component in the other direction is attenuated.
  • An optical filter may be provided.
  • the imaging area includes two types of imaging areas having different sizes in addition to the high resolution imaging area 15a. That is, each of the imaging areas 15j to 15y of the second group has a half size in the longitudinal direction and the lateral direction with respect to the imaging areas 15b to 15i of the first group.
  • the first group of imaging areas 15b to 15i may be referred to as an intermediate resolution imaging area
  • the second group of imaging areas 15j to 15y may be referred to as a low resolution imaging area.
  • the first group of imaging areas 15b to 15i and the second group of imaging areas 15j to 15y have lower resolution than the high resolution imaging area 15a, they may be collectively referred to as a low resolution imaging area.
  • the imaging surface 11a is divided into two each in the vertical direction and the horizontal direction, and the high resolution imaging region 15a is disposed in the upper right quarter portion.
  • the upper left 1/4 portion is divided into two each in the vertical direction and the horizontal direction, and four low resolution imaging regions 15b to 15e are configured in each divided region.
  • the lower right 1/4 portion is divided into two each in the vertical direction and the horizontal direction, and four low resolution imaging regions 15f to 15i are configured in each divided region.
  • the lower left 1/4 portion is divided into four in each of the vertical direction and the horizontal direction, and 16 low resolution imaging regions 15j to 15y are configured in each divided region.
  • imaging areas other than the high resolution imaging area have different sizes
  • imaging areas of different sizes can be allocated according to the type of information. For example, when it is desired to acquire a multispectral image composed of a large number of narrowband images, one or more imaging regions of relatively small imaging regions (low resolution imaging regions) 15j to 15y are allocated to the narrowband images, A narrow band-pass filter is provided for these, while a relatively large imaging area (for basic RGB color information, near infrared information, polarization information, etc.) is also required for information that is required to have a high resolution.
  • One or more imaging regions among the intermediate resolution imaging regions 15b to 15e may be allocated, and an optical filter for acquiring respective information may be provided for these.
  • the imaging region is all square, but the present invention is not limited to this. It may be.
  • the high resolution imaging area and the low resolution imaging area have different sizes, and the low resolution imaging area may include a plurality of imaging areas having different sizes, the high resolution imaging area and the low resolution imaging area It is desirable that all imaging regions including the same have the same aspect ratio.
  • the imaging surface 11a When the imaging surface 11a is divided to form a plurality of imaging regions as illustrated in FIGS. 2A to 2D and FIGS. 3A and 3B, the fields of view of the plurality of imaging regions are exactly matched. It is difficult to This is because of an error in the focal length of the lens, an aberration, and the like. If the fields of view of a plurality of imaging regions do not exactly match, an image obtained by imaging may be cut out (the end portion of the image is removed by trimming) or the like.
  • the effects obtained by the camera device 1 of the first embodiment will be described.
  • the imaging surface of the imaging element of the compound eye camera 10 constituting the camera device is divided into a plurality of imaging regions, an image representing a plurality of different types of information is acquired be able to.
  • the imaging area includes a relatively large imaging area and a relatively small imaging area, an image of which priority is high among the plurality of different types of information, that is, acquisition of a high resolution is more strongly desired By allocating a relatively large imaging area, it is possible to obtain such an image at a high resolution.
  • a relatively large imaging area such as a visible light image of RGB
  • a plurality of these images can be acquired at a high resolution, and together with that, to construct a multispectral image.
  • Images with additional information such as narrow-band images, near-infrared images, ultraviolet images, and even polarized images, images with different exposures to a number of relatively small imaging areas It becomes possible to obtain many.
  • the size of the camera device can be suppressed.
  • FIG. 4 is a block diagram showing a compound eye imaging apparatus 100 according to Embodiment 2 of the present invention.
  • the compound-eye imaging apparatus 100 shown in FIG. 4 includes a camera device 1, an imaging control unit 17, an A / D conversion unit 18, and a processor 20.
  • the camera device 1 the one described in Embodiment 1 can be used.
  • the imaging control unit 17 controls imaging by the camera device 1. For example, control of imaging timing and exposure time is performed.
  • An imaging signal output from the camera device 1 is subjected to processing such as amplification by an analog processing unit (not shown), then converted into a digital image signal by the A / D conversion unit 18 and input to the processor 20.
  • the processor 20 has an image memory 22 and at least one resolution enhancement unit 30.
  • the image memory 22 has a plurality of storage areas 22-1, 22-2,... Respectively corresponding to a plurality of imaging areas of the compound eye camera 10 constituting the camera device 1.
  • the digital image signal stored in each storage area represents an image acquired in the corresponding imaging area.
  • the images acquired in two imaging areas having different resolutions are supplied to the high resolution processing unit 30.
  • the high resolution image acquired in the imaging area 15 a of FIG. 2A and the low resolution image acquired in the imaging area 15 b are supplied to the high resolution processing unit 30.
  • the high resolution image acquired in the imaging area 15a is indicated by a symbol D0
  • the low resolution image acquired in the imaging area 15b is indicated by a symbol D1.
  • the high resolution processing unit 30 uses the high resolution image D0 as a reference image to increase the resolution of the low resolution image D1 to generate a high resolution image D30.
  • the high resolution processing unit 30 Based on the assumption that each of the high resolution image D30 to be generated and the reference image D0 have correlation with each other in the image feature (gradient in local area, pattern, etc.), the high resolution processing unit 30 generates the subject included in the reference image D0 Is transferred (reflected) to the low resolution image D1 to generate the high resolution image D30 including the high resolution component of the subject. Furthermore, the low resolution image D1 and the reference image D0 are compared, and the transition of the high resolution component is promoted in the imaging region considered to have a strong correlation, and the transition of the high resolution component is suppressed in the imaging region considered to have a weak correlation. Thus, adaptive processing may be performed according to the position in the image. This is because the low resolution image D1 and the reference image D0 have different imaging conditions (wavelength, polarization direction, exposure amount, etc.), so the high resolution component of the low resolution image D1 and the reference image D0 It is because it does not necessarily have correlation.
  • the resolution increasing unit 30a in FIG. 5 separates the low frequency component and the high frequency component from each of the low resolution image D1 and the reference image D0 by filtering, and performs resolution enhancement by a method of combining each component.
  • the resolution increasing unit 30a illustrated in FIG. 5 includes filter processing units 311 and 312, a low frequency component combining unit 313, a high frequency component combining unit 314, and a component combining unit 315.
  • the filter processing unit (first filter processing unit) 311 extracts the low frequency component D1L and the high frequency component D1H from the low resolution image D1. For example, the filter processing unit 311 performs smoothing filter processing on the low resolution image D1, extracts the low frequency component D1L, and obtains a difference between the extracted low frequency component D1L and the original image D1. A high frequency component D1H is generated.
  • the filter processing unit (second filter processing unit) 312 extracts the low frequency component D0L and the high frequency component D0H from the reference image D0. For example, the filter processing unit 312 performs smoothing filter processing on the reference image D0, extracts the low frequency component D0L, and obtains the difference between the extracted low frequency component D0L and the original image D0. A high frequency component D0H is generated.
  • a Gaussian filter In the smoothing filter processing in the filter processing units 311 and 312, a Gaussian filter, a bilateral filter, or the like can be used.
  • the low frequency component synthesis unit 313 expands the low frequency component D1L to the same resolution as the reference image D0, combines the enlarged low frequency component and the low frequency component D0L by weighted addition, and generates a synthesized low frequency component D313.
  • Generate The high frequency component combining unit 314 enlarges the high frequency component D1H to the same resolution as the reference image D0, combines the enlarged high and low frequency components and the high frequency component D0H by weighted addition, and generates a combined high frequency component D314.
  • the component combining unit 315 combines the combined low frequency component D313 and the combined high frequency component D314 to generate a high resolution image D30.
  • the weight of the high resolution high frequency component D0H included in the high resolution image D0 is increased for combining to improve the sense of resolution. Can.
  • the resolution increasing unit 30b shown in FIG. 6 uses a guided filter, which receives the low resolution image D1 and the reference image D0 as input, and raises the resolution of the low resolution image D1 based on the information of the reference image D0. is there.
  • the resolution increasing unit 30b illustrated in FIG. 6 includes a reduction processing unit 321, a coefficient calculation unit 322, a coefficient map enlargement unit 323, and a linear conversion unit 324.
  • the reduction processing unit 321 reduces the reference image D0 to generate a reduced reference image D0b having the same resolution as the low resolution image D1.
  • the coefficient calculation unit 322 calculates linear coefficients a m and b m which approximate the linear relationship between the reduced reference image D 0 b and the low resolution image D 1.
  • the coefficient calculation unit 322 first obtains the variance varI (x) of the pixel value I (y) of the reduced reference image D0b in the local region ⁇ (x) centering on the pixel position x by Equation (1).
  • I (x) is the pixel value of the pixel at pixel position x in the reduced reference image D0b.
  • I (y) is the pixel value of the pixel at the pixel position y of the reduced reference image D0b.
  • the pixel position y is a pixel position in the local region ⁇ (x) around the pixel position x.
  • the coefficient calculation unit 322 further calculates covariance covIp of the pixel value I (y) of the reduced reference image D0b and the pixel value p (y) of the input image D1 in the local region ⁇ (x) centered on the pixel position x.
  • x) is obtained by equation (2).
  • I (x) and I (y) are as described for formula (1).
  • p (y) is a pixel value of the pixel at the pixel position y of the input image D1.
  • the coefficient calculation unit 322 further calculates the coefficient a by the equation (3) from the variance varI (x) determined by the equation (1) and the covariance covIp (x) determined by the equation (2).
  • eps is a constant that determines the degree of edge preservation, and is predetermined.
  • the coefficient calculation unit 322 further calculates the coefficient b (x) by the equation (4) using the coefficient a (x) obtained by the equation (3).
  • the coefficients a (x) and b (x) are called linear regression coefficients.
  • the coefficient calculation unit 322 further performs linear coefficients a m (x) and b by averaging the coefficients a (x) and b (x) obtained by Equations (3) and (4) using Equation (5). Calculate m (x).
  • the coefficient map enlargement unit 323 has the same coefficient map as the reference image D0, and the coefficient map consisting of the linear coefficient b m (x) and the coefficient map consisting of the linear coefficient a m (x) found by the coefficient calculation unit 322 according to equation (5). Expand to resolution.
  • the linear coefficients in the expanded coefficient map are represented by a mb (x) and b mb (x), respectively.
  • the coefficient map is obtained by arranging the coefficients corresponding to all the pixels constituting the image at the same position as the corresponding pixels.
  • the linear conversion unit 324 generates a high resolution image D30 having information represented by the low resolution image D1 based on the linear coefficients a mb and b mb in the enlarged coefficient map and the reference image D0.
  • the linear conversion unit 324 derives the guided filter output value q by equation (6) using the linear coefficients a mb and b mb in the expanded coefficient map.
  • q (x) is a pixel value of the pixel at the pixel position x of the high resolution image D30.
  • J (x) is the pixel value of the pixel at the pixel position x of the reference image D0.
  • Expression (6) indicates that the output of the guided filter (pixel value of the image D30) q (x) and the pixel value J (x) of the reference image D0 have a linear relationship.
  • the coefficient calculation unit 322 and the linear conversion unit 324 are basic components of the process by the guided filter, and the reduction processing unit 321 and the coefficient map enlargement unit 323 are processes in the coefficient calculation unit 322. Was added to reduce the load on
  • the smoothing processing is performed only in the area where the value of the variance varI (x) of the reduced reference image D0b is small, and the textures of the other areas are stored. can do.
  • the resolution enhancement unit 30b described above performs processing using a guided filter
  • the present invention is not limited to this.
  • the resolution increasing unit 30b uses another method such as a method using a joint bilateral filter or the like to increase the resolution of an image having different types of information based on edge or gradient information of a high resolution image. It may be used.
  • FIG. 7 shows another example (indicated by reference numeral 20b) of the processor 20 used in the second embodiment.
  • the processor 20 b shown in FIG. 7 has an alignment unit 25 in addition to the image memory 22 and the resolution enhancement unit 30.
  • the alignment unit 25 performs the alignment process before the high resolution processing in the high resolution processing unit 30.
  • this alignment process it is possible to perform fixed value alignment using initial position shift (calibration) information, dynamic alignment including registration (image matching), and the like.
  • the resolution enhancement unit 30 performs resolution enhancement using the image aligned by the alignment unit 25 as an input.
  • a plurality of resolution increasing units (30a, 30b) described with reference to FIG. 5 or FIG. 6 or a plurality of resolution increasing units described as variations thereof are provided, and different low resolution images are input to each.
  • the resolution of the input low resolution image may be increased using the high resolution image as a reference image.
  • the high resolution images used as reference images may be the same or different among the plurality of resolution increasing units.
  • FIG. 8 shows another example (indicated by reference numeral 20c) of the processor used in the second embodiment.
  • the processor 20c shown in FIG. 8 has an image memory 22, a resolution enhancement unit 30c, and image enlargement units 31r and 31b.
  • the imaging surface 11a has one high resolution imaging area 15a and three or more low resolution imaging areas as shown in FIG. 2A, for example, and G information is acquired in the high resolution imaging area 15a. It is assumed that R images, G images, and B images are acquired in three low resolution imaging regions (for example, 15b, 15c, and 15d).
  • the three low resolution images D1-r, D1-g and D1-b respectively represent low resolution R image, G image and B image. Further, a G image acquired in the high resolution imaging region 15a is represented by a symbol D0.
  • the image enlargement units 31r and 31b respectively enlarge the images D1-r and D1-b to the same resolution as the high resolution image D0 and generate enlarged images D31-r and D31-b.
  • the high resolution processing unit 30c replaces the image D1-g with the image D0, and outputs the image obtained by the replacement as a high resolution image D30-g. When such processing is performed, the amount of calculation or calculation time for image processing can be significantly reduced, and the hardware cost for the processor can be reduced.
  • the alignment unit 25 (shown in FIG. 7) may be provided in the front stage of the resolution enhancement unit 30 c. Furthermore, a similar alignment unit may be provided in front of the image enlargement units 31 r and 31 b.
  • a plurality of images having different types of information can be obtained from a plurality of imaging areas of the camera device, and these images have relatively low resolution and relatively high resolution.
  • the high resolution component of the relatively high resolution image, including the image is used to increase the resolution of the relatively low resolution image, so that a plurality of high resolution images having different types of information can be obtained. . Therefore, even if the imaging area for acquiring images having different types of information is small, high-resolution images can be generated, and images having different types of information while suppressing the size of the camera device Can be obtained in high resolution.
  • FIG. 9 shows an example (indicated by reference numeral 20d) of the processor 20 used in the compound eye imaging apparatus according to the third embodiment of the present invention.
  • a processor 20d shown in FIG. 9 includes an image memory 22, a plurality of first to N (N is an integer of 2 or more) resolution increasing units 30-1 to 30-N, and a combining unit 40. Have.
  • parts other than the processor 20d are configured in the same manner as, for example, FIG.
  • the first to Nth resolution increasing units 30-1 to 30-N are respectively provided corresponding to N low resolution imaging regions (for example, 15b, 15c in the example of FIG. 2A,...)
  • the low resolution images D1-1 to D1-N acquired in the corresponding low resolution imaging areas are received, and the high resolution image D0 acquired in the high resolution imaging area 15a is received.
  • the resolution increasing unit 30-n (n is any of 1 to N) generates a high resolution image D30-n by increasing the resolution of the low resolution image D1-n using the high resolution image D0 as a reference image Do.
  • Such processing is performed by all the resolution increasing units 30-1 to 30-N, and high resolution images D30-1 to D30-N having a plurality of different types of information are generated.
  • Each of the resolution enhancement units 30-1 to 30-N is configured, for example, as described in FIG. 5, FIG. 6, or FIG.
  • the combining unit 40 receives the high resolution images D30-1 to D30-N having a plurality of different types of information and generates one or more combined high resolution images D40-a, D40-b,. That is, the synthesizing unit 40 synthesizes the high resolution images D30-1 to D30-N generated with the high resolution converting units 30-1 to 30-N and having different types of information, and generates a synthesized high resolution image D40. -A, D40-b ... are generated.
  • the combining processing in the combining unit 40 can be performed by, for example, pan-sharpening processing, weighted addition of images, brightness combining, or region selection.
  • the region selection may be performed based on, for example, the visibility of the image estimated using the local variance value as an index.
  • pan-sharpening technology is used in satellite image processing (remote sensing) and the like, and in pan-sharpening processing, an RGB color image is converted to an HSI (hue, again lightness) image
  • the I value of the HSI image obtained by the conversion is replaced with the pixel value of the monochrome image of the high resolution image, and the HSI image is returned to the RGB image using the replaced pixel value.
  • FIG. 10 An example (shown by reference numeral 40b) of the combining unit 40 is shown in FIG.
  • the combining unit 40b illustrated in FIG. 10 includes a luminance / color separation unit 411, a luminance separation unit 412, a weighting addition unit 413, and a luminance / color combination unit 414, and performs combination by luminance weighted addition.
  • the R image D 30 which has been subjected to the high resolution processing by the synthesis unit 40 b by the plurality of resolution increasing units 30-1, 30-2 (the same as those described in FIG. 5, FIG. 6, FIG.
  • a G image D30-g, a B image D30-b, a polarization image D30-p, and an NIR (near infrared) image D30-i are input.
  • the images D31-r and D31-b enlarged by the image enlargement units 31r and 31b shown in FIG. 8 may be input to the combining unit 40b and used instead of the high resolution image. That is, the combining unit 40b may be configured to combine one or more high resolution images and one or more enlarged images.
  • the luminance / color separation unit 411 receives the R image D30-r, the G image D30-g, and the B image D30-b, and outputs them to the luminance component D411-y and the respective color components (R color, G color, B Color components are separated into D411-r, D411-g, and D411-b.
  • the luminance separating unit 412 separates the luminance component D412 with the polarization image D30-p as an input.
  • the weighting and addition unit 413 outputs the luminance component D412 of the polarized image output from the luminance separation unit 412 to the luminance component D411-y output from the luminance / color separation unit 411, and the NIR image D30 input to the synthesis unit 40b. Weighted addition of -i is performed to obtain a composite luminance component D413.
  • the luminance / color combining unit 414 combines the color components D411-r, D411-g, and D411-b output from the luminance / color separation unit 411 with the combined luminance component D413 obtained by the weighting addition unit 413.
  • an R image D40-r, a G image D40-g, and a B image D40-b are generated.
  • the R image D40-r, the G image D40-g, and the B image D40-b output from the luminance / color combining unit 414 are luminance components of the polarization image D30-p, and luminance information enhanced by the NIR image D30-i. Will have
  • the weighted addition in the weighted addition unit 413 may use a method of adding pixel values multiplied by a gain according to an image.
  • high frequency components of respective images luminance component D411-y output from luminance / color separator 411, luminance component D412 output from luminance separator 412, and NIR image D30-i input to synthesizer 40b
  • the components may be extracted by filtering and weighted addition may be performed to obtain a weighted average.
  • FIG. 11 shows another example (indicated by reference numeral 20 e) of the processor 20 used in the third embodiment.
  • the processor 20 e shown in FIG. 11 includes an image memory 22, a plurality of resolution increasing units 30-1 to 30 -N, a combining unit 40, and a camera information input terminal 23.
  • the compound eye camera information Dinfo is received from the compound eye camera 10, and the compound eye camera information Dinfo is transmitted to the resolution increasing units 30-1 to 30-N and the combining unit 40.
  • the compound-eye camera information Dinfo is information representing the wavelength acquired in each imaging region, information representing the polarization direction, information representing the position of each imaging region (position in the imaging plane), or the like.
  • Compounded camera information Dinfo is input to the resolution increasing units 30-1 to 30-N and the combining unit 40 to improve the accuracy in resolution increasing, combining processing or the like, or to increase information obtained by these processing Is possible.
  • the compound-eye camera information Dinfo represents the spectrum characteristic of an optical filter provided for each imaging region, a near infrared image can be extracted from the RGB image and the monochrome image at the time of combining processing.
  • a plurality of images having a plurality of different types of information obtained by the camera device are enhanced after being enhanced in resolution, which is further useful according to the purpose of use.
  • Image can be generated.
  • FIG. 12 A configuration example (indicated by reference numeral 20f) of the processor 20 used in the compound eye imaging apparatus according to the fourth embodiment of the present invention is shown in FIG.
  • the processor 20f shown in FIG. 12 has an image memory 22, a plurality of, ie, first to Nth resolution increasing units 30-1 to 30-N, and a combining unit 41.
  • parts other than the processor 20 f are configured, for example, in the same manner as in FIG. 4.
  • the resolution increasing units 30-1 to 30-N are, for example, the same as those described in FIG.
  • the synthesizing unit 41 receives the high resolution images D30-1 to D30-N outputted from the high resolution converting units 30-1 to 30-N, and from these, a high resolution image D41 representing another type of information other than these. -A, D41-b, ... are generated by interpolation.
  • the images D1-1, D1-2,... Acquired in a plurality of low resolution imaging regions are at least among the parameters representing the imaging conditions.
  • the high resolution images D30-1, D30-2, ... generated from these low resolution images D1-1, D1-2, ... include a plurality of images in which one parameter type or value is different from each other, It is assumed that the types or values of at least one of the parameters representing the imaging conditions include a plurality of images different from each other.
  • the synthesizing unit 41 generates high-resolution images D41-a and D41-b different from the plurality of high-resolution images D30-1, D30-2,... ,... By interpolation (reconstruction). For this interpolation, for example, a restoration method used for compressed sensing can be applied.
  • the parameter values are R, G, B (representative wavelengths of R wavelength band, representative wavelengths of G wavelength band, representative wavelengths of B wavelength band) for wavelengths, and an exposure dose is 1/1000. , 1/100, 1/10, 1
  • R, G, B representationative wavelengths of R wavelength band, representative wavelengths of G wavelength band, representative wavelengths of B wavelength band
  • an exposure dose is 1/1000. , 1/100, 1/10, 1
  • the high resolution image D30-1 is an image obtained by increasing the resolution of an image obtained by imaging at an exposure amount of 1/1000 in an imaging region provided with an optical filter that transmits light in the R wavelength band.
  • the high resolution image D30-2 is an image obtained by increasing the resolution of an image obtained by imaging at an exposure amount of 1/1000 in an imaging region provided with an optical filter that transmits light in the B wavelength band.
  • the synthesizing unit 41 generates images D41-a to D41-f corresponding to combinations of parameters indicated by triangles by interpolation based on the high resolution images D30-1 to D30-6.
  • the image D41-a is estimated to be generated when the resolution of an image obtained by imaging at an exposure amount of 1/1000 is increased in an imaging region provided with an optical filter that transmits light in the G wavelength band. Image.
  • the combining unit 41 outputs not only the generated images D41-a to D41-f but also the input images D30-1 to D30-6. By performing such processing, high resolution images D30-1 to D30-6 and D40-a to D40-f having a larger number of different types of information can be obtained.
  • an image having a larger number of different types of information can be generated from an image having a relatively small number of different types of information obtained by imaging. Therefore, many types of information can be obtained even if the number of imaging regions is not large.
  • Embodiment 5 A configuration example (indicated by reference numeral 20g) of the processor 20 used in the compound eye imaging device according to the fifth embodiment of the present invention is shown in FIG.
  • the processor 20 g illustrated in FIG. 14 includes an image memory 22, a combining unit 42, and a resolution increasing unit 32.
  • parts other than the processor 20g are configured, for example, as in FIG.
  • the composition unit 42 performs composition processing on the images D1-1 to D1-N having different types of information acquired in the low resolution imaging region (for example, 15b, 15c in the example of FIG. 2A,). To generate one or more composite images (composite low resolution images) D42-a, D42-b,.
  • the resolution enhancement unit 32 performs resolution enhancement on the one or more composite images of the composite images D42-a, D42-b, ... output from the combining unit 42 using the reference image D0, Resolution images (high resolution composite images) D32-a, D32-b, ... are generated.
  • FIG. 15 is a block diagram showing a compound eye imaging apparatus 102 according to Embodiment 6 of the present invention.
  • the compound-eye imaging device 102 according to the sixth embodiment includes a camera device 50, an imaging control unit 17, A / D conversion units 18 and 19, and a processor 20h.
  • FIG. 16 is an exploded perspective view of the camera device 50.
  • the camera device 50 has a compound eye camera 60 and a single eye camera 70.
  • the compound eye camera 60 as in the compound eye camera 10 shown in FIG. 1A, a camera in which an imaging surface is divided into a plurality of imaging regions is used. The image pickup surface is not divided, and an image acquired by the single-eye camera 70 is used as a substitute for the image acquired in the high-resolution imaging region of the compound-eye camera 10 of FIG.
  • the compound eye camera 60 includes an imaging element 61, a lens array 62, a filter array 63, and a partition 64.
  • the imaging element 61 has a rectangular imaging surface 61a, and the imaging surface 61a is divided into, for example, a plurality of, for example, nine imaging regions 65a to 65i as shown in FIG. 17A.
  • the nine imaging regions 65a to 65i have the same size and are arranged in three rows and three columns.
  • FIG. 17B shows another example of the method of dividing the imaging surface 61a.
  • the imaging surface 61a of the imaging element 61 of the compound eye camera 60 is divided into four imaging regions 65a to 65d.
  • the four imaging regions 65a to 65d have the same size and are arranged in two rows and two columns.
  • the imaging areas 65a, 65b,... Of the compound eye camera 60 may be of the same size as each other as in the examples of FIGS. 17 (a) and 17 (b), but the present invention is not limited thereto.
  • the imaging regions 65a, 65b,... May be of mutually different sizes. It is desirable that the aspect ratios be the same, even if they are of different sizes.
  • the lens array 62 is provided corresponding to each of the imaging areas 65a, 65b,..., And includes lenses 62a, 62b,... For forming images of the same field of view in the corresponding imaging areas.
  • the filter array 63 includes optical filters 63a, 63b,... Provided for one or more imaging regions of the plurality of imaging regions.
  • the partition walls 64 are provided between the imaging regions 65a, 65b,... And prevent light from lenses other than the corresponding lenses from being incident on the respective imaging regions.
  • the monocular camera 70 includes an imaging element 71, a lens 72, and an optical filter 73.
  • the imaging device 71 also has a rectangular imaging surface 71a.
  • One imaging region 75 is configured on the entire imaging surface 71a.
  • 17A and 17B schematically show the positional relationship of the imaging region 75 of the monocular camera 70 with respect to the imaging regions 65a, 65b, ... of the compound eye camera 60.
  • An imaging area 75 formed by the entire imaging surface 71 a of the imaging element 71 of the single-eye camera 70 has a larger number of pixels than any of the imaging areas 65 a, 65 b,. That is, the resolution of the imaging area 75 of the single-eye camera 70 is higher than the resolution of the largest imaging area among the imaging areas 65 a, 65 b,.
  • the imaging area 75 has the same aspect ratio as the imaging areas 65a, 65b,.
  • the imaging area 75 of the single-eye camera 70 is an imaging area different in resolution from the imaging areas 65a, 65b, ... of the compound-eye camera, and the former has a higher resolution.
  • the former may be referred to as a first type of imaging area, and the latter may be referred to as a second type of imaging area.
  • the lens 72 of the single-eye camera 70 is provided in the imaging area 75 so that an image having the same field of view as that of each imaging area of the compound-eye camera 60 is formed.
  • a lens group is constituted by the lenses 62a, 62b,... Of the compound eye camera 60 and the lens 72 of the single eye camera 70.
  • the optical filters 63a, 63b,... And the optical filter 73 which constitute the filter array 63 include optical filters of different optical characteristics, whereby mutually different types of information (representing different types of information from each imaging region) Image) is obtained.
  • the high resolution imaging area 15a in FIG. 2A of the first embodiment is replaced with the imaging area 75 of the single-eye camera 70, and the low resolution imaging areas 15b, 15c,. It is sufficient to select an optical filter for each imaging region, assuming that the regions 65a, 65b,. That is, in the sixth embodiment, an optical filter having the same characteristics as the optical filter provided for the high resolution imaging area 15a of FIG. 2A is provided for the imaging area 75 of the monocular camera 70. In the sixth embodiment, an optical filter having the same characteristics as the optical filter provided for the low resolution imaging areas 15b, 15c,... May be provided for the imaging areas 65a, 65b,. . Note that an optical filter may not be provided to one or more of the imaging regions 75, 65a, 65b,..., For example, the imaging region 75 (it is assumed to be a monochrome region).
  • the imaging control unit 17 controls imaging in the compound eye camera 60 and imaging in the single eye camera 70. For example, control of the imaging timing and exposure amount in two cameras is performed. In control of imaging timing, control is performed so that imaging in two cameras is performed almost simultaneously.
  • the images acquired in the plurality of imaging regions of the compound eye camera 60 and the images acquired by the single eye camera 70 are respectively A / D converters 18 and 19. It is supplied via
  • the processor 20 h has an image memory 22 and at least one resolution increasing unit 30.
  • the image memory 22 preferably has a plurality of imaging areas of the compound-eye camera 60 and a plurality of storage areas 22-1, 22-2,... Respectively corresponding to the imaging areas of the single-eye camera 70.
  • the high resolution processing unit 30 receives the high resolution image D0 acquired by the single eye camera 70 as a reference image, receives the image D1 acquired by any of the imaging regions of the compound eye camera 60 as a low resolution image, and generates a reference image D0.
  • the high resolution component included is used to raise the resolution of the low resolution image D1 to generate a high resolution image D30.
  • a low resolution imaging area of the same compound eye camera 10 is used with the image acquired in the high resolution imaging area (such as 15a) of the compound eye camera 10 as a reference image.
  • the compound eye camera 60 is used with the image acquired by the imaging device of the monocular camera 70 as a reference image. High resolution of the low resolution image acquired by is performed.
  • the sixth embodiment is the same as the second embodiment in the points other than the above.
  • the processing by the resolution enhancement unit 30 can be performed in the same manner as described in the second embodiment with reference to FIG. 5, FIG. 6, FIG.
  • processor 20h in the sixth embodiment has been described as using the same processor as that described in the second embodiment, a processor similar to the processor in the third, fourth or fifth embodiment is used instead. It is good as well.
  • an image obtained in the imaging region of the monocular camera 70 may be used as a reference image.
  • the center of the imaging area 65i located at the center of the imaging surface 61a and the center of the imaging area 75 are arranged in the lateral direction. With such an arrangement, it is possible to obtain depth information by performing stereo matching using positional displacement due to parallax between an image obtained in the imaging region 65i and an image obtained in the imaging region 75.
  • the single-eye camera 70 is provided separately from the compound-eye camera 60, and the single-eye camera 70 can obtain an image of high resolution. Therefore, it is possible to increase the resolution of the image obtained in each imaging area of the compound eye camera 60 to a higher resolution.
  • all the imaging regions 65a, 65b,... Of the compound eye camera 60 can be made the same shape, and by doing so, the manufacturing cost is suppressed. It is possible.
  • the positional deviation due to the parallax between the image obtained by the single eye camera 70 and the image obtained by the compound eye camera 60 is the compound eye of Embodiment 1 It is also possible to obtain depth information with higher accuracy by utilizing the parallax which is larger than the positional displacement due to the parallax between images obtained in different imaging regions of the camera 10.
  • the camera apparatus is configured only with the compound eye camera (10), and in the sixth embodiment, the camera apparatus is configured with the compound eye camera (60) and the single eye camera (70).
  • a filter group such that an apparatus has a plurality of imaging areas (a first type imaging area and a second type imaging area) different in size from one another and images representing different types of information are acquired in the plurality of imaging areas Should be provided.
  • the imaging regions different from each other may be formed in one imaging device (11) as in the first embodiment, and even if they are formed in a plurality of imaging devices (61, 71) as in the sixth embodiment good.
  • the plurality of imaging areas having different sizes include at least one first type imaging area and a plurality of second type imaging areas having a smaller area and a smaller number of pixels than the first type imaging area.
  • the first type imaging region and the second type imaging region when both the first type imaging region and the second type imaging region are formed in one imaging device, the first type imaging region and the second type imaging region Is formed by dividing the imaging surface of the one imaging element described above, and the lens group includes the lenses included in the lens array provided for the imaging surface.
  • partition walls are provided in each of the plurality of imaging regions so as to prevent light from lenses other than the corresponding lenses from being incident.
  • a plurality of second-type imaging regions are formed by dividing the imaging surface of the second imaging element (61), which is composed of a single imaging region configured on the entire imaging surface of the first imaging element (71)
  • the lens group includes a lens provided for the imaging surface of the first imaging device and a lens included in a lens array provided for the imaging surface of the second imaging device.
  • partition walls are provided to prevent light from lenses other than the corresponding lenses from being incident on each of the plurality of imaging areas of the second imaging element.
  • Embodiment 7 The processor of the compound eye imaging apparatus described in the second to sixth embodiments may be dedicated hardware or a CPU of a computer that executes a program stored in a memory.
  • a plurality of low resolution images D1-1 to D1-N and one high resolution image D0 representing different types of information are captured by the camera device 1 shown in FIG. 1A, for example. It is acquired and stored in a memory (having the same role as the image memory 22 of FIG. 9).
  • the low resolution images D1-1 to D1-N and the high resolution image D0 are, for example, a plurality of imaging areas 15a on which images of the same field of view of the camera device 1 shown in FIG. , 15b, 15c,... Are images having different types of information, and among such images, those with relatively low resolution are as low resolution images D1-1, D1-2,.
  • the acquired image with a relatively high resolution is acquired as the high resolution image D0.
  • step ST2 using the high resolution image D0 as a reference image, high resolution images D30-1, D30 are subjected to the high resolution processing for each of the plurality of low resolution images D1-1, D1-2,.
  • the resolution enhancement process is, for example, the same process as that described for the resolution enhancement unit of FIG. 5, FIG. 6, or FIG.
  • step ST3 the plurality of high resolution images D30-1, D30-2,... Are combined to generate one or more combined high resolution images D40-a, D40-b.
  • the combining process is performed as described for the combining unit 40 in FIG.
  • images having different types of information can be acquired at mutually different resolutions in a plurality of imaging regions, and from the acquired relatively low resolution images , High resolution images can be obtained.
  • an image processing method implemented by the compound-eye imaging apparatus also forms part of the present invention.
  • a program that causes a computer to execute the processing in the above-described compound eye imaging device or image processing method, and a computer readable recording medium recording such a program also form part of the present invention.
  • SYMBOLS 1 camera apparatus 10 compound eye camera, 11 imaging device, 11a imaging surface, 12 lens array, 12a, 12b, ... lens, 13 filter array, 13a, 13b, ... optical filter, 14 partition, 15a high resolution imaging area, 15b, 15c, ... Low resolution imaging area, 17 Imaging control unit, 18, 19 A / D conversion unit, 20, 20a to 20h processor, 22 image memory, 25 alignment unit, 30, 30a to 30c, 30-1 to 30- N resolution enhancement unit, 31r, 31b image enlargement unit, 32 resolution enhancement unit, 40, 42 combining unit, 50 camera devices, 60 compound eye cameras, 61 imaging device, 61a imaging surface, 62 lens array, 62a, 62b, ...
  • Lens 63 Filter array, 63a, 63b, ... optical filter, 64 partitions, 65a, 65b, ... low resolution imaging area, 70 single-eye camera, 71 imaging element, 71a imaging surface, 72 lens, 73 optical filter, 75 high resolution imaging area, 100 , 102 compound eye imaging device, 311, 312 filter separation unit, 313 low frequency component synthesis unit, 314 high frequency component synthesis unit, 315 component synthesis unit, 321 reduction processing unit, 322 coefficient calculation unit, 323 coefficient map enlargement unit, 324 linear conversion Part, 411 luminance / color separation part, 412 luminance separation part, 413 weighted addition part, 414 luminance / color combination part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

高解像度撮像領域(15a)と複数の低解像度撮像領域(15b、15c、…)に、互いに同じ視野の画像を結像させる。撮像領域間で、異なる種類の情報を表す画像が得られるように光学フィルター(13a、13b、…)を設ける。複数の互いに異なる種類の情報を取得することができ、しかも優先度の高い情報を、高解像度撮像領域(15a)で取得することができる。高解像度撮像領域で取得した画像の高解像度成分を用いて、低解像度撮像領域(15b、15c、…)で取得した画像を高解像度化(30)することもできる。

Description

カメラ装置、複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体
 本発明は、カメラ装置、複眼撮像装置及び画像処理方法に関する。
 本発明は特に、複数の撮像領域に同じ視野の画像を結像させ、複数の撮像領域で異なる種類の情報を表す複数の画像を取得するカメラ装置に関する。本発明はまた、上記のカメラ装置で取得される複数の画像を高解像度化するプロセッサーを備えた複眼撮像装置に関する。本発明はさらに上記の複眼撮像装置で実施される画像処理方法に関する。
 本発明はさらに上記の複眼撮像装置又は画像処理方法における処理をコンピュータに実行させるプログラム、及び該プログラムを記録した記録媒体に関する。
 近年、撮像装置に対する要求はますます多様化し、例えば、RGB可視画像だけでなく、付加的な情報の取得が望まれるようになってきている。特に近赤外光は、大気光に対する透過率が高く、また不可視であるといった特徴のため、監視、被写体認識等に適しており、監視用カメラ、車載用カメラ等の分野で注目されている。また特定の偏光方向の光のみから得られた画像は、窓ガラス、路面等での反射光の除去、黒色の物体、透明の物体など見辛い物体の認識に有用であり、車載用カメラ、FA(factory automation)で用いられる検査用カメラの分野で注目されている。
 これら異種情報は、従来は、通常のカラー画像の代わりとして取得するのが一般的であった。カラー画像と異種情報を同時に取得する最も単純な方法として、複数台のカメラを並べるカメラアレイがあるが、カメラの位置決めを正確に行う必要がある点や装置の大型化、設置コスト、維持コストの増大と言った課題がある。
 また、近年ではRGB-Xセンサ、つまりカラーフィルターアレイ中に近赤外光のみを透過するフィルターなどを設けることで異種情報を同時に取得できるセンサーも登場している。しかしながら、このようなセンサーは、設計開発に多くのコストや時間を要し、製造の面でも多くの課題を有する。
 これらの課題を解決する小型の装置として、撮像素子が複数の撮像領域に分割され、複数の撮像領域にそれぞれ画像を結像させるものが提案されている(特許文献1)。この装置では、複数の撮像領域に対して、異なる光学フィルターを設けることにより、異種情報を同時に取得できるようにしている。特許文献1の装置は、一つの撮像素子上にレンズアレイを配置することで製造可能であり、小型化が容易であるという利点を有する。
特開2001-61109号公報(段落0061、0064)
 特許文献1の装置では、撮像素子を分割することで一つの撮像素子から複数の画像を同時に取得することができるが、撮像領域を増やすほど一つの撮像領域当たりの画素数、即ち解像度が低下すると言う問題がある。
 本発明は上記の問題を解決するためになされたものであり、本発明の目的は、複数の互いに異なる種類の情報を取得することができ、しかも優先度の高い情報を、高い解像度で取得することができる複眼カメラを提供することにある。
 本発明のカメラ装置は、
 複数の撮像領域と、
 前記複数の撮像領域に、互いに同じ視野の画像を結像させる複数のレンズと、
 複数の光学フィルターとを有し、
 前記複数の撮像領域は、少なくとも一つの第1種の撮像領域と、前記第1種の撮像領域よりも面積が小さく画素数が少ない複数の第2種の撮像領域とを含み、
 前記複数の光学フィルターは、前記第2種の撮像領域の各々で取得される画像が、前記第1種の撮像領域の各々で取得される画像とは異なる種類の情報を表すものとなるように設けられている。
 本発明の複眼撮像装置は、
 上記のカメラ装置と、少なくとも一つの高解像度化部を備えたプロセッサーとを備え、
 前記少なくとも一つの高解像度化部は、前記第1種の撮像領域のいずれかで取得された画像を参照画像として受け、前記第2種の撮像領域のいずれかで取得された画像を低解像度画像として受けて、該低解像度画像を、前記参照画像に含まれる高解像度成分を用いて高解像度化して、高解像度画像を生成する。
 本発明のカメラ装置によれば、カメラ装置が複数の撮像領域を有するので、複数の互い異なる種類の情報を表す画像を取得することができる。また、複数の撮像領域が、少なくとも一つの第1種の撮像領域と、第1種の撮像領域よりも面積が小さく画素数が少ない複数の第2種の撮像領域とを含むので、複数の互いに異なる種類の情報のうち、優先度の高い情報、即ち高い解像度での取得がより強く望まれる画像に、比較的大きい撮像領域を割り当てることで、そのような画像の高い解像度での取得が可能となる。
 本発明の複眼撮像装置によれば、高解像度化部により低解像度画像の高解像度化が行われるので、撮像領域が比較的小さくても、高解像度の画像を得ることができる。
(a)は、本発明の実施の形態1に係るカメラ装置を構成する複眼カメラの構成を示す分解斜視図であり、(b)は、上記の複眼カメラで取得される画像の大きさを示す図である。 (a)~(d)は、図1(a)の複眼カメラの撮像素子の撮像面の分割方法の異なる例を示す模式図である。 (e)及び(f)は、図1(a)の複眼カメラの撮像素子の撮像面の分割方法の異なる例を示す模式図である。 本発明の実施の形態2に係る複眼撮像装置を示すブロック図である。 実施の形態2で用いられる高解像度化部の一例を示すブロック図である。 実施の形態2で用いられる高解像度化部の他の例を示すブロック図である。 実施の形態2で用いられるプロセッサーの他の例を示すブロック図である。 実施の形態2で用いられるプロセッサーの他の例を示すブロック図である。 本発明の実施の形態3で用いられるプロセッサーの一例を示すブロック図である。 実施の形態3で用いられる合成部の一例を示すブロック図である。 実施の形態3で用いられるプロセッサーの他の例を示すブロック図である。 本発明の実施の形態4で用いられるプロセッサーを示すブロック図である。 (a)及び(b)は、実施の形態4のプロセッサーによる画像情報の補間の例を示す図である。 本発明の実施の形態5で用いられるプロセッサーを示すブロック図である。 本発明の実施の形態6に係る複眼撮像装置を示すブロック図である。 実施の形態6に係る複眼カメラ及び単眼カメラの構成を示す分解斜視図である。 (a)及び(b)は、図16の複眼カメラの撮像素子の撮像面の分割方法の一例を示す模式図である。 本発明の実施の形態7に係る画像処理方法における処理の手順を示すフロー図である。
実施の形態1.
 図1(a)は、本発明の実施の形態1に係るカメラ装置1の概要を示す分解斜視図である。
 図1(a)に示されるカメラ装置1は、複眼カメラ10で構成されている。複眼カメラ10は、撮像素子11と、レンズアレイ12と、フィルターアレイ13と、隔壁14とを有する。
 撮像素子11は矩形の撮像面11aを有し、該撮像面11aは例えば図2(a)に示されるように、複数の矩形の撮像領域15a~15fに分割されている。
 レンズアレイ12は、それぞれの撮像領域15a、15b、…に対応して設けられた複数のレンズ12a、12b、…を含む。複数のレンズ12a、12b、…によりレンズ群が構成される。
 レンズ12a、12b、…は、それぞれ対応する撮像領域15a、15b、…に、互いに同じ視野の画像が結像するように構成されている。
 異なる大きさの撮像領域に同じ視野の画像を結像させるため、例えばより大きい撮像領域に対応するレンズはより長い焦点距離を有する。
 フィルターアレイ13は、複数の撮像領域のうちの一つ以上の撮像領域に対してそれぞれ設けられた光学フィルター13a、13b、…を含む。
 隔壁14は、撮像領域15a、15b、…相互間に設けられ、各撮像領域に、対応するレンズ以外のレンズからの光が入射するのを防ぐ。
 撮像素子11は、得られた画像信号を画素毎に外部に読み出すことが可能なCMOS構造またはCCD構造のセンサーであるのが望ましい。分割の都合上、像流れの生じないグローバルシャッター(同時露光一括読み出し)方式の撮像素子が望ましい。
 撮像領域のうち、最も大きいもの、即ち画素数が最も多い撮像領域15aを高解像度撮像領域と呼び、それ以外の撮像領域15b、15c、…を低解像度撮像領域と呼ぶ。図2(a)に示される例では、撮像面11aが正方形であり(縦方向の画素数と横方向の画素数が同じであり)、撮像領域15a~15fも正方形であり、撮像領域15b~15fは互いに同じ大きさ、従って同じ画素数を有し、撮像領域15aは、撮像領域15b~15fの各々に対して縦方向及び横方向の寸法がともに2倍である。
 高解像度撮像領域15aは低解像度撮像領域15b、15c、…の各々に対し縦方向及び横方向の画素数が2倍であるので、図1(b)に示されるように、高解像度撮像領域で得られる画像(高解像度画像)D0は各低解像度撮像領域で得られる画像(低解像度画像)D1に対し2倍の大きさ(画素数)を有する。
 上記のように、高解像度撮像領域と低解像度撮像領域とは解像度が互いに異なる撮像領域であり、前者の方が解像度が高い。区別のため前者を第1種の撮像領域と言い、後者を第2種の撮像領域と言うことがある。
 フィルターアレイ13を構成する光学フィルター13a、13b、…には、異なる光学特性の光学フィルターが含まれ、それによってそれぞれの撮像領域からは互いに異なる種類の情報(異なる種類の情報を表す画像)が得られるようになっている。
 例えば、撮像領域15a、15b、…のうちの一つ以上の撮像領域に、互いに異なる光学特性を有する光学フィルター13a、13b、…が設けられ、これにより、撮像領域毎に、異なる種類の情報を表す画像が取得される。
 異なる光学特性を有する光学フィルターとしては、例えば、分光フィルター、偏光フィルター、及びNDフィルター(Neutral Density Filter)の少なくとも一つが用いられ、これらの使用により、撮像領域毎に、異なる波長帯の光による画像、異なる偏光方向の光による画像、異なる露光量での撮像による画像が取得される。
 これらの光学フィルターは、単独で用いても良く、組み合わせて用いても良い。
 上記の「異なる波長帯の光による画像」は、特定の波長帯の光を光電変換することで得られる画像を意味し、「異なる偏光方向の光による画像」は、特定の偏光方向の光を光電変換することで得られる画像を意味する。
 例えば、高解像度撮像領域15aに対して、透過率の高いG(緑)透過フィルター、赤外光カットフィルター、又は補色系の光学フィルターを設けることとしても良く、或は光学フィルターを設けない(モノクロ領域とする)こととしても良い。
 補色系の光学フィルターは一般に光透過率が高いので、その点で好ましい。
 ここで、光学フィルターを設けないとは、異なる種類の画像を取得することを目的とする光学フィルターを設けないということを意味し、他の目的の光学フィルターは設けられていても良い。
 またレンズ設計によっては高解像度撮像領域に対して設けられたレンズの開口が低解像度撮像領域よりも大きいため、高解像度撮像領域では露光量が大きくなる場合がある。NDフィルターのような透過光量を減少させる光学フィルターを高解像度撮像領域に対して設ければ、高解像度撮像領域と低解像度撮像領域とで露光量に差が大きくならないようにすることができ、高解像度撮像領域の露光量飽和と低解像度撮像領域の露光量不足を解消することができる。
 撮像面11aの撮像領域への分割の方法は図2(a)の例に限定されない。
 撮像領域が大きいほど、より解像度の高い画像が得られる。一方、撮像領域の数を増やせば、異なる光学特性のフィルター、或いは異なる光学特性のフィルターの異なる組合せの数を増やすことができ、従って、撮像素子11で得られる情報の種類を増やすことができる。
 図2(b)~(d)並びに図3(a)及び(b)は、図2(a)とは異なる分割の方法を示す。
 図2(b)の例では、撮像面11aが長方形であり、縦方向の寸法と横方向の寸法の比が3:4であり、撮像面11aが、一つの高解像度撮像領域15aと3つの低解像度撮像領域15b~15dとに分割されている。これらの撮像領域15a~15dの各々は正方形である。撮像面11aのうちの左側の1/4を占める帯状の部分に低解像度撮像領域15b~15dが縦方向に順に配列され、残りの部分に高解像度撮像領域15aが配置されている。
 縦方向の中央に位置する低解像度撮像領域15cの中心と高解像度撮像領域15aの中心とは横方向に並んでいる。このような配置であると、低解像度撮像領域15cで得られる画像と高解像度撮像領域15aで得られる画像との視差による位置ずれを用いてステレオマッチングを行うことにより、奥行き情報を取得することが可能である。
 図2(c)及び(d)並びに図3(a)及び(b)の例では、撮像面11aと撮像領域15a、15b、…とがともに正方形である。
 図2(c)の例では、撮像面11aが、1つの高解像度撮像領域15aと7つの低解像度撮像領域15b~15hとに分割されている。具体的には、撮像面11aのうちの左側の1/4を占める帯状の部分及び下側の1/4を占める帯状の部分に低解像度撮像領域15b~15hが配列され、残りの部分に高解像度撮像領域15aが配置されている。
 図2(c)の撮像面11aは、図2(a)の撮像面11aよりも大きく、図2(c)の高解像度撮像領域15aは、図2(a)の高解像度撮像領域15aよりも大きく、より高い解像度の画像D0が取得できる。また、左側の帯状の部分において上から2番目に位置する低解像度撮像領域15cの中心と高解像度撮像領域15aの中心とは横方向に並んでおり、また下側の帯状の部分において右から2番目に位置する低解像度撮像領域15gの中心と高解像度撮像領域15aの中心とは縦方向に並んでおり、多視点ステレオマッチングを実施することで横方向と縦方向の両方で精度の高い奥行き情報を取得することができる。
 図2(d)の例では、撮像面11aが1つの高解像度撮像領域15aと12個の低解像度撮像領域15b~15mとに分割されている。具体的には、撮像面11aのうちの左側の1/4を占める帯状の部分、下側の1/4を占める帯状の部分、右側の1/4を占める帯状の部分、及び上側の1/4を占める帯状の部分に、縦方向に低解像度撮像領域15b~15mが順に配列され、残りの部分に高解像度撮像領域15aが配置されている。
 図2(c)の例と図2(d)の例とで、撮像面11aの大きさが同じであれば、図2(d)の高解像度撮像領域15aは図2(c)の高解像度撮像領域15aよりも小さい。代わりに、より多くの低解像度撮像領域15b~15mが設けられており、より多くの、互いに異なる種類の情報を持つ画像D1を取得することが可能である。
 また図3(a)の例では、撮像領域が複数の高解像度撮像領域と複数の低解像度撮像領域とを有する。具体的には撮像面11aが3つの高解像度撮像領域15a~15cと、4つの低解像度撮像領域15d~15gとに分割されている。
 このような分割のため、撮像面11aが縦方向及び横方向にそれぞれ2つずつに分けられ、左上、右上及び右下の各1/4の部分に高解像度撮像領域15a~15cが配置されている。さらに左下の1/4の部分が、縦方向及び横方向にそれぞれ2つずつに分けられ、それぞれの分割領域で4つの低解像度撮像領域15d~15gが構成されている。
 図3(a)の例は、例えば、高解像度撮像領域15a~15cで基本的な色情報であるRGB情報を取得し、低解像度撮像領域15d~15gで他の狭帯域の波長情報、或いは偏光情報を取得したりするために利用することができる。このようにすることで、より自然な色味でかつ色情報を持つ、解像度が高い画像を取得することができる。なお、高解像度撮像領域15a~15cでRGB情報を取得するには、高解像度撮像領域15a~15cにR透過フィルター、G透過フィルター、B透過フィルターを設ければ良い。同様に狭帯域の波長情報を取得するには狭帯域透過フィルターを設ければ良く、特定方向の偏光情報を取得には、当該方向の偏光成分を透過させ、他の方向の偏光成分を減衰させる光学フィルターを設ければ良い。
 図3(b)の例では、撮像領域が、高解像度撮像領域15aのほかに、互いに大きさの異なる2種類の撮像領域を含む。即ち、第1群の撮像領域15b~15iに対して第2群の撮像領域15j~15yの各々は縦方向及び横方向の寸法が1/2である。
 区別のため、第1群の撮像領域15b~15iを中間解像度撮像領域と呼び、第2群の撮像領域15j~15yを低解像度撮像領域と呼ぶことがある。
 また、第1群の撮像領域15b~15i及び第2群の撮像領域15j~15yは、高解像度撮像領域15aに比べて解像度が低いので、これらをまとめて低解像度撮像領域と呼ぶこともある。
 図3(b)の構成における、撮像領域の配置を以下に詳しく述べる。即ち、撮像面11aが縦方向及び横方向にそれぞれ2つずつに分けられ、右上の1/4の部分に高解像度撮像領域15aが配置されている。左上の1/4の部分が、縦方向及び横方向にそれぞれ2つずつに分けられ、それぞれの分割領域で4つの低解像度撮像領域15b~15eが構成されている。また右下の1/4の部分が、縦方向及び横方向にそれぞれ2つずつに分けられ、それぞれの分割領域で4つの低解像度撮像領域15f~15iが構成されている。さらに左下の1/4の部分が、縦方向及び横方向にそれぞれ4つずつに分けられ、それぞれの分割領域で16個の低解像度撮像領域15j~15yが構成されている。
 このように、多くの撮像領域を有することで、多くの異なる種類の情報を取得することができる。また、高解像度撮像領域以外の撮像領域として異なる大きさのものを有するので、情報の種類に応じて、異なる大きさの撮像領域を割り当てることができる。
 例えば多数の狭帯域の画像から成るマルチスペクトル画像を取得したい場合、比較的小さい撮像領域(低解像度撮像領域)15j~15yのうちの一つ以上の撮像領域をそれぞれ狭帯域の画像に割り当てて、これらに対して狭帯域のバンドパスフィルターを設け、一方、基本的なRGBの色情報や近赤外情報、偏光情報など、解像度もある程度高いことが求められる情報には、比較的大きい撮像領域(中間解像度撮像領域)15b~15eのうちの一つ以上の撮像領域を割り当てて、これらに対して、それぞれの情報を取得するための光学フィルターを設ければ良い。
 以上のように、図2(a)~(d)並びに図3(a)及び(b)で示される例では、撮像領域がすべて正方形であるが、本発明はこれに限定されず、長方形であっても良い。また、高解像度撮像領域と低解像度撮像領域とは大きさが異なり、さらに低解像度撮像領域が、複数の互いに異なる大きさの撮像領域を含んでも良いが、高解像度撮像領域及び低解像度撮像領域を含めすべての撮像領域同士は縦横比が同じであることが望ましい。
 図2(a)~(d)並びに図3(a)及び(b)に例示するように撮像面11aを分割して複数の撮像領域を形成する場合、複数の撮像領域の視野を正確に一致させることは困難である。レンズの焦点距離の誤差、収差などのためである。複数の撮像領域の視野が厳密に一致しない場合には、撮像により得られる画像を切り抜いて(トリミングで画像の端の部分を除去して)使用する等すれば良い。
 次に実施の形態1のカメラ装置1により得られる効果を説明する。
 実施の形態1のカメラ装置1では、該カメラ装置を構成する複眼カメラ10の撮像素子の撮像面が複数の撮像領域に分割されているので、複数の互いに異なる種類の情報を表す画像を取得することができる。
 また、撮像領域が比較的大きい撮像領域と、比較的小さい撮像領域とを含むので、複数の互いに異なる種類の情報のうち、優先度の高い情報、即ち高い解像度での取得がより強く望まれる画像に、比較的大きい撮像領域を割り当てることで、そのような画像の高い解像度での取得が可能となる。
 これにより、例えば、RGBの可視光画像などの基本的な画像に比較的大きい撮像領域を割り当てることで、これらの画像を高い解像度で取得し、それとともに、マルチスペクトル画像を構成するための、複数の狭帯域の画像、近赤外画像、紫外線画像、さらには偏光画像、異なる露光量での画像などの付加的な情報を有する画像を多数の比較的小さい撮像領域に割り当てることでこれらの画像を数多く取得することが可能となる。
 また、複数の撮像領域が一つの撮像素子に形成されるので、カメラ装置のサイズを抑制することができる。
実施の形態2.
 図4は、本発明の実施の形態2に係る複眼撮像装置100を示すブロック図である。図4に示される複眼撮像装置100は、カメラ装置1と、撮像制御部17と、A/D変換部18と、プロセッサー20とを備えている。カメラ装置1としては、実施の形態1で説明したものを用いることができる。
 撮像制御部17は、カメラ装置1による撮像を制御する。例えば、撮像タイミング、露光時間の制御を行う。
 カメラ装置1から出力された撮像信号は、図示しないアナログ処理部で増幅等の処理を受けたのち、A/D変換部18でデジタル画像信号に変換されて、プロセッサー20に入力される。
 プロセッサー20は、画像メモリ22と、少なくとも一つの高解像度化部30とを有する。
 画像メモリ22は、カメラ装置1を構成する複眼カメラ10の複数の撮像領域にそれぞれ対応する複数の記憶領域22-1、22-2、…を有するのが望ましい。この場合、各記憶領域に記憶されるデジタル画像信号により、対応する撮像領域で取得された画像が表される。
 画像メモリ22のそれぞれの記憶領域22-1、22-2、…に記憶された画像のうち、解像度が互いに異なる2つの撮像領域で取得された画像が高解像度化部30に供給される。
 例えば、図2(a)の撮像領域15aで取得され高解像度画像と、撮像領域15bで取得された低解像度画像とが高解像度化部30に供給される。以下では、撮像領域15aで取得され高解像度画像を符号D0で示し、撮像領域15bで取得された低解像度画像を符号D1で示す。
 高解像度化部30は、高解像度画像D0を参照画像として用いて、低解像度画像D1を高解像度化して、高解像度画像D30を生成する。
 高解像度化部30は、生成しようとする高解像度画像D30の各々と参照画像D0とが画像特徴(局部における勾配、パターンなど)において互いに相関を有するという仮定に基づき、参照画像D0に含まれる被写体の高解像度成分を、低解像度画像D1に転移させる(反映させる)ことにより、被写体の高解像度成分を含む高解像度画像D30を生成する処理を行う。さらに、低解像度画像D1と参照画像D0とを比較し、相関が強いと考えられる撮像領域では高解像度成分の転移を促進し、相関が弱いと考えられる撮像領域では高解像度成分の転移を抑制するように、画像中の位置に応じて適応的な処理を行ってもよい。これは、低解像度画像D1と参照画像D0は、撮像条件(波長、偏光方向、露光量等)が異なるため、被写体の反射特性によっては必ずしも低解像度画像D1の高解像度成分と参照画像D0とが相関を有するとは限らないからである。
 高解像度化部30の一つの構成例(符号30aで示す)を図5に示す。
 図5の高解像度化部30aは、フィルターリングにより、低解像度画像D1及び参照画像D0の各々から低周波成分及び高周波成分を分離し、それぞれの成分ごとに合成する方法で高解像度化を行う。
 図5に示される高解像度化部30aは、フィルター処理部311、312、低周波成分合成部313、高周波成分合成部314、及び成分合成部315を有する。
 フィルター処理部(第1のフィルター処理部)311は、低解像度画像D1からその低周波成分D1Lと、高周波成分D1Hとを抽出する。フィルター処理部311は例えば低解像度画像D1に対して平滑化フィルター処理を行い、低周波成分D1Lを抽出し、抽出された低周波成分D1Lと元の画像D1との差分を求めることで当該画像の高周波成分D1Hを生成する。
 フィルター処理部(第2のフィルター処理部)312は、参照画像D0からその低周波成分D0Lと、高周波成分D0Hとを抽出する。フィルター処理部312は例えば、参照画像D0に対して平滑化フィルター処理を行い、低周波成分D0Lを抽出し、抽出された低周波成分D0Lと元の画像D0との差分を求めることで当該画像の高周波成分D0Hを生成する。
 フィルター処理部311、312における平滑化フィルター処理においては、ガウシアンフィルター、バイラテラルフィルター等を用いることができる。
 低周波成分合成部313は、低周波成分D1Lを参照画像D0と同じ解像度まで拡大し、拡大された低周波成分と低周波成分D0Lとを、重み付け加算により合成して、合成低周波成分D313を生成する。
 高周波成分合成部314は、高周波成分D1Hを参照画像D0と同じ解像度まで拡大し、該拡大された高低周波成分と高周波成分D0Hとを、重み付け加算により合成して、合成高周波成分D314を生成する。
 成分合成部315は、合成低周波成分D313と合成高周波成分D314とを合成し、高解像度画像D30を生成する。
 図5に示される構成においては、高周波成分合成部314における合成において、高解像度画像D0に含まれる高解像度の高周波成分D0Hの重みを大きくして合成することにより、解像感の向上を図ることができる。
 高解像度化部30の他の構成例(符号30bで示す)を図6に示す。
 図6に示される高解像度化部30bは、低解像度画像D1と参照画像D0とを入力として、参照画像D0の情報を元に低解像度画像D1を高解像度化する、ガイデッドフィルターを用いたものである。
 図6に示される高解像度化部30bは、縮小処理部321、係数計算部322、係数マップ拡大部323、及び線形変換部324を有する。
 縮小処理部321は、参照画像D0を縮小して、低解像度画像D1と同じ解像度の縮小参照画像D0bを生成する。
 係数計算部322は、縮小参照画像D0bと低解像度画像D1との線形関係を近似する線形係数a、bを計算する。
 係数計算部322は、まず、画素位置xを中心とした局所領域Ω(x)における縮小参照画像D0bの画素値I(y)の分散varI(x)を式(1)により求める。
Figure JPOXMLDOC01-appb-M000001
 式(1)で
 I(x)は、縮小参照画像D0bの画素位置xの画素の画素値である。
 I(y)は、縮小参照画像D0bの画素位置yの画素の画素値である。
 ここで画素位置yは、画素位置xを中心とした局所領域Ω(x)内の画素位置である。
 係数計算部322はまた、画素位置xを中心とした局所領域Ω(x)における、縮小参照画像D0bの画素値I(y)と入力画像D1の画素値p(y)との共分散covIp(x)を式(2)により求める。
Figure JPOXMLDOC01-appb-M000002
 式(2)で、I(x)及びI(y)は、式(1)に関して説明した通りのものである。
 p(y)は、入力画像D1の画素位置yの画素の画素値である。
 係数計算部322は、さらに式(1)で求めた分散varI(x)及び式(2)で求めた共分散covIp(x)から、式(3)により、係数aを算出する。
Figure JPOXMLDOC01-appb-M000003
 式(3)でepsはエッジ保存の度合いを決定する定数であり、予め定められる。
 係数計算部322はさらに、式(3)で求めた係数a(x)を用いて、式(4)により係数b(x)を算出する。
Figure JPOXMLDOC01-appb-M000004
 係数a(x)及びb(x)は線形回帰係数と呼ばれる。
 係数計算部322はさらに、式(3)及び式(4)で得られた係数a(x)及びb(x)を式(5)により平均化することで線形係数a(x)、b(x)を算出する。
Figure JPOXMLDOC01-appb-M000005
 係数マップ拡大部323は、係数計算部322において式(5)で求められた線形係数a(x)から成る係数マップ及び線形係数b(x)から成る係数マップを、参照画像D0と同じ解像度まで拡大する。拡大された係数マップにおける線形係数をそれぞれamb(x)、bmb(x)で表す。係数マップは、画像を構成するすべての画素に対応する係数を、対応する画素と同じ位置に配置したものである。
 線形変換部324は、拡大された係数マップにおける線形係数amb、bmbと参照画像D0とを元に、低解像度画像D1により表される情報を持つ高解像度画像D30を生成する。
 即ち、線形変換部324は、拡大された係数マップにおける線形係数amb、bmbを用いて式(6)により、ガイデッドフィルター出力値qを導出する。
Figure JPOXMLDOC01-appb-M000006
 q(x)は高解像度画像D30の画素位置xの画素の画素値である。
 J(x)は、参照画像D0の画素位置xの画素の画素値である。
 式(6)は、ガイデッドフィルターの出力(画像D30の画素値)q(x)と、参照画像D0の画素値J(x)とは、線形関係を有することを示す。
 図6に示される構成のうち、係数計算部322及び線形変換部324とがガイデッドフィルターによる処理の基本的構成部分であり、縮小処理部321及び係数マップ拡大部323は、係数計算部322における処理の負荷を減らすために付加されたものである。
 上記のようにして高解像度画像D30の画素値を算出することで、縮小参照画像D0bの分散varI(x)の値が小さい領域のみ平滑化処理を行い、その他の領域のテクスチャを保存するようにすることができる。
 上記の高解像度化部30bは、ガイデッドフィルターを用いた処理を行うが、本発明はこれに限定されない。高解像度化部30bは、例えば、ジョイントバイラテラルフィルターを用いた方法など、高解像度画像のエッジや勾配情報を基に互いに異なる種類の情報を持つ画像を高解像度化する手法など、他の手法を用いるものであっても良い。
 図7は、実施の形態2で用いられるプロセッサー20の他の例(符号20bで示す)を示す。図7に示されるプロセッサー20bは、画像メモリ22及び高解像度化部30に加えて、位置合わせ部25を有する。
 位置合わせ部25は、カメラ装置1から出力される低解像度画像D1と高解像度画像D0との間で位置ずれを有する場合、高解像度化部30における高解像度化の前に位置合わせ処理を行う。この位置合わせ処理としては、初期位置ずれ(校正)情報を利用した固定値の位置合わせ、レジストレーション(画像マッチング)を含む動的な位置合わせ等を行うことができる。
 高解像度化部30は、位置合わせ部25で位置合わせされた画像を入力として、高解像度化を行う。
 図5又は図6で説明した高解像度化部(30a、30b)或いはそれらの変形例として説明した高解像度化部を複数個設け、それぞれに異なる低解像度画像を入力し、各高解像度化部で、入力された低解像度画像に対して、高解像度画像を参照画像として用いて高解像度化を行うこととしても良い。
 複数の高解像度化部間で、参照画像として用いる高解像度画像は互いに同じものであっても良く、異なるものであっても良い。
 また、図7で説明した位置合わせ部25と高解像度化部30の組み合わせを複数個設けても良い。
 図8は、実施の形態2で用いられるプロセッサーの他の例(符号20cで示す)を示す。
 図8に示されるプロセッサー20cは、画像メモリ22と、高解像度化部30cと、画像拡大部31r、31bとを有する。
 図8の例は、撮像面11aが例えば図2(a)のように、一つの高解像度撮像領域15aと3つ以上の低解像度撮像領域とを有し、高解像度撮像領域15aでG情報を取得し、3つの低解像度撮像領域(例えば15b、15c、15d)でそれぞれR画像、G画像、B画像を取得する場合を想定している。
 この場合、3つの低解像度画像D1-r、D1-g、D1-bがそれぞれ低解像度のR画像、G画像、B画像を表す。また高解像度撮像領域15aで取得されたG画像を符号D0で表す。
 画像拡大部31r、31bはそれぞれ、画像D1-r、D1-bを、高解像度画像D0と同じ解像度まで拡大処理して拡大画像D31-r、D31-bを生成する。
 高解像度化部30cは、画像D1-gを画像D0で置き換え、置き換えにより得られた画像を高解像度画像D30-gとして出力する。
 このような処理を行う場合、画像処理のための演算量或いは演算時間を大幅に削減でき、プロセッサーにかかるハードウエアコストを削減することができる。
 図8の構成においても、高解像度化部30cの前段に位置合わせ部25(図7に示したもの)を設けても良い。さらに、画像拡大部31r、31bの前段にも同様の位置合わせ部を設けても良い。
 次に実施の形態2の複眼撮像装置100により得られる効果を説明する。
 実施の形態2の複眼撮像装置100では、カメラ装置の複数の撮像領域から、互いに異なる種類の情報を持つ複数の画像が得られ、これらの画像が比較的解像度の低い画像と比較的解像度の高い画像とを含み、比較的解像度の高い画像の高解像度成分を用いて比較的解像度の低い画像を高解像度化するので、互いに異なる種類の情報を持ち、解像度の高い複数の画像を得ることができる。
 したがって、互いに異なる種類の情報を持つ画像の取得のための撮像領域が小さくても、高解像度の画像を生成することができ、カメラ装置のサイズを抑制しながら、互いに異なる種類の情報を持つ画像を高解像度で得ることができる。
実施の形態3.
 図9は、本発明の実施の形態3に係る複眼撮像装置で用いられるプロセッサー20の一例(符号20dで示す)を示す。図9に示されるプロセッサー20dは、画像メモリ22と、複数の、即ち第1乃至第N(Nは2以上の整数)の高解像度化部30-1~30-Nと、合成部40とを有する。実施の形態3の複眼撮像装置のうち、プロセッサー20d以外の部分は、例えば図4と同様に構成されている。
 第1乃至第Nの高解像度化部30-1~30-Nは、それぞれN個の低解像度撮像領域(例えば図2(a)の例の15b、15c、…)に対応して設けられ、それぞれ対応する低解像度撮像領域で取得された低解像度画像D1-1~D1-Nを受けるとともに、高解像度撮像領域15aで取得された高解像度画像D0を受ける。
 高解像度化部30-n(nは1からNのいずれか)は、高解像度画像D0を参照画像として用いて、低解像度画像D1-nを高解像度化して、高解像度画像D30-nを生成する。このような処理がすべての高解像度化部30-1~30-Nで行われ、複数の、互いに異なる種類の情報を持つ高解像度画像D30-1~D30-Nが生成される。
 高解像度化部30-1~30-Nの各々は、例えば、図5、図6、又は図8で説明したように構成されている。
 合成部40は、複数の、互いに異なる種類の情報を持つ高解像度画像D30-1~D30-Nを入力として一つ以上の合成高解像度画像D40-a、D40-b…を生成する。
即ち、合成部40は、高解像度化部30-1~30-Nで生成された、互いに異なる種類の情報を持つ高解像度画像D30-1~D30-Nを合成して、合成高解像度画像D40-a、D40-b…を生成する。
 合成部40における合成処理は、例えば、パンシャープン処理、画像の重み付け加算、明度合成、または領域選択で行い得る。領域選択は例えば局所分散値を指標として推定される画像の視認性に基づいて行うこととしても良い。
 上記のうち、パンシャープン技術は、衛星画像処理(リモートセンシング)などで利用されているものであり、パンシャープン処理においては、RGBのカラー画像がHSI(色相、再度、明度)画像に変換され、変換で得られたHSI画像のうちのI値が高分解能画像のモノクロ画像の画素値で置き換えられ、置き換えた画素値を用いてHSI画像がRGB画像に戻される。
 合成部40の一例(符号40bで示す)を図10に示す。
 図10に示される合成部40bは、輝度/色分離部411、輝度分離部412、重み付け加算部413、及び輝度/色合成部414を有し、輝度の重み付け加算による合成を行う。
 合成部40bには、複数の高解像度化部30-1、30-2、…(各々図5、図6、図8などで説明したのと同様のもの)で高解像度化されたR画像D30-r、G画像D30-g、B画像D30-b、偏光画像D30-p、及びNIR(近赤外線)画像D30-iが入力される。
 なお、図8に示される画像拡大部31r、31bで拡大された画像D31-r、D31-bを合成部40bに入力し、高解像度画像の代わりに用いても良い。即ち、合成部40bが、一つ以上の高解像度画像と一つ以上の拡大画像とを合成するように構成されていても良い。
 輝度/色分離部411は、R画像D30-r、G画像D30-g、B画像D30-bを入力として、それらを、輝度成分D411-y及びそれぞれの色成分(R色、G色、B色の成分)D411-r、D411-g、D411-bに分離する。
 輝度分離部412は、偏光画像D30-pを入力として、輝度成分D412を分離する。
 重み付け加算部413は、輝度/色分離部411から出力される輝度成分D411-yに対して、輝度分離部412から出力される偏光画像の輝度成分D412、合成部40bに入力されるNIR画像D30-iを重み付け加算して、合成輝度成分D413を求める。
 輝度/色合成部414は、輝度/色分離部411から出力されるそれぞれの色成分D411-r、D411-g、D411-bと、重み付け加算部413で求めた合成輝度成分D413とを合成して、R画像D40-r、G画像D40-g、及びB画像D40-bを生成する。
 輝度/色合成部414から出力されるR画像D40-r、G画像D40-g、及びB画像D40-bは、偏光画像D30-pの輝度成分、NIR画像D30-iにより増強された輝度情報を持つものとなる。
 重み付け加算部413における重み付け加算には、画像に応じたゲインを乗算した画素値を加算する手法を用いても良い。
 代わりに、それぞれの画像(輝度/色分離部411から出力される輝度成分D411-y、輝度分離部412から出力される輝度成分D412、合成部40bに入力されるNIR画像D30-i)の高周波成分をフィルター処理により抽出し、重み付け加算して加重平均を求めることとしても良い。
 図11は、実施の形態3で用いられるプロセッサー20の他の例(符号20eで示す)を示す。
 図11に示されるプロセッサー20eは、画像メモリ22と、複数の高解像度化部30-1~30-Nと、合成部40を有するほか、カメラ情報入力端子23を有し、該端子23で、複眼カメラ10から、複眼カメラ情報Dinfoを受けて、高解像度化部30-1~30-N及び合成部40に複眼カメラ情報Dinfoを伝える。
 複眼カメラ情報Dinfoは、各撮像領域で取得される波長を表す情報、偏光方向を表す情報、各撮像領域の位置(撮像面内における位置)を表す情報などである。
 複眼カメラ情報Dinfoを高解像度化部30-1~30-N及び合成部40に入力することで、高解像度化、合成処理等における精度を向上させ、あるいはこれらの処理によって得られる情報を増やすことが可能である。
 例えば複眼カメラ情報Dinfoが、各撮像領域に対して設けられた光学フィルターのスペクトル特性を表すものであれば、合成処理時にRGB画像とモノクロ画像から近赤外画像を抽出することができる。
 以上のように本実施の形態3によれば、カメラ装置で得られた複数の互いに異なる種類の情報を持つ複数の画像を高解像度化した上で合成することで、使用目的に応じて一層有用な画像を生成することができる。
実施の形態4.
 本発明の実施の形態4の複眼撮像装置で用いられるプロセッサー20の構成例(符号20fで示す)を図12に示す。図12に示されるプロセッサー20fは、画像メモリ22と、複数の、即ち第1乃至第Nの高解像度化部30-1~30-Nと、合成部41とを有する。実施の形態4の複眼撮像装置のうち、プロセッサー20f以外の部分は、例えば図4と同様に構成されている。高解像度化部30-1~30-Nは、例えば図9で説明したのと同様のものである。
 合成部41は、高解像度化部30-1~30-Nから出力される高解像度画像D30-1~D30-Nを受け、これらから、これらとは別の種類の情報を表す高解像度画像D41-a、D41-b、…を補間により生成する。
 この場合、複数の低解像度撮像領域(例えば図2(a)の例の15b、15c、…)で取得される画像D1-1、D1-2、…が、撮像条件を表すパラメータのうちの少なくとも一つのパラメータの種類又は値が互いに異なる複数の画像を含み、従って、これらの低解像度画像D1-1、D1-2、…から生成される高解像度画像D30-1、D30-2、…が、撮像条件を表すパラメータのうちの少なくとも一つのパラメータの種類又は値が互いに異なる複数の画像を含む場合を想定している。
 合成部41は、このような複数の高解像度画像D30-1、D30-2、…から、これらのいずれとも、上記少なくとも一つのパラメータの種類又は値が異なる高解像度画像D41-a、D41-b、…を補間により生成(再構成)する。
 この補間には、例えば、圧縮センシングに用いられる復元手法を適用することができる。
 以下、この補間による画像の生成の例を、図13を参照して説明する。図13の例では異なる種類のパラメータが、波長及び露光量である。またパラメータの値が、波長についてはR、G、B(R波長帯の代表的波長、G波長帯の代表的波長、B波長帯の代表的波長)であり、露光量については、1/1000、1/100、1/10、1である。これらの数値は、光学フィルターを用いない場合を基準とする相対値である。
 高解像度画像D30-1、D30-2、…として、図13に〇印で示すパラメータの組み合わせによる画像が合成部41に入力されるものとする。例えば高解像度画像D30-1は、R波長帯の光を透過する光学フィルターを備えた撮像領域で、露光量1/1000での撮像で得られた画像を高解像度化した画像である。同様に、高解像度画像D30-2は、B波長帯の光を透過する光学フィルターを備えた撮像領域で、露光量1/1000での撮像で得られた画像を高解像度化した画像である。
 合成部41は、高解像度画像D30-1~D30-6を元にして、補間により、△印で示すパラメータの組み合わせに対応する画像D41-a~D41-fを生成する。例えば画像D41-aは、G波長帯の光を透過する光学フィルターを備えた撮像領域で、露光量1/1000での撮像で得られた画像を高解像度化したときに生成されると推定される画像である。
 合成部41は、生成した画像D41-a~D41-fのみならず、入力された画像D30-1~D30-6をも出力する。
 このような処理を行うことで、より多数の互いに異なる種類の情報を持つ高解像度画像D30-1~D30-6、D40-a~D40-fが得られる。
 次に実施の形態4の複眼撮像装置により得られる効果を説明する。
 実施の形態4によれば、撮像により得られた、比較的少ない、互いに異なる種類の情報を有する画像から、より多数の、互いに異なる種類の情報を有する画像を生成することができる。従って、撮像領域の数が多くなくても、多くの種類の情報を得ることができる。
実施の形態5.
 本発明の実施の形態5に係る複眼撮像装置で用いられるプロセッサー20の構成例(符号20gで示す)を図14に示す。図14に示されるプロセッサー20gは、画像メモリ22と、合成部42と、高解像度化部32とを有する。実施の形態5の複眼撮像装置のうち、プロセッサー20g以外の部分は、例えば図4と同様に構成されている。
 合成部42は、低解像度撮像領域(例えば図2(a)の例の15b、15c、…)で取得された互いに異なる種類の情報を持つ画像D1-1~D1-Nに対して、合成処理を行って、一つ以上の合成画像(合成低解像度画像)D42-a、D42-b、…を生成する。
 高解像度化部32は、合成部42から出力される合成画像D42-a、D42-b、…のうちの一つ以上の合成画像に対し、参照画像D0を用いて高解像度化を行い、高解像度画像(高解像度合成画像)D32-a、D32-b、…を生成する。
 合成部42における合成により、入力画像D1-1~D1-Nよりも少ない数の合成画像D42-a、D42-b、…が生成される場合には、合成の後で高解像度化を行うことで、高解像度化のための処理を減らすことができ、全体として演算量を少なくすることができる。
実施の形態6.
 図15は、本発明の実施の形態6に係る複眼撮像装置102を示すブロック図である。
 実施の形態6に係る複眼撮像装置102は、カメラ装置50と、撮像制御部17と、A/D変換部18、19と、プロセッサー20hとを備えている。
 図16は、カメラ装置50の分解斜視図である。カメラ装置50は、複眼カメラ60と単眼カメラ70とを有する。
 以下に詳しく述べるように、複眼カメラ60としては、図1(a)に示される複眼カメラ10と同様に、撮像面が複数の撮像領域に分割されたものが用いられ、一方、単眼カメラ70は、撮像面が分割されておらず、単眼カメラ70で取得された画像が、図1(a)の複眼カメラ10の高解像度撮像領域で取得された画像の代わりとして用いられる。
 複眼カメラ60は、撮像素子61と、レンズアレイ62と、フィルターアレイ63と、隔壁64とを有する。
 撮像素子61は矩形の撮像面61aを有し、該撮像面61aは例えば図17(a)に示されるように複数の、例えば9つの撮像領域65a~65iに分割されている。これら9つの撮像領域65a~65iは、互いに大きさが同じであり、3行3列に配列されている。
 図17(b)は、撮像面61aの分割方法の他の例を示す。図17(b)に示す例では、複眼カメラ60の撮像素子61の撮像面61aが4つの撮像領域65a~65dに分割されている。これら4つの撮像領域65a~65dは、互いに大きさが同じであり、2行2列に配列されている。
 複眼カメラ60の撮像領域65a、65b、…は、図17(a)及び(b)の例のように、互いに同じ大きさのものであっても良いが、本発明はこれに限定されず、撮像領域65a、65b、…は互いに異なる大きさのものであっても良い。
 互いに異なる大きさのものである場合にも、縦横比が互いに同じであることが望ましい。
 レンズアレイ62は、それぞれの撮像領域65a、65b、…に対応して設けられ、それぞれ対応する撮像領域に同じ視野の画像を結像させるレンズ62a、62b、…を含む。
 フィルターアレイ63は、複数の撮像領域のうちの一つ以上の撮像領域に対して設けられた光学フィルター63a、63b、…を含む。
 隔壁64は、撮像領域65a、65b、…相互間に設けられ、各撮像領域に、対応するレンズ以外のレンズからの光が入射するのを防ぐ。
 単眼カメラ70は、撮像素子71と、レンズ72と、光学フィルター73とを有する。
 撮像素子71も矩形の撮像面71aを有する。撮像面71aの全体で一つの撮像領域75が構成されている。
 図17(a)及び(b)には、複眼カメラ60の撮像領域65a、65b、…に対する、単眼カメラ70の撮像領域75の位置関係の概略が示されている。
 単眼カメラ70の撮像素子71の撮像面71aの全体で構成される撮像領域75は、複眼カメラ60の撮像領域65a、65b、…のうちのいずれよりも多い画素数を有する。即ち、単眼カメラ70の撮像領域75の解像度は、複眼カメラ60の撮像領域65a、65b、…のうちの最も大きい撮像領域の解像度よりも高い。
 撮像領域75は、撮像領域65a、65b、…と縦横比が等しい。
 単眼カメラ70の撮像領域75は、複眼カメラの撮像領域65a、65b、…とは解像度が互いに異なる撮像領域であり、前者の方が解像度が高い。区別のため、前者を第1種の撮像領域と言い、後者を第2種の撮像領域と言うことがある。
 単眼カメラ70のレンズ72は、撮像領域75に、複眼カメラ60の各撮像領域と同じ視野の画像が結像されるように設けられている。
 複眼カメラ60のレンズ62a、62b、…と、単眼カメラ70のレンズ72とによりレンズ群が構成される。
 フィルターアレイ63を構成する光学フィルター63a、63b、…及び光学フィルター73には、異なる光学特性の光学フィルターが含まれ、それによってそれぞれの撮像領域からは互いに異なる種類の情報(異なる種類の情報を表す画像)が得られるようになっている。
 例えば、実施の形態1の図2(a)の高解像度撮像領域15aが単眼カメラ70の撮像領域75に置き換わり、図2(a)の低解像度撮像領域15b、15c、…が、複眼カメラ60撮像領域65a、65b、…に置き換わったものとみて、それぞれの撮像領域に対する光学フィルターの選択を行えば良い。即ち、図2(a)の高解像度撮像領域15aに対して設けられる光学フィルターと同じ特性の光学フィルターを、実施の形態6では、単眼カメラ70の撮像領域75に対して設け、図2(a)の低解像度撮像領域15b、15c、…に対して設けられる光学フィルターと同じ特性の光学フィルターを、実施の形態6では、複眼カメラ60の撮像領域65a、65b、…に対して設ければ良い。
 なお、撮像領域75、65a、65b、…のうちの一つ以上の撮像領域、例えば撮像領域75に対しては光学フィルターを設けない(モノクロ領域とする)こととしても良い。
 撮像制御部17は、複眼カメラ60における撮像と、単眼カメラ70における撮像を制御する。例えば、2つのカメラにおける撮像のタイミング、露光量の制御を行う。撮像のタイミングの制御においては、2つのカメラにおける撮像がほぼ同時に行われるように制御を行う。
 本実施の形態の複眼撮像装置102のプロセッサー20hには、複眼カメラ60の複数の撮像領域で取得された画像と、単眼カメラ70で取得された画像とが、それぞれA/D変換部18、19を介して供給される。
 プロセッサー20hは、画像メモリ22と、少なくとも一つの高解像度化部30を有する。
 画像メモリ22は、複眼カメラ60の複数の撮像領域、及び単眼カメラ70の撮像領域にそれぞれ対応する複数の記憶領域22-1、22-2、…を有するのが望ましい。
 高解像度化部30は、単眼カメラ70で取得された高解像度画像D0を参照画像として受け、複眼カメラ60の撮像領域のいずれかで取得された画像D1を低解像度画像として受け、参照画像D0に含まれる高解像度成分を用いて、低解像度画像D1を高解像度化して、高解像度画像D30を生成する。
 以上のように、実施の形態1のカメラ装置1が用いられる場合、該複眼カメラ10の高解像度撮像領域(15aなど)で取得される画像を参照画像として、同じ複眼カメラ10の低解像度撮像領域で取得された画像の高解像度化が行われるのに対し、実施の形態6のカメラ装置50が用いられる場合には、単眼カメラ70の撮像素子で取得された画像を参照画像として、複眼カメラ60で取得された低解像度画像の高解像度化が行われる。
 上記以外の点では実施の形態6は、実施の形態2と同様である。例えば、高解像度化部30による処理は、実施の形態2で図5、図6、図8などを参照して説明したのと同様に行い得る。
 なお、実施の形態6のプロセッサー20hとして、実施の形態2で説明したプロセッサーと同様のものを用いるものとして説明したが、代わりに、実施の形態3、4又は5のプロセッサーと同様のものを用いることとしても良い。いずれにしても、実施の形態1の高解像度撮像領域で得られた高解像度画像の代わりに、単眼カメラ70の撮像領域で得られた画像を参照画像として用いれば良い。
 なおまた、図17(a)に示す例では、撮像面61aの中心に位置する撮像領域65iの中心と、撮像領域75の中心とは横方向に並んでいる。このような配置であると、撮像領域65iで得られる画像と撮像領域75で得られる画像との視差による位置ずれを用いて、ステレオマッチングを行うことにより奥行き情報を取得することができる。
 次に実施の形態6の複眼撮像装置102により得られる効果を説明する。
 実施の形態6の複眼撮像装置102では、複眼カメラ60とは別に単眼カメラ70が設けられており、単眼カメラ70で高い解像度の画像を取得することができる。従って、複眼カメラ60の各撮像領域で得られる画像をより高い解像度に高解像度化することが可能である。
 また図17(a)及び(b)に示される例のように、複眼カメラ60の撮像領域65a、65b、…を全て同一形状にすることができ、そのようにすることで、製造コストを抑制することが可能である。
 さらに複眼カメラ60と単眼カメラ70とは中心間の距離が比較的大きいので、単眼カメラ70で得られる画像と、複眼カメラ60で得られる画像との視差による位置ずれが、実施の形態1の複眼カメラ10の異なる撮像領域で得られる画像間における視差による位置ずれよりも大きく、この視差を活用することでより高精度の奥行き情報を取得することも可能となる。
 以上実施の形態1では、カメラ装置が複眼カメラ(10)のみで構成され、実施の形態6では、カメラ装置が複眼カメラ(60)と単眼カメラ(70)とで構成されるが、要するに、カメラ装置が互いに大きさが異なる複数の撮像領域(第1種の撮像領域及び第2種の撮像領域)を有し、複数の撮像領域で異なる種類の情報を表す画像が取得されるようにフィルター群が設けられていれば良い。互いに異なる撮像領域は、実施の形態1のように一つの撮像素子(11)に形成されていても良く、実施の形態6のように複数の撮像素子(61、71)に形成されていても良い。互いに大きさが異なる複数の撮像領域は、少なくとも一つの第1種の撮像領域と、第1種の撮像領域よりも面積が小さく画素数が少ない、複数の第2種の撮像領域とを含む。
 実施の形態1のように、第1種の撮像領域と第2種の撮像領域とがともに、一つ撮像素子に形成される場合には、第1種の撮像領域と第2種の撮像領域とは、上記の一つの撮像素子の撮像面を分割することで形成されたものであり、レンズ群が、上記の撮像面に対して設けられたレンズアレイに含まれるレンズを含む。
 この場合、複数の撮像領域の各々に、対応するレンズ以外のレンズからの光が入射しないようにするための隔壁が設けられている。
 実施の形態6のように、第1種の撮像領域と第2種の撮像領域とが互いに異なる撮像素子に形成される場合には、上記の「一つ以上の第1種の撮像領域」が第1の撮像素子(71)の撮像面の全体で構成された単一の撮像領域から成り、複数の第2種の撮像領域が第2の撮像素子(61)の撮像面を分割することで形成され、レンズ群が、第1の撮像素子の撮像面に対して設けられたレンズと、第2の撮像素子の撮像面に対して設けられたレンズアレイに含まれるレンズとを含む。
 この場合、第2の撮像素子の複数の撮像領域の各々に、対応するレンズ以外のレンズからの光が入射しないようにするための隔壁が設けられる。
実施の形態7.
 実施の形態2~6で説明した複眼撮像装置のプロセッサーは、専用のハードウェアであっても、メモリに格納されるプログラムを実行する、コンピュータのCPUであっても良い。
 以下、一例として、図9のプロセッサーを備えた複眼撮像装置で実施される画像処理を、コンピュータに実行させる場合の処理の手順を、図18を参照して説明する。
 まずステップST1において、例えば図1(a)に示されるカメラ装置1で撮像を行い、互いに異なる種類の情報を表す複数の低解像度画像D1-1~D1-Nと一つの高解像度画像D0とを取得し、メモリ(図9の画像メモリ22と同じ役割を持つもの)に記憶させる。ここで、低解像度画像D1-1~D1-Nと高解像度画像D0とは、例えば、図1(a)に示されるカメラ装置1の、同じ視野の画像が結像される複数の撮像領域15a、15b、15c、…での撮像で得られる、互いに異なる種類の情報を有する画像であり、そのような画像のうち比較的解像度の低いものが低解像度画像D1-1、D1-2、…として取得され、比較的解像度の高いものが高解像度画像D0として取得される。
 次にステップST2において、高解像度画像D0を参照画像として用いて複数の低解像度画像D1-1、D1-2、…の各々に対して高解像度化処理を行い、高解像度画像D30-1、D30-2、…を生成する。高解像度化処理は例えば、図5、図6又は図8の高解像度化部に関して説明したのと同様の処理である。
 次にステップST3において、複数の高解像度画像D30-1、D30-2、…を合成して一つ以上の合成高解像度画像D40-a、D40-bを生成する。合成処理は、図9の合成部40に関して説明したようにして行われる。
 以上で説明したように、本発明によれば、複数の撮像領域で、互いに異なる種類の情報を有する画像を、互いに異なる解像度で取得することができるとともに、取得した、比較的解像度の低い画像から、高解像度画像を得ることができる。
 以上、実施の形態2~6で複眼撮像装置について説明したが、複眼撮像装置で実施される画像処理方法もまた本発明の一部を成す。さらに、上記の複眼撮像装置又は画像処理方法における処理をコンピュータに実行させるプログラム、及びそのようなプログラムを記録した、コンピュータで読み取り可能な記録媒体も本発明の一部を成す。
 1 カメラ装置、 10 複眼カメラ、 11 撮像素子、 11a 撮像面、 12 レンズアレイ、 12a,12b,… レンズ、 13 フィルターアレイ、 13a、13b、… 光学フィルター、 14 隔壁、 15a 高解像度撮像領域、 15b、15c、… 低解像度撮像領域、 17 撮像制御部、 18,19 A/D変換部、 20,20a~20h プロセッサー、 22 画像メモリ、 25 位置合わせ部、 30,30a~30c,30-1~30-N 高解像度化部、 31r,31b 画像拡大部、 32 高解像度化部、 40,42 合成部、 50 カメラ装置、 60 複眼カメラ、 61 撮像素子、 61a 撮像面、 62 レンズアレイ、 62a,62b,… レンズ、 63 フィルターアレイ、 63a、63b、… 光学フィルター、 64 隔壁、 65a,65b,… 低解像度撮像領域、 70 単眼カメラ、 71 撮像素子、 71a 撮像面、 72 レンズ、 73 光学フィルター、 75 高解像度撮像領域、 100,102 複眼撮像装置、 311,312 フィルター分離部、 313 低周波成分合成部、 314 高周波成分合成部、 315 成分合成部、 321 縮小処理部、 322 係数計算部、 323 係数マップ拡大部、 324 線形変換部、 411 輝度/色分離部、 412 輝度分離部、 413 重み付け加算部、 414 輝度/色合成部。

Claims (20)

  1.  複数の撮像領域と、
     前記複数の撮像領域に、互いに同じ視野の画像を結像させる複数のレンズと、
     複数の光学フィルターとを有し、
     前記複数の撮像領域は、少なくとも一つの第1種の撮像領域と、前記第1種の撮像領域よりも面積が小さく画素数が少ない複数の第2種の撮像領域とを含み、
     前記複数の光学フィルターは、前記第2種の撮像領域の各々で取得される画像が、前記第1種の撮像領域の各々で取得される画像とは異なる種類の情報を表すものとなるように設けられている
     カメラ装置。
  2.  前記複数の光学フィルターは、
     前記第1種の撮像領域及び前記第2種の撮像領域のうちの一つ以上の撮像領域に対して設けられ、互いに異なる光学特性を有する光学フィルターを含む
     請求項1に記載のカメラ装置。
  3.  一つの撮像素子をさらに有し、
     前記第1種の撮像領域と前記第2種の撮像領域とが前記一つの撮像素子の撮像面を分割することで形成されたものであり、
     前記複数のレンズが、前記撮像面に対して設けられたレンズアレイに含まれるレンズを含む
     請求項1又は2に記載のカメラ装置。
  4.  前記複数の撮像領域の各々に、対応するレンズ以外のレンズからの光が入射しないようにするために設けられた隔壁をさらに有する請求項3に記載のカメラ装置。
  5.  第1の撮像素子及び第2の撮像素子をさらに有し、
    前記少なくとも一つの第1種の撮像領域が前記第1の撮像素子の撮像面の全体で構成された単一の撮像領域から成り、
     前記複数の第2種の撮像領域が前記第2の撮像素子の撮像面を分割することで形成されたものであり、
     前記複数のレンズが、前記第1の撮像素子の前記撮像面に対して設けられたレンズと、前記第2の撮像素子の前記撮像面に対して設けられたレンズアレイに含まれるレンズとを含む
     請求項1又は2に記載のカメラ装置。
  6.  前記第2の撮像素子の前記複数の撮像領域の各々に、対応するレンズ以外のレンズからの光が入射しないようにするために設けられた隔壁をさらに有する請求項5に記載のカメラ装置。
  7.  前記異なる種類の情報を表す画像が、
     特定の波長帯の光による画像、
     特定の偏光方向の光による画像、及び
     特定の露光量での撮像による画像の少なくとも一つを含む
     請求項1から6のいずれか1項に記載のカメラ装置。
  8.  前記複数の光学フィルターが、分光フィルター、偏光フィルター、及びNDフィルターの少なくとも一つを含む請求項1から7のいずれか1項に記載のカメラ装置。
  9.  前記複数の光学フィルターが、前記第1種の撮像領域に対して、透過光量を減少させるために設けられた光学フィルターを含む
     請求項1から8のいずれか1項に記載のカメラ装置。
  10.  前記複数の光学フィルターが、前記第1種の撮像領域に対して設けられた、G透過フィルター、赤外光カットフィルター、又は補色系の光学フィルターを含む請求項1から8のいずれか1項に記載のカメラ装置。
  11.  前記第1種の撮像領域に対しては、前記異なる種類の情報を表す画像を取得するための光学フィルターが設けられていない請求項1から8のいずれか1項に記載のカメラ装置。
  12.  請求項1又は2に記載のカメラ装置と、少なくとも一つの高解像度化部を備えたプロセッサーとを備え、
     前記少なくとも一つの高解像度化部は、前記第1種の撮像領域のいずれかで取得された画像を参照画像として受け、前記第2種の撮像領域のいずれかで取得された画像を低解像度画像として受けて、該低解像度画像を、前記参照画像に含まれる高解像度成分を用いて高解像度化して、高解像度画像を生成する
     複眼撮像装置。
  13.  前記高解像度化部は、
     前記低解像度画像からその低周波成分及び高周波成分を抽出する第1のフィルター処理部と、
     前記参照画像からその低周波成分及び高周波成分を抽出する第2のフィルター処理部と、
     前記低解像度画像の低周波成分を前記参照画像と同じ解像度まで拡大し、拡大された低周波成分と前記参照画像の低周波成分とを、重み付け加算により合成して、合成低周波成分を生成する低周波成分合成部と、
     前記低解像度画像の高周波成分を前記参照画像と同じ解像度まで拡大し、拡大された高低周波成分と前記参照画像の高周波成分とを、重み付け加算により合成して、合成高周波成分を生成する高周波成分合成部と、
     前記合成低周波成分と前記合成高周波成分とを合成し、前記高解像度画像を生成する成分合成部と
     を有する請求項12に記載の複眼撮像装置。
  14.  前記高解像度化部は、
     前記参照画像を縮小して、前記低解像度画像と同じ解像度の縮小参照画像を生成する縮小処理部と、
     前記縮小参照画像と、前記低解像度画像との線形関係を近似する線形係数を計算する係数計算部と、
     前記係数計算部により計算された線形係数から成る係数マップを前記参照画像と同じ解像度まで拡大する係数マップ拡大部と、
     拡大された係数マップの線形係数と前記参照画像とを元に、前記低解像度画像により表される情報を持つ前記高解像度画像を生成する線形変換部と
     を有する請求項12に記載の複眼撮像装置。
  15.  前記少なくとも一つの高解像度化部が複数の高解像度化部から成り、
     前記プロセッサーは、
     前記複数の高解像度化部で生成された複数の高解像度画像を合成して、一つ以上の合成高解像度画像を生成する合成部をさらに有する
     請求項12、13又は14に記載の複眼撮像装置。
  16.  前記複数の高解像度化部で高解像度化される複数の低解像度画像は、撮像条件を表すパラメータのうちの少なくとも一つのパラメータの種類又は値が互いに異なるものであり、従って、前記複数の高解像度化部で生成される複数の高解像度画像は、撮像条件を表すパラメータのうちの少なくとも一つのパラメータの種類又は値が互いに異なるものであり、
     前記合成部は、前記複数の高解像度画像から、前記複数の高解像度画像のいずれとも、前記少なくとも一つのパラメータの種類又は値が異なる高解像度画像を補間により生成する
     請求項15に記載の複眼撮像装置。
  17.  請求項1又は2に記載のカメラ装置と、
     前記カメラ装置から出力される画像を処理するプロセッサーとを有し、
     前記プロセッサーは、
     前記複数の第2種の撮像領域で取得された複数の画像を合成して、少なくとも一つの合成低解像度画像を生成する合成部と、
     前記第1種の撮像領域のいずれかで取得された画像を参照画像として受け、前記少なくとも一つの合成低解像度画像を、前記参照画像に含まれる高解像度成分を用いて高解像度化して、少なくとも一つの高解像度合成画像を生成する高解像度化部と
     を有する複眼撮像装置。
  18.  請求項12から17のいずれか1項に記載の複眼撮像装置における処理をコンピュータに実行させるためのプログラム。
  19.  請求項18に記載のプログラムを記録した、コンピュータで読み取り可能な記録媒体。
  20.  同じ視野の画像が結像される複数の撮像領域での撮像で得られる、互いに異なる種類の情報を有し、互いに解像度が異なる複数の画像を取得するステップと、
     前記互いに解像度が異なる複数の画像のうち、比較的解像度の高い画像に含まれる高解像度成分を用いて比較的解像度が低い複数の画像に対して高解像度化処理を行って、互いに異なる種類の情報を持つ高解像度画像を生成する高解像度化ステップと
     前記複数の互いに異なる種類の情報を持つ高解像度画像を合成して、一つ以上の合成高解像度画像を生成する合成ステップとを
     有する画像処理方法。
PCT/JP2017/023348 2017-06-26 2017-06-26 カメラ装置、複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体 WO2019003258A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/615,604 US10951817B2 (en) 2017-06-26 2017-06-26 Compound-eye imaging device, image processing method, and recording medium
JP2017549829A JP6297234B1 (ja) 2017-06-26 2017-06-26 複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体
CN201780092291.3A CN110771152B (zh) 2017-06-26 2017-06-26 复眼摄像装置、图像处理方法以及记录介质
PCT/JP2017/023348 WO2019003258A1 (ja) 2017-06-26 2017-06-26 カメラ装置、複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体
DE112017007695.1T DE112017007695T5 (de) 2017-06-26 2017-06-26 Facettenaugen-bildaufnahmevorrichtung, bildverarbeitungsverfahren, programm und aufzeichnungsmedium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023348 WO2019003258A1 (ja) 2017-06-26 2017-06-26 カメラ装置、複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体

Publications (1)

Publication Number Publication Date
WO2019003258A1 true WO2019003258A1 (ja) 2019-01-03

Family

ID=61629101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023348 WO2019003258A1 (ja) 2017-06-26 2017-06-26 カメラ装置、複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体

Country Status (5)

Country Link
US (1) US10951817B2 (ja)
JP (1) JP6297234B1 (ja)
CN (1) CN110771152B (ja)
DE (1) DE112017007695T5 (ja)
WO (1) WO2019003258A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491890A (zh) * 2019-07-03 2019-11-22 芯盟科技有限公司 半导体结构及其形成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137380A1 (en) * 2018-10-31 2020-04-30 Intel Corporation Multi-plane display image synthesis mechanism
JP7096144B2 (ja) * 2018-11-28 2022-07-05 株式会社アサヒ電子研究所 複眼撮像装置
WO2021211127A1 (en) * 2020-04-16 2021-10-21 Hewlett-Packard Development Company, L.P. Light signal identification
US20220258882A1 (en) * 2021-02-16 2022-08-18 Rockwell Collins, Inc. Camera core monitor using gradient filter
CN112926030B (zh) * 2021-02-25 2024-01-23 南京信息工程大学 30m分辨率插值的气象要素确定方法
CN116994075B (zh) * 2023-09-27 2023-12-15 安徽大学 一种基于复眼事件成像的小目标快速预警与识别方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061109A (ja) * 1999-08-20 2001-03-06 Japan Science & Technology Corp 画像入力装置
JP2008079172A (ja) * 2006-09-25 2008-04-03 Mitsubishi Electric Corp 2波長イメージセンサおよび2波長イメージセンサを用いた撮像方法
JP2009117976A (ja) * 2007-11-02 2009-05-28 Panasonic Corp 撮像装置
JP2013021569A (ja) * 2011-07-12 2013-01-31 Univ Of Tokyo 撮像素子およびこれを用いた撮像装置
WO2015182447A1 (ja) * 2014-05-28 2015-12-03 コニカミノルタ株式会社 撮像装置および測色方法
WO2017064760A1 (ja) * 2015-10-13 2017-04-20 オリンパス株式会社 積層型撮像素子、画像処理装置、画像処理方法およびプログラム
WO2017090437A1 (ja) * 2015-11-24 2017-06-01 ソニー株式会社 カメラモジュールおよび電子機器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003176B1 (en) * 1999-05-06 2006-02-21 Ricoh Company, Ltd. Method, computer readable medium and apparatus for converting color image resolution
US6771835B2 (en) * 2000-06-12 2004-08-03 Samsung Electronics Co., Ltd. Two-dimensional non-linear interpolation system based on edge information and two-dimensional mixing interpolation system using the same
KR20040103786A (ko) * 2003-06-02 2004-12-09 펜탁스 가부시키가이샤 다초점 촬상 장치 및 다초점 촬상 장치를 가진 모바일 장치
JP2005303694A (ja) 2004-04-13 2005-10-27 Konica Minolta Holdings Inc 複眼撮像装置
US7916180B2 (en) * 2004-08-25 2011-03-29 Protarius Filo Ag, L.L.C. Simultaneous multiple field of view digital cameras
US7880794B2 (en) * 2005-03-24 2011-02-01 Panasonic Corporation Imaging device including a plurality of lens elements and a imaging sensor
CN100579185C (zh) * 2005-07-26 2010-01-06 松下电器产业株式会社 复眼方式的摄像装置
JP3930898B2 (ja) * 2005-08-08 2007-06-13 松下電器産業株式会社 画像合成装置および画像合成方法
WO2011078244A1 (ja) * 2009-12-24 2011-06-30 シャープ株式会社 多眼撮像装置および多眼撮像方法
US20140192238A1 (en) * 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
EP2592823A3 (en) * 2011-10-12 2013-06-19 Canon Kabushiki Kaisha Image-capturing device
WO2013179620A1 (ja) * 2012-05-28 2013-12-05 株式会社ニコン 撮像装置
JP6071374B2 (ja) * 2012-09-21 2017-02-01 キヤノン株式会社 画像処理装置、画像処理方法およびプログラムならびに画像処理装置を備えた撮像装置
JP6172161B2 (ja) 2012-12-11 2017-08-02 コニカミノルタ株式会社 複眼光学系とそれを用いた撮像装置
JPWO2014156712A1 (ja) * 2013-03-26 2017-02-16 コニカミノルタ株式会社 複眼光学系及び撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061109A (ja) * 1999-08-20 2001-03-06 Japan Science & Technology Corp 画像入力装置
JP2008079172A (ja) * 2006-09-25 2008-04-03 Mitsubishi Electric Corp 2波長イメージセンサおよび2波長イメージセンサを用いた撮像方法
JP2009117976A (ja) * 2007-11-02 2009-05-28 Panasonic Corp 撮像装置
JP2013021569A (ja) * 2011-07-12 2013-01-31 Univ Of Tokyo 撮像素子およびこれを用いた撮像装置
WO2015182447A1 (ja) * 2014-05-28 2015-12-03 コニカミノルタ株式会社 撮像装置および測色方法
WO2017064760A1 (ja) * 2015-10-13 2017-04-20 オリンパス株式会社 積層型撮像素子、画像処理装置、画像処理方法およびプログラム
WO2017090437A1 (ja) * 2015-11-24 2017-06-01 ソニー株式会社 カメラモジュールおよび電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491890A (zh) * 2019-07-03 2019-11-22 芯盟科技有限公司 半导体结构及其形成方法
CN110491890B (zh) * 2019-07-03 2022-03-15 芯盟科技有限公司 半导体结构及其形成方法

Also Published As

Publication number Publication date
JPWO2019003258A1 (ja) 2019-06-27
JP6297234B1 (ja) 2018-03-20
CN110771152B (zh) 2022-03-01
CN110771152A (zh) 2020-02-07
US10951817B2 (en) 2021-03-16
DE112017007695T5 (de) 2020-03-12
US20200177807A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6297234B1 (ja) 複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体
US11140342B2 (en) Solid-state image pickup device and electronic apparatus
US9681057B2 (en) Exposure timing manipulation in a multi-lens camera
EP2715447B1 (en) System and method for extending depth of field in a lens system by use of color-dependent wavefront coding
US10154216B2 (en) Image capturing apparatus, image capturing method, and storage medium using compressive sensing
JP5968073B2 (ja) 画像処理装置、撮像装置、画像処理方法、および画像処理プログラム
US20130278726A1 (en) Imaging system using a lens unit with longitudinal chromatic aberrations and method of operating
US10572974B2 (en) Image demosaicer and method
EP2263373A2 (en) Generalized assorted pixel camera systems and methods
CN106679807B (zh) 一种基于lctf高光谱成像系统的图像压缩与重构方法
US20120230549A1 (en) Image processing device, image processing method and recording medium
US8774551B2 (en) Image processing apparatus and image processing method for reducing noise
EP3132609B1 (en) Image encoding apparatus, image decoding apparatus, methods of controlling the same, and storage medium
JP5186517B2 (ja) 撮像装置
CN106507065A (zh) 拍摄装置、拍摄系统、图像生成装置及滤色器
US20120249823A1 (en) Device having image reconstructing function, method, and storage medium
JP2018107731A (ja) 画像生成装置及び撮像装置
US20140118580A1 (en) Image processing device, image processing method, and program
US9143762B2 (en) Camera module and image recording method
JP6732440B2 (ja) 画像処理装置、画像処理方法、及びそのプログラム
KR20220116183A (ko) 촬상 장치, 정보 처리 방법, 및 프로그램
JP7009219B2 (ja) 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
JP4482685B2 (ja) 広色域動画カメラ
JP7341843B2 (ja) 画像処理装置および画像処理方法、撮像装置、プログラム
US20230066267A1 (en) Image acquisition apparatus including a plurality of image sensors, and electronic apparatus including the image acquisition apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017549829

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916007

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17916007

Country of ref document: EP

Kind code of ref document: A1