WO2019000705A1 - 一种金属工件的激光3d打印方法及其系统 - Google Patents

一种金属工件的激光3d打印方法及其系统 Download PDF

Info

Publication number
WO2019000705A1
WO2019000705A1 PCT/CN2017/106247 CN2017106247W WO2019000705A1 WO 2019000705 A1 WO2019000705 A1 WO 2019000705A1 CN 2017106247 W CN2017106247 W CN 2017106247W WO 2019000705 A1 WO2019000705 A1 WO 2019000705A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
metal
printing
metal workpiece
industrial computer
Prior art date
Application number
PCT/CN2017/106247
Other languages
English (en)
French (fr)
Inventor
赵晓杰
陶沙
秦国双
Original Assignee
英诺激光科技股份有限公司
常州英诺激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英诺激光科技股份有限公司, 常州英诺激光科技有限公司 filed Critical 英诺激光科技股份有限公司
Publication of WO2019000705A1 publication Critical patent/WO2019000705A1/zh
Priority to US16/244,085 priority Critical patent/US20190151946A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/77Recycling of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/43Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the field of 3D printing technologies, and in particular, to a laser 3D printing method and system thereof for a metal workpiece.
  • 3D Printing technology is a technique for constructing objects by layer-by-layer printing based on digital model files using adhesive materials such as powdered metal or plastic. It eliminates the need for machining or any mold to create parts of any shape directly from computer graphics data, dramatically reducing product development cycles, increasing productivity and reducing production costs.
  • the laser sintering technology utilizes the principle that the powder material is sintered under laser irradiation, and is formed by computer controlled layer stacking.
  • Laser sintering technology can use a lot of powder materials and make finished products of corresponding materials.
  • Laser sintered products have good precision and high strength, but the main advantage is the production of metal finished products.
  • Laser sintering can directly sinter metal parts, or indirectly sinter metal parts, the final product is far stronger than other 3D Printing technology.
  • metal 3D printed workpieces have great defects in the handling performance, mainly due to the fact that laser 3D printing is a layer stack, which may cause voids, over-burning and spheroidization during printing, resulting in printing. Metal workpieces have a low density.
  • a laser 3D printing method for a metal workpiece according to the present invention comprises the following steps:
  • the first step is to perform 3D sintering of the metal powder by using a continuous laser or a pulsed laser;
  • laser-induced shock shock is applied to the 3D sintered component by using a short pulse width laser
  • the 3D sintered component is polished by continuous laser or pulsed laser.
  • the method further comprises selecting the laser wavelength, the pulse energy and the pulse width according to the optical characteristics of the respective material powders, repeating the first to third processes, and performing functional gradient 3D printing.
  • the metal pool device comprises a sealing chamber and a powder cylinder, a forming cylinder and a powdering roller disposed in the sealing chamber.
  • the metal pool device further comprises: an air suction device connected to the sealed cavity.
  • the air purifying device is provided with a dust purifier on the communication passage corresponding to the sealing cavity.
  • the metal pool device further comprises an inflator connected to the sealed chamber.
  • the laser scanning device comprises: a laser connected to the industrial computer and adjusting the pulse width according to the control of the industrial computer; a beam expanding device connected to the laser; and connecting to the beam expanding device and performing the metal pool device Laser scanned galvanometer lens assembly.
  • the laser 3D printing method and system of the metal workpiece of the present invention control the degree of laser sintering by changing the laser pulse width in the process of printing a metal workpiece, and improve the appearance of voids in the metal workpiece during printing.
  • the density of the metal workpiece is increased.
  • FIG. 1 is a functional block diagram of a laser 3D printing system for a metal workpiece of the present invention.
  • FIG. 2 is a flow chart of a 3D printing method of a laser 3D printing system using a metal workpiece according to the present invention.
  • the laser 3D printing system of the metal workpiece of the embodiment mainly includes an industrial computer 10 , a laser scanning device 20 and a metal pool device 30 .
  • the industrial computer 10 controls the laser scanning device 20 to perform 3D printing on the metal powder placed in the metal pool device 30.
  • the industrial computer 10 is connected to the laser scanning device 20 and the metal pool device 30, and controls the laser scanning device 20 and the metal pool device 30.
  • the laser scanning device 20 includes a laser 21 connected to the industrial computer 10 and adjusting the pulse width according to the control of the industrial computer 10, a beam expanding device 22 connected to the laser 21, and a beam expanding device 22 connected to the metal pool device. 30 A galvanometer lens assembly 23 for laser scanning.
  • the metal pool device 30 includes a sealed chamber 31, an air extracting device 32 connected to the sealed chamber 31, a dust purifier 33 disposed on the communication passage corresponding to the air extracting device 32 and the sealed chamber 31, and an air in communication with the sealed chamber 31.
  • Device 34 The metal pool device 30 includes a sealed chamber 31, an air extracting device 32 connected to the sealed chamber 31, a dust purifier 33 disposed on the communication passage corresponding to the air extracting device 32 and the sealed chamber 31, and an air in communication with the sealed chamber 31.
  • the metal pool device 30 further includes: a powder cylinder, a molding cylinder and a powder coating roller (not shown in the drawings) provided in the sealing chamber 31.
  • a plurality of sensors are disposed in the sealed cavity 31 for monitoring the working environment and working state in the sealed cavity 31.
  • the air pumping device 32 may be a vacuum pump;
  • the shielding gas delivered by the inflator device 34 may be one or more of argon gas, helium gas and other inert gases, and the shielding gas isolates the metal powder from the air to avoid metal powder. Oxidation.
  • the working principle of the 3D printing system of the metal workpiece of the embodiment is as follows: after the laser 3D printing process starts, the industrial computer 10 controls the operation of the air extracting device 32 to evacuate the air in the sealed chamber 31, and then the industrial computer 10 controls the closing of the air extracting device 32. And opening the dust purifier 33 and the inflator 34 to transport the shielding gas to fill the sealing cavity 31; the powdering roller lays the first layer of metal powder to a predetermined position, and the industrial computer 10 adjusts the laser 21 to emit light by a predetermined pulse, and controls the laser beam to be first.
  • the filling scan path of the layer scans and sinters the first layer of metal powder laid; after the first layer is processed, the powder cylinder rises by a certain thickness, and the powder roller rolls the second layer of metal on the processed first layer.
  • the powder the industrial computer 10 adjusts the laser 21 to emit light with a predetermined pulse and controls the laser beam to scan according to the filling scan path of the second layer, and sinters the laid second layer of metal powder; the layer is processed until the printing of the entire metal workpiece is completed.
  • the embodiment further discloses a 3D printing method of a laser 3D printing system using the above metal workpiece, the method comprising the following steps:
  • 3D sintering of the metal powder is performed by using a continuous laser or a pulsed laser;
  • the second step is to laser-induced shock shock on the 3D sintered part with a short pulse width laser at the same time as or after sintering (laser shock) Peening) to enhance the mechanical properties of the component;
  • the 3D sintered component is polished by continuous laser or pulsed laser;
  • the fourth step when 3D printing involves powders of various materials, such as different materials (powder) in adjacent layers, or different materials (powder) in different positions of the same layer, according to the optical properties of each material (powder)
  • the laser wavelength, pulse energy and pulse width are applied to achieve printing, impact and polishing of functionally graded materials.
  • the 3D printing system of the metal workpiece of the embodiment changes the energy absorbed by the metal powder by adjusting the pulse width of the laser beam, thereby changing the melting amount of the metal particles of the metal powder, thereby reducing the viscosity and surface tension of the metal melt, and increasing the melting.
  • the depth and width of the pool increase the adhesion between the metal particles, which in turn increases the density of the metal workpiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种金属工件的激光3D打印方法及其系统,方法包括以下步骤:第一步、采用连续激光或脉冲激光对金属粉末进行3D烧结;第二步、利用短脉宽激光对3D烧结的部件进行激光诱导的激波冲击;第三步、采用连续激光或脉冲激光对3D烧结的部件进行抛光处理。当打印物件包括不同材料粉末时,根据各材料粉末的光学特性选择合适的激光波长、脉宽、脉冲能量等参数,应用上述三步实现具有功能梯度的物件的3D打印。在打印金属工件的过程中通过改变激光脉冲宽度来控制激光烧结的程度,可改善金属工件在打印过程中出现孔隙、过烧及球化现象的情况,提高金属工件的致密度。

Description

一种金属工件的激光3D打印方法及其系统
技术领域
本发明涉及3D打印技术领域,尤其涉及一种针对于金属工件的激光3D打印方法及其系统。
背景技术
3D 打印技术,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。它无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降低生产成本。
激光烧结技术利用粉末材料在激光照射下烧结的原理,由计算机控制层层堆结成型。激光烧结技术可以使用非常多的粉末材料,并制成相应材质的成品,激光烧结的成品精度好、强度高,但是最主要的优势还是在于金属成品的制作。激光烧结可以直接烧结金属零件,也可以间接烧结金属零件,最终成品的强度远远优于其他3D 打印技术。
然而,传统金属3D打印工件在接卸性能上存在很大的缺陷,主要表现在由于激光3D打印属于层层堆叠,打印过程中会出现孔隙、过烧现象及球化现象,所以导致打印成的金属工件致密度低。
发明内容
本发明的目的在于提供一种金属工件的激光3D打印方法及其系统,其解决了现有3D打印金属工件致密度低的技术问题。
为达到上述目的,本发明所提出的技术方案为:
本发明的一种金属工件的激光3D打印方法,其包括以下步骤:
第一步、采用连续激光或脉冲激光对金属粉末进行3D烧结;
第二步、利用短脉宽激光对3D烧结的部件进行激光诱导的激波冲击;
第三步、采用连续激光或脉冲激光对3D烧结的部件进行抛光处理。
其中,当3D打印涉及多种材料的粉末时,还包括根据各材料粉末的光学特性选择激光波长、脉冲能量和脉宽,重复所述第一步至第三步工艺,实施功能梯度3D打印。
实现如上所述金属工件的激光3D打印方法的系统,其包括:工控机;连接并由所述工控机控制的脉宽可调的激光器及其扫描装置;以及连接并由所述工控机控制的、接受所述激光扫描装置的扫描以进行金属工件3D打印的金属池装置。
其中,所述的金属池装置包括密封腔及设于所述密封腔内的粉料缸、成型缸及铺粉辊。
其中,所述的金属池装置还包括:连通于所述密封腔的抽气装置。
其中,所述的抽气装置与密封腔对应的连通通道上设有粉尘净化器。
其中,所述的金属池装置还包括连通于密封腔的充气装置。
其中,所述的激光扫描装置包括:连接于工控机并根据工控机的控制调节脉宽的激光器;连接于所述激光器的扩束装置;及连接于所述扩束装置、对金属池装置进行激光扫描的振镜透镜组件。
与现有技术相比,本发明的金属工件的激光3D打印方法及其系统,在打印金属工件的过程中通过改变激光脉冲宽度来控制激光烧结的程度,改善金属工件在打印过程中出现孔隙、过烧及球化现象的情况,提高金属工件的致密度。
附图说明
图1为本发明的金属工件的激光3D打印系统的功能模块框图。
图2为本发明的采用金属工件的激光3D打印系统的3D打印方法流程图。
具体实施方式
以下参考附图,对本发明予以进一步地详尽阐述。
请参阅附图1,在本实施例中,该请参照图1,本实施例的金属工件的激光3D打印系统主要包括工控机10,激光扫描装置20及金属池装置30。工控机10控制激光扫描装置20对放置于金属池装置30内的金属粉末进行3D打印。
其中,工控机10与激光扫描装置20及金属池装置30连接,并控制激光扫描装置20及金属池装置30。
进一步的,上述激光扫描装置20包括:连接于工控机10并根据工控机10的控制调节脉宽的激光器21、连接于激光器21的扩束装置22及连接于扩束装置22并对金属池装置30进行激光扫描的振镜透镜组件23。
其中,金属池装置30包括密封腔31、连通于密封腔31的抽气装置32、设在抽气装置32与密封腔31对应的连通通道上的粉尘净化器33及连通于密封腔31的充气装置34。
其中,上述金属池装置30还包括:设于密封腔31内的粉料缸、成型缸及铺粉辊(附图中并未示出)。
优选的,上述密封腔31内还可以设置多种传感器,用于监视密封腔31内的工作环境和工作状态。
更具体的,抽气装置32可以为真空泵;充气装置34输送的保护气体可以为氩气、氙气及其他惰性气体中的一种或多种,保护气体将金属粉末与空气隔离,从而避免金属粉末氧化。
本实施例的金属工件的3D打印系统的工作原理为:激光3D打印过程开始后,工控机10控制抽气装置32工作,把密封腔31内空气抽空,然后工控机10控制关闭抽气装置32并打开粉尘净化器33及充气装置34输送保护气体,将密封腔31充满;铺粉辊铺设第一层金属粉末至预定位置,工控机10调节激光器21以预定脉冲出光,控制激光束按第一层的填充扫描路径扫描,烧结所铺设的第一层金属粉末;加工出第一层后,粉料缸上升一定厚度的距离,铺粉辊在已加工好的第一层铺设好第二层金属粉末,工控机10调节激光器21以预定脉冲出光并控制激光束按第二层的填充扫描路径扫描,烧结所铺设的第二层金属粉末;如此层层加工,直到整个金属工件的打印完成。
请参阅附图3,本实施例还公开了一种采用上述金属工件的激光3D打印系统的3D打印方法,该方法包括以下步骤:
第一步,利用连续激光或脉冲激光对金属粉末进行3D烧结;
第二步,在烧结的同时或之后,利用短脉宽激光对3D烧结的部件进行激光诱导的激波冲击(laser shock peening),以增强部件的机械性能;
第三步,根据实际需要,利用连续激光或脉冲激光对3D烧结的部件进行抛光处理;
第四步,当3D打印涉及多种材料的粉末,如相邻层采用不同的材料(粉末),或同一层不同位置采用不同的材料(粉末),根据各材料(粉末)的光学特性选择合适的激光波长、脉冲能量和脉宽,应用上述工艺,实现功能梯度材料的打印、冲击和抛光。
本实施例的金属工件的3D打印系统通过对激光束的脉冲宽度进行调节来改变金属粉末吸收的能量,进而改变金属粉末的金属颗粒的熔化量,从而降低金属熔体粘度和表面张力,增加熔池深度和宽度,使得金属颗粒间的粘结力增加,进而增加金属工件的致密度。
上述内容,仅为本发明的较佳实施例,并非用于限制本发明的实施方案,本领域普通技术人员根据本发明的主要构思和精神,可以十分方便地进行相应的变通或修改,故本发明的保护范围应以权利要求书所要求的保护范围为准。

Claims (8)

  1. 一种金属工件的激光3D打印方法,其特征在于,包括以下步骤:
    第一步、采用连续激光或脉冲激光对金属粉末进行3D烧结;
    第二步、利用短脉宽激光对3D烧结的部件进行激光诱导的激波冲击;
    第三步、采用连续激光或脉冲激光对3D烧结的部件进行抛光处理。
  2. 如权利要求1所述的金属工件的激光3D打印方法,其特征在于,当3D打印涉及多种材料的粉末时,还包括根据各材料的粉末的光学特性选择激光波长、脉冲能量和脉宽,重复所述第一步至第三步工艺,实施功能梯度3D打印。
  3. 实现如权利要求1或2任意一项所述的金属工件的激光3D打印方法的系统,其特征在于,包括:工控机;连接并由所述工控机控制的脉宽可调的激光器及其扫描装置;以及连接并由所述工控机控制的、接受所述激光扫描装置的扫描以进行金属工件3D打印的金属池装置。
  4. 如权利要求3所述的系统,其特征在于,所述的金属池装置包括密封腔及设于所述密封腔内的粉料缸、成型缸及铺粉辊。
  5. 如权利要求4所述的系统,其特征在于,所述的金属池装置还包括:连通于所述密封腔的抽气装置。
  6. 如权利要求5所述的系统,其特征在于,所述的抽气装置与密封腔对应的连通通道上设有粉尘净化器。
  7. 如权利要求3所述的系统,其特征在于,所述的金属池装置还包括连通于密封腔的充气装置。
  8. 如权利要求3至7任意一项所述的系统,其特征在于,所述的激光扫描装置包括:连接于工控机并根据工控机的控制调节脉宽的激光器;连接于所述激光器的扩束装置;及连接于所述扩束装置、对金属池装置进行激光扫描的振镜透镜组件。
PCT/CN2017/106247 2017-06-30 2017-10-16 一种金属工件的激光3d打印方法及其系统 WO2019000705A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/244,085 US20190151946A1 (en) 2017-06-30 2019-01-09 Laser 3d printing method for metal workpiece and system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710519153.0A CN107252893A (zh) 2017-06-30 2017-06-30 一种金属工件的激光3d打印方法及其系统
CN201710519153.0 2017-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/244,085 Continuation US20190151946A1 (en) 2017-06-30 2019-01-09 Laser 3d printing method for metal workpiece and system thereof

Publications (1)

Publication Number Publication Date
WO2019000705A1 true WO2019000705A1 (zh) 2019-01-03

Family

ID=60024471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106247 WO2019000705A1 (zh) 2017-06-30 2017-10-16 一种金属工件的激光3d打印方法及其系统

Country Status (3)

Country Link
US (1) US20190151946A1 (zh)
CN (1) CN107252893A (zh)
WO (1) WO2019000705A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110076339A (zh) * 2019-03-06 2019-08-02 上海工程技术大学 一种复杂空腔增材制件内外表面的抛光方法
CN116460305A (zh) * 2023-04-23 2023-07-21 苏州双恩智能科技有限公司 一种金属3d打印方法
CN117139646A (zh) * 2023-09-01 2023-12-01 江苏大学 一种脉冲电流辅助脉冲激光烧结抑制飞溅的装置及方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160169A1 (en) * 2017-02-28 2018-09-07 Hewlett-Packard Development Company, L.P. Radiation amount determination for an intended surface property level
JP6962139B2 (ja) * 2017-11-06 2021-11-05 トヨタ自動車株式会社 クラッシュボックス及びその製造方法
CN107876968A (zh) * 2017-12-26 2018-04-06 英诺激光科技股份有限公司 一种用于平行加工的激光加工设备
CN108015280A (zh) * 2017-12-29 2018-05-11 广东汉邦激光科技有限公司 口腔器件的3d打印装置及打印方法
CN108213424A (zh) * 2017-12-29 2018-06-29 广东汉邦激光科技有限公司 生物植入体的3d打印装置及打印方法
CN108015281A (zh) * 2017-12-29 2018-05-11 广东汉邦激光科技有限公司 3d打印装置及其打印方法
CN107999755A (zh) * 2017-12-29 2018-05-08 广东汉邦激光科技有限公司 模具的3d打印装置及打印方法
CN110465657B (zh) * 2018-05-09 2021-07-23 中国科学院金属研究所 一种激光增材制造合金钢的控形沉积方法
CN109848563B (zh) * 2018-12-26 2020-06-02 北京航空航天大学 一种基于现有激光增材设备的同步激光抛光模块
CN112091210A (zh) * 2019-06-17 2020-12-18 广东汉邦激光科技有限公司 3d激光成型装置及3d激光成型方法
CN110614368A (zh) * 2019-11-07 2019-12-27 常州英诺激光科技有限公司 一种通过激光加工硬化处理提高3d打印零件密度的方法
CN110976869A (zh) * 2019-12-25 2020-04-10 长安大学 一种零件增材复合制造装置及方法
CN110961635A (zh) * 2019-12-31 2020-04-07 西安交通大学 一种通过激光冲击强化改善异种合金增材制造界面组织和性能的方法
CN115138873B (zh) * 2021-03-31 2024-04-23 广东汉邦激光科技有限公司 多激光扫描打印系统及多激光同步耦合扫描打印方法
CN114425625A (zh) * 2022-01-14 2022-05-03 中国人民解放军军事科学院国防科技创新研究院 脉冲激光增材减材制造系统及方法
CN114734057B (zh) * 2022-04-24 2024-06-21 重庆理工大学 一种基于金属粉末的激光熔融3d打印方法
CN117962300B (zh) * 2024-04-01 2024-06-14 西安空天机电智能制造有限公司 分区锻打印控制方法、装置、打印系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780544A (zh) * 2010-01-15 2010-07-21 黑龙江科技学院 一种采用激光成形难熔金属零件的方法
CN104259459A (zh) * 2014-09-29 2015-01-07 飞而康快速制造科技有限责任公司 一种采用选区激光熔化技术制备钛合金工艺品的方法
CN105798297A (zh) * 2016-03-23 2016-07-27 北京科技大学 一种电烧结金属材料3d打印装置及其打印工艺
CN105945284A (zh) * 2016-07-14 2016-09-21 深圳英诺激光科技有限公司 激光3d打印金属工件的方法及装置
CN205888079U (zh) * 2016-07-14 2017-01-18 深圳英诺激光科技有限公司 金属工件的激光3d打印系统
US20170087670A1 (en) * 2015-09-28 2017-03-30 Ecole Polytechnique Federale De Lausanne (Epfl) Method and Device for Implementing Laser Shock Peening or Warm Laser Shock Peening During Selective Laser Melting

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206125A1 (de) * 2012-04-13 2013-10-17 MTU Aero Engines AG Verfahren zur Herstellung von Niederdruckturbinenschaufeln aus TiAl
DE102014201818A1 (de) * 2014-01-31 2015-08-06 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur verbesserten Steuerung des Energieeintrags in einem generativen Schichtbauverfahren
CN111054920B (zh) * 2014-11-14 2022-09-16 株式会社尼康 造形装置及造形方法
GB201510220D0 (en) * 2015-06-11 2015-07-29 Renishaw Plc Additive manufacturing apparatus and method
CN104889395B (zh) * 2015-06-25 2017-01-18 武汉大学 基于纳秒‑皮秒‑飞秒激光技术的金属制品3d打印方法及系统
CN106513996B (zh) * 2016-12-30 2019-02-15 中国科学院宁波材料技术与工程研究所 全激光复合增材制造方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780544A (zh) * 2010-01-15 2010-07-21 黑龙江科技学院 一种采用激光成形难熔金属零件的方法
CN104259459A (zh) * 2014-09-29 2015-01-07 飞而康快速制造科技有限责任公司 一种采用选区激光熔化技术制备钛合金工艺品的方法
US20170087670A1 (en) * 2015-09-28 2017-03-30 Ecole Polytechnique Federale De Lausanne (Epfl) Method and Device for Implementing Laser Shock Peening or Warm Laser Shock Peening During Selective Laser Melting
CN105798297A (zh) * 2016-03-23 2016-07-27 北京科技大学 一种电烧结金属材料3d打印装置及其打印工艺
CN105945284A (zh) * 2016-07-14 2016-09-21 深圳英诺激光科技有限公司 激光3d打印金属工件的方法及装置
CN205888079U (zh) * 2016-07-14 2017-01-18 深圳英诺激光科技有限公司 金属工件的激光3d打印系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110076339A (zh) * 2019-03-06 2019-08-02 上海工程技术大学 一种复杂空腔增材制件内外表面的抛光方法
CN116460305A (zh) * 2023-04-23 2023-07-21 苏州双恩智能科技有限公司 一种金属3d打印方法
CN117139646A (zh) * 2023-09-01 2023-12-01 江苏大学 一种脉冲电流辅助脉冲激光烧结抑制飞溅的装置及方法
CN117139646B (zh) * 2023-09-01 2024-05-14 江苏大学 一种脉冲电流辅助脉冲激光烧结抑制飞溅的方法

Also Published As

Publication number Publication date
CN107252893A (zh) 2017-10-17
US20190151946A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2019000705A1 (zh) 一种金属工件的激光3d打印方法及其系统
US10449632B2 (en) Spatter reduction laser scanning strategy in selective laser melting
Hu et al. Design of a shaping system for stereolithography with high solid loading ceramic suspensions
JP3943315B2 (ja) 三次元形状造形物の製造方法
US8956692B2 (en) Device and method for manufacturing a three-dimensional body
CN104226996B (zh) 一种激光3d打印泵用叶轮的装置及方法
US6827988B2 (en) Process and a device for producing ceramic molds
US5824250A (en) Gel cast molding with fugitive molds
JP2615429B2 (ja) 3次元立体形状の創成法
CN112789130B (zh) 生产反模板的方法以及使用此类的反模板制造具有复杂形状部件的方法
US20160303798A1 (en) Method and device for manufacturing of three dimensional objects utilizing direct plasma arc
US20190134891A1 (en) Dmlm build platform and surface flattening
CN1671503A (zh) 使用选择性抑制烧结(sis)的金属零件制造
JP5456400B2 (ja) 三次元形状造形物の製造装置および製造方法
JP2010132961A (ja) 積層造形装置及び積層造形方法
CN104441641B (zh) 基于光固化快速成型的3d打印的实现方法和装置
JP2002066844A (ja) 金属粉末焼結型積層造形による放電加工用電極製作方法
JP2010510874A (ja) 部分的にコーティングされた製品の製造方法および装置
JP6878364B2 (ja) 追加の粉末床用可動壁
CN109955481B (zh) 用于添加式地制造三维物体的方法
CN205888079U (zh) 金属工件的激光3d打印系统
CN111992877A (zh) 一种高精度激光增减材的复合制造装置
CN110802227A (zh) 一种内部具有悬停面的产品的3d打印方法和数据处理方法
CN109514862B (zh) 一种用于聚合物三维制品增材制造的方法
US20210178692A1 (en) Methods for removing loose particles from an object built by additive manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916136

Country of ref document: EP

Kind code of ref document: A1