WO2019001246A1 - 换热组件和制冷设备 - Google Patents

换热组件和制冷设备 Download PDF

Info

Publication number
WO2019001246A1
WO2019001246A1 PCT/CN2018/090516 CN2018090516W WO2019001246A1 WO 2019001246 A1 WO2019001246 A1 WO 2019001246A1 CN 2018090516 W CN2018090516 W CN 2018090516W WO 2019001246 A1 WO2019001246 A1 WO 2019001246A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
header
fin
tube
disposed
Prior art date
Application number
PCT/CN2018/090516
Other languages
English (en)
French (fr)
Inventor
崔凯
占丽媛
Original Assignee
杭州三花家电热管理系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花家电热管理系统有限公司 filed Critical 杭州三花家电热管理系统有限公司
Publication of WO2019001246A1 publication Critical patent/WO2019001246A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the invention relates to the field of refrigeration technology, and in particular to a heat exchange component and a heat exchange component and a refrigeration device therewith.
  • a heat exchange core used in a refrigerator such as a refrigerator, a refrigerator, and the like is usually an aluminum tube fin heat exchange core or a copper tube fin heat exchange core, and the heat exchange core is disposed at Inside the air duct of the refrigeration equipment.
  • the above-mentioned conventional heat exchange core body is large in volume, and it is required to provide a large air passage inside the refrigeration equipment, thereby occupying a larger volume inside the tank.
  • a first aspect of the invention provides a heat exchange assembly that can save installation space.
  • a second aspect of the invention provides a refrigeration apparatus having the above heat exchange assembly.
  • the heat exchange assembly includes a heat exchange core body and a centrifugal fan, the heat exchange core body including a first header, a second header, and a plurality of heat exchange tubes; One end of the heat exchange tube is connected to the first header, the other end of the heat exchange tube is connected to the second header, and the inner cavity of the first header is The inner cavity of the second header is communicated through the inner cavity of the heat exchange tube; wherein the heat exchange core is configured to have a shape of a hole, the heat exchange tube is disposed around the hole, The axis of the hole portion extends in the left-right direction, and the plurality of heat exchange tubes are disposed at a distance from each other in the left-right direction, and the heat exchange tube has an inner edge adjacent to the hole portion and an outer edge away from the hole portion.
  • a dimension of the heat exchange tube from the inner edge to the outer edge is larger than a dimension of the heat exchange tube in a left-right direction, and at least a portion of the adjacent heat exchange tubes have a gap; the centrifugal fan Provided in the hole portion, and the centrifugal fan emits air toward the gap.
  • the heat exchange core is configured to have a structure in which the hole portion is formed in the middle, and the heat exchange assembly includes the heat exchange core body, so that the middle portion of the heat exchange unit is also formed with a hole portion around which the heat exchange tube surrounds
  • the circumferential extension of the part so that the heat exchange area of the heat exchange component can be increased without changing the thickness of the heat exchange component, in other words, the thickness of the heat exchange component can be reduced under the premise of satisfying the heat transfer performance, saving
  • the space required for the installation of the heat exchange component increases the effective volume of the refrigeration device, ie increases the volume of the refrigeration compartment in the refrigeration unit.
  • reducing the thickness of the heat exchange component is equivalent to reducing the number of heat exchange tubes, thereby making the distribution of the refrigerant in the heat exchange assembly more uniform.
  • the heat exchange assembly further includes a first fin, the first fin is disposed at a gap between the adjacent heat exchange tubes, and the first fin
  • the heat exchange tubes extend in the same direction, the first fins have peaks and troughs, and the peaks are in contact with one of the adjacent heat exchange tubes, and the troughs are adjacent to the adjacent heat exchange tubes Another contact.
  • the first fin has an inner edge adjacent to the hole portion; wherein, in a projection in the left-right direction, the inner edge of the first fin extends at least partially The inner edge of the heat exchange tube; or the inner edge of the fin does not at least partially extend beyond the inner edge of the heat exchange tube.
  • the first fin further has an outer edge away from the hole portion; wherein, in a projection in the left-right direction, the outer edge of the fin at least partially protrudes The outer edge of the heat exchange tube; or the outer edge of the fin does not at least partially extend beyond the outer edge of the heat exchange tube.
  • the heat exchange core further includes a side plate connected to a heat exchange tube adjacent thereto, or between the side plate and a heat exchange tube adjacent thereto A second fin is disposed, at least a portion of the second fin being coupled to the side panel, and at least a portion of the second fin being coupled to the heat exchange tube.
  • the heat exchange core is configured to have a general outline of a circular ring shape, an elliptical ring shape or a polygonal ring shape; a width of the heat exchange tube from the inner edge to the outer edge is 16 to 32 mm
  • the first fin has an FPI value of 2-16; the first fin is a windowless structure; the heat exchange tube is a multi-channel flat tube; wherein, in the projection in the front-rear direction, the At least one of a left end and a right end of the centrifugal fan protrudes from an end surface of the heat exchange core; or, in a projection perpendicular to the left and right direction, one of a left end and a right end of the centrifugal fan The end face of the heat exchange core is flush, and the other of the left end and the right end of the centrifugal fan protrudes from the end face of the heat exchange core.
  • the heat exchange core is configured to have a generally contoured annular shape;
  • the first header includes opposing first and second plate portions, the first plate portion Generally, the second plate portion has a substantially arc-shaped cross section, the first plate portion has a plurality of first insertion holes, and the plurality of the first insertion holes are spaced apart by a certain distance in the left-right direction.
  • the second header comprises a third plate portion and a fourth plate portion disposed opposite to each other, the third plate portion is substantially in the shape of a flat plate, and the fourth plate portion has a substantially arc-shaped cross section.
  • the third plate portion has a plurality of second insertion holes, and the plurality of the second insertion holes are disposed at a distance from each other in the left-right direction; the first header and the second header are arranged side by side.
  • the second plate portion is in contact with the fourth plate portion or the second plate portion is spaced apart from the fourth plate portion by a certain distance; the heat exchange tube has a generally contoured annular ring shape.
  • the heat exchange tube has a first end and a second end, and the gap is formed between the first end and the second end, the heat exchange a first end passes through the first insertion hole and is connected to the first header, a second end of the heat exchange tube passes through the second insertion hole and is connected to the second header Connected to each other; a first fin is disposed at a gap between the heat exchange tubes adjacent to the heat exchange tube, and the first fin extends in the same direction with the heat exchange tube, the first fin Having a crest and a trough, the crest being in contact with one of the adjacent heat exchange tubes, the trough being in contact with the other of the adjacent heat exchange tubes, the fin in the projection in the front-rear direction An inner edge of the sheet protrudes from an inner edge of the heat exchange tube and an outer edge of the fin protrudes from an outer edge of the heat exchange tube; the heat exchange core is further provided with a side plate, the side plate The overall contour is substantially the same as the overall contour of the heat exchange tube, the side plate
  • the heat exchange tube includes a plurality of straight segments disposed around the hole portion, and the plurality of the straight segments are sequentially connected by a commutation segment in a direction surrounding the hole portion,
  • the heat exchange core has a general outline in a polygonal shape; the commutating section is twisted at a predetermined angle with respect to the straight section about a length direction of the heat exchange tube, and the plurality of heat exchange tubes are at substantially the same position. Having the commutation section; or adjacent straight sections are smoothly connected by the commutation section.
  • the heat exchange core has a general outline in a diamond shape; the first header and the second header have a circular cross section, and the first header and the first The second header is in contact with the first header or the second header is disposed at a distance from the second header; the first header is provided with a plurality of third jacks, and the plurality of The three jacks are disposed at a distance from each other in the left and right direction, the second header is provided with a plurality of fourth jacks, and the plurality of the fourth jacks are disposed at a distance from each other in the left and right direction;
  • the heat assembly includes a plurality of heat exchange tubes, one end of the heat exchange tube passes through the third socket and is connected to the first header, and the other end of the heat exchange tube passes through the fourth plug a hole is connected to the second header; the heat exchange tube includes at least four straight segments and at least three commutation segments, the commutating segments being connected between adjacent straight segments, The commutating segment is
  • the heat exchange core has a general outline in a diamond shape; the first header and the second header have a circular cross section, and the first header and the first The second header is in contact with each other or the first header is spaced apart from the second header by a certain distance; the first header is provided with a plurality of fifth jacks, and the plurality of The five jacks are disposed at a distance from each other in the left and right direction, the second header is provided with a plurality of sixth jacks, and the plurality of sixth jacks are disposed at a distance from each other in the left and right direction;
  • the heat assembly includes a plurality of heat exchange tubes, one end of the heat exchange tube passes through the fifth insertion hole and is connected to the first header, and the other end of the heat exchange tube passes through the sixth insertion a hole is connected to the second header; the heat exchange tube includes at least four straight segments and at least three commutation segments, the commutating segments being connected between adjacent straight segments;
  • the first header and the second header have
  • a refrigeration apparatus comprising: a tank having a refrigerating compartment and an air duct, wherein the duct is in communication with the refrigerating compartment; and the heat exchange component is according to the foregoing a heat exchange component, the heat exchange component being disposed in the air duct.
  • the overall performance of the refrigeration apparatus is improved by providing the heat exchange unit of the above first aspect.
  • the air duct has an air inlet and at least one air outlet, and the centrifugal fan sucks air in the refrigerating compartment into the air duct through the air inlet, in the air duct Air that is in heat exchange with the heat exchange assembly enters the refrigeration compartment through the at least one air outlet.
  • FIG. 1 is a schematic view of a heat exchange assembly in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic view of another angle of the heat exchange assembly shown in Figure 1;
  • FIG 3 is a schematic view of still another angle of the heat exchange assembly shown in Figure 1;
  • FIG. 4 is a schematic view of a heat exchange assembly according to a second embodiment of the present invention.
  • FIG. 5 is a schematic view of the heat exchange core shown in Figure 4.
  • Figure 6 is a schematic view of another angle of the heat exchange core shown in Figure 4.
  • FIG. 7 is a schematic view showing still another angle of the heat exchange core shown in Figure 4.
  • FIG. 8 is a schematic illustration of a heat exchange assembly in accordance with one embodiment of the present invention.
  • FIG. 9 is a schematic illustration of a heat exchange assembly in accordance with one embodiment of the present invention.
  • FIG. 10 is a schematic illustration of a heat exchange assembly in accordance with one embodiment of the present invention.
  • FIG 11 is a schematic illustration of a refrigeration apparatus in accordance with an embodiment of the present invention.
  • the cabinet 1 the refrigerating compartment 101, the air duct 102, the upper air outlet 103, the lower air outlet 104, the air inlet 105,
  • Heat exchange component 2 heat exchange core 21, first header 211, second header 212, heat exchange tube 213, commutation section 2131, first fin 2141, second fin 2142, inlet tube 215 , the outlet pipe 216, the side plate 217, and the centrifugal fan 22.
  • a heat exchange assembly 2 according to an embodiment of the first aspect of the present invention will now be described with reference to Figs.
  • a heat exchange assembly 2 includes a heat exchange assembly 2 including a heat exchange core 21 and a centrifugal fan 22.
  • the heat exchange core 21 includes a first header 211, a second header 212, and a plurality of heat exchange tubes 213. One end of the heat exchange tube 213 is connected to the first header 211, the other end of the heat exchange tube 213 is connected to the second header 212, and the inner chamber of the first header 211 and the second header 212 are The inner cavity communicates through the inner cavity of the heat exchange tube 213.
  • the refrigerant (or other fluid) may enter the heat exchange tube 213 from the first header 211 and flow into the second header 212.
  • the heat exchange core 21 is configured to have a shape of a hole portion, the heat exchange tube 213 is disposed around the hole portion, the axis of the hole portion extends in the left-right direction, and the plurality of heat exchange tubes 213 are disposed at a certain distance along the left and right direction.
  • the heat pipe 213 has an inner edge close to the hole portion and an outer edge away from the hole portion.
  • the dimension of the heat exchange tube 213 from the inner edge to the outer edge is larger than the dimension of the heat exchange tube 213 in the left-right direction, and at least partially adjacent heat exchange. There is a gap between the tubes 213.
  • the heat exchange tube 213 may be bent into a shape extending around a central axis, and more specifically, the heat exchange tube is bent into a ring shape. At this time, the central portion surrounded by the heat exchange tube is a hole portion of the heat exchange core body. .
  • the annular shape of the heat exchange tube may be continuous and has a notched annular shape, that is, there may be a gap between the two ends of the heat exchange tube, and of course, there may be no gap between the two ends of the heat exchange tube.
  • the heat exchange tubes 213 need to be connected to the first header 211 and the second header 212, it is preferable that the heat exchange tubes 213 are bent into a ring shape having a notch, that is, the ring shape of the heat exchange tubes 213 is not Closed ring.
  • the heat exchange tubes 213 include a plurality of intervals arranged in the thickness direction of the heat exchange core 21 (for example, the axial direction of the centrifugal fan 22 shown in FIG. 1, that is, the left and right direction), and preferably, may be adjacent to each other. Fins are disposed between the tubes 213.
  • the centrifugal fan 22 is disposed in the hole portion, and the centrifugal fan 22 is ventilated toward the gap. That is, the centrifugal fan 22 vents toward the gap between the adjacent heat exchange tubes 213.
  • the centrifugal fan 22 is placed in the hole portion of the heat exchange core 21, in other words, the centrifugal fan 22 is surrounded by the heat exchange core, and the centrifugal fan 22 enters the air in the axial direction (for example, the left-right direction shown in FIG. 1) and faces the heat exchange core.
  • the body is surrounded by wind.
  • one of the first header 211 and the second header 212 is for allowing the refrigerant to be uniformly distributed and flowing into the plurality of heat exchange tubes 213, and the other for being used in the heat exchange tubes 213 The heat exchanged refrigerants are brought together.
  • the refrigerant flows into the heat exchange tube 213 from the first header 211 or the second header 212, and at the same time, under the action of the centrifugal fan 22, the air is along the axial direction of the centrifugal fan 22. (for example, the left-right direction shown in Fig.
  • the heat exchange core 21 is configured to have a structure in which a hole portion is formed in the middle, and the heat exchange tube extends around the circumference of the hole portion, so that the heat exchange core thickness can be not changed (for example, under the premise of the thickness of the heat exchange core body shown in FIG. 1 along the left and right direction, the heat exchange area of the heat exchange core body is increased, in other words, the heat exchange core body can be reduced under the premise of satisfying the heat exchange performance.
  • the thickness of the heat exchange core saves the space required for the installation of the heat exchange core, thereby increasing the effective volume of the refrigeration apparatus 100, that is, increasing the volume of the refrigeration compartment 101 in the refrigeration apparatus 100.
  • reducing the thickness of the heat exchange core is equivalent to reducing the number of heat exchange tubes 213, so that the distribution of the refrigerant in the heat exchange core body can be made more uniform.
  • the size of the heat exchange tube 213 in the present application from the inner edge to the outer edge is larger than the dimension of the heat exchange tube 213 in the left-right direction, which can effectively facilitate the airflow through the adjacent heat exchange tubes.
  • the gap between 213, thereby improving the effect of heat exchange, and the airflow obstruction is small, and the airflow is smoothly passed through the heat exchange core.
  • the first header 211 and the second header 212 are arranged side by side to facilitate the first header 211 and the second header 212 and external piping (for example, an inlet of a refrigerant) Tube 215 and outlet tube 216) are connected.
  • first header 211 and the second header 212 are arranged side by side at the bottom of the heat exchanger, and the axes of the first header 211 and the second header 212 extend in the up and down direction.
  • the first header 211 is connected to the inlet pipe 215 of the refrigerant
  • the second header 212 is connected to the outlet pipe 216 of the refrigerant.
  • the heat exchange assembly 2 further includes a first fin 2141, a first fin 2141 is disposed at a gap between the adjacent heat exchange tubes 213, and the first fin 2141 follows the heat exchange
  • the tube 213 extends in the same direction, the first fin 2141 has a crest and a trough, the crest is in contact with one of the adjacent heat exchange tubes 213, and the trough is in contact with the other of the adjacent heat exchange tubes 213.
  • the first fin 2141 periodically fluctuates between adjacent two heat exchange tubes 213, thereby forming staggered peaks and troughs, wherein the peaks are connected in the adjacent two heat exchange tubes 213 One, and the trough connects the other of the two adjacent heat exchange tubes 213, so that a passage of the air flow is formed between the first fin 2141 and the heat exchange tube, so that the air flow can pass through the passage to achieve heat exchange.
  • the first fin 2141 has an inner edge adjacent to the hole portion.
  • the inner edge of the first fin 2141 at least partially protrudes from the inner edge of the heat exchange tube 213, and the inner edge of the first fin 2141 protrudes from the inner edge of the heat exchange tube 213, Effectively improve the heat transfer effect.
  • the inner edge of the first fin 2141 protrudes from the inner edge of the heat exchange tube 213 does not affect the implementation of the technical solution of the present invention. Therefore, the inner edge of the first fin 2141 may also be at least partially not extended. The inner edge of the tube 213.
  • the first fin 2141 also has an outer edge away from the hole portion;
  • the outer edge of the first fin 2141 at least partially protrudes from the outer edge of the heat exchange tube 213;
  • the outer edge of the first fin 2141 extends beyond the outer edge of the heat exchange tube 213 does not affect the implementation of the technical solution of the present invention. Therefore, the outer edge of the first fin 2141 may also be at least partially extended. The outer edge of the heat exchange tube 213.
  • the outer edge of the first fin 2141 protrudes from the outer edge of the heat exchange tube 231, and the inner edge of the first fin 2141 does not protrude from the inner edge of the heat exchange tube 231;
  • the outer edge of the first fin 2141 does not protrude from the outer edge of the heat exchange tube 231, and the inner edge of the first fin 2141 protrudes from the inner edge of the heat exchange tube 231;
  • the outer edge of the first fin 2141 protrudes from the outer edge of the heat exchange tube 231, and the inner edge of the first fin 2141 protrudes from the inner edge of the heat exchange tube 231;
  • the outer edge of the first fin 2141 does not protrude beyond the outer edge of the heat exchange tube 231, and the inner edge of the first fin 2141 does not protrude from the inner edge of the heat exchange tube 231.
  • both sides of the fin 214 extend outwardly and outwardly from the inner and outer edges of the heat exchange tube 213, respectively.
  • the heat exchange area of the air side (ie, the fin) of the heat exchanger can be effectively increased, and the ice storage and storage volume of the heat exchanger can be increased, so that the heat exchanger as a whole is not easily blocked; meanwhile, due to the fins 214 When the defrosting water is drained, the water does not easily adhere and is easy to discharge; thus, the heat exchange efficiency can be further improved.
  • the heat exchange core 21 further includes a side plate 217, the side plate 217 is connected to the heat exchange tube 213 adjacent thereto, or the side plate 217 is adjacent to the heat exchange tube 213 adjacent thereto.
  • a second fin 2142 is disposed therebetween, at least a portion of the second fin 2142 is coupled to the side plate 217, and at least a portion of the second fin 2142 is coupled to the heat exchange tube 213.
  • the heat exchange core 21 is configured to have a general outline of a circular ring shape, an elliptical ring shape or a polygonal ring shape; the heat exchange tube 213 has a width from the inner edge to the outer edge of 16 to 32 mm; and the FPI of the first fin 2141 (Fin Per) The Inch) value is 2 to 16; the first fin 2141 is a windowless structure; and the heat exchange tube 213 is a multi-channel flat tube.
  • the heat exchange core 21 may be configured to have a general outline of a circular ring shape, an elliptical ring shape or a polygonal ring shape. That is to say, the heat exchange core 21 can have a circular or elliptical ring shape, and the heat exchange core 21 can also be configured in a polygonal ring shape, so that the heat exchange core 21 can be circular, elliptical or Multi-lateral ring to facilitate the surrounding centrifugal fan.
  • the heat exchanger can be adaptively designed according to actual conditions (for example, installation position, installation space, etc.).
  • At least one of the left end and the right end of the centrifugal fan 22 extends beyond the end face of the heat exchange core 21; or, in the projection in one direction perpendicular to the left-right direction, the left end of the centrifugal fan 22 One of the right end and the right end is flush with the end face of the heat exchange core 21, and the other of the left end and the right end of the centrifugal fan 22 extends beyond the end face of the heat exchange core 21.
  • the left end of the centrifugal fan 22 protrudes from the left end surface of the heat exchange core 21, and the right end of the centrifugal fan 22 projects, is shorter, and flush with the right end surface of the heat exchange core 21; or
  • the heat exchange core 21 is configured to have a generally contoured toroidal shape.
  • the first header 211 includes a first plate portion 2111 and a second plate portion 2112 .
  • the first plate portion has a substantially flat shape
  • the second plate portion has a substantially arc-shaped cross section.
  • the cross section is a cross section of the second plate portion which is cut by a plane extending in the left-right direction.
  • the first plate portion has a plurality of first insertion holes, and the plurality of first insertion holes are disposed at a distance from each other in the left-right direction;
  • the second header 212 includes oppositely disposed third plate portions 2121 and fourth plate portions 2122.
  • the third plate portion has a substantially flat shape
  • the fourth plate portion has a substantially arc-shaped cross section, wherein the cross section is a cross section of the fourth plate portion which is cut by a plane extending in the left-right direction.
  • the third plate portion has a plurality of second insertion holes, and the plurality of second insertion holes are disposed at a distance from each other in the left-right direction; the first header 211 and the second header 212 are arranged side by side, and the second plate portion and the second portion
  • the four plate portions are in contact with each other or the second plate portion is spaced apart from the fourth plate portion by a certain distance.
  • the heat exchange tube 213 has a substantially contoured annular shape, and the heat exchange tube 213 has a first end 21301 and a second end 21302. A gap is formed between the first end and the second end, and the heat exchange tube 213 is formed.
  • the first end passes through the first insertion hole and is connected to the first header 211, and the second end of the heat exchange tube 213 passes through the second insertion hole and is connected to the second header 212.
  • the first fins 2141 are provided at the gaps between the heat exchange tubes 213 adjacent to the heat exchange tubes 213, and the first fins 2141 extend in the same direction with the heat exchange tubes 213.
  • the first fin 2141 has a crest and a trough, the crest is in contact with one of the adjacent heat exchange tubes 213, and the trough is in contact with the other of the adjacent heat exchange tubes 213, and the fin in the projection in the front-rear direction
  • the inner edge of the sheet 214 extends beyond the inner edge of the heat exchange tube 213 and the outer edge of the fin 214 extends beyond the outer edge of the heat exchange tube 213.
  • the heat exchange core 21 is further provided with a side plate 217 having an overall contour substantially identical to the overall contour of the heat exchange tube 213, the side plate 217 being disposed on the left side of the heat exchange tube 213 at the leftmost end and/or Or the side plate 217 is disposed on the right side of the heat exchange tube 213 at the rightmost end, and the second fin 2142 is disposed between the side plate 217 and the heat exchange tube 213 adjacent thereto, and at least part and the side of the second fin 2142 The plate 217 is welded and at least a portion of the second fin 2142 is welded to the heat exchange tube 213 adjacent thereto.
  • the axis of the hole portion extends in the left-right direction
  • the axis of the centrifugal fan 22 extends in the left-right direction
  • the axis of the centrifugal fan 22 coincides with the axis of the heat exchange core 21; at least a portion of the outlet of the centrifugal fan 22 faces the gap,
  • the left end of the centrifugal fan 22 protrudes from the left end surface of the heat exchange core 21
  • the right end of the centrifugal fan 22 protrudes from the right end surface of the heat exchange core 21.
  • the axis of the first header 211 and the axis of the second header 212 both extend in the front-rear direction, and fins 214 are disposed between the adjacent two heat exchange tubes 213.
  • the inner edge of the fin 214 protrudes from the inner edge of the heat exchange tube 213 and the outer edge of the fin 214 protrudes from the outer edge of the heat exchange tube 213; or two adjacent heat exchange tubes Fins 214 are provided between 213, and the inner edge of the fin 214 does not protrude from the inner edge of the heat exchange tube 213 in the projection in the front-rear direction and the outer edge of the fin 214 does not protrude from the outer edge of the heat exchange tube 213.
  • the heat exchange core 21 may be composed of a single heat exchange core, and the single heat exchange core 21 is bent into a circular shape, specifically, when the heat exchange of the single heat exchange core 21 is performed.
  • the single heat exchange core is in a circular shape.
  • the first header 211 and the second header 212 of the single heat exchange core 21 are arranged side by side with each other.
  • the fins 214 extend in the radial direction of the heat exchange core 21 and along the diameter of the heat exchange core 21. In the direction of the direction, the size of the fins 214 is larger than the size of the heat exchange tubes 213.
  • the heat exchange tubes have a plurality of commutating segments 2131 at substantially the same location, that is, the heat exchange core has a plurality of heat exchange tubes, each Each of the heat exchange tubes has a plurality of commutating segments, and the plurality of commutating segments of the plurality of heat exchange tubes are substantially the same at positions along the extending direction of the heat exchange tubes. In other words, each of the plurality of heat exchange tubes has a one-to-one correspondence.
  • the heat exchange core is bent at a plurality of commutating segments 2131 to form a polygonal ring shape.
  • the heat exchange tubes may be bent into a ring shape of a triangle, a quadrangle, a pentagon, a hexagon, or the like at a plurality of times at a plurality of commutation segments, respectively.
  • the shape adaptability design of the heat exchange core body can be designed according to actual conditions (for example, mounting position, installation space, etc.).
  • the bending angle of the heat exchange tube in the commutating section can be flexibly set, thereby facilitating the matching design according to the structure of the compressor compartment.
  • the heat exchange tubes 213 are formed by bending multiple times, the heat exchange tubes 213 on both sides of the commutating section are angularly arranged, and the structure is relatively compact. Therefore, preferably, the commutation sections of the adjacent two heat exchange tubes are The fins are not arranged to simplify the structure of the heat exchange core and are easy to process.
  • the heat exchange tube includes at least three straight segments and at least two commutation segments, and the commutation segments are connected between two adjacent straight segments.
  • the heat exchange tube has N straight segments and N-1 commutation segments.
  • the heat exchange tube Before the heat exchange tube is bent, at least one of the commutation segments is twisted by a predetermined angle with respect to the straight segment, and the fins are not disposed between the adjacent twisted commutation segments, that is, adjacent two No fins are provided between the adjacent two twisted commutation segments on the heat exchange tube.
  • the heat exchange tubes of the heat exchange core shown in Fig. 4 can be twisted by about 90° and then bent before being bent.
  • the heat exchange tube 213 includes a plurality of straight segments 2132 disposed around the hole portion, and a plurality of straight segments are sequentially connected by the commutating segments in a direction surrounding the hole portion, so that the heat exchange core 21 has a general outline. Ring.
  • the commutating section 2131 is twisted by a predetermined angle with respect to the straight section about the length direction of the heat exchange tube 213, and the plurality of heat exchange tubes 213 have a commutating section at substantially the same position; or the straight section of the adjacent straight section is smoothly transitioned through the commutating section connection.
  • the heat exchange core 21 has a generally contoured diamond shape.
  • the cross section of the first header 211 and the second header 212 (ie, the section obtained by the first header 211 / the second header 212 being cut by the plane extending in the up and down direction) is circular, A header 211 is in contact with the second header 212 or the first header 211 is spaced apart from the second header 212 by a distance; the first header 211 is provided with a plurality of third receptacles. The plurality of third jacks are disposed at a distance from each other in the left and right direction, and the second header 212 is provided with a plurality of fourth jacks, and the plurality of fourth jacks are disposed at a distance from each other in the left and right direction; A plurality of heat exchange tubes 213 are included. One end of the heat exchange tubes 213 passes through the third socket and is connected to the first header 211. The other end of the heat exchange tubes 213 passes through the fourth socket and the second header. 212 connected.
  • the heat exchange tube 213 includes at least four straight segments and at least three commutation segments, the commutating segments are connected between adjacent straight segments, and the commutating segments are relatively flat with respect to the length of the heat exchange tubes 213.
  • the straight section is twisted by a predetermined angle; the first fins 2141 are disposed between the opposite straight sections of the adjacent two heat exchange tubes 213, and the opposite commutation sections of the adjacent two heat exchange tubes 213 are not disposed.
  • the heat exchange core 21 is further provided with a side plate 217 which is disposed outside the straight section of the heat exchange tube 213 at the leftmost end, and/or the side plate 217 is disposed at the rightmost end of the heat exchange The outer side of the straight section of the tube 213.
  • first header 211 and the second header 212 are arranged side by side, and the first header 211 and the second header 212 are located at one end of the long-axis direction of the heat-exchange core 21 having a rhombic shape.
  • first header 211 and the second header 212 are located at one end of the heat exchange core 21 in the short-axis direction of the heat-exchange core 21 having a substantially rhombic profile.
  • the axis of the hole portion extends in the left-right direction
  • the axis of the centrifugal fan 22 extends in the left-right direction
  • the axis of the centrifugal fan 22 coincides with the axis of the heat exchange core 21; at least a portion of the outlet of the centrifugal fan 22 faces the gap,
  • the left end of the centrifugal fan 22 protrudes from the left end surface of the heat exchange core 21
  • the right end of the centrifugal fan 22 protrudes from the right end surface of the heat exchange core 21.
  • the heat exchange core 21 has a generally contoured diamond shape.
  • the cross section of the first header 211 and the second header 212 (the section obtained by the first header 211 / the second header 212 being cut by the plane extending in the up and down direction) is circular, first The collecting pipe 211 is in contact with the second collecting pipe 212 or the first collecting pipe 211 is spaced apart from the second collecting pipe 212 by a certain distance; the first collecting pipe 211 is provided with a plurality of fifth jacks, and more The fifth jacks are disposed at a distance from each other in the left and right direction, and the second header 212 is provided with a plurality of sixth jacks, and the plurality of sixth jacks are disposed at a distance from each other in the left and right direction; the heat exchange component includes a plurality of heat exchange tubes 213, one end of the heat exchange tube 213 passes through the fifth insertion hole and is connected to the first header 211, and the other end of the heat exchange tube 213 passes through the sixth insertion hole and the second header 212. Connected.
  • the heat exchange tube 213 includes at least four straight segments and at least three commutation segments, and the commutation segments are connected between adjacent straight segments;
  • the first header 211 and the second header 212 are arranged side by side, and the first header 211 and the second header 212 are located in a substantially contoured heat exchange core.
  • a second fin 2142 is disposed between the side plate 217 and the heat exchange tube 213 adjacent thereto, and at least a portion of the second fin 2142 is welded to the side plate 217. Fixed, and at least part of the second fin 2142 is welded and fixed to the heat exchange tube 213, and the side plate 217 is not disposed at the other end of the long axis direction;
  • the first header 211 and the second header 212 are arranged side by side, and the first header 211 and the second header 212 are located in the heat exchange core 21 having a substantially contoured rhombus shape.
  • One end of the short-axis direction, at least one of the commutating segments is located at the other end of the short-axis direction of the heat-conducting core 21 having a generally contoured diamond shape, and at least two of the commutating segments are located at the length of the heat-exchanged core 21 having a substantially rhombic shape
  • the two ends of the axial direction; wherein the commutating section located at the other end of the short-axis direction smoothly connects the adjacent straight sections, and the commutating sections located at both ends of the long-axis direction are relatively straight with respect to the length of the heat-exchange tube 213
  • the segment is twisted by a predetermined angle; the first fins 2141 are disposed between the opposite straight sections of the adjacent two heat exchange tubes 213, and the
  • the first fins 2141 are disposed, and the first fins 2141 are disposed between the tube segments of the adjacent two heat exchange tubes 213 at the other end in the short axis direction;
  • the heat exchange core body 21 further includes a side plate 217, and the side plate 217 Set to the left of the leftmost heat exchange tube 213 and/or the side plate 217 is disposed at the far right
  • the second fin 2142 is disposed between the side plate 217 and the heat exchange tube 213 adjacent thereto, and at least a portion of the second fin 2142 is welded and fixed to the side plate 217, and the second wing At least part of the piece 2142 is welded and fixed to the heat exchange tube 213, and the side plate 217 is not disposed at the opposite ends of the long axis direction;
  • the axis of the hole portion extends in the left-right direction
  • the axis of the centrifugal fan 22 extends in the left-right direction
  • the axis of the centrifugal fan 22 coincides with the axis of the heat exchange core 21; at least a portion of the outlet of the centrifugal fan 22 Toward the gap, in the projection in the front-rear direction, the left end of the centrifugal fan 22 extends to the left end surface of the heat exchange core 21, and the right end of the centrifugal fan 22 extends to the right end surface of the heat exchange core 21.
  • the heat exchange tube of the heat exchange core body of the embodiment is a flat tube
  • the length direction of the flat tube is a direction surrounding the axis of the centrifugal fan
  • the thickness direction of the flat tube is parallel to the axis of the centrifugal fan.
  • the width direction of the flat tube is the direction of the air around the centrifugal fan. Therefore, after the flat tube is twisted by 90°, the flat tube is bent parallel to the width direction of the flat tube (the flat tube is bent perpendicular to the thickness direction of the flat tube) It can save time and effort, and the bending effect is good.
  • the heat exchange tubes are flat tubes, and the first header tubes and the second header tubes have a rectangular or circular cross section, thereby simplifying the heat exchange tube structure and enabling The structure of the heat exchange core is more compact.
  • the heat exchange tube 213 is a flat tube, and the width D of the heat exchange tube 213 is in the range of 16 mm to 32 mm.
  • the width D of the heat exchange tube 213 refers to the dimension of the heat exchange tube 213 perpendicular to the extending direction thereof (the length direction of the heat exchange tube 213) on the projection plane perpendicular to the axis of the centrifugal fan, that is, the heat exchange tube
  • the width of the ring refers to the width of the heat exchange tube in the radial direction along the heat exchange core.
  • the heat exchange capacity of the single heat exchange core 21 can be achieved by setting a different number of flat tubes.
  • the overall thickness of the heat exchange core needs to be determined according to the installation space and the cooling capacity requirement, that is, The thickness of the heat exchange core is determined by setting different numbers of heat exchange tubes 213 according to the actual installation space and capacity requirements.
  • a plurality of fins 214 are disposed between adjacent heat exchange tubes 213, and the fins 214 extend along the width direction of the heat exchange tubes 213, and in a direction perpendicular to the flow direction of the airflow, Adjacent fins 214 are arranged in a V-shape, and fins 214 and the outer peripheral wall of the heat exchange tubes 213 define an air flow passage through which air flows.
  • the fins 214 have a density in units of inches in the range of 2-16. That is, the number of fins 214 may be in the range of 2-16 over a length of 1 inch. Thereby, the heat exchange efficiency of the heat exchange core can be ensured and improved.
  • the heat exchange core may be a microchannel heat exchanger, and the microchannel heat exchanger may be strong
  • the heat exchange core body is used together with the centrifugal fan.
  • the thickness of the microchannel is small, there is still a large heat exchange area to meet the heat exchange capacity requirement; compared with the conventional heat exchange core body, a large amount of space is saved and the space is increased. Effective volume of the refrigerator;
  • the heat exchanger adopts a method of bending into a ring shape, which can be adapted to the compressor housing structure for matching design;
  • the air flow is evenly distributed and the temperature uniformity is better by adopting the middle air inlet and the surrounding air outlet manner;
  • the thickness of the heat exchange core is small, the number of flat tubes is small, and the distribution of the refrigerant inside the heat exchange core body is more uniform;
  • the collecting tube of the heat exchange core adopts the form of "D" type tube, which reduces the space occupied by the collecting tube in the direction of the flat tube, thereby increasing the heat exchange area and enhancing the heat exchange effect.
  • the annular microchannel heat exchange core body and the centrifugal fan are matched as a heat exchanger component
  • the flat tube is bent into a circular or nearly circular bending manner to form a ring heat exchanger
  • the bending size of the heat exchanger is not limited, and can be flexibly changed according to the requirements of the actual installation space.
  • the width of the flat tube can be from 16mm to 32mm, and the fin density can be from 2-16;
  • the number of flat tubes is not limited, and the design is based on actual space and heat transfer capacity requirements.
  • the working principle of the annular heat exchange core is as shown in the following figure: the hot air is sucked by the centrifugal fan from the middle of the freezer compartment or the refrigerating compartment through the annular heat exchange core to become cold air, and enters the freezer compartment or the refrigerating compartment from the upper and lower parts respectively. .
  • the annular heat exchange core fully utilizes the surrounding space and increases the heat exchange area. Under the premise that the heat transfer performance meets the requirements, the thickness is reduced, which greatly saves the space required for the heat exchange core installation.
  • the air circulation mode of the middle suction and the surrounding air makes the distribution of the cold air more uniform, and the room temperature of the freezer compartment or the refrigerating compartment is more uniform.
  • the annular microchannel heat exchange core body is composed of a flat tube, a fin, a header tube and an inlet and outlet tube, and is bent into a ring shape to form an annular heat exchange core body as shown in the figure.
  • the bending size of the microchannel heating core can be adjusted according to the requirements of the actual installation space.
  • the installation angle of the entire heat exchanger can be installed according to the actual situation.
  • the width of the flat tube can range from 16mm to 32mm and the fin density can range from 2-16.
  • the thickness of the heat exchanger can be set according to the actual installation and capacity requirements. The placement method is shown in Figure 1.
  • the diamond-shaped microchannel heat exchange core body is composed of a flat tube, a fin, a header tube and an inlet and outlet tube, and is formed by a bending method as shown in the figure to form a diamond-shaped heat exchange core body as shown in the strand.
  • the bending angle of the microchannel can be flexibly changed according to the requirements of the actual installation space, and the installation angle of the entire heat exchanger can be installed according to actual conditions.
  • the width of the flat tube can range from 16mm to 32mm and the fin density can range from 2-16.
  • the thickness of the heat exchanger can be set according to the actual installation and capacity requirements. According to the actual space, there are two placement modes: Figure 1 (a) and Figure 1 (b).
  • the heat exchange core body adopts two bending modes, and the bending 1 and the bending 3 are the same type, and the bending mode of the bending 2 is the same as that of the first one. This way of folding into a diamond shape can increase part of the heat exchange area and enhance heat transfer.
  • the working principle of the rhombic heat exchange core is as shown in the figure below.
  • the hot air is sucked from the central part of the freezing or refrigerating chamber by the centrifugal fan into the cold air through the rhombic heat exchange core, and enters the freezing or refrigerating chamber from the upper part and the lower part respectively.
  • the diamond-shaped heat exchange core fully utilizes the surrounding space and increases the heat exchange area.
  • the thickness is reduced, which greatly saves the space required for the heat exchange core installation.
  • the air suction mode in the middle the air circulation pattern around the wind makes the distribution of the cold air more uniform, and the consistency of the freezer compartment or the refrigerating room temperature is better.
  • a refrigeration apparatus 100 includes: a case 1 and a heat exchange unit 2 according to the above-described first aspect of the present invention.
  • the refrigeration device 100 of the embodiment of the present invention may be a refrigerator or a refrigerator or the like.
  • the heat exchange component is a heat exchange core component in a refrigerator or a refrigerator, and the heat exchange core serves as a heat exchange core in a refrigerator or a refrigerator.
  • the casing 1 has a refrigerating compartment 101 and a duct 102, and the duct 102 communicates with the refrigerating compartment 101; the heat exchange unit 2 is disposed in the duct 102.
  • the centrifugal fan 22 is used to drive air circulation in the air passage 102 and the refrigerating compartment 101 for providing cooling capacity for the refrigerating compartment 101 for freezing or refrigerating food, and also for different compartments through the air duct 102.
  • the refrigeration apparatus 100 improves the overall performance of the refrigeration apparatus 100 by providing the heat exchange assembly 2 of the first aspect embodiment described above.
  • the air duct 102 has an air inlet 105 and at least one air outlet (for example, the upper air outlet 103 and the lower air outlet 104 described later), and the air outlet (the upper air outlet 103 and the lower air outlet 104) and the air inlet.
  • the tuyere 105 is connected to and communicates with the refrigerating compartment 101.
  • the air duct has an upper air outlet 103, a lower air outlet 104 and an air inlet 105, and the upper air outlet 103 and the lower air outlet 104 are both air outlets, wherein the air outlets are provided.
  • a plurality of one or spaced apart arrangements are included, and the downtake includes one or a plurality of spaced apart arrangements.
  • the plurality of air outlets may be disposed around the air inlet 105.
  • the centrifugal fan 22 sucks air in the refrigerating compartment 101 into the air duct 102 through the air inlet 105, and air that has undergone heat exchange with the heat exchange core in the air duct 102 passes through the at least one air outlet respectively (for example)
  • the uptake port 103 and the downhole 104) shown in Fig. 11 enter the refrigerating compartment 101.
  • the axial flow fan generally draws air in the refrigerating compartment 101 into the air duct 102 from the bottom of the refrigerating compartment 101, and the air duct 102 and the heat exchange core The cold air after the heat exchange of the body enters the refrigerating compartment 101 from the top of the refrigerating compartment 101.
  • the centrifugal fan 22 sucks air from the central portion of the refrigerating compartment 101 (freezing or refrigerating compartment) through the air inlet 105, the inhaled air enters the air duct 102, and the sucked air passes through the heat exchange core.
  • the air becomes cold air, and enters the refrigerating compartment 101 from the upper air outlet 103 and the lower air outlet 104, respectively. Therefore, the heat exchange core of the refrigeration apparatus 100 of the present embodiment can fully utilize the space around the air duct 102, effectively increase the heat exchange area, and reduce the thickness of the heat exchange core under the premise that the heat exchange performance meets the requirements. , greatly saving the space required for the installation of the heat exchange core.
  • the air circulation mode of the intermediate suction and the surrounding air can make the distribution of the cold air more uniform, so that the temperature uniformity in the refrigeration compartment 101 is better.
  • the use of the heat exchange core body requires a large air passage inside the refrigerator freezer, which is used in conjunction with the axial flow fan, and occupies a larger volume inside the cabinet.
  • the working principle is as shown in the figure below. The air is sucked by the axial flow fan from the bottom of the freezer compartment or the refrigerating compartment through the heat exchange core to exchange heat into cold air and from the top into the freezing or refrigerating compartment.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, electrical connection, or communication; can be directly connected, or indirectly connected through an intermediate medium, can be the internal connection of two components or the interaction of two components .
  • installation can be understood on a case-by-case basis.

Abstract

一种换热组件和制冷设备,换热组件(2)包括换热芯体(21)和离心风机(22),换热芯体(21)包括第一集流管(211)、第二集流管(212)和多个换热管(213),换热管(213)与第一集流管(211)和第二集流管(212)相连接,换热芯体(21)配置成具有孔部的形状,离心风机(22)设置在孔部,且离心风机(22)朝向间隙出风。

Description

换热组件和制冷设备 技术领域
本发明涉及制冷技术领域,尤其是涉及一种换热组件和具有其的换热组件及制冷设备。
背景技术
相关技术中,诸如冰箱、冷柜以及类似的制冷设备中使用的换热芯体通常为铝管翅片式换热芯体或者铜管翅片式换热芯体,并且把换热芯体设在制冷设备的风道内。上述传统的换热芯体体积大,需要在制冷设备内部设置较大的风道,从而占用较大箱体内容积。
发明内容
本发明第一方面提出一种换热组件,所述换热组件可以节省安装空间。
本发明第二方面提出一种具有上述换热组件的制冷设备。
根据本发明第一方面的换热组件,所述换热组件包括换热芯体和离心风机,所述换热芯体包括第一集流管、第二集流管和多个换热管;所述换热管的一端与所述第一集流管相连,所述换热管的另一端与所述第二集流管相连接,且所述第一集流管的内腔与所述第二集流管的内腔通过所述换热管的内腔相连通;其中,所述换热芯体配置成具有孔部的形状,所述换热管围绕所述孔部设置,所述孔部的轴线沿左右方向延伸,多个所述换热管沿左右方向相隔开一定距离设置,所述换热管具有靠近所述孔部的内部边缘以及远离所述孔部的外部边缘,所述换热管从所述内部边缘至所述外部边缘方向上的尺寸大于所述换热管沿左右方向的尺寸,至少部分相邻的所述换热管之间存在间隙;所述离心风机设置在所述孔部,且所述离心风机朝向所述间隙出风。
根据本发明的换热组件,换热芯体配置成中间形成有孔部的结构,且换热组件包括换热芯体,故换热组件中部也形成有孔部,换热管围绕所述孔部的周向延伸,这样可以在不改变换热组件厚度的前提下,增大换热组件的换热面积,换言之,可以在满足换热性能的前提下,减小换热组件的厚度,节省换热组件安装所需的空间,从而提高制冷设备的有效容积,即增大制冷设备中制冷间室的容积。另外,减少换热组件的厚度,相当于减少换热管的数量,从而可以使换热组件内的制冷剂的分配更加均匀。
根据本发明的一些实施例,所述换热组件还包括第一翅片,相邻的所述换热管之间的间隙处设置有所述第一翅片,且所述第一翅片随所述换热管同向延伸,所述第一翅片具有波峰和波谷,所述波峰与相邻所述换热管中的一个相接触,所述波谷与相邻所述换热管中的另一个相接触。
根据本发明的一些实施例,所述第一翅片具有靠近所述孔部的内边缘;其中,在沿左 右方向上的投影中,所述第一翅片的所述内边缘至少部分伸出所述换热管的内部边缘;或所述翅片的所述内边缘至少部分不伸出所述换热管的内部边缘。
根据本发明的一些实施例,所述第一翅片还具有远离所述孔部的外边缘;其中,在沿左右方向上的投影中,所述翅片的所述外边缘至少部分伸出所述换热管的外部边缘;或所述翅片的所述外边缘至少部分不伸出所述换热管的外部边缘。
根据本发明的一些实施例,所述换热芯体还包括边板,所述边板与与其相邻的换热管的相连接,或所述边板与与其相邻的换热管之间设置有第二翅片,所述第二翅片的至少部分与所述边板相连接,所述第二翅片的至少部分与所述换热管相连接。
根据本发明的一些实施例,所述换热芯体配置成大体轮廓为圆环形、椭圆环形或多边环形;所述换热管从所述内部边缘至所述外部边缘的宽度为16~32mm;所述第一翅片的FPI值为2~16;所述第一翅片为不开窗结构;所述换热管为多通道扁管;其中,在沿前后方向的投影中,所述离心风机的左端和右端中的至少一个伸出所述换热芯体的端面;或,在垂直于所述左右方向的一个方向的投影中,所述离心风机的左端和右端中的一个与所述换热芯体的端面齐平,且所述离心风机的左端和右端中的另一个伸出所述换热芯体的端面。
根据本发明的一些实施例,所述换热芯体配置成大体轮廓为圆环形;所述第一集流管包括相对设置的第一板部和第二板部,所述第一板部大体呈平板状,所述第二板部具有大致呈弧形的横截面,所述第一板部具有多个第一插孔,多个所述第一插孔沿左右方向相隔开一定距离设置;所述第二集流管包括相对设置的第三板部和第四板部,所述第三板部大体呈平板状,所述第四板部具有大体呈弧形的横截面,所述第三板部具有多个第二插孔,多个所述第二插孔沿左右方向相隔开一定距离设置;所述第一集流管和所述第二集流管并排设置,所述第二板部与所述第四板部相接触或所述第二板部与所述第四板部相隔开一定距离;所述换热管大体轮廓呈具有缺口的圆环形,所述换热管具有第一端和第二端,在所述第一端和所述第二端之间形成所述缺口,所述换热管的第一端穿过所述第一插孔并与所述第一集流管相连接,所述换热管的第二端穿过所述第二插孔并与所述第二集流管相连接;所述换热管相邻的所述换热管之间的间隙处设有第一翅片,所述第一翅片随所述换热管同向延伸,所述第一翅片具有波峰和波谷,所述波峰与相邻所述换热管中的一个相接触,所述波谷与相邻所述换热管中的另一个相接触,在沿前后方向的投影中所述翅片的内边缘伸出所述换热管的内部边缘且所述翅片的外边缘伸出所述换热管的外部边沿;所述换热芯体还设置有边板,所述边板的整体轮廓与所述换热管的整体轮廓大体相同,所述边板设置在位于最左端的换热管的左侧和/或所述边板设置在位于最右端的换热管的右侧,所述边板与与其相邻的换热管之间设置有第二翅片,所述第二翅片的至少部分与所述边板相焊接,且所述第二翅片的至少部分与与其相邻的换热管相焊接;所述孔部的轴线沿左右方向延伸, 所述离心风机的轴线沿左右方向延伸,且所述离心风机的轴线与所述换热芯体的轴线重合;所述离心风机的出口的至少一部分朝向所述间隙,在沿前后方向的投影中所述离心风机的左端伸出所述换热芯体的左端面、所述离心风机的右端伸出所述换热芯体的右端面;所述第一集流管的轴线和所述第二集流管的轴线均沿前后方向延伸,相邻两个所述换热管之间设有翅片,其中,在沿前后方向的投影中所述翅片的内边缘伸出所述换热管的内部边缘且所述翅片的外边缘伸出所述换热管的外部边沿;或相邻的两个所述换热管之间设有翅片,在沿前后方向的投影中所述翅片的内边缘不伸出所述换热管的内部边缘且所述翅片的外边缘不伸出所述换热管的外部边沿。
根据本发明的一些实施例,所述换热管包括环绕所述孔部设置的多个平直段,在环绕所述孔部的方向上多个所述平直段依次由换向段连接,以使所述换热芯体大体轮廓呈多边环形;所述换向段绕所述换热管的长度方向相对于所述平直段扭转预定角度,多个所述换热管在大致相同位置处具有所述换向段;或相邻的平直段通过所述换向段圆滑过渡连接。
根据本发明的一些实施例,所述换热芯体大体轮廓呈菱形;所述第一集流管和第二集流管的横截面为圆形,所述第一集流管与所述第二集流管相接触或所述第一集流管与所述第二集流管相隔开一定距离设置;所述第一集流管设置有多个第三插孔,多个所述第三插孔沿左右方向相隔开一定距离设置,所述第二集流管设置有多个第四插孔,多个所述第四插孔沿左右方向相隔开一定距离设置;所述换热组件包括多个换热管,所述换热管的一端穿过所述第三插孔并与所述第一集流管相连,所述换热管的另一端穿过所述第四插孔并与所述第二集流管相连;所述换热管包括至少四个平直段和至少三个换向段,所述换向段连接在相邻的所述平直段之间,所述换向段绕所述换热管的长度方向相对于所述平直段扭转预定角度;相邻的两个所述换热管的相对的所述平直段之间设有第一翅片,相邻的两个所述换热管的相对的所述换向段之间没有设置第一翅片;所述换热芯体还设有边板,所述边板设置在位于最左端的换热管的平直段的外侧,和/或,所述边板设置在位于最右端的换热管的平直段的外侧;所述第一集流管和所述第二集流管并排设置,所述第一集流管和所述第二集流管位于大体轮廓呈菱形的所述换热芯体的长轴方向的一端,或,所述第一集流管和所述第二集流管位于所述换热芯体位于大体轮廓呈菱形的所述换热芯体的短轴方向的一端;所述孔部的轴线沿左右方向延伸,所述离心风机的轴线沿左右方向延伸,且所述离心风机的轴线与所述换热芯体的轴线重合;所述离心风机的出口的至少一部分朝向所述间隙,在沿前后方向的投影中所述离心风机的左端伸出所述换热芯体的左端面、所述离心风机的右端伸出所述换热芯体的右端面。
根据本发明的一些实施例,所述换热芯体大体轮廓呈菱形;所述第一集流管和第二集流管的横截面为圆形,所述第一集流管与所述第二集流管相接触或所述第一集流管与所述 第二集流管相隔开一定距离设置;所述第一集流管设置有多个第五插孔,多个所述第五插孔沿左右方向相隔开一定距离设置,所述第二集流管设置有多个第六插孔,多个所述第六插孔沿左右方向相隔开一定距离设置;所述换热组件包括多个换热管,所述换热管的一端穿过所述第五插孔并与所述第一集流管相连,所述换热管的另一端穿过所述第六插孔并与所述第二集流管相连;所述换热管包括至少四个平直段和至少三个换向段,所述换向段连接在相邻的所述平直段之间;所述第一集流管和所述第二集流管并排设置,所述第一集流管和所述第二集流管位于大体轮廓呈菱形的所述换热芯体的长轴方向的一端,至少一个所述换向段位于大体轮廓呈菱形的所述换热芯体的长轴方向的另一端,以及至少两个所述换向段位于大体轮廓呈菱形的所述换热芯体的短轴方向的两端;其中,位于所述长轴方向另一端的所述换向段绕所述换热管的长度方向相对于所述平直段扭转预定角度,位于所述短轴方向两端的所述换向段使相邻的所述平直段圆滑过渡连接;相邻的两个所述换热管的相对的所述平直段之间设有第一翅片,相邻的两个所述换热管的位于所述长轴方向的另一端的管段之间没有设置第一翅片,相邻的两个所述换热管的位于所述短轴方向的两端的管段之间设置有第一翅片;所述换热芯体还包括边板,所述边板设置在位于最左侧的所述换热管的左侧和/或所述边板设置在位于最右侧的所述换热管的右侧,所述边板与与其相邻的所述换热管之间设有所述第二翅片,所述第二翅片的至少部分与所述边板焊接固定,且所述第二翅片的至少部分与所述换热管焊接固定,位于长轴方向另一端的所述换向段处没有设置所述边板;或,所述第一集流管和所述第二集流管并排设置,所述第一集流管和所述第二集流管位于大体轮廓呈菱形的所述换热芯体的短轴方向的一端,至少一个所述换向段位于大体轮廓呈菱形的所述换热芯体的短轴方向的另一端,至少两个所述换向段位于大体轮廓呈菱形的所述换热芯体的长轴方向的两端;其中,位于所述短轴方向另一端的所述换向段使相邻的所述平直段圆滑过渡连接,位于所述长轴方向两端的所述换向段绕所述换热管的长度方向相对于所述平直段扭转预定角度;相邻的两个所述换热管的相对的所述平直段之间设有第一翅片,相邻的两个所述换热管的位于所述长轴方向两端的管段之间没有设置第一翅片,相邻的两个所述换热管的位于所述短轴方向的另一端的管段之间设置有第一翅片;所述换热芯体还包括边板,所述边板设置在位于最左侧的所述换热管的左侧和/或所述边板设置在位于最右侧的所述换热管的右侧,所述边板与与其相邻的所述换热管之间设有所述第二翅片,所述第二翅片的至少部分与所述边板焊接固定,且所述第二翅片的至少部分与所述换热管焊接固定,位于长轴方向两端的所述换向段处没有设置所述边板;所述孔部的轴线沿左右方向延伸,所述离心风机的轴线沿左右方向延伸,且所述离心风机的轴线与所述换热芯体的轴线重合;所述离心风机的出口的至少一部分朝向所述间隙,在沿前后方向的投影中所述离心风机的左端伸出所述换热芯体的左端面、所述离心风机的右端伸出 所述换热芯体的右端面。
根据本发明第二方面的制冷设备,包括:箱体和换热组件,所述箱体具有制冷间室和风道,所述风道与所述制冷间室连通;所述换热组件为根据前述的换热组件,所述换热组件设在所述风道。
根据本发明的制冷设备,通过设置上述第一方面的换热组件,从而提高了制冷设备的整体性能。
根据本发明的一些实施例,所述风道具有进风口和至少一个出风口,所述离心风机通过所述进风口将所述制冷间室内的空气抽吸到所述风道,所述风道内与所述换热组件热交换后的空气通过所述至少一个出风口进入到所述制冷间室。
附图说明
图1是根据本发明一个实施例的换热组件的示意图;
图2是图1中所示的换热组件的另一个角度的示意图;
图3是图1中所示的换热组件的再一个角度的示意图;
图4是根据本发明实施例二的换热组件的示意图;
图5是图4中所示的换热芯体的示意图;
图6是图4中所示的换热芯体的另一个角度的示意图;
图7是图4中所示的换热芯体的再一个角度的示意图;
图8是根据本发明一个实施例的换热组件的示意图;
图9是根据本发明一个实施例的换热组件的示意图;
图10是根据本发明一个实施例的换热组件的示意图;
图11是根据本发明实施例的制冷设备的示意图。
附图标记:
制冷设备100,
箱体1,制冷间室101,风道102,上风口103,下风口104,进风口105,
换热组件2,换热芯体21,第一集流管211,第二集流管212,换热管213,换向段2131,第一翅片2141,第二翅片2142,进口管215,出口管216,边板217,离心风机22。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描 述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考图1-图11描述根据本发明第一方面实施例的换热组件2。
如图1-图11所示,根据本发明第一方面实施例的换热组件2,包括:换热组件2包括换热芯体21和离心风机22。
其中,换热芯体21包括第一集流管211、第二集流管212和多个换热管213。换热管213的一端与第一集流管211相连,换热管213的另一端与第二集流管212相连接,且第一集流管211的内腔与第二集流管212的内腔通过换热管213的内腔相连通。冷媒(或其它流体)可以从第一集流管211进入到换热管213内,并流入到第二集流管212。
其中,换热芯体21配置成具有孔部的形状,换热管213围绕孔部设置,孔部的轴线沿左右方向延伸,多个换热管213沿左右方向相隔开一定距离设置,换热管213具有靠近孔部的内部边缘以及远离孔部的外部边缘,换热管213从内部边缘至外部边缘方向上的尺寸大于换热管213沿左右方向的尺寸,至少部分相邻的换热管213之间存在间隙。
例如,可以将换热管213折弯成环绕一个中心轴线延伸的形状,更具体地将换热管折弯成环形,此时,换热管所环绕的中心部位为换热芯体的孔部。其中,换热管的环形可以为连续的且具有缺口的环形,也就是说,换热管的两端之间可以具有间隙,当然换热管的两端之间也可以不具有间隙。
这里,由于换热管213需要与第一集流管211和第二集流管212相连,因此,优选地,换热管213折弯成具有缺口的环形,即换热管213的环形为不封闭的环形。换热管213包括沿换热芯体21的厚度方向(例如图1中所示的离心风机22的轴向方向,即左右方向)间隔布置的多个,优选地,可以在相邻的换热管213之间设置翅片。
离心风机22设置在孔部,且离心风机22朝向间隙出风。也就是说,离心风机22朝向相邻的换热管213之间的间隙出风。
离心风机22置于换热芯体21的孔部中,换言之,离心风机22由换热芯体环绕,离心风机22轴向(例如图1中所示的左右方向)进风且朝向换热芯体四周出风。
其中,第一集流管211和第二集流管212中的其中一个用于使制冷剂可以均匀地分配并流入多个换热管213中,另一个是用于将在换热管213中换热后的制冷剂汇集到一起。
当换热组件2工作时,制冷剂从第一集流管211或第二集流管212流入换热管213内,同时,在离心风机22的作用下,空气沿离心风机22的轴向方向(例如图1中所示的左右方向)被吸入,然后再沿垂直于离心风机22轴向的方向向四周吹出,由于换热芯体环绕离心风机22,从离心风机22吹出的空气穿过相邻的换热管之间的间隙,通过与换热管213内流动的制冷剂进行热交换,制冷剂吸收空气中的热量,使空气的温度降低,以实现制冷。
根据本发明实施例的换热组件2,换热芯体21配置成中间形成有孔部的结构,换热管 围绕所述孔部的周向延伸,这样可以在不改变换热芯体厚度(例如图1中所示的换热芯体沿左右方向的厚度)的前提下,增大换热芯体的换热面积,换言之,可以在满足换热性能的前提下,减小换热芯体的厚度,节省换热芯体安装所需的空间,从而提高制冷设备100的有效容积,即增大制冷设备100中制冷间室101的容积。另外,减少换热芯体的厚度,相当于减少换热管213的数量,从而可以使换热芯体内的制冷剂的分配更加均匀。
另外,结合图1至图10,本申请中的换热管213从内部边缘至外部边缘方向上的尺寸大于换热管213沿左右方向的尺寸,可以有效地方便气流通过相邻的换热管213之间的间隙,从而提高换热的效果,而且对于气流阻碍小,便于实现气流顺畅地通过换热芯体。
在本发明的一些实施例中,第一集流管211和第二集流管212并排布置,以利于第一集流管211和第二集流管212与外部管路(例如制冷剂的进口管215和出口管216)相连接。例如,第一集流管211和第二集流管212并排布置在换热器的底部,且第一集流管211和第二集流管212的轴线沿上下方向延伸。第一集流管211与制冷剂的进口管215相连,且第二集流管212与制冷剂的出口管216相连。
在本发明的一些实施例中,换热组件2还包括第一翅片2141,相邻的换热管213之间的间隙处设置有第一翅片2141,且第一翅片2141随换热管213同向延伸,第一翅片2141具有波峰和波谷,波峰与相邻换热管213中的一个相接触,波谷与相邻换热管213中的另一个相接触。也就是说,第一翅片2141在相邻的两个换热管213之间周期性的起伏变化,从而形成交错的波峰和波谷,其中,波峰连接相邻的两个换热管213中的一个,而波谷连接相邻的两个换热管213中的另一个,因此,第一翅片2141与换热管之间形成了气流的通道,从而使得气流可以从通道中通过,实现换热。
进一步地,如图,第一翅片2141具有靠近孔部的内边缘。
其中,在沿左右方向上的投影中,第一翅片2141的内边缘至少部分伸出换热管213的内部边缘,第一翅片2141的内边缘伸出换热管213的内部边缘,可以有效地提高换热的效果。
当然,第一翅片2141的内边缘是否伸出换热管213的内部边缘并不影响本发明技术方案的实现,因此,第一翅片2141的内边缘也可以是至少部分不伸出换热管213的内部边缘。
同样地,第一翅片2141还具有远离孔部的外边缘;
其中,在沿左右方向上的投影中,第一翅片2141的外边缘至少部分伸出换热管213的外部边缘;
当然,第一翅片2141的外边缘也是否伸出换热管213的外部边缘,并不影响本发明技术方案的实现,因此,第一翅片2141的外边缘也可以是至少部分不伸出换热管213的外部边缘。
另外,本发明中至少可以包括如下的一些技术方案:
第一翅片2141的外边缘伸出换热管231的外部边缘,第一翅片2141的内边缘不伸出换热管231的内部边缘;
第一翅片2141的外边缘不伸出换热管231的外部边缘,第一翅片2141的内边缘伸出换热管231的内部边缘;
第一翅片2141的外边缘伸出换热管231的外部边缘,第一翅片2141的内边缘伸出换热管231的内部边缘;
第一翅片2141的外边缘不伸出换热管231的外部边缘,第一翅片2141的内边缘不伸出换热管231的内部边缘。
在本发明的一些实施例中,翅片214的两侧(例如图1中所示的翅片沿换热器的径向方向的两端)分别伸出换热管213的内侧边沿和外侧边沿。由此,可以有效增大换热器空气侧(即翅片)的换热面积,提高换热器的储冰和储霜容积,使得换热器整体不容易堵住;同时,由于翅片214突出,化霜排水时,水不容易粘附,便于排出;从而可以进一步提高换热效率。
在本发明的一些实施例中,换热芯体21还包括边板217,边板217与与其相邻的换热管213的相连接,或边板217与与其相邻的换热管213之间设置有第二翅片2142,第二翅片2142的至少部分与边板217相连接,第二翅片2142的至少部分与换热管213相连接。
进一步地,换热芯体21配置成大体轮廓为圆环形、椭圆环形或多边环形;换热管213从内部边缘至外部边缘的宽度为16~32mm;第一翅片2141的FPI(Fin Per Inch)值为2~16;第一翅片2141为不开窗结构;换热管213为多通道扁管。
换热芯体21可以配置成大体轮廓为圆环形、椭圆环形或多边环形。也就是说,换热芯体21可以呈圆形或椭圆形的环状,换热芯体21也可以配置成多边形的环状,从而可以使换热芯体21呈圆环形、椭圆环形或多边环形,以便于环绕离心风机。由此,可以根据实际情况(例如安装位置、安装空间等)对换热器适应性设计。
其中,在沿前后方向的投影中,离心风机22的左端和右端中的至少一个伸出换热芯体21的端面;或,在垂直于左右方向的一个方向的投影中,离心风机22的左端和右端中的一个与换热芯体21的端面齐平,且离心风机22的左端和右端中的另一个伸出换热芯体21的端面。
也就是说,在沿上下方向或者前后方向的投影中:
离心风机22的左端伸出换热芯体21的左端面,离心风机22的右端端伸出、短于、齐平于换热芯体21的右端面;或
离心风机22的左端端伸出、短于、齐平于换热芯体21的左端面,离心风机22的右端 伸出换热芯体21的右端面。
在本发明的一些实施例中,换热芯体21配置成大体轮廓为圆环形。
如图1,第一集流管211包括相对设置的第一板部2111和第二板部2112,第一板部大体呈平板状,第二板部具有大致呈弧形的横截面,其中,横截面为第二板部被沿左右方向延伸的平面所截得到的截面。第一板部具有多个第一插孔,多个第一插孔沿左右方向相隔开一定距离设置;第二集流管212包括相对设置的第三板部2121和第四板部2122,第三板部大体呈平板状,第四板部具有大体呈弧形的横截面,其中横截面为第四板部被沿左右方向延伸的平面所截得到的截面。第三板部具有多个第二插孔,多个第二插孔沿左右方向相隔开一定距离设置;第一集流管211和第二集流管212并排设置,第二板部与第四板部相接触或第二板部与第四板部相隔开一定距离。
进一步地,换热管213大体轮廓呈具有缺口的圆环形,换热管213具有第一端21301和第二端21302,在第一端和第二端之间形成缺口,换热管213的第一端穿过第一插孔并与第一集流管211相连接,换热管213的第二端穿过第二插孔并与第二集流管212相连接。
有利地,换热管213相邻的换热管213之间的间隙处设有第一翅片2141,第一翅片2141随换热管213同向延伸。
进一步地,第一翅片2141具有波峰和波谷,波峰与相邻换热管213中的一个相接触,波谷与相邻换热管213中的另一个相接触,在沿前后方向的投影中翅片214的内边缘伸出换热管213的内部边缘且翅片214的外边缘伸出换热管213的外部边沿。
有利地,换热芯体21还设置有边板217,边板217的整体轮廓与换热管213的整体轮廓大体相同,边板217设置在位于最左端的换热管213的左侧和/或边板217设置在位于最右端的换热管213的右侧,边板217与与其相邻的换热管213之间设置有第二翅片2142,第二翅片2142的至少部分与边板217相焊接,且第二翅片2142的至少部分与与其相邻的换热管213相焊接。
进一步地,孔部的轴线沿左右方向延伸,离心风机22的轴线沿左右方向延伸,且离心风机22的轴线与换热芯体21的轴线重合;离心风机22的出口的至少一部分朝向间隙,在沿前后方向的投影中离心风机22的左端伸出换热芯体21的左端面、离心风机22的右端伸出换热芯体21的右端面。
另外,第一集流管211的轴线和第二集流管212的轴线均沿前后方向延伸,相邻两个换热管213之间设有翅片214,
其中,在沿前后方向的投影中翅片214的内边缘伸出换热管213的内部边缘且翅片214的外边缘伸出换热管213的外部边沿;或相邻的两个换热管213之间设有翅片214,在沿前后方向的投影中翅片214的内边缘不伸出换热管213的内部边缘且翅片214的外边缘不 伸出换热管213的外部边沿。
如图1-图3所示,换热芯体21可以由单个换热芯体构成,且单个换热芯体21折弯成圆环形,具体地,当单个换热芯体21的换热管呈具有缺口的环形时,从而使单个换热芯体呈圆环形。单个换热芯体21的第一集流管211和第二集流管212彼此并排,进一步地,翅片214沿换热芯体21的径向延伸,且在沿换热芯体21的径向方向上,翅片214的尺寸大于换热管213的尺寸。由此,可以使换热芯体的结构最为紧凑,最大限度地减小换热芯体的安装空间,增大换热面积,提高制冷效率和空间利用率。
在本发明的一些示例中,如图4-图10所示,诸换热管在大致相同位置处具有多个换向段2131,也就是说,换热芯体具有多个换热管,每个换热管均具有多个换向段,且多个换热管的多个换向段在沿换热管延伸方向的位置大致相同。换言之,多个换热管的每一个换向段一一对应。换热芯体在多个换向段2131处折弯以形成多边环形。例如,换热管可以通过分别在多个换向段处多次折弯成三角形、四边形、五边形、六边形等等的环状。由此,可以根据实际情况(例如安装位置、安装空间等)对换热芯体的形状适应性设计。这里,换热管在换向段的折弯角度可以灵活设置,从而有利于根据压缩机仓结构进行匹配设计。
另外,由于换热管213经多次折弯形成,换向段两侧的换热管213呈角度布置,结构较紧凑,因此,优选地,相邻的两个换热管的换向段之间不布置翅片,以简化换热芯体的结构,便于加工制作。
进一步地,所述换热管包括至少三个平直段和至少两个换向段,且所述换向段连接在相邻的两个所述平直段之间。这里,如果将换热芯体折弯成N边形,则换热管具有N个平直段和N-1个换向段。在换热管折弯之前,至少一个换向段相对于平直段扭转预定角度,且相邻的扭转的换向段之间未设置所述翅片,也就是说,在相邻的两个换热管上相邻的两个扭转的换向段之间不设置翅片。由此,可以方便在换向段处折弯换热管,省力。例如图4中所示的换热芯体的换热管在折弯前,可以将换向段扭转约90°然后再折弯。
如图,换热管213包括环绕孔部设置的多个平直段2132,在环绕孔部的方向上多个平直段依次由换向段连接,以使换热芯体21大体轮廓呈多边环形。换向段2131绕换热管213的长度方向相对于平直段扭转预定角度,多个换热管213在大致相同位置处具有换向段;或相邻的平直段通过换向段圆滑过渡连接。
如图,在本发明的一个具体示例中,换热芯体21大体轮廓呈菱形。
第一集流管211和第二集流管212的横截面(即第一集流管211/第二集流管212被沿上下方向延伸的平面所截的得到的截面)为圆形,第一集流管211与第二集流管212相接触或第一集流管211与第二集流管212相隔开一定距离设置;第一集流管211设置有多个第三插孔,多个第三插孔沿左右方向相隔开一定距离设置,第二集流管212设置有多个 第四插孔,多个第四插孔沿左右方向相隔开一定距离设置;换热组件包括多个换热管213,换热管213的一端穿过第三插孔并与第一集流管211相连,换热管213的另一端穿过第四插孔并与第二集流管212相连。
进一步地,换热管213包括至少四个平直段和至少三个换向段,换向段连接在相邻的平直段之间,换向段绕换热管213的长度方向相对于平直段扭转预定角度;相邻的两个换热管213的相对的平直段之间设有第一翅片2141,相邻的两个换热管213的相对的换向段之间没有设置第一翅片2141;
进一步地,换热芯体21还设有边板217,边板217设置在位于最左端的换热管213的平直段的外侧,和/或,边板217设置在位于最右端的换热管213的平直段的外侧。
进一步地,第一集流管211和第二集流管212并排设置,第一集流管211和第二集流管212位于大体轮廓呈菱形的换热芯体21的长轴方向的一端,或,第一集流管211和第二集流管212位于换热芯体21位于大体轮廓呈菱形的换热芯体21的短轴方向的一端。
进一步地,孔部的轴线沿左右方向延伸,离心风机22的轴线沿左右方向延伸,且离心风机22的轴线与换热芯体21的轴线重合;离心风机22的出口的至少一部分朝向间隙,在沿前后方向的投影中离心风机22的左端伸出换热芯体21的左端面、离心风机22的右端伸出换热芯体21的右端面。
在本发明的一些具体事例中,换热芯体21大体轮廓呈菱形。
第一集流管211和第二集流管212的横截面(第一集流管211/第二集流管212被沿上下方向延伸的平面所截的得到的截面)为圆形,第一集流管211与第二集流管212相接触或第一集流管211与第二集流管212相隔开一定距离设置;第一集流管211设置有多个第五插孔,多个第五插孔沿左右方向相隔开一定距离设置,第二集流管212设置有多个第六插孔,多个第六插孔沿左右方向相隔开一定距离设置;换热组件包括多个换热管213,换热管213的一端穿过第五插孔并与第一集流管211相连,换热管213的另一端穿过第六插孔并与第二集流管212相连。
进一步地,换热管213包括至少四个平直段和至少三个换向段,换向段连接在相邻的平直段之间;
有利地,在本发明的一个具体示例中,第一集流管211和第二集流管212并排设置,第一集流管211和第二集流管212位于大体轮廓呈菱形的换热芯体21的长轴方向的一端,至少一个换向段位于大体轮廓呈菱形的换热芯体21的长轴方向的另一端,以及至少两个换向段位于大体轮廓呈菱形的换热芯体21的短轴方向的两端;其中,位于长轴方向另一端的换向段绕换热管213的长度方向相对于平直段扭转预定角度,位于短轴方向两端的换向段使相邻的平直段圆滑过渡连接;相邻的两个换热管213的相对的平直段之间设有第一翅片 2141,相邻的两个换热管213的位于长轴方向的另一端的管段之间没有设置第一翅片2141,相邻的两个换热管213的位于短轴方向的两端的管段之间设置有第一翅片2141;换热芯体21还包括边板217,边板217设置在位于最左侧的换热管213的左侧和/或边板217设置在位于最右侧的换热管213的右侧,边板217与与其相邻的换热管213之间设有第二翅片2142,第二翅片2142的至少部分与边板217焊接固定,且第二翅片2142的至少部分与换热管213焊接固定,位于长轴方向另一端的换向段处没有设置边板217;
在本发明的另一个具体示例中,第一集流管211和第二集流管212并排设置,第一集流管211和第二集流管212位于大体轮廓呈菱形的换热芯体21的短轴方向的一端,至少一个换向段位于大体轮廓呈菱形的换热芯体21的短轴方向的另一端,至少两个换向段位于大体轮廓呈菱形的换热芯体21的长轴方向的两端;其中,位于短轴方向另一端的换向段使相邻的平直段圆滑过渡连接,位于长轴方向两端的换向段绕换热管213的长度方向相对于平直段扭转预定角度;相邻的两个换热管213的相对的平直段之间设有第一翅片2141,相邻的两个换热管213的位于长轴方向两端的管段之间没有设置第一翅片2141,相邻的两个换热管213的位于短轴方向的另一端的管段之间设置有第一翅片2141;换热芯体21还包括边板217,边板217设置在位于最左侧的换热管213的左侧和/或边板217设置在位于最右侧的换热管213的右侧,边板217与与其相邻的换热管213之间设有第二翅片2142,第二翅片2142的至少部分与边板217焊接固定,且第二翅片2142的至少部分与换热管213焊接固定,位于长轴方向两端的换向段处没有设置边板217;
另外,在本发明中,孔部的轴线沿左右方向延伸,离心风机22的轴线沿左右方向延伸,且离心风机22的轴线与换热芯体21的轴线重合;离心风机22的出口的至少一部分朝向间隙,在沿前后方向的投影中离心风机22的左端伸出换热芯体21的左端面、离心风机22的右端伸出换热芯体21的右端面。
这里,需要说明的是,由于本实施例的换热芯体的换热管为扁管,且扁管的长度方向为环绕离心风机轴线的方向,扁管的厚度方向为平行于离心风机轴线的方向,扁管的宽度方向为离心风机四周出风的方向,因此,将扁管扭转90°后沿平行于扁管的宽度方向折弯扁管(垂直于扁管的厚度方向折弯扁管)可以更加省时省力,且折弯效果好。
在本发明的一些实施例中,所述换热管为扁管,所述第一集流管和第二集流管具有矩形或圆形横截面,由此,可以简化换热管结构,使换热芯体的结构更为紧凑。
进一步地,如图1-图3所示,换热管213为扁管,换热管213的宽度D在16mm-32mm的范围内。这里,换热管213的宽度D是指,在垂直于离心风机轴线的投影平面上,换热管213的垂直于其延伸方向(换热管213的长度方向)的尺寸,即,换热管的环宽。例如,当换热芯体为圆环形时,换热管的宽度指,换热管在沿换热芯体的径向方向上的宽度。
这里,需要说明的是,单个换热芯体21的换热能力可以通过设置不同数量的扁管来实现,当然,换热芯体的总体厚度需要根据安装空间和制冷量需求确定,也就是说,换热芯体的厚度是根据实际安装空间及能力要求设置不同数量的换热管213来确定的。
其中,结合图1-图3,相邻的换热管213之间设置多个翅片214,且翅片214沿换热管213的宽度方向延伸,且在沿垂直于气流的流向方向上,相邻的翅片214之间呈V型布置,翅片214与换热管213的外周壁之间限定出空气流通的气流通道。
优选地,翅片214在单位英寸的密度在2-16的范围内。也就是说,在1英寸的长度内翅片214的个数可以在2-16的范围内。由此,可以保证并提高换热芯体的换热效率。
在本发明的一些实施例中,换热芯体可以为微通道换热器,微通道换热器可以强
该换热芯体与离心风机配合使用,在微通道厚度较小的情况下,仍然有一个较大的换热面积,达到换热能力要求;相对于传统换热芯体,节省大量空间,提高冰箱有效容积;
换热器采用折弯成环形的方式,可适应压缩机仓结构进行匹配设计;
通过优化环形换热器折弯尺寸、翅片密度等,可有效地改善换热芯体的排水;
采用两根翅片并排放置、翅片内径方向和外径方向均突出的“overhang”形式,有效增大了空气侧换热面积,提高微通道换热芯体储冰和储霜容积,整体不容易堵住;另外,翅片突出,化霜排水时,水不容易粘附,便于排出;
采用中间进风和四周出风的方式,风量分布均匀,温度均匀性更好;
换热芯体厚度小,扁管数量小,换热芯体内部冷媒分配更加均匀;
换热芯体的集流管采用“D”型管的形式,在扁管方向减小了集流管所占的空间,从而增大了换热面积,增强换热效果。
环形微通道换热芯体和离心式风机匹配作为一个换热器组件;
采用扁管折弯成圆形或接近圆形的折弯方式,做成一个环形换热器;
换热器的折弯尺寸不限,可根据实际安装空间的要求灵活变动,扁管的宽度可以从16mm-32mm,翅片密度可以从2-16;
扁管的根数不限,根据实际空间及换热能力要求进行设计。
环形换热芯体的工作原理如下图所示:热空气由离心风机从冷冻室或冷藏室的中部吸风通过环形换热芯体变成冷空气,分别从上部和下部进入冷冻室或冷藏室。从示意图中可以看出,环形换热芯体充分利用四周的空间,增大换热面积,在换热性能满足要求的前提下,厚度减小,大大节省了换热芯体安装所需空间。同时,中间吸风、四周出风的空气循环模式使得冷空气分布更加均匀,冷冻室或冷藏室室温一致性更好。
为一款环形折弯微通道换热芯体与离心风机组件图。环形微通道换热芯体由扁管、翅片、集流管及进出口管组成,通过折弯成环形来形成如图所示的环形换热芯体。微通道换 热芯体的折弯尺寸可根据实际安装空间的要求进行调整,整个换热器的安装角度可根据实际情况进行安装。扁管的宽度可以从16mm-32mm,翅片密度可以从2-16。采用两根翅片并排放置、翅片内径方向和外径方向均突出的“overhang”形式,有效增大了空气侧换热面积。换热器的厚度可以根据实际安装及能力要求设置不同数量的扁管根数。放置方式如图1所示。
如图1所示,为一款菱形折弯微通道换热芯体与离心风机组件图。菱形微通道换热芯体由扁管、翅片、集流管及进出口管组成,通过如图所示的折弯方式折3次形成入股所示的菱形换热芯体。微通道的折弯角度可根据实际安装空间的要求灵活变动,整个换热器的安装角度可根据实际情况进行安装。扁管的宽度可以从16mm-32mm,翅片密度可以从2-16。换热器的厚度可以根据实际安装及能力要求设置不同数量的扁管根数。根据实际空间有图1(a)和图1(b)两种放置方式。
为一款菱形折弯微通道换热芯体与离心风机组件图。与方案一不同的是,换热芯体采用两种折弯方式,折弯1和折弯3是同一种,折弯2的折弯方式和方案一的一样。这种折成菱形的方式可以增加一部分换热面积,加强换热。
菱形换热芯体的工作原理如下图所示,热空气由离心风机从冷冻或冷藏室的中部吸风通过菱形换热芯体的变成冷空气,分别从上部和下部进入冷冻或冷藏室。从示意图中可以看出,菱形换热芯体充分利用四周的空间,增大换热面积,在换热性能满足要求的前提下,厚度减小,大大节省了换热芯体安装所需空间。同时,中间吸风,四周出风的空气循环模式使得冷空气分布更加均匀,冷冻室或冷藏室温一致性更好。
根据本发明第二方面实施例的制冷设备100,包括:箱体1和根据本发明上述第一方面实施例的换热组件2。其中,本发明实施例的制冷设备100可以为冰箱或冷柜等等。换热组件为冰箱或冷柜中的换热芯体组件,换热芯体作为冰箱或冷柜中的换热芯体。
具体地,如图11所示,箱体1内具有制冷间室101和风道102,风道102与制冷间室101连通;换热组件2设在风道102内。离心风机22用于驱动风道102和制冷间室101内的空气循环流通,用于为制冷间室101提供冷量,用于冷冻或冷藏食物,也可以通过风道102实现不同间室之间的气流循环。
根据本发明实施例的制冷设备100,通过设置上述第一方面实施例的换热组件2,从而提高了制冷设备100的整体性能。
进一步地,如图11所示,风道102具有进风口105和至少一个出风口(例如下文中所述的上风口103、下风口104),出风口(上风口103和下风口104)和进风口105均与制冷间室101相连并连通,例如图11所示,风道具有上风口103、下风口104和进风口105,且上风口103和下风口104均为出风口,其中,上风口包括一个或间隔布置的多个,下风 口包括一个或间隔布置的多个。
进一步地,当风道具有多个出风口时,多个出风口可以环绕进风口105布置。
离心风机22通过进风口105将制冷间室101内的空气抽吸到风道102内,且风道102内与换热芯体进行了热交换后的空气分别通过所述至少一个出风口(例如图11中所示的上风口103和下风口104)进入到制冷间室101内。
然而相关技术中的制冷设备100在工作的过程中,通常是轴流风机从制冷间室101的底部将制冷间室101内的空气抽吸到风道102内,且风道102与换热芯体换热后的冷空气从制冷间室101的顶部进入制冷间室101。
本发明实施例的制冷设备100,离心风机22通过进风口105从制冷间室101(冷冻或冷藏室)的中部吸风,吸入的空气进入风道102内,且吸入的空气通过换热芯体的变成冷空气,再分别从上风口103和下风口104进入制冷间室101。由此,本实施例的制冷设备100的换热芯体可以充分利用风道102四周的空间,有效增大换热面积,在换热性能满足要求的前提下,减小换热芯体的厚度,大大节省了换热芯体安装所需空间。同时,中间吸风、四周出风的空气循环模式可以使得冷空气分布更加均匀,使得制冷间室101内的温度一致性更好。
使用该种换热芯体需要在冰箱冷柜内部设置一个较大的风道,配合轴流风机使用,占用较大箱体内容积。工作原理如下图所示,空气由轴流式风机从冷冻室或冷藏室底部吸风经过换热芯体换热变成冷空气又从顶部进入到冷冻或冷藏室。
在本发明的描述中,需要理解的是,术语“中心”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种换热组件,其特征在于,换热组件包括换热芯体和离心风机,换热芯体包括第一集流管、第二集流管和多个换热管;
    换热管的一端与第一集流管相连,换热管的另一端与第二集流管相连接,且第一集流管的内腔与第二集流管的内腔通过换热管的内腔相连通;
    其中,换热芯体配置成具有孔部的形状,换热管围绕孔部设置,孔部的轴线沿左右方向延伸,多个换热管沿左右方向相隔开一定距离设置,换热管具有靠近孔部的内部边缘以及远离孔部的外部边缘,换热管从内部边缘至外部边缘方向上的尺寸大于换热管沿左右方向的尺寸,至少部分相邻的换热管之间存在间隙;
    离心风机设置在孔部,且离心风机朝向间隙出风。
  2. 根据权利要求1的换热组件,其特征在于,换热组件还包括第一翅片,相邻的换热管之间的间隙处设置有第一翅片,且第一翅片随换热管同向延伸,第一翅片具有波峰和波谷,波峰与相邻换热管中的一个相接触,波谷与相邻换热管中的另一个相接触。
  3. 根据权利要求2的换热组件,其特征在于,第一翅片具有靠近孔部的内边缘;其中,在沿左右方向上的投影中,第一翅片的内边缘至少部分伸出换热管的内部边缘;或翅片的内边缘至少部分不伸出换热管的内部边缘。
  4. 根据权利要求2或3的换热组件,其特征在于,第一翅片还具有远离孔部的外边缘;其中,在沿左右方向上的投影中,翅片的外边缘至少部分伸出换热管的外部边缘;或翅片的外边缘至少部分不伸出换热管的外部边缘。
  5. 根据权利要求1-4中任一项换热组件,其特征在于,换热芯体还包括边板,边板与与其相邻的换热管的相连接,或边板与与其相邻的换热管之间设置有第二翅片,第二翅片的至少部分与边板相连接,第二翅片的至少部分与换热管相连接。
  6. 根据权利要求1-5中任一项的换热组件,其特征在于,换热芯体配置成大体轮廓为圆环形、椭圆环形或多边环形;换热管从内部边缘至外部边缘的宽度为16~32mm;第一翅片的FPI值为2~16;第一翅片为不开窗结构;换热管为多通道扁管;
    其中,在沿前后方向的投影中,离心风机的左端和右端中的至少一个伸出换热芯体的端面;或,在垂直于左右方向的一个方向的投影中,离心风机的左端和右端中的一个与换热芯体的端面齐平,且离心风机的左端和右端中的另一个伸出换热芯体的端面。
  7. 根据权利要求1-6中任一项所述的换热组件,其特征在于,
    换热芯体配置成大体轮廓为圆环形;
    第一集流管包括相对设置的第一板部和第二板部,第一板部大体呈平板状,第二板部具有大致呈弧形的横截面,第一板部具有多个第一插孔,多个第一插孔沿左右方向相隔开 一定距离设置;第二集流管包括相对设置的第三板部和第四板部,第三板部大体呈平板状,第四板部具有大体呈弧形的横截面,第三板部具有多个第二插孔,多个第二插孔沿左右方向相隔开一定距离设置;第一集流管和第二集流管并排设置,第二板部与第四板部相接触或第二板部与第四板部相隔开一定距离;
    换热管大体轮廓呈具有缺口的圆环形,换热管具有第一端和第二端,在第一端和第二端之间形成缺口,换热管的第一端穿过第一插孔并与第一集流管相连接,换热管的第二端穿过第二插孔并与第二集流管相连接;
    换热管相邻的换热管之间的间隙处设有第一翅片,第一翅片随换热管同向延伸,第一翅片具有波峰和波谷,波峰与相邻换热管中的一个相接触,波谷与相邻换热管中的另一个相接触,在沿前后方向的投影中翅片的内边缘伸出换热管的内部边缘且翅片的外边缘伸出换热管的外部边沿;
    换热芯体还设置有边板,边板的整体轮廓与换热管的整体轮廓大体相同,边板设置在位于最左端的换热管的左侧和/或边板设置在位于最右端的换热管的右侧,边板与与其相邻的换热管之间设置有第二翅片,第二翅片的至少部分与边板相焊接,且第二翅片的至少部分与与其相邻的换热管相焊接;
    孔部的轴线沿左右方向延伸,离心风机的轴线沿左右方向延伸,且离心风机的轴线与换热芯体的轴线重合;离心风机的出口的至少一部分朝向间隙,在沿前后方向的投影中离心风机的左端伸出换热芯体的左端面、离心风机的右端伸出换热芯体的右端面;
    第一集流管的轴线和第二集流管的轴线均沿前后方向延伸,相邻两个换热管之间设有翅片,
    其中,在沿前后方向的投影中翅片的内边缘伸出换热管的内部边缘且翅片的外边缘伸出换热管的外部边沿;或相邻的两个换热管之间设有翅片,在沿前后方向的投影中翅片的内边缘不伸出换热管的内部边缘且翅片的外边缘不伸出换热管的外部边沿。
  8. 根据权利要求1-7中任一项的换热组件,其特征在于,换热管包括环绕孔部设置的多个平直段,在环绕孔部的方向上多个平直段依次由换向段连接,以使换热芯体大体轮廓呈多边环形;换向段绕换热管的长度方向相对于平直段扭转预定角度,多个换热管在大致相同位置处具有换向段;或相邻的平直段通过换向段圆滑过渡连接。
  9. 根据权利要求8的换热组件,其特征在于,换热芯体大体轮廓呈菱形;
    第一集流管和第二集流管的横截面为圆形,第一集流管与第二集流管相接触或第一集流管与第二集流管相隔开一定距离设置;第一集流管设置有多个第三插孔,多个第三插孔沿左右方向相隔开一定距离设置,第二集流管设置有多个第四插孔,多个第四插孔沿左右方向相隔开一定距离设置;换热组件包括多个换热管,换热管的一端穿过第三插孔并与第 一集流管相连,换热管的另一端穿过第四插孔并与第二集流管相连;
    换热管包括至少四个平直段和至少三个换向段,换向段连接在相邻的平直段之间,换向段绕换热管的长度方向相对于平直段扭转预定角度;相邻的两个换热管的相对的平直段之间设有第一翅片,相邻的两个换热管的相对的换向段之间没有设置第一翅片;
    换热芯体还设有边板,边板设置在位于最左端的换热管的平直段的外侧,和/或,边板设置在位于最右端的换热管的平直段的外侧;
    第一集流管和第二集流管并排设置,第一集流管和第二集流管位于大体轮廓呈菱形的换热芯体的长轴方向的一端,或,第一集流管和第二集流管位于换热芯体位于大体轮廓呈菱形的换热芯体的短轴方向的一端;
    孔部的轴线沿左右方向延伸,离心风机的轴线沿左右方向延伸,且离心风机的轴线与换热芯体的轴线重合;离心风机的出口的至少一部分朝向间隙,在沿前后方向的投影中离心风机的左端伸出换热芯体的左端面、离心风机的右端伸出换热芯体的右端面。
  10. 根据权利要求1-9中任一项的换热组件,其特征在于,换热芯体大体轮廓呈菱形;
    第一集流管和第二集流管的横截面为圆形,第一集流管与第二集流管相接触或第一集流管与第二集流管相隔开一定距离设置;第一集流管设置有多个第五插孔,多个第五插孔沿左右方向相隔开一定距离设置,第二集流管设置有多个第六插孔,多个第六插孔沿左右方向相隔开一定距离设置;换热组件包括多个换热管,换热管的一端穿过第五插孔并与第一集流管相连,换热管的另一端穿过第六插孔并与第二集流管相连;
    换热管包括至少四个平直段和至少三个换向段,换向段连接在相邻的平直段之间;
    第一集流管和第二集流管并排设置,第一集流管和第二集流管位于大体轮廓呈菱形的换热芯体的长轴方向的一端,至少一个换向段位于大体轮廓呈菱形的换热芯体的长轴方向的另一端,以及至少两个换向段位于大体轮廓呈菱形的换热芯体的短轴方向的两端;其中,位于长轴方向另一端的换向段绕换热管的长度方向相对于平直段扭转预定角度,位于短轴方向两端的换向段使相邻的平直段圆滑过渡连接;相邻的两个换热管的相对的平直段之间设有第一翅片,相邻的两个换热管的位于长轴方向的另一端的管段之间没有设置第一翅片,相邻的两个换热管的位于短轴方向的两端的管段之间设置有第一翅片;换热芯体还包括边板,边板设置在位于最左侧的换热管的左侧和/或边板设置在位于最右侧的换热管的右侧,边板与与其相邻的换热管之间设有第二翅片,第二翅片的至少部分与边板焊接固定,且第二翅片的至少部分与换热管焊接固定,位于长轴方向另一端的换向段处没有设置边板;
    或,第一集流管和第二集流管并排设置,第一集流管和第二集流管位于大体轮廓呈菱形的换热芯体的短轴方向的一端,至少一个换向段位于大体轮廓呈菱形的换热芯体的短轴方向的另一端,至少两个换向段位于大体轮廓呈菱形的换热芯体的长轴方向的两端;其中, 位于短轴方向另一端的换向段使相邻的平直段圆滑过渡连接,位于长轴方向两端的换向段绕换热管的长度方向相对于平直段扭转预定角度;相邻的两个换热管的相对的平直段之间设有第一翅片,相邻的两个换热管的位于长轴方向两端的管段之间没有设置第一翅片,相邻的两个换热管的位于短轴方向的另一端的管段之间设置有第一翅片;换热芯体还包括边板,边板设置在位于最左侧的换热管的左侧和/或边板设置在位于最右侧的换热管的右侧,边板与与其相邻的换热管之间设有第二翅片,第二翅片的至少部分与边板焊接固定,且第二翅片的至少部分与换热管焊接固定,位于长轴方向两端的换向段处没有设置边板;
    孔部的轴线沿左右方向延伸,离心风机的轴线沿左右方向延伸,且离心风机的轴线与换热芯体的轴线重合;离心风机的出口的至少一部分朝向间隙,在沿前后方向的投影中离心风机的左端伸出换热芯体的左端面、离心风机的右端伸出换热芯体的右端面。
  11. 一种制冷设备,其特征在于,包括:
    箱体,箱体具有制冷间室和风道,风道与制冷间室连通;
    换热组件,换热组件为根据权利要求1-10中任一项的换热组件,换热组件设在风道。
  12. 根据权利要求11的制冷设备,其特征在于,风道具有进风口和至少一个出风口,离心风机通过进风口将制冷间室内的空气抽吸到风道,风道内与换热组件热交换后的空气通过至少一个出风口进入到制冷间室。
PCT/CN2018/090516 2017-06-29 2018-06-08 换热组件和制冷设备 WO2019001246A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720776477.8U CN206905358U (zh) 2017-06-29 2017-06-29 换热器和具有其的换热器组件及制冷设备
CN201720776477.8 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019001246A1 true WO2019001246A1 (zh) 2019-01-03

Family

ID=61292581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090516 WO2019001246A1 (zh) 2017-06-29 2018-06-08 换热组件和制冷设备

Country Status (2)

Country Link
CN (1) CN206905358U (zh)
WO (1) WO2019001246A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137874A (zh) * 2021-04-26 2021-07-20 江苏鼎翔节能科技有限公司 一种具有防烫伤结构的高温散热翅片管

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206905358U (zh) * 2017-06-29 2018-01-19 杭州三花家电热管理系统有限公司 换热器和具有其的换热器组件及制冷设备
CN108444136A (zh) * 2018-02-28 2018-08-24 杭州三花家电热管理系统有限公司 换热设备及换热系统
CN108489152A (zh) * 2018-02-28 2018-09-04 杭州三花家电热管理系统有限公司 换热器、换热设备及换热系统
CN213747274U (zh) * 2020-09-01 2021-07-20 浙江盾安热工科技有限公司 组合式换热器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204329670U (zh) * 2014-12-11 2015-05-13 丹佛斯微通道换热器(嘉兴)有限公司 换热器、换热模块、换热装置以及热源单元
WO2016091026A1 (zh) * 2014-12-11 2016-06-16 丹佛斯微通道换热器(嘉兴)有限公司 换热器、换热模块、换热装置以及热源单元
CN205843415U (zh) * 2016-06-07 2016-12-28 杭州三花家电热管理系统有限公司 换热装置和具有它的制冷设备
CN106323041A (zh) * 2015-06-30 2017-01-11 杭州三花家电热管理系统有限公司 一种微通道换热器
CN106338162A (zh) * 2015-06-30 2017-01-18 杭州三花家电热管理系统有限公司 一种微通道换热器及其在系统中的应用
CN206905357U (zh) * 2017-06-29 2018-01-19 杭州三花家电热管理系统有限公司 换热器和具有其的换热器组件及制冷设备
CN206905358U (zh) * 2017-06-29 2018-01-19 杭州三花家电热管理系统有限公司 换热器和具有其的换热器组件及制冷设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204329670U (zh) * 2014-12-11 2015-05-13 丹佛斯微通道换热器(嘉兴)有限公司 换热器、换热模块、换热装置以及热源单元
WO2016091026A1 (zh) * 2014-12-11 2016-06-16 丹佛斯微通道换热器(嘉兴)有限公司 换热器、换热模块、换热装置以及热源单元
CN106323041A (zh) * 2015-06-30 2017-01-11 杭州三花家电热管理系统有限公司 一种微通道换热器
CN106338162A (zh) * 2015-06-30 2017-01-18 杭州三花家电热管理系统有限公司 一种微通道换热器及其在系统中的应用
CN205843415U (zh) * 2016-06-07 2016-12-28 杭州三花家电热管理系统有限公司 换热装置和具有它的制冷设备
CN206905357U (zh) * 2017-06-29 2018-01-19 杭州三花家电热管理系统有限公司 换热器和具有其的换热器组件及制冷设备
CN206905358U (zh) * 2017-06-29 2018-01-19 杭州三花家电热管理系统有限公司 换热器和具有其的换热器组件及制冷设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137874A (zh) * 2021-04-26 2021-07-20 江苏鼎翔节能科技有限公司 一种具有防烫伤结构的高温散热翅片管
CN113137874B (zh) * 2021-04-26 2023-01-13 江苏鼎翔节能科技有限公司 一种具有防烫伤结构的高温散热翅片管

Also Published As

Publication number Publication date
CN206905358U (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2019001246A1 (zh) 换热组件和制冷设备
CN102639954A (zh) 热交换器及包括该热交换器的室内机
CN210861409U (zh) 换热器组件和具有其的空调室内机
WO2021103967A1 (zh) 换热器组件和具有其的空调室内机
CN206905357U (zh) 换热器和具有其的换热器组件及制冷设备
CN215260159U (zh) 换热器组件及具有其的空调室内机
CN215001919U (zh) 空调器室内机
CN210861410U (zh) 换热器组件和具有其的空调室内机
CN215808848U (zh) 空调器室内机
CN210892264U (zh) 一种管片式蒸发器及家用电器
CN210511948U (zh) 空调外机冷凝器的增冷装置
WO2018040037A1 (zh) 微通道换热器及风冷冰箱
WO2018040036A1 (zh) 微通道换热器及风冷冰箱
KR102061157B1 (ko) 열교환기 및 이를 갖는 공기조화기
CN213272978U (zh) 换热器、蓄能装置及空调器
CN216159168U (zh) 空调室内机
JP2003314947A (ja) 熱交換器ユニットおよび冷蔵庫
CN216159167U (zh) 空调室内机
CN212108645U (zh) 一种家用翅片管式空气能取暖器
CN112923442B (zh) 换热器和具有其的空调器
CN218583829U (zh) 换热器及空调制冷系统
CN218495411U (zh) 换热器、空调
CN219243719U (zh) 一种空调室内机以及基站空调
WO2018040034A1 (zh) 微通道换热器及风冷冰箱
CN216557431U (zh) 一种空调室外机及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823589

Country of ref document: EP

Kind code of ref document: A1