WO2019001298A1 - 承载装置以及物理气相沉积设备 - Google Patents

承载装置以及物理气相沉积设备 Download PDF

Info

Publication number
WO2019001298A1
WO2019001298A1 PCT/CN2018/091643 CN2018091643W WO2019001298A1 WO 2019001298 A1 WO2019001298 A1 WO 2019001298A1 CN 2018091643 W CN2018091643 W CN 2018091643W WO 2019001298 A1 WO2019001298 A1 WO 2019001298A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
base
processed
support member
support
Prior art date
Application number
PCT/CN2018/091643
Other languages
English (en)
French (fr)
Inventor
武学伟
王桐
董博宇
张军
郭冰亮
王军
张鹤南
徐宝岗
马怀超
刘绍辉
赵康宁
耿玉洁
王庆轩
崔亚欣
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to SG11201913596XA priority Critical patent/SG11201913596XA/en
Priority to US16/626,863 priority patent/US11315768B2/en
Publication of WO2019001298A1 publication Critical patent/WO2019001298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • Embodiments of the present disclosure are directed to a carrier device and a physical vapor deposition device including the carrier device.
  • PVD Physical Vapor Deposition
  • a material source solid or liquid
  • a low pressure gas or plasma
  • the process of depositing a film having a specific function on the surface of the substrate include vacuum evaporation, sputtering coating, arc plasma plating, ion plating, and molecular beam epitaxy.
  • physical vapor deposition technology can deposit not only metal films, alloy films, but also compounds, ceramics, semiconductors, polymer films, and the like.
  • the performance of the physical vapor deposition apparatus itself directly affects the quality and yield of the deposited film layer and the like. As the requirements for film layer accuracy, quality, and yield for various devices continue to increase, there is a continuing drive for improvements in the performance of physical vapor deposition devices themselves.
  • the present disclosure is intended to address at least one of the technical problems existing in the prior art, and proposes a carrying device and a physical vapor deposition device including the same.
  • a first aspect of the present disclosure relates to a carrier device, including:
  • a base for supporting the workpiece to be processed
  • a first support member is disposed on the base for erecting the cover ring when the base is in the process position such that the portion of the cover ring overlapping the workpiece to be machined does not contact.
  • the first support member has an annular structure, and the annular structure is annularly disposed along a surface of the base.
  • the annular structure includes at least one escape opening that allows the take-up mechanism to pass, such that the workpiece to be processed is placed onto the base via the pick-up mechanism.
  • the first support member includes a plurality of first sub-support members, and the plurality of first sub-support members are evenly distributed along a circumference of the base, and each of the first sub-support members is used for The cover ring is jacked up in the process position.
  • the first support member includes:
  • At least an upper surface of the extending portion overlapping the workpiece to be processed is lower than a lower surface of the workpiece or directly contacting a lower surface of the workpiece to be processed .
  • the base comprises:
  • a second support member is disposed on the support surface, and the second support member is configured to support the workpiece to be processed.
  • the height of the first support is greater than the height of the second support in the direction of the axis of the base.
  • the second support comprises a plurality of second sub-supports, at least one of the plurality of second sub-supports being a thermocouple.
  • a second aspect of the present disclosure relates to a physical vapor deposition apparatus including a cavity and a carrying device, the carrying device being the carrying device described above;
  • the cavity includes:
  • the carrying device is located between the bottom wall and the top wall, and the first support member is disposed opposite to the top wall.
  • a shield surrounding the side wall of at least a portion of the cavity and connected to a sidewall of the cavity; and, when the base is in the removal position, the shield is for supporting The cover ring.
  • the susceptor of the present disclosure and the physical vapor deposition apparatus using the susceptor reduce the pressure of the external parts to which the workpiece is to be processed, and the workpiece to be processed is only subjected to the support force from the support column by gravity and balance of gravity.
  • the workpiece to be processed since the workpiece to be processed is not in contact with the cover ring, the adhesion between the workpiece and the cover ring is avoided, the workpiece to be processed is broken and the position of the workpiece to be processed is uncertain or the workpiece to be processed is in an undesired position. risks of.
  • FIG. 1A is a schematic cross-sectional view of a physical vapor deposition apparatus
  • FIG. 1B is a simplified schematic view of the physical vapor deposition apparatus of FIG. 1A;
  • FIG. 2 is a schematic plan view of a carrier device according to an embodiment of the present disclosure
  • 3A is a schematic cross-sectional view of a carrier device in accordance with an embodiment of the present disclosure
  • 3B is a partial cross-sectional view of a carrier device in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a schematic plan view showing a carrier device according to another embodiment of the present disclosure.
  • FIG. 5 is a perspective view of a first support member according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view of a physical vapor deposition apparatus in accordance with an embodiment of the present disclosure
  • FIG. 7 is a schematic cross-sectional view of a physical vapor deposition apparatus in accordance with an embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view of a physical vapor deposition apparatus in accordance with an embodiment of the present disclosure
  • FIG. 9 is a schematic cross-sectional view of a physical vapor deposition apparatus in accordance with an embodiment of the present disclosure.
  • the magnetron sputtering apparatus includes a magnetron 1 and an aluminum target 2, and the magnetron 1 and the aluminum target 2 are filled with deionized water for cooling the aluminum target 2.
  • the pulsed DC power source applies a negative pressure to the target 2.
  • the physical vapor deposition apparatus further includes an upper shield 3, a lower shield 4, a cover ring 5, an insulating ring 6, a shutter 7, a shutter storage chamber 10, and a susceptor 9.
  • the workpiece 8 to be machined is supported on a support column of the base 9.
  • the workpiece 8 is first baked at a high temperature, and the shutter 7 is moved into the chamber between the target 2 and the workpiece 8 to be processed. Then, the shutter 7 is removed to form a film which is officially deposited.
  • the susceptor 9 Prior to the formal deposition, the susceptor 9 is raised with the workpiece 8 to be raised and raised to a position in contact with the cover ring 5 placed on the heat insulating ring 6. Then, the susceptor 9 continues to rise to a certain height, at which time the edge portion of the workpiece 8 is lifted up by the cover ring 5, and the cover ring 5 is separated from the heat insulating ring 6.
  • An annular region of the upper surface of the workpiece 8 is in contact with the cover ring, thereby enclosing an area by the target, the shield, the cover ring and the workpiece to be processed.
  • a plasma is generated in this region, and a formed aluminum nitride film is deposited on the substrate on the upper surface of the member to be processed.
  • the cover ring and the shield serve to form a relatively closed reaction environment and prevent deposits from contaminating the inner wall of the chamber.
  • FIG. 1B is a simplified schematic view of the physical vapor deposition apparatus of FIG. 1A to highlight the positional relationship between the support post of the base 9, the workpiece 8 and the cover ring 5 when the workpiece 8 is lifted by the cover ring 5. .
  • the workpiece 8 to be machined is supported on the support column of the base 9, and its edge portion lifts the cover ring 5.
  • the workpiece to be machined is jacked up by three needles and supported by three support points, and the cover ring needs to be jacked up after the workpiece is raised. Since the thickness of the member to be processed is thinner, it is easier to be heated to a higher temperature in order to obtain a faster heating rate. However, if the workpiece to be processed is too thin, when the pressure of the cover ring and the upward force of the three needles are received, a large stress is generated inside the workpiece to be processed, and the problem of the workpiece to be crushed is liable to occur.
  • the PVD used to deposit AlN is a high-temperature high-vacuum chamber. After the workpiece is broken, it is necessary to expose the chamber to the atmosphere to clean the interior, and then vacuum again, and pre-treat the chamber environment with special treatment methods. It takes a lot of time to deal with the environment of restoring high temperature and high vacuum.
  • a first aspect of the present disclosure relates to a carrying device that can be used, for example, for a physical vapor deposition apparatus and for supporting a workpiece to be processed and a cover ring.
  • the carrying device comprises: a base for supporting the workpiece to be processed; and a first supporting member disposed on the base for lifting the cover ring when the base is in the process position, so that the cover ring and the workpiece to be processed are heavy The overlapped parts are not in contact. Therefore, it is possible to prevent the workpiece to be crushed by the support cover ring, and since the cover ring can be in direct contact with the member to be processed, adhesion between the workpiece and the cover ring due to deposition of the substance is also avoided.
  • a physical vapor deposition apparatus including the above-described carrier device is provided.
  • the workpiece to be processed in the present disclosure may be, for example, a tray for supporting a chip to be deposited, or a separate chip to be deposited or a combined structure in which the chip is attached to the tray, which is not particularly special according to an embodiment of the present disclosure. limit.
  • the carrier device can be mounted in a cavity of a physical vapor deposition apparatus for supporting a workpiece to be processed.
  • the carrier device can be moved in the cavity of the physical vapor deposition apparatus in conjunction with the lifting mechanism, and can support the cover ring in the physical vapor deposition apparatus.
  • the carrier device 100 includes a base 110 and a first support member 120.
  • the base 110 is used to support the workpiece 300 to be processed.
  • the first support member 120 is disposed on the base 110 for jacking up the cover ring 220 when the base 110 is in the process position, so that the portion of the cover ring 220 overlapping the workpiece 300 is not in contact.
  • one end of the first support member 120 near the base 110 may be disposed on the upper surface of the base 110 (the top surface of the base 110 as shown in FIG. 3A), or may be disposed on the base 110.
  • the side faces (the left and right sides of the base 110 shown in Fig. 3A).
  • the first support member 120 is an annular structure that is annularly disposed along the surface of the base 110.
  • the first support member 120 may be a ring-shaped structure. In this case, the entire circumference of the first support member 120 can be used to support the cover ring 220 to achieve a stable support effect.
  • a toroidal configuration is schematically illustrated in FIG. 2, it can be any suitable annular structure suitable for supporting the cover ring 220.
  • first support member 120 being a ring structure.
  • 4 is a schematic plan view of a carrier device according to another embodiment of the present disclosure.
  • the first support member 120 may include a plurality of first sub-support members that are evenly distributed along the circumferential direction of the susceptor 110, and each of the first sub-support members is used in the process.
  • the cover ring 220 is raised.
  • the first support member 120 can include four first sub-support members that are evenly distributed (e.g., equally spaced) along the circumference of the base 110.
  • the number and specific distribution of the first sub-supports according to the embodiment of the present disclosure are not particularly limited as long as the cover ring 220 can be stably supported.
  • the first support member 120 includes an extension portion 121 that extends from the inner surface of the first support member 120 toward the middle portion of the base 110 to overlap with the workpiece 300 to be processed, and, in the process In the position, in the axial direction of the base 110, at least the upper surface of the extending portion 121 overlapping the workpiece 300 to be processed is lower than the lower surface of the workpiece 300 to be processed.
  • At the process position at least a portion of the extension 121 coincides with the orthographic projection of the workpiece 300 on the susceptor 110, for example, may be the edge portion of the workpiece 300 and the upper surface of the extension 121. At least a portion of the projections overlap.
  • the first support member 120 has an annular structure, its inner diameter is smaller than the outer diameter of the workpiece 300 to be processed.
  • the upper surface of the extending portion 121 may form a first gap with the lower surface of the workpiece 300 to be processed.
  • 3B is a partially enlarged schematic view of the cross-sectional view of FIG. 3A. As shown in FIG.
  • the first gap is in a dimension parallel to the pedestal 110 and from the outer side to the inner side of the first support member 120 (that is, the orthographic projection path of the first gap on the pedestal 110).
  • the length to length is d
  • the dimension of the first gap in the axial direction along the susceptor 110 is f.
  • the ratio d/f between d and f is greater than five.
  • the dimension of the first gap in the height direction is 1 mm or less
  • the dimension in the radial direction is 6 mm or more, but the embodiment of the present disclosure is not limited thereto.
  • plasma can be prevented from passing through, and related technical effects will be described in more detail below in connection with an embodiment of a physical vapor deposition apparatus.
  • At least in the radial direction of the susceptor 110 at least the first support member 120 above the extending portion 121 is spaced from the workpiece 300 to be processed, that is, as shown in FIG. 3A.
  • the portion above the extension portion 121 of the first support member 120 is located outside the workpiece 300, so as not to affect the stable support of the workpiece 300 by the base 110.
  • the upper surface of the extension portion 121 may also be in direct contact with the member to be processed 300 in the process position. That is, when the susceptor 110 is raised to the process position, the lower surface of the workpiece 300 to be processed may also be in close contact with the upper surface of the extension portion 121.
  • the extension portion 121 may not overlap the edge portion of the workpiece 300 to be processed, that is, the extension portion 121 does not extend directly below the workpiece 300 to be processed.
  • the gap between the extension portion 121 and the member to be processed 300 is not formed to block the plasma, the plasma may be blocked by other means, which will be described in detail below.
  • the first support member 120 is an annular structure, its inner diameter may be larger than the outer diameter of the workpiece 300 to be processed.
  • the portion near the inner side of the cover ring 220 overlaps with the orthographic projection of the workpiece 300 on the susceptor 110. That is, the inner diameter of the cover ring 220 is smaller than the outer diameter of the workpiece 300 to be processed.
  • the lower surface of the portion of the cover ring 220 at least near the inner side faces the upper surface of the workpiece 300 to form a second gap.
  • the radial length of the orthographic projection of the second gap on the susceptor 110 is D, and the dimension of the second gap in the axial direction of the susceptor 110 (the height of the second gap) is e.
  • the dimensions D and e satisfy the following relationship: D/e>5.
  • the dimension of the second gap in the height direction is 1 mm or less, and the dimension in the radial direction is 6 mm or more, but the embodiment of the present disclosure is not limited thereto.
  • the lower surface of the cover ring 220 may be provided with a downwardly projecting protrusion 221, which may also be adjacent to the side wall of the workpiece 300 to be processed. A gap is formed between them to further contribute to the blocking of the plasma.
  • the base 110 includes a support surface 111 and a second support 112.
  • the support surface 111 is provided with a first support member 120.
  • the second support member 112 is disposed on the support surface 111 for supporting the workpiece 300 to be processed.
  • orthographic projection on the susceptor 110 may be an orthographic projection on the support surface 111.
  • the height of the first support member 120 is greater than the height of the second support member 112.
  • the difference in height between the first support member 120 and the second support member 112 may be greater than the thickness of the member to be processed 300 to be supported by the second support member 112.
  • the top end of the first support member 120 is higher than the upper surface of the workpiece 300 to be processed. Therefore, during the ascent of the carrier device 100 in the physical vapor deposition apparatus, the first support member 120 will first contact the cover ring 220, and the workpiece 300 is prevented from contacting the cover ring 220.
  • the top end of the first support member 120 is higher than the top end of the second support member 112.
  • the top end of the first support 120 may have any suitable height.
  • the portion of the cover ring 220 that faces the top end of the first support member 120 has a downward projection, at which point the top end of the first support member 120 may be lower than the top end of the second support member 112 and The cover ring 220 may be made not to contact the workpiece 300 to be processed. Therefore, the height of the first support member 120 may be greater than, equal to, or less than the height of the second support member 112.
  • the second support member 112 may have a columnar structure, and any suitable support structure for supporting the workpiece 300 may be employed.
  • the second support member 112 includes a second sub-support member of three spaced portions, and only two second sub-supports are shown in the cross-sectional view of Figure 3A for ease of illustration. Pieces.
  • the number and shape of the second sub-supports according to the embodiments of the present disclosure are not limited to the specific cases shown in the drawings, and may be, for example, three or more second sub-supports.
  • At least one of the plurality of second sub-supports for supporting the workpiece 300 may be a thermocouple.
  • the temperature of the workpiece 300 to be processed can be measured in real time.
  • the carrier device can also include a liftable support pin 130.
  • the elevating support pin 130 moves upward in the axial direction of the base, and the tip end of the support pin 130 (the end on the support surface 111 side of the base 110) is movable to be more than the top end of the second support 112 Keep away from the support surface. That is, the top end of the support pin 130 can be moved higher than the top end of the second support 112. Therefore, the support pin 130 can be used to pick up the workpiece to be processed conveyed by the robot.
  • the support pin 130 can be moved to its top end higher than the top end of the second support member, pick up the workpiece to be processed from the robot, and then the support pin 130 is lowered to the top end thereof lower than the top end of the second support member 112, thereby waiting The workpiece is placed on the second support 112.
  • This structure is merely an example of placing the workpiece to be placed on the second support, and embodiments according to the present disclosure are not limited thereto, and other placement conveyances may be employed, so that the supportable needle structure may not be employed.
  • the support pin 130 is located in a central region of the support surface and spaced apart from the second support member 112.
  • three support pins are schematically illustrated in FIGS. 2 and 4, the embodiment according to the present disclosure is not limited thereto, and may be three or more support pins in the case where the member to be processed can be stably supported.
  • the driving portion for supporting the needle is also not particularly limited, and for example, it may be disposed inside the base or at any other suitable position.
  • FIG. 5 illustrates a perspective view of a first support member in accordance with an embodiment of the present disclosure. As shown in FIG.
  • At least one relief opening 122 allowing the take-up mechanism (manipulator) to pass is provided at the top end of the annular first support member 120 (the end portion away from the support surface when disposed on the base).
  • the top end edge of the first support member 120 at the escape opening 122 is lower than the top end of the second support member 112 supporting the workpiece to be processed, that is, the first support member 120 is at the escape opening 122.
  • the distance of the top edge from the support surface of the base is smaller than the distance of the top edge of the portion other than the portion of the relief opening 122 of the first support member 120 from the support surface.
  • the vacuum robot finger places the workpiece to be processed on the second support member on the base through the avoidance opening, and then the vacuum robot finger moves out of the heating base through the avoidance opening, thereby achieving no The vacuum is automatically transferred from the support pin.
  • the lower portion of the edge of the workpiece to be processed cannot form an effective gap for shielding the plasma, but the total effective width and the gap of the gap formed by the outer edge of the upper surface of the workpiece to be formed with the cover ring The ratio is large enough to effectively shield the deposited material from sputtering onto the upper surface of the susceptor.
  • the embodiment according to the present disclosure is not limited thereto, as long as there is a relief opening through which the robot that can transmit the workpiece to be processed passes, of course, There can be three or more escape openings.
  • the first support member may not form an annular structure, but may include a plurality of discrete first sub-support members (as shown in the figure). 4)).
  • a carrier device in accordance with the present disclosure, it may also include any other suitable components or components as desired.
  • a structure of a heating device, a measuring device, various lines, and the like may be provided inside or on the susceptor, and the embodiment of the present disclosure is not particularly limited thereto.
  • the physical vapor deposition apparatus may be a sputtering apparatus, a magnetron sputtering apparatus, an arc plasma deposition apparatus, or the like.
  • the physical vapor deposition apparatus includes any one of the carrier devices of the first embodiment.
  • the description of the carrier device in the first embodiment is also applicable to the carrier device in the physical vapor deposition device of the second embodiment, and therefore, the description about the carrier device will be omitted in some portions.
  • the description about the carrier device in the physical vapor deposition apparatus in the second embodiment can also be applied to the carrier device in the first embodiment.
  • the physical vapor deposition apparatus 200 includes a cavity 210 and any one of the carrier devices 100 of the first embodiment.
  • the cavity 210 includes a bottom wall 211 and a top wall 212 that face each other, and a side wall 213 between the bottom wall 211 and the top wall 212 that connects the bottom wall 211 and the top wall 212, respectively.
  • the carrier device 100 is located between the bottom wall 211 and the top wall 212, and the first support member 120 is disposed opposite to the top wall 212.
  • the carrier device 100 can be moved in the axial direction of the base 110 relative to the bottom wall 211 of the cavity 210. As it moves upward, the second support member 112 will support the workpiece 300 to be processed, and the first support member 120 will support the cover ring 220.
  • the positional relationship of the carrier device 100 with other components at various stages during the upward movement will be described below in connection with Figures 6-9, respectively.
  • the side of the top wall 212 of the cavity facing the bottom wall 211 may include a target and/or other components, etc., for the convenience of description, simply described as a top wall in this specification.
  • the carrier is lifted and the workpiece is moved to a suitable location near the top wall 212 for deposition.
  • the carrier device can be coupled to the bottom wall 211 of the cavity 210 by a lifting mechanism 230 (eg, a bellows) or the like such that the lifting mechanism 230 can drive the carrier device to move within the cavity to a different process.
  • a lifting mechanism 230 eg, a bellows
  • the lifting mechanism 230 drives the carrier to move upward in the axial direction of the base.
  • embodiments in accordance with the present disclosure are not limited thereto, and any other suitable lifting mechanism may be used to drive the carrier to move upward.
  • a physical vapor deposition apparatus 200 includes a cover ring 220.
  • the cover ring 220 is located between the carrier and the top wall 212 of the cavity 210.
  • the cover ring 220 is at least partially opposed to the top end of the first support member 120 in the axial direction of the base.
  • the first support 120 is used to lift the cover ring 220, is mounted on the base, and is fixed in height relative to the second support 112 supporting the workpiece 300 to be processed.
  • the materials of the first support member 120 and the cover ring 220 may take into account factors such as vacuum venting, high temperature strength, high temperature deformation, and saturated vapor pressure.
  • the first support member 120 and the cover ring 220 may be made of a metal such as Mo or a high temperature resistant alloy, or a non-metal material such as ceramic.
  • the material of the first support member and the cover ring may be selected from any suitable material.
  • the cover ring is in contact with the cover ring and the cover ring is jacked up during movement of the base in the direction of the axis toward the top wall.
  • the lower surface of the portion near the inner side is spaced from the support surface of the base by a distance greater than the distance from the top end of the second support member to the support surface.
  • a difference between a distance of a lower surface of the cover ring near the inner portion from a support surface of the base and a distance of a tip end of the second support from the support surface is greater than the vapor deposition apparatus
  • the thickness of the part to be processed used is greater than the vapor deposition apparatus
  • the physical vapor deposition apparatus further includes a shield 240.
  • a shield 240 surrounds at least a portion of the sidewall of the cavity and is coupled to a sidewall of the cavity when the pedestal 110 is in the detached position, that is, when the cover ring 220 is not supported on the first support On the piece, that is, the shield 240 supports the cover ring 220 before the first support member 120 lifts the cover ring 220.
  • the shield 240 can be an annular structure having a shape or corresponding size that can support the cover ring 220. A person skilled in the art can select any suitable shape and size according to actual conditions, and the embodiment of the present disclosure is not particularly limited thereto.
  • the physical vapor deposition apparatus may further include a shutter storage chamber 250 and a shutter 260.
  • the shutter piece 260 can be placed in the shutter sheet storage chamber 250.
  • the shutter storage compartment 250 may be coupled to a portion of the side wall of the cavity 210 and to communicate with the interior of the chamber.
  • a valve or the like may be provided between the shutter storage chamber 250 and the chamber, and there is no particular limitation on this according to an embodiment of the present disclosure.
  • the physical vapor deposition apparatus according to an embodiment of the present disclosure will be described in more detail below in conjunction with the susceptor in different states.
  • the liftable support needle is raised and its top end is higher than the second support member, at which time the liftable support pin 130 supports the workpiece 300 to be processed.
  • the robot can transfer the workpiece to the support pin 130.
  • its top end may be higher than the top ends of the first support member 120 and the second support member 112 so that the movement of the robot is not hindered when the robot performs the transfer operation.
  • the elevating support pin 130 is lowered, and when the top end thereof is flush with the top end of the second support member 112, the workpiece 300 is in contact with the second support member 112, and the support pin 130 continues to fall off from being processed.
  • the piece 300 is such that the workpiece 300 to be processed is placed on the second support 112.
  • the first support member 120 is an annular structure, and includes an extension portion 121 protruding toward the inner side on the inner side of the first support member 120, the inner diameter A of the extension portion 121 being slightly smaller than that to be processed.
  • the outer diameter B, (BA)/2 of the piece 300 is the width d of the gap between the first support member 120 and the workpiece 300, and the upper surface of the extension portion 121 (that is, the first support member 120 and the workpiece to be processed 300 are positive
  • the opposite surface is lower than the highest point of the second support member 112 and has a size of f.
  • the width d and the dimension f herein can satisfy a certain proportional relationship, thereby contributing to sealing the plasma, which will not be described herein.
  • FIGS. 6 and 7 are schematic cross-sectional views showing a state before the chamber starts the process.
  • the cover ring 220 is placed on the shield 240 before the chamber starts the process, and at this time, the workpiece 300 can be placed on the liftable support pin 130 by a robot. Then, the liftable support pin 130 is lowered and the workpiece 300 to be placed is placed on the second support member 112. At this time, the base is under the cover ring 220 without contacting the cover ring 220. Additionally, the descent of the elevating support pin 130 herein is lowered relative to the base, which may include the support pin 130 itself descending, or the support pin itself not moving while the other portions of the base are raised.
  • the driving device for supporting the needle 130 may be disposed inside the base or outside the base, and the embodiment of the present disclosure is not particularly limited thereto.
  • the state after the workpiece 300 is supported by the second support member 112 can also refer to the cross-sectional schematic view of FIG. 3A.
  • the overlapping portion 121 and the overlapping portion of the workpiece 300 may have a gap or just contact.
  • the dimension of the gap in the axial direction of the pedestal may be equal to 1 mm, for example, the dimension of the horizontal direction of the overlapping portion (the direction along the support surface) (the dimension in the radial direction) may It is 6mm or more.
  • these dimensions are merely exemplary, and the dimensions f and d satisfy the range of ratios described in the first embodiment. With such a gap size design, it is possible to prevent plasma and deposits from passing through the gap.
  • the base continues to rise, and the top end of the first support member 120 is in contact with the cover ring 220.
  • the cover ring 220 At this time, according to the limitation of the size, at least the lower surface of the portion (inner portion) of the cover ring opposite to the workpiece 300 to be processed is not in contact with the upper surface of the workpiece 300 to be processed, and the weight of the cover ring 220 is determined by the first support member 120. bear.
  • the relative positions of the workpiece 300, the first support member 120, and the cover ring 220 are fixed, and the workpiece to be processed 300 is still only in contact with the second support member 112 on the base, and the external force to be processed by the workpiece 300 is
  • the weight of the second support member 112 and the support force of the second support member 112, and the weight of the cover ring 220 is received by the first support member 120, which reduces the external force received by the workpiece to be processed, and reduces the risk of the workpiece to be crushed.
  • the cover ring 220 continues to be lifted up and away from the shield member 240 as the base rises.
  • a closed region is formed between the workpiece 300, the cover ring 220, the side wall 213, and the top wall 212 for generating plasma to realize deposition of the film.
  • the process location referred to in this application is the location.
  • the positional relationship between the workpiece 300, the first support member 120, and the cover ring 220 can be seen from the cross-sectional schematic view of FIG. In the example shown in FIG.
  • the top end of the first support member 120 is higher than the top end of the second support member 112 supporting the workpiece 300, and the difference in height is greater than the thickness of the workpiece 300 to be processed, thus, in the workpiece to be processed After the 300 is placed on the second support member 112, the height of the top end of the first support member 120 is still greater than the height of the upper surface of the workpiece 300 to be processed. At this time, the first support member 120 contacts the cover ring 220 such that the cover ring 220 does not contact the workpiece 300 to be processed.
  • the plasma does not completely pass through the gap due to the presence of the gap between the upper edge of the workpiece 200, the lower edge of the workpiece 200, and the cover ring and the support.
  • the sealing of the plasma is achieved by depositing onto a component such as a heating tube inside the heating base directly opposite the lower surface of the workpiece to be processed.
  • the extension portion 121 of the support member 120 is also not necessary, and the extension portion 121 may or may not form a gap facing the workpiece to be processed.
  • the support member 120 is not a closed annular structure but includes a plurality of discrete supports (as shown in Figure 4).
  • the top end of the first support member 120 is higher than the top end of the second support member 112, and therefore, the first support member 120 may not contact the workpiece 300 to be processed when the cover ring 220 is jacked up.
  • the embodiment according to the present disclosure is not limited thereto.
  • the top end of the first support member 120 may also be lower than the top end of the cover ring 220, in order to prevent the inner portion of the cover ring 220 from contacting the workpiece 300 to be processed.
  • the lower surface of the portion of the cover ring 220 facing the first support member 120 may have a downward projection that may contact the top end of the first support member and be lifted by the first support member. Therefore, as long as the cover ring 220 does not contact the structure to be processed, the portion in contact between the first support member 120 and the cover ring 220 can take various suitable structures.
  • the gap between the cover ring 220 and the shield member 240 can also satisfy a ratio between the length of the gap and the gap size of the gap being greater than 5.
  • the lower surface of the cover ring 220 and the inner side surface of the downward convex portion on the outer side form a gap with the top end and the outer side surface of the shield member 240.
  • embodiments in accordance with the present disclosure are not limited thereto, and various suitable structures may be employed to prevent leakage of plasma.
  • the pressure of the external part to be processed is reduced, and the workpiece to be processed is only supported by the second support by gravity and balanced gravity. force.
  • the workpiece to be processed is not in contact with the cover ring, the adhesion between the workpiece and the cover ring is avoided, the workpiece to be processed is broken and the position of the workpiece to be processed is uncertain or the workpiece to be processed is in an undesired position. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本公开提供一种承载装置以及物理气相沉积设备。该承载装置包括:基座,用于支撑待加工件;第一支撑件,设置在所述基座上,用于在所述基座位于工艺位置时顶起盖环,以使得所述盖环与所述待加工件相重迭的部分不接触。该承载装置或物理气相沉积设备通过第一支撑件支撑盖环,从而使得盖环不与待加工件接触,减小了待加工件所受的外部零件的压力。

Description

承载装置以及物理气相沉积设备 技术领域
本公开的实施例涉及一种承载装置以及包括该承载装置的物理气相沉积设备。
背景技术
物理气相沉积(Physical Vapor Deposition,PVD)技术是在真空条件下,采用物理方法将材料源(固体或液体)的表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在衬底表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有:真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜及分子束外延等。目前,物理气相沉积技术不仅可沉积金属膜、合金膜,而且还可以沉积化合物、陶瓷、半导体、聚合物膜等。
物理气相沉积装置本身的性能直接影响所沉积的膜层的质量和产率等。随着对于各种器件膜层精度、质量以及产率的要求不断提高,对于物理气相沉积装置本身性能的改进有着持续的推动力。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种承载装置以及包括该承载装置的物理气相沉积设备。
本公开的第一方面,涉及一种承载装置,包括:
基座,用于支撑待加工件;
第一支撑件,设置在所述基座上,用于在所述基座位于工艺位置时顶起 盖环,以使得所述盖环与所述待加工件相重迭的部分不接触。
可选地,所述第一支撑件呈环状结构,所述环状结构沿所述基座的表面环形设置。
可选地,所述环状结构包括至少一个允许取片机构通过的避让开口,以使得所述待加工件经由所述取片机构放置到所述基座上。
可选地,所述第一支撑件包括多个第一子支撑件,且多个第一子支撑件沿所述基座的周向均匀分布,且各所述第一子支撑件用于在所述工艺位置时顶起所述盖环。
可选地,所述第一支撑件包括:
延伸部,自所述第一支撑件的内表面朝向所述基座的中部延伸至与所述待加工件重迭,并且,在所述工艺位置时:
在沿所述基座的轴线方向上,所述延伸部的至少与所述待加工件重迭的上表面低于所述待加工件的下表面或与所述待加工件的下表面直接接触。
可选地,在沿所述基座的径向方向上,至少位于所述延伸部上方的所述第一支撑件与所述待加工件之间具有间隔。
可选地,在沿所述基座的轴线方向上:
所述待加工件的下表面与所述延伸部之间形成第一间隙,所述第一间隙在所述基座上的正投影的径向长度与所述第一间隙的高度之比大于5。
可选地,在沿所述基座的轴线方向上:
所述待加工件的上表面与所述盖环之间形成第二间隙,所述第二间隙在所述基座上的正投影的径向长度与所述第二间隙的高度之比大于5。
可选地,所述基座包括:
支撑面,设置有所述第一支撑件;
第二支撑件,设置在所述支撑面上,所述第二支撑件用于支撑所述待加工件。
可选地,在沿所述基座的轴线方向上,所述第一支撑件的高度大于所述第二支撑件的高度。
可选地,所述第二支撑件包括多个第二子支撑件,所述多个第二子支撑件中的至少之一为热电偶。
本公开的第二方面,涉及一种物理气相沉积设备,包括腔体和承载装置,所述承载装置为前文记载的所述的承载装置;
所述腔体包括:
底壁;
顶壁,与所述底壁相对设置;
侧壁,位于所述顶壁与所述底壁之间,并连接所述顶壁和所述底壁;
所述承载装置位于所述底壁和所述顶壁之间,并且,所述第一支撑件与所述顶壁相对设置。
可选地,还包括屏蔽件,环绕在至少部分所述腔体的侧壁内且连接到所述腔体的侧壁;并且,在基座位于卸除位置时,所述屏蔽件用于支撑所述盖环。
本公开的基座以及使用该基座的物理气相沉积装置,减小了待加工件所受的外部零件的压力,待加工件只受到重力及平衡重力的来自支撑柱的支撑力。另外,由于待加工件不与盖环接触,避免了待加工件与盖环之间可能发生的粘连,降低了待加工件破碎及待加工件位置不确定或者待加工件处于不期望的位置上的风险。另外,可以有效的防止等离子体绕过待加工件溅射到基座的上表面。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例, 而非对本公开的限制。
图1A为一种物理气相沉积设备的截面示意图;
图1B为图1A中的物理气相沉积设备的简化示意图;
图2为根据本公开一实施例的承载装置的平面示意图;
图3A为根据本公开一实施例的承载装置的截面示意图;
图3B为根据本公开一实施例的承载装置的局部截面示意图;
图4为根据本公开另一实施例的承载装置的平面结构示意图;
图5为根据本公开实施例的一种第一支撑件的立体示意图;
图6为根据本公开实施例的物理气相沉积设备的截面示意图;
图7为根据本公开实施例的物理气相沉积设备的截面示意图;
图8为根据本公开实施例的物理气相沉积设备的截面示意图;
图9为根据本公开实施例的物理气相沉积设备的截面示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的组件或者对象涵盖出现在该词后面列举的组件或者对象及其等同,而不排除其他组件或者对象。
图1A为一种物理气相沉积(PVD)设备(例如,磁控溅射设备)的截面结构示意图。如图1A所示,该磁控溅射设备包括磁控管1和铝靶材2,磁控管1和铝靶材2之间充满了用于冷却铝靶材2的去离子水。溅射时,脉冲直流电源会施加负压至靶材2。另外,该物理气相沉积设备还包括上屏蔽体3、下屏蔽体4、盖环5、隔热环6、快门片7、快门片储存室10以及基座9。待加工件8被支撑在基座9的支撑柱上。采用该装置进行薄膜沉积工艺时,先将待加工件8在高温下进行烘烤,快门片7移入腔室中,位于靶材2和待加工件8之间。然后,快门片7移出,进行正式沉积薄膜。在进行正式沉积之前,基座9带着待加工件8上升,并上升至与放置在隔热环6上的盖环5接触的位置。然后基座9继续上升一定的高度,这时待加工件8的边缘部分将盖环5顶起,盖环5与隔热环6脱离开。待加工件8的上表面一环形区域与盖环相接触,从而由靶材、屏蔽、盖环和待加工件围成一区域。等离子体在此区域产生,且形成的氮化铝薄膜沉积在待加工件上表面的基片上。盖环与屏蔽等起到了形成相对密闭的反应环境并防止沉积物污染腔室内壁的作用。在正式沉积结束后,基座9带着待加工件8、盖环5下降一段距离后,盖环5被隔热环6顶住留在隔热环6上,基座9带着待加工件8继续下降至传片位置,进行传片动作,完成基片的薄膜沉积工艺。
图1B示出了图1A的物理气相沉积装置的简化示意图,以突出显示待加工件8将盖环5顶起时基座9的支撑柱、待加工件8和盖环5之间的位置关系。从图1B可以看到,待加工件8被支撑在基座9的支撑柱上,且其边缘部分将盖环5顶起。
对于该结构,待加工件是由三针顶起的,被三个支撑点支撑起来,待加工件上升后需要顶起盖环。由于为了获得更快的加热速率,待加工件的厚度越薄就越容易被加热到更高的温度。但是若待加工件过薄,在承受盖环的压力及三针的向上的力时,会在待加工件内部产生很大的应力,容易发生待加 工件破碎的问题。例如,用于沉积AlN的PVD为高温高真空腔室,发生待加工件破碎后需要将腔室暴露于大气对其内部进行清理,然后重新抽真空,用特殊的处理方法将腔室环境进行预处理重新恢复高温高真空的环境,这需要浪费很多的时间。
AlN PVD的待加工件和盖环在反复多次溅射工艺后,表面会沉积有一定厚度的铝或者氮化铝的薄膜(工艺中会对靶材进行清洗,会有一定量的铝材质沉积),这样在较高的工艺温度下,待加工件上表面的铝和盖环表面的铝材质可能会发生粘连。这样,在工艺结束后,基座下降时,容易发生待加工件粘连在盖环上的情况,即待加工件没有随三针与基座一起下降。当发生这种粘连时,若盖环持续粘着待加工件,就无法进行下一次的工艺,需要将腔室降温、冲大气、开腔取出后再恢复腔室。若基座下降且在对粘住的待加工件进行开腔取出前待加工件掉落到处于下位的基座三针上,待加工件跌落在三针上的力可能造成待加工件破碎或者待加工件与基座的相对位置发生偏移,同样需要将高温腔室开腔进行处理。综上,由于盖环与待加工件的表面在工艺过程中会有铝和氮化铝物质的沉积,造成了待加工件可能粘连在盖环上的问题,这也影响了装置的稳定性。
本公开的第一方面,涉及一种承载装置,例如,该承载装置可以用于物理气相沉积设备并用于支撑待加工件以及盖环。该承载装置包括:基座,用于支撑待加工件;第一支撑件,设置在基座上,用于在基座位于工艺位置时顶起盖环,以使得盖环与待加工件相重迭的部分不接触。因此,可以避免待加工件因支撑盖环而发生破碎,并且由于盖环可以与待加工件不直接接触,也避免了待加工件与盖环之间因沉积物质而发生的粘连。另外,根据本公开的第二方面,涉及一种包括上述承载装置的物理气相沉积设备。
下面就根据本公开的一些实施例进行进一步详细的说明。在本公开中的待加工件例如可以是用于支撑待沉积芯片的托盘、也可以是单独的待沉积芯 片或者是芯片贴附在托盘上的组合结构,根据本公开的实施例对此没有特别限制。
实施例一
本实施例提供一种承载装置。例如,该承载装置可以安装在物理气相沉积设备的腔体内,用于支撑待加工件。另外,该承载装置可以配合升降机构在物理气相沉积设备的腔体内运动,并且可以支撑物理气相沉积设备中的盖环。
参照图2和图3A,承载装置100包括基座110和第一支撑件120。该基座110用于支撑待加工件300。该第一支撑件120设置在基座110上,用于在基座110位于工艺位置时顶起盖环220,以使得盖环220与待加工件300相重迭的部分不接触。
需要说明的是,第一支撑件120的靠近基座110的一端可以设置在基座110的上表面(如图3A所示的基座110的顶面),或者,也可以设置在基座110的侧面(如图3A所示的基座110左右两个侧面)上。
可选地,如图2所示,第一支撑件120为一个环状结构,该环状结构沿基座110的表面环形设置。例如,第一支撑件120可以为圆环状结构。在这种情况下,第一支撑件120的整个圆周均可以用于支撑盖环220,以达到稳定支撑的效果。虽然图2中示意性地示出了圆环状结构,其可以为适合支撑盖环220的任意合适的环状结构。
另外,根据本公开的实施例也不限于第一支撑件120为环状结构。图4为根据本公开另一实施例的承载装置的平面结构示意图。如图4所示,第一支撑件120可以包括多个第一子支撑件,该多个第一子支撑件沿基座110的周向均匀分布,且各第一子支撑件用于在工艺位置时顶起盖环220。例如,如图4所示,第一支撑件120可以包括4个第一子支撑件,沿基座110的周 向均匀地(例如,等间距地)分布。然而,根据本公开的实施例对于第一子支撑件的个数和具体分布没有特别的限制,只要能够稳定地支撑盖环220即可。
可选地,如图3A所示,第一支撑件120包括延伸部121,其自第一支撑件120的内表面朝向基座110的中部延伸至与待加工件300重迭,并且,在工艺位置时,沿基座110的轴线方向上,延伸部121的至少与待加工件300重迭的上表面低于待加工件300的下表面。
如图3A所示,在工艺位置时,延伸部121的至少部分与待加工件300在基座110上的正投影重合,例如,可以是待加工件300的边缘部分与延伸部121的上表面的至少一部分投影重迭。例如,如果第一支撑件120为环状结构,则其内径小于待加工件300的外径。在这种情况下,延伸部121的上表面会与待加工件300的下表面形成第一间隙。图3B为图3A的截面图的局部放大示意图。如图3B所示,该第一间隙在平行于基座110且从第一支撑件120的外侧到内侧的方向上的尺寸(也就是,该第一间隙在基座110上的正投影的径向长度)为d,该第一间隙在沿基座110的轴向方向上的尺寸(也就是,该第一间隙的高度)为f。在一些示例中,d与f之间的比值d/f大于5。例如,该第一间隙的高度方向的尺寸为1mm以下,径向方向的尺寸为6mm以上,但本公开的实施例不限于此。对于满足这样比值关系的间隙,可以防止等离子体穿过,相关的技术效果将在下文结合物理气相沉积装置的实施例进行更加详细的描述。
可选地,如图3A所示,在沿基座110的径向方向上,至少位于延伸部121上方的第一支撑件120与待加工件300之间具有间隔,也就是说,如图3A所示,第一支撑件120的延伸部121以上的部分位于待加工件300的外侧,从而不会影响待加工件300被基座110稳定地支撑。
虽然没有在图中示出,在一些示例中,在工艺位置时,延伸部121的上 表面也可以与待加工件300直接接触。也就是说,当基座110上升至工艺位置时,待加工件300的下表面也可以与延伸部121的上表面刚好接触。
可选地,延伸部121也可以不与待加工件300的边缘部分重迭,也就是说,延伸部121并不延伸到待加工件300的正下方。在这种情况下,延伸部121和待加工件300之间虽然形不成阻挡等离子体的间隙,但可以通过其他方式来阻挡等离子体,这将在下文中有详细描述。例如,在这种情况下,如果第一支撑件120为环状结构,那么其内径会大于待加工件300的外径。
例如,如图3B所示,盖环220的至少靠近内侧的部分(靠近待加工件300中心或者基座110中心的部分)与待加工件300在基座110上的正投影重迭。也就是说,盖环220的内径小于待加工件300的外径。在沿基座110的轴线方向上,盖环220的至少靠近内侧的部分的下表面与待加工件300的上表面彼此相对以形成第二间隙。该第二间隙在基座110上的正投影的径向长度为D,该第二间隙在沿基座110的轴线方向上的尺寸(该第二间隙的高度)为e。例如,该尺寸D和e满足如下关系:D/e>5。例如,该第二间隙的高度方向的尺寸为1mm以下,径向方向的尺寸为6mm以上,但本公开的实施例不限于此。
从图3B可以看到,在待加工件300的边缘附近,有两个间隙可以阻挡等离子体的穿过,位于待加工件300的下表面与第一支撑件120的延伸部121之间的第一间隙,以及位于待加工件300的上表面与盖环220的下表面之间的第二间隙。在这种情况下,两个间隙在基座110上的正投影的径向长度分别与两个间隙的高度之比的和大于5即可。在图3B的示例中,此比值例如为:D/e+d/f=6/1+6/1=12。
另外,如图3B所示,在待加工件300的外侧,盖环220的下表面上可以设置有向下凸起的突出部221,该突出部221也可以与待加工件300的侧壁之间形成一间隙,从而更加有助于等离子体的阻挡。
可选地,如图3A所示,基座110包括支撑面111和第二支撑件112。该支撑面111上设置有第一支撑件120。该第二支撑件112设置在支撑面111上,该第二支撑件112用于支撑待加工件300。
需要说明的是,上述所出现的在基座110上的正投影可以是在支撑面111上的正投影。
可选地,如图3A所示,在沿基座110的轴线方向上。第一支撑件120的高度大于第二支撑件112的高度。例如,第一支撑件120与第二支撑件112之间的高度差可以大于第二支撑件112所需支撑的待加工件300的厚度。在这种情况下,第一支撑件120的顶端高于待加工件300的上表面。因此,在该承载装置100在物理气相沉积设备中上升过程中,第一支撑件120将首先接触到盖环220,而避免了待加工件300接触盖环220。
在图3A所示的截面结构中,第一支撑件120的顶端高于第二支撑件112的顶端。然而,根据本公开的实施例并不限制于此。只要在盖环220接触到第一支撑件120时其没有接触到被第二支撑件112支撑的待加工件300,则第一支撑件120的顶端可以具有任意合适的高度。例如,在一些示例中,盖环220的面对第一支撑件120的顶端的部分具有向下的凸起,此时,第一支撑件120的顶端可以低于第二支撑件112的顶端并且可以使得盖环220不接触待加工件300。因此,第一支撑件120的高度可以大于、等于或小于第二支撑件112的高度。
对于第二支撑件112,其可以呈柱状结构,可以采用任意合适的用于支撑待加工件300的支撑结构。例如,在图2和图4的平面图中,第二支撑件112包括三个间隔部分的第二子支撑件,在图3A的截面图中为了示意的方便仅示出了两个第二子支撑件。然而,根据本公开实施例的第二子支撑件的数量和形状不限于图中所示的具体情况,例如,可以为三个以上的第二子支撑件。
例如,用于支撑待加工件300的多个第二子支撑件中的至少之一可以为热电偶。利用该结构,可以实时测量待加工件300的温度。
另外,如图2-4所示,该承载装置还可以包括可升降支撑针130。例如,可升降支撑针130沿基座的轴线方向向上运动,且支撑针130的顶端(位于基座110的支撑面111侧的端部)可运动至比所述第二支撑件112的顶端更远离支撑面的位置处。也就是说,支撑针130的顶端可以运动至高于第二支撑件112的顶端。因此,可以利用支撑针130来接取机械手传送的待加工件。例如,支撑针130可以运动至其顶端高于第二支撑件的顶端,接取机械手传来的待加工件,然后支撑针130下降至其顶端低于第二支撑件112的顶端,从而将待加工件放在第二支撑件112上。该结构仅仅是一种将待加工件放置到第二支撑件上的示例,根据本公开的实施例不限于此,还可以采用其他放置传送,因此可以不采用可升降支撑针结构。
例如,在图2和图4的平面图中看,支撑针130位于支撑面的中部区域,且与第二支撑件112间隔设置。虽然在图2和图4中示意性地示出了三个支撑针,然而根据本公开的实施例不限于此,在能够稳定支撑待加工件的情况下,可以为三个以上的支撑针。此外,对于支撑针的驱动部分也没有特别限制,例如,其可以设置在基座内部或其他任意合适的位置。
上述本公开的实施例中,提到了使用可升降支撑针来实现待加工件的传输,然而,根据本公开的实施例并不限制于此,也可以取消升降支撑针。在上升实施例中,可升降支撑针先上升到一个较高的位置来接受传输的待加工件等,是为了避免支撑件等结构对机械手运动的影响。图5示出了根据本公开一实施例的第一支撑件的立体示意图。如图5所示,在环形的第一支撑件120的顶端(设置在基座上时远离支撑面的端部)设置至少一个允许取片机构(机械手)通过的避让开口122。例如,在避让122处,第一支撑件120在避让开口122处的顶端边缘低于支撑待加工件的第二支撑件112的顶端, 也就是说,第一支撑件120在避让开口122处的顶端边缘的距基座的支撑面的距离小于第一支撑件120的避让开口122部分之外的其他部分的顶端边缘距支撑面的距离。这样,在传片时,真空机械手手指通过此避让开口将待加工件放置在基座上的第二支撑件上,然后真空机械手手指通过此避让开口移出加热基座的上方,这就实现了无升降支撑针的真空自动传片。
另外,此时在这两个避让开口处,待加工件边缘的下部不能形成有效的屏蔽等离子体的间隙,但是待加工件上表面外边缘与盖环形成的间隙的总的有效宽度与间隙的比值足够大,仍然可以有效的屏蔽沉积材料溅射到基座的上表面。
在图5所示的示例中,示出了两个避让开口,根据本公开的实施例并不限制于此,只要有一个可供传输待加工件的机械手通过的避让开口即可,当然,也可以有三个或更多个避让开口。另外,由于待加工件上表面外边缘与盖环形成的间隙已经能够有效屏蔽等离子体,第一支撑件也可以不形成环形结构,而是可以包括多个分立的第一子支撑件(如图4所示)。
另外,对于根据本公开的承载装置,其还可以根据需要包括其他任何合适的部件或组件。例如,基座内部或其上可以设置有加热装置、测量装置、各种线路等结构,本公开的实施例对此没有特别限制。
实施例二
本实施例提供了一种物理气相沉积设备。例如,该物理气相沉积设备可以为溅射设备、磁控溅射设备、电弧等离子体沉积设备等。该物理气相沉积设备包括实施例一中的任意一种承载装置。实施例一中关于承载装置的描述也适用于实施例二中物理气相沉积设备中的承载装置,因此,在某些部分会省略关于承载装置的描述。另外,实施例二中关于物理气相沉积设备中的承载装置的描述也可以适用于实施例一中的承载装置。
图6为根据本公开实施例的一种物理气相沉积设备的截面示意图。物理气相沉积设备200包括腔体210和实施例一中的任意一种承载装置100。例如,腔体210包括彼此相对的底壁211和顶壁212、以及位于底壁211和顶壁212之间的侧壁213,该侧壁213分别连接底壁211和顶壁212。承载装置100位于底壁211和顶壁212之间,并且,第一支撑件120与顶壁212相对设置。
例如,承载装置100可以相对于腔体210的底壁211沿基座110的轴线方向运动。在其向上运动时,第二支撑件112会支撑待加工件300,第一支撑件120会支撑盖环220。承载装置100在向上运动过程中的不同阶段其与其他部件的位置关系将在下文结合图6-图9分别进行描述。
例如,腔体的顶壁212的面对底壁211的一侧可以包括靶材和/或其他部件等,为了描述的方便,在本说明书中仅简单地描述为顶壁。在进行沉积工艺时,承载装置上升并将待加工件移至靠近顶壁212的合适位置后进行沉积。
例如,如图6所示,承载装置可以通过升降机构230(例如,波纹管)等连接到腔体210的底壁211,从而该升降机构230可以驱动承载装置在腔体内运动至不同进程所需的各个位置。例如,该升降机构230驱动承载装置沿基座的轴线方向向上运动。然而,根据本公开的实施例并不限于此,还可以使用任何其他合适升降机构驱动承载装置向上运动。
如图6所示,根据本公开一些示例的物理气相沉积设备200包括盖环220。盖环220位于承载装置与腔体210的顶壁212之间。在沿基座的轴线方向上,盖环220至少部分与第一支撑件120的顶端相对。
在根据本公开实施例的物理气相沉积设备中,第一支撑件120用于顶起盖环220、安装在基座上且与支撑待加工件300的第二支撑件112相对高度固定。例如,在一些示例中,根据高温的需求及高真空的需求,第一支撑件120及盖环220的材料可以考虑真空放气、高温强度、高温变形以及饱和蒸 汽压等因素。例如,第一支撑件120及盖环220可选用Mo等金属或者耐高温合金,或陶瓷等非金属材料。然而,根据本公开的实施例并不限制于此,第一支撑件和盖环的材料可以选取任何合适的材料。
在一些示例中,在所述基座沿其轴线方向向顶壁方向运动的过程中,在所述第一支撑件与所述盖环接触并将所述盖环顶起时,所述盖环的靠近内侧的部分的下表面距所述基座的支撑面的距离大于所述第二支撑件的顶端距所述支撑面的距离。
在一些示例中,盖环的所述靠近内侧部分的下表面距所述基座的支撑面的距离与所述第二支撑件的顶端距所述支撑面的距离之差大于所述气相沉积设备所使用的待加工件的厚度。也就是说,所述盖环的所述靠近内侧部分的下表面距所述基座的支撑面的距离与所述第二支撑件的顶端距所述支撑面的距离之差大于所述气相沉积设备所使用的待加工件的厚度。根据该结构,在待加工件放置在第二支撑件上时,盖环的靠近内侧的部分的下表面依然高于待加工件的上表面。
在一些示例中,如图6所示,该物理气相沉积设备还包括屏蔽件240。屏蔽件240环绕在至少部分所述腔体的侧壁内且连接到所述腔体的侧壁,在基座110位于卸除位置时,也就是说,当盖环220没有支撑在第一支撑件上时,也就是说,在第一支撑件120将盖环220顶起之前,屏蔽件240支撑盖环220。对于本领域的技术人员可以理解的是,屏蔽件240可以为环状结构,具有能够支撑盖环220的形状或相应的尺寸。本领域的技术人员可以根据实际情况来选择任何合适的形状和尺寸,本公开的实施例对此没有特别的限制。
另外,如图6所示,在一些示例中,物理气相沉积设备还可以包括快门片储存室250以及快门片260。快门片260可以放置在快门片储存室250中。快门片储存室250可以与腔体210的一部分侧壁连接,并且与腔室内部连通。 当然,快门片储存室250与腔室之间也可以设置有阀门等,根据本公开的实施例对此没有特别限制。
在基座运动的过程中,会经过不同的位置。下面结合基座处于不同状态对根据本公开实施例的物理气相沉积设备进行更详细的描述。
在一些示例中,如图6所示,可升降支撑针上升并使其顶端高于第二支撑件,此时,可升降支撑针130支撑待加工件300。机械手可以将待加工件传送至支撑针130上。例如,在支撑针130处于最高位置时,其顶端可以高于第一支撑件120和第二支撑件112的顶端,从而在机械手在进行传送操作时,不会妨碍机械手的运动。
然后,如图7所示,可升降支撑针130下降,在其顶端与第二支撑件112的顶端平齐时,待加工件300与第二支撑件112接触,支撑针130继续下降脱离待加工件300,从而将待加工件300放在第二支撑件112上。
在支撑针130将待加工件300放置在第二支撑件112之后,在一些示例中,待加工件300并不会接触第一支撑件120。在一些示例中,参照图3A和3B,第一支撑件120为一环状结构,在第一支撑件120的内侧包括朝向内侧突出的延伸部121,该延伸部121的内径A略小于待加工件300的外径B,(B-A)/2为第一支撑件120与待加工件300之间缝隙的宽度d,延伸部121的上表面(也就是第一支撑件120与待加工件300正对的表面)较第二支撑件112的最高点低,尺寸为f。如实施例一所述,这里的宽度d和尺寸f可以满足一定的比例关系,从而有助于密封等离子体,这里不再赘述。
图6和图7均为腔室开始工艺之前的状态下的截面示意图。在腔室开始工艺之前,盖环220放置在屏蔽件240上,此时,可以利用机械手将待加工件300放置在可升降支撑针130上。然后,可升降支撑针130下降并将待加工件300放置在第二支撑件112上。此时,基座处于盖环220的下方而没有接触到盖环220。另外,这里的可升降支撑针130的下降是相对于基座下降, 其中可以包括支撑针130本身下降,或者支撑针本身不动,而基座的其他部分上升。另外,支撑针130的驱动装置可以设置在基座内部,也可以设置在基座外部,本公开的实施例对此没有特别的限制。
另外,在待加工件300由第二支撑件112支撑后的状态也可以参考图3A的截面示意图。如前所述,在第二支撑件112支撑待加工件300之后,延伸部121与待加工件300的重迭部分可以具有间隙或者恰好接触。例如,在具有间隙的情况下,间隙的在基座的轴线方向上的尺寸可以或等于1mm,例如,重迭部分的水平方向(沿支撑面的方向)的尺寸(沿径向的尺寸)可以为6mm以上。但这些尺寸仅仅是示例性的,其尺寸f和d满足实施例一中描述的比例范围。通过这样的间隙尺寸设计,可以实现防止等离子体和沉积物通过缝隙。
如图8所示,基座继续上升,第一支撑件120的顶端与盖环220接触。此时,根据尺寸的限制,盖环的至少与待加工件300相对的部分(内侧部分)的下表面与待加工件300的上表面并不接触,盖环220的重量由第一支撑件120承受。此时,待加工件300、第一支撑件120、盖环220的相对位置固定,且待加工件300整体仍只与基座上的第二支撑件112接触,待加工件300受到的外力为自身的重量及第二支撑件112的支撑力,而盖环220的重量由第一支撑件120承受,这就减小了待加工件所受到的外力,降低了待加工件被压碎的风险。
如图9所示,盖环220与第一支撑件120接触后,随着基座的上升,盖环220继续被顶起并脱离屏蔽件240一段距离。此时,在待加工件300、盖环220、侧壁213、顶壁212之间形成封闭区域形成,用于产生等离子体,实现薄膜的沉积。本申请中所说的工艺位置即为该位置。从图9的截面示意图中可以看到待加工件300、第一支撑件120和盖环220之间的位置关系。在图9所示的示例中,第一支撑件120的顶端高于支撑待加工件300的第二 支撑件112的顶端,并且高度差值大于待加工件300的厚度,这样,在待加工件300放置在第二支撑件112上之后,第一支撑件120的顶端高度依然大于待加工件300的上表面的高度。此时,第一支撑件120接触盖环220,而使得盖环220不会接触待加工件300。
虽然待加工件200不与盖环300接触,但是由于待加工件200上侧边缘、待加工件200下侧边缘与盖环、支撑件形成的间隙的存在,等离子体不会完全穿过此间隙而沉积到待加工件下表面正对的加热基座内部的诸如加热灯管等组件上,实现了对等离子体的密封屏蔽。
然而,需要注意的时,由于待加工件200的上表面与盖环300的下表面之间的间隙本身已具有了较大的尺寸与垂直方向尺寸的比值,该间隙本身实际上也可以满足阻挡等离子体穿透的要求。因此,支撑件120的延伸部121也并不是必须的,该延伸部121可以不设置或者也可以不与待加工件形成正对的间隙。此外,在一些实施例中,支撑件120并不是封闭的环状结构,而是包括多个分立的支撑件(如图4所示)。
在图9所示的示例中,第一支撑件120的顶端高于第二支撑件112的顶端,因此,第一支撑件120可以在顶起盖环220时不会接触到待加工件300。然而,根据本公开的实施例并不限制于此,例如,第一支撑件120的顶端也可以低于盖环220的顶端,此时,为了使得盖环220的内侧部分不接触待加工件300,盖环220面对第一支撑件120的部分的下表面可以具有向下的凸起,该凸起可以接触第一支撑件的顶端,并由第一支撑件顶起。因此,只要使得盖环220不接触待加工件结构,第一支撑件120和盖环220之间相接触的部分可以采取各种合适的结构。
此外,由于盖环220被第一支撑件120顶起而脱离了屏蔽件240,盖环220与屏蔽件240之间的间隙也可以满足间隙的长度与间隙的间隔尺寸之间的比值大于5。如图9所示,盖环220的下表面以及外侧的向下凸起部分的 内侧表面与屏蔽件240的顶端以及外侧表面形成了间隙。然而,根据本公开的实施例并不限制于此,可以采取各种合适的结构来防止等离子体的泄漏。
对于本公开实施例的承载装置以及使用该承载装置的物理气相沉积设备,减小了待加工件所受的外部零件的压力,待加工件只受到重力及平衡重力的来自第二支撑件的支撑力。另外,由于待加工件不与盖环接触,避免了待加工件与盖环之间可能发生的粘连,降低了待加工件破碎及待加工件位置不确定或者待加工件处于不期望的位置上。另外,可以有效的防止等离子体通过待加工件溅射到基座的上表面。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (13)

  1. 一种承载装置,包括:
    基座,用于支撑待加工件;
    第一支撑件,设置在所述基座上,用于在所述基座位于工艺位置时顶起盖环,以使得所述盖环与所述待加工件相重迭的部分不接触。
  2. 根据权利要求1所述的承载装置,其中,所述第一支撑件呈环状结构,所述环状结构沿所述基座的表面环形设置。
  3. 根据权利要求2所述的承载装置,其中,所述环状结构包括至少一个允许取片机构通过的避让开口,以使得所述待加工件经由所述取片机构放置到所述基座上。
  4. 根据权利要求1所述的承载装置,其中,所述第一支撑件包括多个第一子支撑件,且多个第一子支撑件沿所述基座的周向均匀分布,且各所述第一子支撑件用于在所述工艺位置时顶起所述盖环。
  5. 根据权利要求1至4中任一项所述的承载装置,其中,所述第一支撑件包括:
    延伸部,自所述第一支撑件的内表面朝向所述基座的中部延伸至与所述待加工件重迭,并且,在所述工艺位置时:
    在沿所述基座的轴线方向上,所述延伸部的至少与所述待加工件重迭的上表面低于所述待加工件的下表面或与所述待加工件的下表面直接接触。
  6. 根据权利要求5所述的承载装置,其中,在沿所述基座的径向方向上,至少位于所述延伸部上方的所述第一支撑件与所述待加工件之间具有间 隔。
  7. 根据权利要求5所述的承载装置,其中,在沿所述基座的轴线方向上:
    所述待加工件的下表面与所述延伸部之间形成第一间隙,所述第一间隙在所述基座上的正投影的径向长度与所述第一间隙的高度之比大于5。
  8. 根据权利要求1至4中任一项所述的承载装置,其中,在沿所述基座的轴线方向上:
    所述待加工件的上表面与所述盖环之间形成第二间隙,所述第二间隙在所述基座上的正投影的径向长度与所述第二间隙的高度之比大于5。
  9. 根据权利要求1至4中任一项所述的承载装置,其中,所述基座包括:
    支撑面,设置有所述第一支撑件;
    第二支撑件,设置在所述支撑面上,所述第二支撑件用于支撑所述待加工件。
  10. 根据权利要求9所述的承载装置,其中,在沿所述基座的轴线方向上,所述第一支撑件的高度大于所述第二支撑件的高度。
  11. 根据权利要求9所述的承载装置,其中,所述第二支撑件包括多个第二子支撑件,所述多个第二子支撑件中的至少之一为热电偶。
  12. 一种物理气相沉积设备,其中,包括腔体和承载装置,所述承载装置为权利要求1至11中任一项所述的承载装置;
    所述腔体包括:
    底壁;
    顶壁,与所述底壁相对设置;
    侧壁,位于所述顶壁与所述底壁之间,并连接所述顶壁和所述底壁;
    所述承载装置位于所述底壁和所述顶壁之间,并且,所述第一支撑件与所述顶壁相对设置。
  13. 根据权利要求12所述的物理气相沉积设备,其中,还包括:
    屏蔽件,环绕在至少部分所述腔体的侧壁内且连接到所述腔体的侧壁;并且,在基座位于卸除位置时,所述屏蔽件用于支撑所述盖环。
PCT/CN2018/091643 2017-06-30 2018-06-15 承载装置以及物理气相沉积设备 WO2019001298A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201913596XA SG11201913596XA (en) 2017-06-30 2018-06-15 Loading apparatus and physical vapor deposition apparatus
US16/626,863 US11315768B2 (en) 2017-06-30 2018-06-15 Loading apparatus and physical vapor deposition apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710554503.7 2017-06-30
CN201710554503.7A CN107227448B (zh) 2017-06-30 2017-06-30 基座以及物理气相沉积装置

Publications (1)

Publication Number Publication Date
WO2019001298A1 true WO2019001298A1 (zh) 2019-01-03

Family

ID=59957392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091643 WO2019001298A1 (zh) 2017-06-30 2018-06-15 承载装置以及物理气相沉积设备

Country Status (5)

Country Link
US (1) US11315768B2 (zh)
CN (1) CN107227448B (zh)
SG (1) SG11201913596XA (zh)
TW (1) TWI657531B (zh)
WO (1) WO2019001298A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107227448B (zh) * 2017-06-30 2023-10-13 北京北方华创微电子装备有限公司 基座以及物理气相沉积装置
CN110396664B (zh) * 2018-04-24 2020-10-13 北京北方华创微电子装备有限公司 接地环、腔室以及物理气相沉积设备
CN110885973A (zh) * 2018-09-11 2020-03-17 上海引万光电科技有限公司 化学气相沉积设备
CN109913843B (zh) * 2019-03-14 2020-11-06 南京中电熊猫液晶显示科技有限公司 一种夹具装置
DE102019207772A1 (de) * 2019-05-28 2020-12-03 Siltronic Ag Verfahren zum Abscheiden einer epitaktischen Schicht auf einer Vorderseite einer Halbleiterscheibe und Vorrichtung zur Durchführung des Verfahrens
CN110923642B (zh) * 2019-11-11 2022-07-22 北京北方华创微电子装备有限公司 溅射装置
CN114763602B (zh) * 2021-01-13 2023-09-29 台湾积体电路制造股份有限公司 晶圆处理设备与制造半导体装置的方法
CN113718229B (zh) * 2021-08-31 2023-09-08 北京北方华创微电子装备有限公司 半导体工艺腔室、半导体工艺设备和半导体工艺方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186074A (ja) * 1994-12-28 1996-07-16 Hitachi Ltd スパッタリング装置
CN201089791Y (zh) * 2007-07-10 2008-07-23 联华电子股份有限公司 溅镀机台的晶片承载装置
CN102007572A (zh) * 2008-04-16 2011-04-06 应用材料公司 晶圆处理沉积屏蔽构件
CN104241184A (zh) * 2013-06-19 2014-12-24 北京北方微电子基地设备工艺研究中心有限责任公司 承载装置及等离子体加工设备
CN104862660A (zh) * 2014-02-24 2015-08-26 北京北方微电子基地设备工艺研究中心有限责任公司 承载装置及等离子体加工设备
CN107227448A (zh) * 2017-06-30 2017-10-03 北京北方华创微电子装备有限公司 基座以及物理气相沉积装置
CN207072968U (zh) * 2017-06-30 2018-03-06 北京北方华创微电子装备有限公司 基座以及物理气相沉积装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552124A (en) * 1994-06-22 1996-09-03 Applied Materials, Inc. Stationary focus ring for plasma reactor
US6284093B1 (en) * 1996-11-29 2001-09-04 Applied Materials, Inc. Shield or ring surrounding semiconductor workpiece in plasma chamber
US5942042A (en) * 1997-05-23 1999-08-24 Applied Materials, Inc. Apparatus for improved power coupling through a workpiece in a semiconductor wafer processing system
US8618446B2 (en) * 2011-06-30 2013-12-31 Applied Materials, Inc. Substrate support with substrate heater and symmetric RF return
CN105552009B (zh) * 2014-10-29 2019-07-05 北京北方华创微电子装备有限公司 一种半导体加工设备
US20160336149A1 (en) * 2015-05-15 2016-11-17 Applied Materials, Inc. Chamber component with wear indicator
WO2017059645A1 (zh) * 2015-10-09 2017-04-13 北京北方微电子基地设备工艺研究中心有限责任公司 加热装置以及加热腔室

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186074A (ja) * 1994-12-28 1996-07-16 Hitachi Ltd スパッタリング装置
CN201089791Y (zh) * 2007-07-10 2008-07-23 联华电子股份有限公司 溅镀机台的晶片承载装置
CN102007572A (zh) * 2008-04-16 2011-04-06 应用材料公司 晶圆处理沉积屏蔽构件
CN104241184A (zh) * 2013-06-19 2014-12-24 北京北方微电子基地设备工艺研究中心有限责任公司 承载装置及等离子体加工设备
CN104862660A (zh) * 2014-02-24 2015-08-26 北京北方微电子基地设备工艺研究中心有限责任公司 承载装置及等离子体加工设备
CN107227448A (zh) * 2017-06-30 2017-10-03 北京北方华创微电子装备有限公司 基座以及物理气相沉积装置
CN207072968U (zh) * 2017-06-30 2018-03-06 北京北方华创微电子装备有限公司 基座以及物理气相沉积装置

Also Published As

Publication number Publication date
US11315768B2 (en) 2022-04-26
CN107227448A (zh) 2017-10-03
SG11201913596XA (en) 2020-01-30
US20200144035A1 (en) 2020-05-07
TWI657531B (zh) 2019-04-21
CN107227448B (zh) 2023-10-13
TW201906064A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2019001298A1 (zh) 承载装置以及物理气相沉积设备
US11049761B2 (en) Shutter disk for physical vapor deposition chamber
US9099513B2 (en) Substrate processing apparatus, and substrate processing method
KR100909499B1 (ko) 기판의 탑재 기구 및 기판 처리 장치
TWI714530B (zh) 舉升銷組件
US9252002B2 (en) Two piece shutter disk assembly for a substrate process chamber
TWI652364B (zh) Deposition equipment and physical vapor deposition chamber
TWI752283B (zh) 遮擋盤組件、半導體加工裝置和方法
KR101287656B1 (ko) 종형 열처리 장치 및 기판 지지구
TW201635329A (zh) 載送環構造及具有該構造的腔室系統
JP2020503674A (ja) 半導体処理のための円錐形ウエハセンタリングおよび保持装置
TWI829685B (zh) 具有自定心特徵的兩件式快門盤組件
JP5194315B2 (ja) スパッタリング装置
CN214088650U (zh) 薄膜沉积设备
TWM566213U (zh) 用於物理氣相沉積鍍膜之晶圓遮蔽件
JP2005223142A (ja) 基板保持具、成膜処理装置及び処理装置
JP6098491B2 (ja) 半導体製造装置
TWM610249U (zh) 薄膜沉積設備
JP2016148062A (ja) 成膜装置
US20230411131A1 (en) Film forming apparatus
TW202204653A (zh) 薄膜沉積設備及薄膜沉積方法
JP2017057444A (ja) 真空処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824384

Country of ref document: EP

Kind code of ref document: A1