WO2019000520A1 - 一种内嵌式触控oled显示装置 - Google Patents

一种内嵌式触控oled显示装置 Download PDF

Info

Publication number
WO2019000520A1
WO2019000520A1 PCT/CN2017/093835 CN2017093835W WO2019000520A1 WO 2019000520 A1 WO2019000520 A1 WO 2019000520A1 CN 2017093835 W CN2017093835 W CN 2017093835W WO 2019000520 A1 WO2019000520 A1 WO 2019000520A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
disposed
display device
sensing
Prior art date
Application number
PCT/CN2017/093835
Other languages
English (en)
French (fr)
Inventor
叶剑
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/576,984 priority Critical patent/US10514791B2/en
Publication of WO2019000520A1 publication Critical patent/WO2019000520A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present application relates to the field of display devices, and in particular, to an in-cell touch OLED display device.
  • the touch screen is mainly composed of a touch detecting component and a touch screen controller.
  • the touch detecting component is installed in front of the display screen for detecting the touch position of the user, and is sent to the touch screen controller after receiving; and the main function of the touch screen controller is to receive from the touch point detecting device. Touch the information and convert it to the contact coordinates and send it to the central processor. It can also receive commands from the central processor and execute them.
  • OLED Organic Light-Emitting Diode
  • one solution is to separately make the touch screen and the OLED display, and then the touch screen is attached to the upper surface of the OLED through an optical transparent adhesive to form a complete OLED touch display screen, but
  • This structure will increase the thickness of the OLED touch display screen, increase the bonding process, and is not conducive to the thinning and thinning of the OLED touch display screen;
  • another solution is to make the touch unit above the thin film encapsulation layer of the OLED display screen, but The process of the touch unit is performed after the film layer on the film encapsulation layer and under the film layer is completed, and some characteristics of the film layer materials may have a large limitation on the process of the touch unit, thereby increasing the entire touch OLED.
  • the display device is difficult to manufacture and reduces its quality.
  • the technical problem to be solved by the present application is to provide an in-cell touch OLED display device to improve the thinness and thinness of the in-cell touch OLED display device, reduce the process difficulty, and improve the quality thereof.
  • the in-cell touch OLED display device includes: an array substrate; an organic flat layer disposed on the array substrate; a pixel defining layer disposed on the organic flat layer, defining a plurality of pixel regions; and a light emitting layer Provided on the pixel defining layer; a touch electrode layer disposed on a surface of the pixel defining layer adjacent to the organic flat layer, and/or disposed on a surface of the pixel defining layer away from the organic flat layer
  • the touch electrode layer includes a plurality of sensing electrodes and a plurality of driving electrodes that are disposed and insulated in a plurality of layers; and the plurality of sensing electrodes and the plurality of driving electrodes are distributed in a gap between the plurality of pixel regions Projection to reduce occlusion of the pixel area.
  • the in-cell touch OLED display device includes: an array substrate; an organic flat layer disposed on the array substrate; a pixel defining layer disposed on the organic flat layer, defining a plurality of pixel regions; and a touch electrode a layer disposed on a surface of the pixel defining layer adjacent to the organic flat layer, and/or disposed on a surface of the pixel defining layer away from the organic flat layer.
  • Another technical solution adopted by the present application is to provide a method for manufacturing an in-cell touch OLED display device.
  • the method includes forming an array substrate on which an active drain region layer is disposed; forming a plurality of leads in the source/drain region layer; forming an organic planarization layer on the plurality of leads and the source and drain layers; Forming a plurality of via holes on the organic planarization layer; forming a touch electrode layer on the organic planarization layer; and passing the touch electrode layer through the plurality of via holes and the plurality of leads connection.
  • the touch electrode layer is disposed on the surface of the pixel defining layer near the organic flat layer, and/or disposed on the pixel defining layer away from the organic flat layer.
  • the touch electrode layer can be embedded in the OLED display panel to improve the lightness and thinness of the in-cell touch OLED display device, and the OLED display panel can be improved on the pixel definition layer.
  • the material properties of the film layer limit the touch electrode layer, thereby reducing the process difficulty and improving the quality of the in-cell touch OLED display device.
  • FIG. 1 is a schematic structural view of a first embodiment of an in-cell touch OLED display device of the present application
  • FIG. 2A is a schematic structural view showing a part of a structure of a touch electrode layer of the embodiment of FIG. 1;
  • 2B is a schematic structural view of the entire structure of the touch electrode of the embodiment of FIG. 1;
  • FIG. 3 is a schematic structural view showing another structure of a touch electrode layer of the embodiment of FIG. 1;
  • 4A is a schematic structural view of a second embodiment of an in-cell touch OLED display device of the present application.
  • FIG. 4B is a schematic structural view of a partial structure of the embodiment of FIG. 4A;
  • FIG. 5 is a schematic structural view of a third embodiment of an in-cell touch OLED display device of the present application.
  • 6A is a schematic structural view of a fourth embodiment of an in-cell touch OLED display device of the present application.
  • FIG. 6B is a schematic structural view of the sensing electrode and the driving electrode of the embodiment of FIG. 6A;
  • FIG. 7 is a schematic flow chart of a first embodiment of a method for fabricating an in-cell touch OLED display device of the present application.
  • Figure 8 is a schematic structural view of the embodiment of Figure 7;
  • FIG. 9 is a schematic flow chart of a second embodiment of a method for fabricating an in-cell touch OLED display device of the present application.
  • FIG. 10 is a schematic flow chart of a third embodiment of a method for fabricating an in-cell touch OLED display device of the present application.
  • FIG. 1 is a schematic structural view of a first embodiment of an in-cell touch OLED display device according to the present application
  • FIG. 2A is a partial structure of the touch electrode layer of the embodiment of FIG. 2B is a schematic structural view of the overall structure of the touch electrode of the embodiment of FIG. 1.
  • the embodiment includes an array substrate 101, an organic flat layer 102, a pixel defining layer 103, and a touch electrode layer 104.
  • the organic flat layer 102 is disposed on the array substrate 101.
  • the pixel defining layer 103 is disposed on the organic flat layer 102.
  • the pixel defining layer 103 defines a plurality of pixel regions 105.
  • the touch electrode layer 104 is disposed on the surface of the pixel defining layer 103 adjacent to the organic flat layer 102, and is used for detecting the touch of the in-cell touch OLED display 106 of the embodiment. Control operation.
  • the touch electrode layer 104 of the present embodiment is disposed on the surface of the pixel defining layer 103 adjacent to the organic flat layer 102. It can be understood that the touch electrode layer 104 is not embedded at all or partially or completely embedded in the surface of the organic flat layer 102.
  • the touch electrode layer 104 is disposed on the surface of the pixel defining layer 103 adjacent to the organic flat layer 102, and the touch electrode layer 104 can be embedded in the OLED display screen to improve the implementation.
  • the in-cell touch OLED display device is light and thin; and the material properties of the film layer on the pixel defining layer 103 in the OLED display panel can be improved to limit the touch electrode layer 104, thereby reducing the in-cell touch OLED.
  • the process difficulty of the display device 106 is improved and its quality is improved.
  • the array substrate 101 of the present embodiment specifically includes a guiding film layer 107, a buffer layer 108, a source/drain region layer 109, a first gate insulating layer 110, a first gate 111, and a second gate, which are sequentially disposed from bottom to top.
  • the insulating layer 112, the second gate 113, the dielectric layer 114, and the source and drain layers 115 are all common structures of the array substrate, which are not described in detail herein. Of course, in other embodiments, array structures of other structures may be used instead.
  • Array substrate 101 specifically includes a guiding film layer 107, a buffer layer 108, a source/drain region layer 109, a first gate insulating layer 110, a first gate 111, and a second gate, which are sequentially disposed from bottom to top.
  • the insulating layer 112, the second gate 113, the dielectric layer 114, and the source and drain layers 115 are all common structures of the array substrate, which are not described in detail herein.
  • a plurality of leads 116 are disposed in the source and drain layers 115 of the array substrate 101 of the embodiment, that is, the plurality of leads 116 are disposed in the same layer as the source and drain layers 115, and the organic flat on the array substrate 101 is flat.
  • the layer 102 is provided with a plurality of through holes 117, so that the touch electrode layer 104 is connected to the plurality of leads 116 through the plurality of through holes 117, so that the touch electrode layer 104 can be traced at the source and drain layers 115.
  • the lead 116 of the control electrode layer 104 and the source and drain electrode leads of the source and drain layer 115 are taken out in the same layer, and the two can share the same circuit board bonding area, and the electrical signal and source and drain of the touch electrode layer 104 can be transmitted through the bonding area.
  • the electrical signal of the pole layer 115 is sent to the driving circuit to realize integration of touch and display. This structure can reduce the thickness of the in-cell touch OLED display 106, simplify its production process, and save its production cost.
  • the touch electrode layer 104 of the present embodiment includes a plurality of sensing electrodes 201 and a plurality of driving electrodes 202 (shown in FIG. 2A ) that are disposed and insulated.
  • the plurality of sensing electrodes 201 and the plurality of driving electrodes 202 are both The projections are distributed over the gaps between the plurality of pixel regions 105 to reduce occlusion of the pixel regions 105.
  • the plurality of sensing electrodes 201 and the plurality of driving electrodes 202 of the embodiment are all metal materials of Ag, Ti, Al, Mo, or any number of Metal alloy material.
  • metal materials, or other alloy materials, or other non-metal materials may be used in other embodiments, which are not limited herein.
  • the plurality of sensing electrodes 201 and the plurality of driving electrodes 202 of the embodiment are disposed in the same layer, and are disposed on the surface of the pixel defining layer 103 adjacent to the organic flat layer 102.
  • each driving electrode 202 can be divided into a plurality of sections, and a plurality of conductive bridges 203 (FIG. 2B) are disposed, so that the conductive bridges 203 are located above the sensing electrodes 201.
  • each of the sensing electrodes 201 may be divided into a plurality of sections, and a plurality of conductive bridges 203 are disposed to connect the sensing electrodes 201 on both sides of the intersection 204 of the sensing electrodes 201 and the driving electrodes 202 to achieve the above technical effects.
  • the conductive bridge 301 can be disposed under the sensing electrode 302 (as shown in FIG. 3).
  • the embodiment may further include a protective layer 205 on the conductive bridge 203 and protecting the insulating layer 206 under the sensing electrode 201 and the driving electrode 202.
  • a similar expanded structure can also be employed.
  • the through hole 117 of the embodiment includes a plurality of first through holes 207 and a plurality of second through holes 208, and the plurality of first through holes 207 and the plurality of second through holes 208 extend through the organic flat layer 102 to a source drain layer 115 (shown in FIG. 1), such that the plurality of sensing electrodes 201 are connected to the corresponding leads 116 through the plurality of first vias 207, and the plurality of driving electrodes 202 pass through the plurality of second vias 208 and corresponding The leads 116 are connected.
  • the embodiment further includes other structures constituting the in-cell touch OLED display 106, such as the luminescent layer 118 disposed on the pixel defining layer 103, and the thin film encapsulating layer 119 disposed on the luminescent layer 118.
  • the touch electrode layer 104 is located under the light-emitting layer 118, that is, in the process of fabricating the in-cell touch OLED display 106, the touch electrode layer 104 is formed first, and then the light-emitting layer 118 is formed.
  • the high temperature resistance of the organic light emitting material of the light emitting layer 118 is limited by the high temperature process in the manufacturing process of the touch electrode layer 104, so that the process difficulty and quality of the in-cell touch OLED display device 106 can be reduced.
  • the luminescent layer 118 of the embodiment includes a cathode layer 120, and the plurality of sensing electrodes 201 and the plurality of driving electrodes 202 and the cathode layer 120 form a plurality of touch capacitors (not shown).
  • FIG. 4A is a schematic structural view of a second embodiment of the in-cell touch OLED display device of the present application
  • FIG. 4B is a schematic structural view of a partial structure of the embodiment of FIG. 4A.
  • the plurality of sensing electrodes 401 and the plurality of driving electrodes 402 of the embodiment are provided with breakpoints 403 at respective positions, thereby dividing the entire touch electrode layer 404 into a plurality of independent touch electrode units 405.
  • a capacitance 407 is formed between each touch unit 401 and the cathode layer 406 (as shown in FIG. 4B).
  • Each of the individual touch electrode units 405 is connected to the leads 409 of the source and drain layers through vias 408 and extends to the bonding region 410.
  • the capacitance value of the capacitor 407 is changed; the change of the capacitance value can be detected by the lead wire 409, so that the touch position information can be obtained and the corresponding operation can be performed.
  • the number of the through holes 408 in each touch unit electrode 405 is not specifically limited in this embodiment, and may be one, or two, or multiple.
  • FIG. 5 is a schematic structural diagram of a third embodiment of the in-cell touch OLED display device of the present application.
  • the touch electrode layer 501 is disposed on the surface of the pixel defining layer 502 away from the organic flat layer 503.
  • the plurality of sensing electrodes and the plurality of driving electrodes of the touch electrode layer 501 are disposed on the surface of the pixel defining layer 502 away from the organic flat layer 503.
  • the plurality of vias 504 of the present embodiment extend through the pixel defining layer 502 and the organic flat layer 503 to the source and drain layer 505, so that the plurality of sensing electrodes and the plurality of driving electrodes of the touch electrode layer 501 pass through the plurality of vias 504. With the corresponding lead 506.
  • Other specific structures and extensions of this embodiment are the same as those of the embodiment of FIG. 1, and are not described herein.
  • FIG. 6A is a schematic structural view of a fourth embodiment of the in-cell touch OLED display device of the present application
  • FIG. 6B is a schematic structural view of the sensing electrode and the driving electrode of the embodiment of FIG. 6A.
  • the difference between the embodiment and the embodiment of FIG. 1 is that the plurality of sensing electrodes 601 are disposed in different layers from the plurality of driving electrodes 604. Specifically, the plurality of sensing electrodes 601 are disposed on the surface of the pixel defining layer 602 away from the organic flat layer 603.
  • a plurality of driving electrodes 604 are disposed on the surface of the pixel defining layer 602 near the organic flat layer 603, and are insulated by the pixel defining layer 602 therebetween.
  • the plurality of first vias 604 of the embodiment pass through the pixel defining layer 602 and the organic flat layer 603 to the source and drain layer 605, so that the plurality of sensing electrodes 601 pass through the plurality of first vias 604 and the corresponding leads 606;
  • the plurality of second via holes 607 each penetrate the organic flat layer 603 to the source and drain layers 605 such that the plurality of driving electrodes 604 pass through the plurality of second via holes 607 and the corresponding leads 606.
  • Other specific structures and extensions of this embodiment are the same as those of the embodiment of FIG. 1, and are not described herein.
  • FIG. 7 is a schematic structural view of a first embodiment of a method for fabricating an in-cell touch OLED display device according to the present application
  • FIG. 8 is a schematic structural view of the embodiment of FIG. 7 .
  • This embodiment is used to fabricate the in-cell touch OLED display device of the embodiment of FIG. 1 described above. This embodiment specifically includes the following steps:
  • Step 701 Form an array substrate 801, wherein the array substrate 801 is provided with an active drain layer 802.
  • the structure of the array substrate 801 has been described in the above device embodiment, and the fabrication process of the array substrate 801 can be performed by the prior art and will not be described here.
  • Step 702 forming a plurality of leads 803 in the source drain layer 802.
  • the source electrode 804 and the drain electrode 805 of the source/drain layer 802 of the embodiment and the plurality of leads 803 can be formed by the same process.
  • Step 703 forming an organic planarization layer 806 on the plurality of leads 803 and the source and drain layers 802.
  • Step 704 forming a plurality of vias 807 on the organic planarization layer 806.
  • the plurality of through holes 807 may be formed by, but not limited to, exposure development.
  • Step 705 forming a touch electrode layer 808 on the surface of the organic planarization layer 806 away from the array substrate 801; and connecting the touch electrode layer 808 to the plurality of leads 803 through the plurality of through holes 807.
  • the touch electrode layer of this embodiment can be formed by a dry etching method, but is not limited to a mask using a predetermined pattern.
  • the present embodiment can not only embed the touch electrode layer 808 in the OLED display screen, but also improve the lightness and thinness of the in-cell touch OLED display device of the embodiment;
  • the material properties of the film layer on the flat layer 806 are limited to the touch electrode layer 808, so that the process difficulty and the quality of the in-cell touch OLED display device of the embodiment can be reduced.
  • the embodiment further includes forming a pixel defining layer 809 and a light emitting layer 810 on the organic planarization layer 806 and the touch electrode layer 808 to improve the high temperature resistance of the organic light emitting material of the light emitting layer 810.
  • the characteristics of the touch electrode layer 808 are limited in the high temperature process during the fabrication process.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a method for fabricating an in-cell touch OLED display device according to the present application.
  • This embodiment includes steps 901 to 906.
  • This embodiment is used to fabricate the in-cell touch OLED display device of the embodiment of FIG. 5.
  • the difference between the embodiment and the embodiment of FIG. 7 is that a pixel defining layer is formed on the organic flat layer, and then the touch electrode layer is formed on the pixel defining layer, so that the touch electrode layer is disposed on the pixel electrode layer away from the organic flat layer.
  • the through holes penetrate the pixel defining layer and the organic flat layer.
  • the other steps of this embodiment are the same as those of the embodiment of FIG. 7, and are not described herein.
  • FIG. 10 is a schematic structural diagram of a third embodiment of a method for fabricating an in-cell touch OLED display device according to the present application.
  • This embodiment is used to fabricate the in-cell touch OLED display device of the embodiment of FIG.
  • This embodiment includes steps 1001 - 106.
  • the difference between this embodiment and the embodiment of FIG. 7 is that a driving electrode of the touch electrode layer is formed on the organic flat layer, then a pixel defining layer is formed on the organic flat layer and the driving electrode, and finally a touch is formed on the pixel defining layer.
  • the sensing electrode of the electrode layer is such that the driving electrode and the sensing electrode of the touch electrode layer are respectively located on the surface of the pixel electrode layer close to the organic flat layer and the pixel electrode layer is away from the surface of the organic flat layer, and the first through hole of the driving electrode is connected Through the organic flat layer, the second via connecting the sensing electrodes penetrates through the pixel defining layer and the organic flat layer.
  • the other steps of this embodiment are the same as those of the embodiment of FIG. 7, and are not described herein.
  • the present embodiment can not only embed the touch electrode layer in the OLED display screen, but also improve the lightness and thinness of the in-cell touch OLED display device of the embodiment; and can improve the pixel definition in the OLED display screen.
  • the material properties of the film layer on the layer are limited to the touch electrode layer, so that the process difficulty and the quality of the in-cell touch OLED display device of the embodiment can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种内嵌式触控OLED显示装置,装置包括阵列基板(101)、有机平坦层(102)、像素定义层(103)及触控电极层(104);其中,有机平坦层(102)设置在阵列基板(101)上;像素定义层(103)设置在有机平坦层(102)上,且像素定义层(103)定义有多个像素区域(105);触控电极层(104)设置在像素定义层(103)靠近有机平坦层(102)的表面上,和/或设置在像素定义层(103)远离有机平坦层(102)的表面上。这种结构能够提高内嵌式触控OLED显示装置的轻薄化,降低其工艺难度,提高其质量。

Description

一种内嵌式触控OLED显示装置
【技术领域】
本申请涉及显示装置领域,特别是涉及一种内嵌式触控OLED显示装置。
【背景技术】
随着电子科技的发展,目前大多数电子产品,如手机、数码相机、掌上游戏机、仪表仪器等的键盘或鼠标已逐渐被触摸屏替代。触摸屏主要由触摸检测部件和触摸屏控制器组成,触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接收后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给中央处理器,它同时能接收中央处理器发来的命令并加以执行。
在目前现有技术中,为实现有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏的触控功能,一种方案是将触摸屏与OLED显示屏均单独制作,然后通过光学透明胶将触摸屏贴合在OLED的上表面以形成完整的OLED触控显示屏,但这种结构会增加OLED触控显示屏的厚度,增加贴合工艺,不利于OLED触控显示屏的轻薄化;另一种方案是将触控单元制作在OLED显示屏的薄膜封装层上方,但触控单元的制程是在位于该薄膜封装层及其之下的膜层制作完成之后进行的,这些膜层材料的一些特性会对触控单元的制程产生较大限制,从而增加整个触控OLED显示装置的制作难度,降低其质量。
【发明内容】
本申请主要解决的技术问题是提供一种内嵌式触控OLED显示装置,以提高内嵌式触控OLED显示装置的轻薄化,降低其工艺难度,提高其质量。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种内嵌式触控OLED显示装置。所述内嵌式触控OLED显示装置包括:阵列基板;有机平坦层,设置在所述阵列基板上;像素定义层,设置在所述有机平坦层上,定义有多个像素区域;发光层,设置于所述像素定义层上;触控电极层,设置在所述像素定义层靠近所述有机平坦层的表面上,和/或设置在所述像素定义层远离所述有机平坦层的表面上;所述触控电极层包括交叉设置且绝缘的多条感应电极及多条驱动电极;且多条所述感应电极及多条所述驱动电极均分布于多个所述像素区域间的间隙的投影处,以减少对所述像素区域的遮挡。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种内嵌式触控OLED显示装置。所述内嵌式触控OLED显示装置包括:阵列基板;有机平坦层,设置在所述阵列基板上;像素定义层,设置在所述有机平坦层上,定义有多个像素区域;触控电极层,设置在所述像素定义层靠近所述有机平坦层的表面上,和/或设置在所述像素定义层远离所述有机平坦层的表面上。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种内嵌式触控OLED显示装置的制作方法。所述方法包括形成设置有源漏极区层的阵列基板;在所述源漏极区层中形成多条引线;在所述多条引线及所述源漏极层上形成有机平坦化层; 在所述有机平坦化层上形成多个通孔;在所述有机平坦化层上形成触控电极层;并使所述触控电极层通过所述多个通孔分别与所述多条引线连接。
本申请实施例的有益效果是:区别于现有技术,本申请实施例将触控电极层设置在像素定义层靠近有机平坦层的表面上,和/或设置在像素定义层远离有机平坦层的表面上,通过这种设置方式,不仅能够将触控电极层内嵌于OLED显示屏中,提高内嵌式触控OLED显示装置的轻薄化;而且能够改善OLED显示屏中位于像素定义层上的膜层的材料性能对触控电极层的限制,从而能够降低内嵌式触控OLED显示装置的工艺难度,提高其质量。
【附图说明】
图1是本申请内嵌式触控OLED显示装置第一实施例的结构示意图;
图2A是图1实施例的触控电极层的一部分结构的结构示意图;
图2B是图1实施例的触控电极的整体结构的结构示意图;
图3是图1实施例的触控电极层的另一部分结构的结构示意图;
图4A是本申请内嵌式触控OLED显示装置第二实施例的结构示意图;
图4B是图4A实施例的部分结构的结构示意图;
图5是本申请内嵌式触控OLED显示装置第三实施例的结构示意图;
图6A是本申请内嵌式触控OLED显示装置第四实施例的结构示意图;
图6B是图6A实施例的感应电极与驱动电极的结构示意图;
图7是本申请内嵌式触控OLED显示装置的制作方法第一实施例的流程示意图;
图8是图7实施例的结构示意图;
图9是本申请内嵌式触控OLED显示装置的制作方法第二实施例的流程示意图;
图10是本申请内嵌式触控OLED显示装置的制作方法第三实施例的流程示意图。
【具体实施方式】
请一并参阅图1、图2A及图2B,图1是本申请内嵌式触控OLED显示装置第一实施例的结构示意图;图2A是图1实施例的触控电极层的一部分结构的结构示意图;图2B是图1实施例的触控电极的整体结构的结构示意图。本实施例包括:阵列基板101、有机平坦层102、像素定义层103及触控电极层104;其中,有机平坦层102设置在阵列基板101上;像素定义层103设置在有机平坦层102上,且像素定义层103定义有多个像素区域105;触控电极层104设置在像素定义层103靠近有机平坦层102的表面上,并用于检测对本实施例内嵌式触控OLED显示屏106的触控操作。
本实施例的触控电极层104设置在像素定义层103靠近有机平坦层102的表面上,可以理解为触控电极层104完全不嵌入,或部分或完全嵌入有机平坦层102的表面。
区别于现有技术,本申请实施例将触控电极层104设置在像素定义层103靠近有机平坦层102的表面上,不仅能够将触控电极层104内嵌于OLED显示屏中,提高本实施例内嵌式触控OLED显示装置的轻薄化;而且能够改善OLED显示屏中位于像素定义层103上的膜层的材料性能对触控电极层104的限制,从而能够降低内嵌式触控OLED显示装置106的工艺难度,提高其质量。
其中,本实施例的阵列基板101具体包括由下至上依次设置的导向膜层107、缓冲层108、源漏区层109、第一栅极绝缘层110、第一栅极111、第二栅极绝缘层112、第二栅极113、介质层114及源漏极层115,这些结构都是阵列基板的常用结构,这里不详细介绍,当然,在其它实施例中可以采用其它结构的阵列基板代替阵列基板101。
可选地,本实施例的阵列基板101的源漏极层115中还设有多条引线116,即多条引线116与源漏极层115同层设置,且在阵列基板101上的有机平坦层102设置有多个通孔117,以使触控电极层104通过多个通孔117分别与多条引线116连接,从而能够实现触控电极层104在源漏极层115走线,使触控电极层104的引线116与源漏极层115的源漏电极引线同层引出,二者可以共用同一电路板结合区,通过该结合区,能将触控电极层104的电信号及源漏极层115的电信号送入驱动电路,从而实现触控与显示的一体化。这种结构能够减少内嵌式触控OLED显示屏106的厚度、简化其生产工艺,节约其生产成本。
可选地,本实施例触控电极层104包括交叉设置且绝缘的多条感应电极201及多条驱动电极202(如图2A所示);且多条感应电极201及多条驱动电极202均分布于多个像素区域间105的间隙的投影处,以减少对像素区域105的遮挡。
可选地,为提高触控电极层104的导电性及柔韧性,本实施例的多条感应电极201及多条驱动电极202均为Ag、Ti、Al、Mo任一金属材质或任意多个金属的合金材质。当然,在其它实施例中可以其它金属材质,或其它合金材质,或其它非金属材质,在此不做限定。
可选地,本实施例的多条感应电极201及多条驱动电极202同层设置,且均设置在像素定义层103靠近有机平坦层102的表面上。为了保证多条感应电极201及多条驱动电极202相互绝缘,可将每条驱动电极202分成多节,并设置多个导电桥203(如图2B),使导电桥203位于感应电极201的上方,且连接感应电极201与驱动电极202的交叉处204两侧的驱动电极202,这种方式就能实现同层交叉设置的多条感应电极201及多条驱动电极202相互绝缘;当然,在其它实施例中,也可以将每条感应电极201分成多节,并设置多个导电桥203连接感应电极201与驱动电极202的交叉处204两侧的感应电极201,以实现上述技术效果。当然,在其它实施例中,可以将导电桥301设置于感应电极302的下方(如图3所示)。
当然,本实施例还可以包括位于导电桥203上且起保护作用的保护层205及位于感应电极201和驱动电极202下方的绝缘层206。对于图3实施例的结构,也可以采用类似的扩展结构。
可选地,本实施例的通孔117包括多个第一通孔207和多个第二通孔208,多个第一通孔207及多个第二通孔208均贯穿有机平坦层102至源漏极层115(如图1所示),以使多条感应电极201通过多个第一通孔207与相应的引线116连接,多条驱动电极202通过多个第二通孔208与相应的引线116连接。
可选地,本实施例还包括构成内嵌式触控OLED显示屏106的其它结构,如设置在像素定义层103上的发光层118,及设置于发光层118上的薄膜封装层119,从上述介绍可知,触控电极层104位于发光层118之下,也就是说在内嵌式触控OLED显示屏106的制作过程中,先形成触控电极层104,再形成发光层118,因此能够改善发光层118的有机发光材料的不耐高温的特性对触控电极层104的制作过程中高温制程的限制,从而能够降低内嵌式触控OLED显示装置106的工艺难度,提高其质量。
可选地,本实施例的发光层118包括阴极层120,多条感应电极201及多条驱动电极202与阴极层120形成多个触控电容(未标出)。
具体地,请一并参阅图4A、图4B,图4A是本申请内嵌式触控OLED显示装置第二实施例的结构示意图;图4B是图4A实施例的部分结构的结构示意图。本实施例的多条感应电极401及多条驱动电极402相应位置处设置有断点403,从而将整个触控电极层404划分成若干个独立的触控电极单元405。每个触控单元401与阴极层406间分别形成电容407(如图4B所示)。每个独立的触控电极单元405通过通孔408与源漏极层的引线409连接,并将该引线409延伸至结合区410。当触摸本实施例内嵌式触控OLED显示装置的屏幕时,会改变电容407的电容值;通过引线409能检测该电容值的变化,从而能够获得触摸位置信息及执行相应的操作。本实施例对每个触控单元电极405中的通孔408的数量不做具体限定,可以是一个、或两个、或多个。
请参阅图5,图5是本申请内嵌式触控OLED显示装置第三实施例的结构示意图。本实施例与图1实施例的区别在于,触控电极层501设置在像素定义层502远离有机平坦层503的表面上。相应地,触控电极层501的多条感应电极及多条驱动电极均设置在像素定义层502远离有机平坦层503的表面上。本实施例的多个通孔504均贯穿像素定义层502及有机平坦层503至源漏极层505,以使触控电极层501的多条感应电极及多条驱动电极通过多个通孔504与相应的引线506。关于本实施例其它具体结构及扩展与图1实施例相同,这里不赘述。
请一并参阅图6A、图6B,图6A是本申请内嵌式触控OLED显示装置第四实施例的结构示意图;图6B是图6A实施例的感应电极与驱动电极的结构示意图。本实施例与图1实施例的区别在于,多条感应电极601与多条驱动电极604非同层设置,具体地,多条感应电极601均设置在像素定义层602远离有机平坦层603的表面上,多条驱动电极604均设置在像素定义层602靠近有机平坦层603的表面上,二者间通过像素定义层602绝缘。本实施例的多个第一通孔604均贯穿像素定义层602及有机平坦层603至源漏极层605,以使多条感应电极601通过多个第一通孔604与相应的引线606;多个第二通孔607均贯穿有机平坦层603至源漏极层605,以使多条驱动电极604通过多个第二通孔607与相应的引线606。关于本实施例其它具体结构及扩展与图1实施例相同,这里不赘述。
请一并参阅图7、图8,图7是本申请内嵌式触控OLED显示装置的制作方法第一实施例的结构示意图;图8是图7实施例的结构示意图。本实施例用于制作上述图1实施例的内嵌式触控OLED显示装置。本实施例具体包括以下步骤:
步骤701:形成阵列基板801,其中,阵列基板801设置有源漏极层802。阵列基板801的结构已在上述装置实施例中进行了介绍,且阵列基板801的制作工艺可采用现有技术进行,这里不进行介绍。
步骤702:在源漏极层802中形成多条引线803。
具体地,本实施例的源漏极层802的源电极804及漏电极805与多条引线803可以采用同一道工艺制成。
步骤703:在多条引线803及源漏极层802上形成有机平坦化层806。
步骤704:在有机平坦化层806上形成多个通孔807。
多个通孔807可以但不局限于采用曝光显影方式形成。
步骤705:在有机平坦化层806远离阵列基板801的表面上形成触控电极层808;并使触控电极层808通过多个通孔807分别与多条引线803连接。
本实施例的触控电极层可以但不局限于利用预设图案的光罩,通过干法刻蚀的方法形成。
区别于现有技术,本实施例不仅能够将触控电极层808内嵌于OLED显示屏中,提高本实施例内嵌式触控OLED显示装置的轻薄化;而且能够改善OLED显示屏中位于有机平坦层806之上的膜层的材料性能对触控电极层808的限制,从而能够降低本实施例内嵌式触控OLED显示装置的工艺难度,提高其质量。
可选地,本实施例在步骤705之后还包括在有机平坦化层806及触控电极层808上依次形成像素定义层809及发光层810,以改善发光层810的有机发光材料的不耐高温的特性对触控电极层808的制作过程中高温制程的限制。
请参阅图9,图9是本申请内嵌式触控OLED显示装置的制作方法第二实施例的结构示意图。本实施例包括步骤901-步骤906。本实施例用于制作图5实施例的内嵌式触控OLED显示装置。本实施例与图7实施例的区别在于,先在有机平坦层上形成像素定义层,然后在像素定义层上形成触控电极层,使得触控电极层设置于像素电极层远离有机平坦层的表面上,且通孔贯穿像素定义层与有机平坦层。本实施例的其它步骤与图7实施例相同,这里不赘述。
请参阅图10,图10是本申请内嵌式触控OLED显示装置的制作方法第三实施例的结构示意图。本实施例用于制作图6实施例的内嵌式触控OLED显示装置。本实施例包括步骤1001-步骤106。本实施例与图7实施例的区别在于,先在有机平坦层上形成触控电极层的驱动电极,然后在有机平坦层及驱动电极上形成像素定义层,最后在像素定义层上形成触控电极层的感应电极,使得触控电极层的驱动电极与感应电极分别位于像素电极层靠近有机平坦层的表面上及像素电极层远离有机平坦层的表面上,且连接驱动电极的第一通孔贯穿有机平坦层,连接感应电极的第二通孔贯穿像素定义层及有机平坦层。本实施例的其它步骤与图7实施例相同,这里不赘述。
区别于现有技术,本实施例不仅能够将触控电极层内嵌于OLED显示屏中,提高本实施例内嵌式触控OLED显示装置的轻薄化;而且能够改善OLED显示屏中位于像素定义层之上的膜层的材料性能对触控电极层的限制,从而能够降低本实施例内嵌式触控OLED显示装置的工艺难度,提高其质量。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种内嵌式触控OLED显示装置,其中,包括:
    阵列基板;
    有机平坦层,设置在所述阵列基板上;
    像素定义层,设置在所述有机平坦层上,定义有多个像素区域;
    发光层,设置于所述像素定义层上;
    触控电极层,设置在所述像素定义层靠近所述有机平坦层的表面上,和/或设置在所述像素定义层远离所述有机平坦层的表面上;
    所述触控电极层包括交叉设置且绝缘的多条感应电极及多条驱动电极;且多条所述感应电极及多条所述驱动电极均分布于多个所述像素区域间的间隙的投影处,以减少对所述像素区域的遮挡。
  2. 根据权利要求1所述的显示装置,其中,
    多条所述感应电极及多条所述驱动电极均分别设置在所述像素定义层靠近所述有机平坦层的表面上和所述像素定义层远离所述有机平坦层的表面上。
  3. 根据权利要求1所述的显示装置,其中,
    多条所述感应电极及多条所述驱动电极同层设置,且均设置在所述像素定义层靠近所述有机平坦层的表面上。
  4. 根据权利要求1所述的显示装置,其中,
    所述多条感应电极及所述多条驱动电极同层设置,且均设置在所述像素定义层远离所述有机平坦层的表面上。
  5. 根据权利要求3所述的显示装置,其中,
    所述触控电极层还进一步包括多个导电桥;所述导电桥位于所述感应电极或所述驱动电极的上方,且用于连接所述感应电极与所述驱动电极的交叉处两侧的所述驱动电极或两侧的所述感应电极;所述导电桥位于所述感应电极或所述驱动电极的下方,且用于连接所述感应电极与所述驱动电极的交叉处两侧的所述驱动电极或两侧的所述感应电极。
  6. 根据权利要求4所述的显示装置,其中,
    所述触控电极层还进一步包括多个导电桥;所述导电桥位于所述感应电极或所述驱动电极的上方,且用于连接所述感应电极与所述驱动电极的交叉处两侧的所述驱动电极或两侧的所述感应电极;所述导电桥位于所述感应电极或所述驱动电极的下方,且用于连接所述感应电极与所述驱动电极的交叉处两侧的所述驱动电极或两侧的所述感应电极。
  7. 根据权利要求5所述的显示装置,其中,
    所述触控电极层还进一步包括设置于所述导电桥上的保护层及设置于所述感应电极和所述驱动电极下的绝缘层。
  8. 一种内嵌式触控OLED显示装置,其中,包括:
    阵列基板;
    有机平坦层,设置在所述阵列基板上;
    像素定义层,设置在所述有机平坦层上,定义有多个像素区域;
    触控电极层,设置在所述像素定义层靠近所述有机平坦层的表面上,和/或设置在所述像素定义层远离所述有机平坦层的表面上。
  9. 根据权利要求8所述的显示装置,其中,
    还包括发光层,设置于所述像素定义层上。
  10. 根据权利要求8所述的显示装置,其中,
    所述触控电极层包括交叉设置且绝缘的多条感应电极及多条驱动电极;且多条所述感应电极及多条所述驱动电极均分布于多个所述像素区域间的间隙的投影处,以减少对所述像素区域的遮挡。
  11. 根据权利要求10所述的显示装置,其中,
    多条所述感应电极及多条所述驱动电极均分别设置在所述像素定义层靠近所述有机平坦层的表面上和所述像素定义层远离所述有机平坦层的表面上。
  12. 根据权利要求10所述的显示装置,其中,
    多条所述感应电极及多条所述驱动电极同层设置,且均设置在所述像素定义层靠近所述有机平坦层的表面上。
  13. 根据权利要求10所述的显示装置,其中,
    所述多条感应电极及所述多条驱动电极同层设置,且均设置在所述像素定义层远离所述有机平坦层的表面上。
  14. 根据权利要求12所述的显示装置,其中,
    所述触控电极层还进一步包括多个导电桥;所述导电桥位于所述感应电极或所述驱动电极的上方,且用于连接所述感应电极与所述驱动电极的交叉处两侧的所述驱动电极或两侧的所述感应电极。
  15. 根据权利要求13所述的显示装置,其中,
    所述触控电极层还进一步包括多个导电桥;所述导电桥位于所述感应电极或所述驱动电极的上方,且用于连接所述感应电极与所述驱动电极的交叉处两侧的所述驱动电极或两侧的所述感应电极。
  16. 根据权利要求12所述的显示装置,其中,
    所述触控电极层还进一步包括多个导电桥;所述导电桥位于所述感应电极或所述驱动电极的下方,且用于连接所述感应电极与所述驱动电极的交叉处两侧的所述驱动电极或两侧的所述感应电极。
  17. 根据权利要求13所述的显示装置,其中,
    所述触控电极层还进一步包括多个导电桥;所述导电桥位于所述感应电极或所述驱动电极的下方,且用于连接所述感应电极与所述驱动电极的交叉处两侧的所述驱动电极或两侧的所述感应电极。
  18. 根据权利要求8所述的显示装置,其中,
    多条所述感应电极及多条所述驱动电极均为Ag、Ti、Al、Mo任一金属材质或任意多个金属的合金材质。
  19. 根据权利要求14所述的显示装置,其中,
    所述触控电极层还进一步包括设置于所述导电桥上的保护层及设置于所述感应电极和所述驱动电极下的绝缘层。
  20. 一种内嵌式触控OLED显示装置的制作方法,其中,包括:
    形成设置有源漏极区层的阵列基板;
    在所述源漏极区层中形成多条引线;
    在所述多条引线及所述源漏极层上形成有机平坦化层;
    在所述有机平坦化层上形成多个通孔;
    在所述有机平坦化层上形成触控电极层;并使所述触控电极层通过所述多个通孔分别与所述多条引线连接。
PCT/CN2017/093835 2017-06-28 2017-07-21 一种内嵌式触控oled显示装置 WO2019000520A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/576,984 US10514791B2 (en) 2017-06-28 2017-07-21 In-cell OLED touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710508748.6 2017-06-28
CN201710508748.6A CN107291295A (zh) 2017-06-28 2017-06-28 一种内嵌式触控oled显示装置

Publications (1)

Publication Number Publication Date
WO2019000520A1 true WO2019000520A1 (zh) 2019-01-03

Family

ID=60098379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093835 WO2019000520A1 (zh) 2017-06-28 2017-07-21 一种内嵌式触控oled显示装置

Country Status (3)

Country Link
US (1) US10514791B2 (zh)
CN (1) CN107291295A (zh)
WO (1) WO2019000520A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190245013A1 (en) * 2018-02-08 2019-08-08 Boe Technology Group Co., Ltd. Oled array substrate, production method thereof, and display apparatus
US20230214047A1 (en) * 2021-12-31 2023-07-06 Lg Display Co., Ltd. Display device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092399B (zh) * 2017-05-12 2019-09-13 京东方科技集团股份有限公司 一种oled阵列基板及其制作方法、触控显示装置
CN109871156B (zh) * 2017-12-01 2024-04-16 京东方科技集团股份有限公司 触控面板、触控设备和制造触控面板的方法
CN108110033A (zh) * 2017-12-13 2018-06-01 武汉华星光电半导体显示技术有限公司 Oled显示面板及显示装置
CN108183121A (zh) * 2017-12-15 2018-06-19 武汉华星光电半导体显示技术有限公司 柔性显示面板及其制作方法
CN108334240A (zh) * 2018-03-20 2018-07-27 武汉华星光电半导体显示技术有限公司 触控面板的制作方法、触控面板及显示设备
CN108958536A (zh) * 2018-03-28 2018-12-07 京东方科技集团股份有限公司 触控与显示驱动器集成模组及其制造方法、电子设备
CN110323248B (zh) * 2018-03-28 2021-09-14 英属开曼群岛商镎创科技股份有限公司 发光二极管显示面板及其制造方法
US10845934B2 (en) * 2018-12-03 2020-11-24 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED display panel
CN109947303B (zh) * 2019-01-29 2023-03-21 广州国显科技有限公司 显示面板及其制备方法、显示装置
CN110085651B (zh) * 2019-05-27 2021-09-03 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
US11068114B2 (en) 2019-05-27 2021-07-20 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel, manufacturing method thereof, and display device
CN110504286B (zh) * 2019-08-01 2020-10-27 武汉华星光电半导体显示技术有限公司 触控显示面板
CN110658949B (zh) * 2019-08-29 2021-08-24 武汉华星光电半导体显示技术有限公司 一种触控显示面板及其制备方法和触控显示装置
US11626579B2 (en) * 2020-06-09 2023-04-11 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED display panel with light shielding layer disposed on touch structure
CN111831155A (zh) * 2020-06-12 2020-10-27 昆山国显光电有限公司 显示面板、显示装置及显示面板的驱动方法
CN112181196B (zh) * 2020-09-17 2023-06-02 武汉华星光电技术有限公司 内嵌式触控阵列基板及其制造方法
KR20220096094A (ko) * 2020-12-30 2022-07-07 엘지디스플레이 주식회사 터치 패널 및 이를 포함하는 터치표시장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928492A (zh) * 2013-12-13 2014-07-16 上海天马有机发光显示技术有限公司 触控显示面板及其形成方法、触控显示器及其形成方法
CN104866153A (zh) * 2015-05-29 2015-08-26 武汉华星光电技术有限公司 自电容式内嵌触摸屏及其制备方法、液晶显示器
US20150311477A1 (en) * 2014-04-25 2015-10-29 Samsung Display Co., Ltd. Organic light-emitting diode display
CN106024836A (zh) * 2016-06-03 2016-10-12 京东方科技集团股份有限公司 带指纹识别功能的显示面板及制备方法、显示设备
CN106158909A (zh) * 2015-04-28 2016-11-23 上海和辉光电有限公司 一种显示器件结构及其制备方法
CN106775081A (zh) * 2016-12-13 2017-05-31 上海天马有机发光显示技术有限公司 有机发光显示面板及压力感应显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042248A1 (ja) * 2012-09-14 2014-03-20 シャープ株式会社 タッチパネルおよびタッチパネル一体型の表示装置
US10074344B2 (en) * 2015-04-30 2018-09-11 Lg Display Co., Ltd. Touch recognition enabled display device with asymmetric black matrix pattern
CN105552106B (zh) 2016-01-29 2018-07-06 上海天马微电子有限公司 Oled面板以及触控检测方法
CN106887450B (zh) * 2017-03-14 2019-09-24 武汉华星光电技术有限公司 柔性内嵌式触控结构及其制作方法
CN106876417B (zh) * 2017-04-24 2020-03-10 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928492A (zh) * 2013-12-13 2014-07-16 上海天马有机发光显示技术有限公司 触控显示面板及其形成方法、触控显示器及其形成方法
US20150311477A1 (en) * 2014-04-25 2015-10-29 Samsung Display Co., Ltd. Organic light-emitting diode display
CN106158909A (zh) * 2015-04-28 2016-11-23 上海和辉光电有限公司 一种显示器件结构及其制备方法
CN104866153A (zh) * 2015-05-29 2015-08-26 武汉华星光电技术有限公司 自电容式内嵌触摸屏及其制备方法、液晶显示器
CN106024836A (zh) * 2016-06-03 2016-10-12 京东方科技集团股份有限公司 带指纹识别功能的显示面板及制备方法、显示设备
CN106775081A (zh) * 2016-12-13 2017-05-31 上海天马有机发光显示技术有限公司 有机发光显示面板及压力感应显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190245013A1 (en) * 2018-02-08 2019-08-08 Boe Technology Group Co., Ltd. Oled array substrate, production method thereof, and display apparatus
US10720477B2 (en) * 2018-02-08 2020-07-21 Boe Technology Group Co., Ltd. OLED array substrate, production method thereof, and display apparatus
US20230214047A1 (en) * 2021-12-31 2023-07-06 Lg Display Co., Ltd. Display device
US11907469B2 (en) * 2021-12-31 2024-02-20 Lg Display Co., Ltd. Display device

Also Published As

Publication number Publication date
CN107291295A (zh) 2017-10-24
US20190012022A1 (en) 2019-01-10
US10514791B2 (en) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2019000520A1 (zh) 一种内嵌式触控oled显示装置
WO2019100524A1 (zh) 一种全屏指纹识别触控显示屏
WO2019184058A1 (zh) 触控结构、oled显示触控面板及触控显示设备
WO2017084366A1 (zh) 触摸屏及其制作方法、显示装置
WO2013097631A1 (zh) 触控面板及其制作方法
WO2017024599A1 (zh) 一种具有触控功能的阵列基板及显示装置
WO2014094493A1 (zh) 触控面板及其盖板结构
WO2019000521A1 (zh) 一种有机发光显示屏的制备方法及显示装置
WO2014173217A1 (zh) 触控面板及其制作方法
WO2019114053A1 (zh) 柔性触控面板及柔性 oled 显示面板
CN107526468B (zh) 显示屏及其制备方法
WO2016074275A1 (zh) 互电容式ogs触摸面板及其制造方法
WO2017063295A1 (zh) Oled显示面板及其制作方法
WO2019085072A1 (zh) 柔性显示面板及其制造方法、柔性显示装置
CN111625119B (zh) 触摸屏及显示装置
WO2016101341A1 (zh) 具有触控功能的显示面板及其制造方法和复合电极
US9645688B2 (en) OGS touch screen substrate and method of manufacturing the same, and related apparatus
WO2019033473A1 (zh) Oled触控显示面板及oled触控显示器
US11868557B2 (en) Touch substrate and manufacturing method thereof
WO2021027081A1 (zh) 显示面板及显示装置
WO2016078101A1 (zh) 显示面板及其制造方法
WO2019041476A1 (zh) 一种阵列基板及其制作方法、显示面板
WO2015010507A1 (zh) 触控电极结构及其应用之触控面板
WO2014121580A1 (zh) 触摸感应元件及具有该触摸感应元件的触摸屏
WO2019136872A1 (zh) 一种阵列基板、oled显示面板及oled显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915584

Country of ref document: EP

Kind code of ref document: A1