WO2019000476A1 - 一种具有防反射层的砷化镓太阳能电池 - Google Patents
一种具有防反射层的砷化镓太阳能电池 Download PDFInfo
- Publication number
- WO2019000476A1 WO2019000476A1 PCT/CN2017/091447 CN2017091447W WO2019000476A1 WO 2019000476 A1 WO2019000476 A1 WO 2019000476A1 CN 2017091447 W CN2017091447 W CN 2017091447W WO 2019000476 A1 WO2019000476 A1 WO 2019000476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- gallium arsenide
- solar cell
- reflection
- junction
- Prior art date
Links
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 229910001218 Gallium arsenide Inorganic materials 0.000 title claims abstract description 82
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 230000005684 electric field Effects 0.000 claims abstract description 10
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000005083 Zinc sulfide Substances 0.000 claims description 5
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 5
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 5
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 5
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical group [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 239000000969 carrier Substances 0.000 description 3
- 238000004943 liquid phase epitaxy Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0693—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
Definitions
- the invention belongs to the field of photovoltaic technology, and in particular relates to a gallium arsenide solar cell with an antireflection layer.
- the present invention provides a gallium arsenide solar cell having an antireflection layer.
- the present invention provides a gallium arsenide solar cell having an antireflection layer, and the gallium arsenide solar cell includes:
- the gallium arsenide p-n junction includes a stacked n-type gallium arsenide layer and a p-type gallium arsenide layer;
- An anti-reflection layer on the electrode contact layer is an anti-reflection layer on the electrode contact layer
- the anti-reflection layer comprises a first anti-reflection layer and a second anti-reflection layer
- the first anti-reflection layer is a magnesium fluoride layer
- the second anti-reflection layer is a zinc sulfide layer.
- the first anti-reflection layer has a thickness of 30 to 50 nm
- the second anti-reflection layer has a thickness of 50 to 100 nm.
- a gallium arsenide buffer layer is formed between the gallium arsenide substrate and the back electric field layer.
- the gallium arsenide buffer layer comprises a low temperature gallium arsenide buffer layer and a high temperature gallium arsenide buffer layer.
- the low temperature gallium arsenide buffer layer has a thickness of 10 to 50 nm
- the high temperature gallium arsenide buffer layer has a thickness of 50 to 100 nm.
- the n-type gallium arsenide layer has a thickness of 1 to 10 ⁇ m
- the p-type gallium arsenide layer has a thickness of 100 to 500 nm.
- the reflected light can be greatly reduced, and the photoelectric conversion efficiency of the solar cell can be improved.
- FIG. 1 is a schematic structural view of a gallium arsenide solar cell having an antireflection layer according to an embodiment of the present invention.
- a gallium arsenide solar cell having an anti-reflection layer includes:
- Gallium arsenide substrate 10 Gallium arsenide substrate 10
- the gallium arsenide p-n junction includes a stacked n-type gallium arsenide layer 31 and a p-type gallium arsenide layer 32;
- An anti-reflection layer on the electrode contact layer is an anti-reflection layer on the electrode contact layer
- the anti-reflection layer includes a first anti-reflection layer 61 and a second anti-reflection layer 62.
- the first anti-reflection layer has a magnesium fluoride layer
- the second anti-reflection layer is a zinc sulfide layer.
- the first anti-reflection layer 61 has a thickness of 30 to 50 nm
- the second anti-reflection layer 62 has a thickness of 50 to 100 nm.
- a gallium arsenide buffer layer is formed between the gallium arsenide substrate and the back field layer, and the gallium arsenide buffer layer includes a low temperature gallium arsenide buffer layer 81 and a high temperature gallium arsenide buffer layer 82.
- the low temperature gallium arsenide buffer layer has a thickness of 10 to 50 nm, and is prepared at 500 to 550 ° C.
- the high temperature gallium arsenide buffer layer has a thickness of 50 to 100 nm, and the temperature is 650 to 710 ° C. Prepared.
- the back field layer in the present invention can prevent carriers generated at the bottom of the solar cell from diffusing in an incorrect direction, so that carriers can exist on the p-n junction of the light absorbing layer, thereby improving carrier collection efficiency.
- the use of a back-field layer can increase the spectral response of the solar cell to the infrared range and reduce the recombination efficiency of the carriers.
- the refractive index of gallium arsenide is about 3.6
- the antireflection layer is not applied, a large amount of sunlight is reflected and cannot enter the absorption layer.
- the present invention by adding a double-layer anti-reflection structure of a magnesium fluoride layer and a zinc sulfide layer, the reflected light can be greatly reduced, and the photoelectric conversion efficiency of the solar cell can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
一种具有防反射层的砷化镓太阳能电池,所述砷化镓太阳能电池依次包括:砷化镓衬底(10);位于砷化镓衬底上的背电场层(20);位于背电场层上的砷化镓p-n结,所述砷化镓p-n结包括层叠设置的n型砷化镓层(31)和p型砷化镓层(32);位于砷化镓p-n结上的砷化铝镓窗口层(40);位于砷化铝镓窗口层上的电极接触层(50);位于电极接触层上的防反射层(61,62);以及,位于电极接触层上的若干电极(70)。通过加入防反射结构,可以大大降低反射的光线,提高了太阳能电池的光电转换效率。
Description
本发明属于光伏技术领域,特别是涉及一种具有防反射层的砷化镓太阳能电池。
砷化镓太阳能电池的发展是从上世纪50年代开始的,至今已有已有50多年的历史。1954年世界上首次发现GaAs材料具有光伏效应,在1956年,LoferskiJ.J.和他的团队探讨了制造太阳电池的最佳材料的物性,他们指出Eg在1.2~1.6eV范围内的材料具有最高的转换效率。20世纪60年代,Gobat等研制了第1个掺锌GaAs太阳电池,不过转化率不高,仅为9%~10%,远低于27%的理论值。20世纪70年代,IBM公司和前苏联Ioffe技术物理所等为代表的研究单位,采用LPE(液相外延)技术引入GaAlAs异质窗口层,降低了GaAs表面的复合速率,使GaAs太阳电池的效率达16%。不久,美国的HRL及Spectrolab通过改进了LPE技术使得电池的平均效率达到18%,并实现了批量生产,开创了高效率砷化镓太阳电池的新时代。从上世纪80年代后,GaAs太阳电池技术经历了从LPE到MOCVD,从同质外延到异质外延,从单结到多结叠层结构的几个发展阶段,其发展速度日益加快,效率也不断提高,目前实验室最高效率已达到50%,产业生产转化率可达30%以上。
但砷化镓太阳能电池中,会有相当一部分光线由于太阳光的反射无法进入吸收层中,大大影响了砷化镓太阳能电池的光电转换效率。
因此,针对上述问题,有必要提出一种具有防反射层的砷化镓太阳能电池。
发明内容
有鉴于此,本发明提供了一种具有防反射层的砷化镓太阳能电池。
为了实现上述发明目的,本发明提供一种具有防反射层的砷化镓太阳能电池,该砷化镓太阳能电池依次包括:
砷化镓衬底;
位于砷化镓衬底上的背电场层;
位于背电场层上的砷化镓p-n结,砷化镓p-n结包括层叠设置的n型砷化镓层和p型砷化镓层;
位于砷化镓p-n结上的砷化铝镓窗口层;
位于砷化铝镓窗口层上的电极接触层;
位于电极接触层上的防反射层;
以及,位于电极接触层上的若干电极。
作为本发明的进一步改进,所述防反射层包括第一防反射层和第二防反射层,所述第一防反射层位氟化镁层,第二防反射层为硫化锌层。
作为本发明的进一步改进,所述第一防反射层的厚度为30~50nm,第二防反射层的厚度为50~100nm。
作为本发明的进一步改进,所述砷化镓衬底与背电场层之间形成有砷化镓缓冲层。
作为本发明的进一步改进,所述砷化镓缓冲层包括低温砷化镓缓冲层及高温砷化镓缓冲层。
作为本发明的进一步改进,所述低温砷化镓缓冲层的厚度为10~50nm,高温砷化镓缓冲层的厚度为50~100nm。
作为本发明的进一步改进,所述n型砷化镓层的厚度为1~10μm,p型砷化镓层的厚度为100~500nm。
与现有技术相比,本发明的有益效果是:
本发明中通过加入氟化镁层与硫化锌层的双层防反射结构,可以大大降低反射的光线,提高了太阳能电池的光电转换效率。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一具体实施方式中具有防反射层的砷化镓太阳能电池的结构示意图。
下面将对本发明实施例中的技术方案进行详细的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
参图1所示,本发明一具体实施方式中的一种具有防反射层的砷化镓太阳能电池,该砷化镓太阳能电池依次包括:
砷化镓衬底10;
位于砷化镓衬底上的背电场层20;
位于背电场层上的砷化镓p-n结,砷化镓p-n结包括层叠设置的n型砷化镓层31和p型砷化镓层32;
位于砷化镓p-n结上的砷化铝镓窗口层40;
位于砷化铝镓窗口层上的电极接触层50;
位于电极接触层上的防反射层;
以及,位于电极接触层上的若干电极70。
其中,防反射层包括第一防反射层61和第二防反射层62,第一防反射层位氟化镁层,第二防反射层为硫化锌层。优选地,第一防反射层61的厚度为30~50nm,第二防反射层62的厚度为50~100nm。
进一步地,本实施方式中砷化镓衬底与背电场层之间形成有砷化镓缓冲层,砷化镓缓冲层包括低温砷化镓缓冲层81及高温砷化镓缓冲层82。优选地,低温砷化镓缓冲层的厚度为10~50nm,其在500℃~550℃条件下制备得到,高温砷化镓缓冲层的厚度为50~100nm,其在650℃~710℃条件下制备得到。
本发明中的背电场层能够避免太阳能电池底部所产生的载流子往非正确方向扩散,使载流子能够存在于光吸收层的p-n结上,进而提升了载流子的收集效率。此外,背电场层的使用能够增加太阳能电池对红外光范围的频谱响应,并降低了载流子的复合效率。
由以上技术方案可以看出,本发明的砷化镓太阳能电池中,由于砷化镓的光折射率在3.6左右,若不适用防反射层,会有大量的太阳光被反射而无法进入吸收层,本发明中通过加入氟化镁层与硫化锌层的双层防反射结构,可以大大降低反射的光线,提高了太阳能电池的光电转换效率。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也
可以经适当合,形成本领域技术人员可以理解的其他实施方式。
Claims (7)
- 一种具有防反射层的砷化镓太阳能电池,其特征在于,所述砷化镓太阳能电池依次包括:砷化镓衬底;位于砷化镓衬底上的背电场层;位于背电场层上的砷化镓p-n结,所述砷化镓p-n结包括层叠设置的n型砷化镓层和p型砷化镓层;位于砷化镓p-n结上的砷化铝镓窗口层;位于砷化铝镓窗口层上的电极接触层;位于电极接触层上的防反射层;以及,位于电极接触层上的若干电极。
- 根据权利要求1所述的一种具有防反射层的砷化镓太阳能电池,其特征在于,所述防反射层包括第一防反射层和第二防反射层,所述第一防反射层位氟化镁层,第二防反射层为硫化锌层。
- 根据权利要求2所述的一种具有防反射层的砷化镓太阳能电池,其特征在于,所述第一防反射层的厚度为30~50nm,第二防反射层的厚度为50~100nm。
- 根据权利要求1所述的一种具有防反射层的砷化镓太阳能电池,其特征在于,所述砷化镓衬底与背电场层之间形成有砷化镓缓冲层。
- 根据权利要求4所述的一种具有防反射层的砷化镓太阳能电池,其特征在于,所述砷化镓缓冲层包括低温砷化镓缓冲层及高温砷化镓缓冲层。
- 根据权利要求5所述的一种具有防反射层的砷化镓太阳能电池,其特征在于,所述低温砷化镓缓冲层的厚度为10~50nm,高温砷化镓缓冲层的厚度为50~100nm。
- 根据权利要求1所述的一种具有防反射层的砷化镓太阳能电池,其特征在于,所述n型砷化镓层的厚度为1~10μm,p型砷化镓层的厚度为 100~500nm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2017104987270 | 2017-06-27 | ||
CN201710498727.0A CN109148609A (zh) | 2017-06-27 | 2017-06-27 | 一种具有防反射层的砷化镓太阳能电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019000476A1 true WO2019000476A1 (zh) | 2019-01-03 |
Family
ID=64742762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/091447 WO2019000476A1 (zh) | 2017-06-27 | 2017-07-03 | 一种具有防反射层的砷化镓太阳能电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109148609A (zh) |
WO (1) | WO2019000476A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103165686A (zh) * | 2013-02-28 | 2013-06-19 | 溧阳市生产力促进中心 | 一种具有减反射膜的五结太阳能电池 |
WO2014024554A1 (ja) * | 2012-08-09 | 2014-02-13 | ソニー株式会社 | 受光あるいは発光素子、太陽電池、光センサー、発光ダイオード及び面発光レーザ素子 |
CN106784127A (zh) * | 2015-11-20 | 2017-05-31 | 北京汉能创昱科技有限公司 | 一种双结薄膜太阳能电池组件及其制作方法 |
-
2017
- 2017-06-27 CN CN201710498727.0A patent/CN109148609A/zh not_active Withdrawn
- 2017-07-03 WO PCT/CN2017/091447 patent/WO2019000476A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014024554A1 (ja) * | 2012-08-09 | 2014-02-13 | ソニー株式会社 | 受光あるいは発光素子、太陽電池、光センサー、発光ダイオード及び面発光レーザ素子 |
CN103165686A (zh) * | 2013-02-28 | 2013-06-19 | 溧阳市生产力促进中心 | 一种具有减反射膜的五结太阳能电池 |
CN106784127A (zh) * | 2015-11-20 | 2017-05-31 | 北京汉能创昱科技有限公司 | 一种双结薄膜太阳能电池组件及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109148609A (zh) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yablonovitch et al. | The opto-electronic physics that broke the efficiency limit in solar cells | |
CN105355670B (zh) | 一种含dbr结构的五结太阳能电池 | |
TWI489652B (zh) | 半導體磊晶結構及其裝置 | |
CN103094378A (zh) | 含有变In组分InGaN/GaN多层量子阱结构的太阳能电池 | |
CN111430493B (zh) | 一种多结太阳能电池及供电设备 | |
CN109148622A (zh) | 一种双面用高效太阳能电池及其制备方法 | |
CN204315612U (zh) | 一种含量子结构的双面生长四结太阳电池 | |
CN110534612B (zh) | 一种反向生长三结太阳电池的制备方法 | |
CN105810760A (zh) | 一种晶格匹配的五结太阳能电池及其制作方法 | |
CN205385027U (zh) | 一种含dbr结构的五结太阳能电池 | |
WO2019000476A1 (zh) | 一种具有防反射层的砷化镓太阳能电池 | |
TWI409959B (zh) | 太陽能電池元件及其裝置 | |
CN205194710U (zh) | 一种具有反射层的四结太阳能电池 | |
CN104241416A (zh) | 一种含量子阱结构的三结太阳能电池 | |
CN103579388B (zh) | 一种含有双背场结构的太阳电池 | |
CN204243068U (zh) | 一种三子结化合物光伏电池 | |
KR101672404B1 (ko) | 계면 재결합 억제 박막 태양전지 | |
CN204243069U (zh) | 一种混合三子结化合物光伏电池 | |
WO2018152727A1 (zh) | 一种砷化镓太阳能电池 | |
CN106206825B (zh) | 含有低光学折射率差的窗口层与发射区的多结太阳电池 | |
JP2737705B2 (ja) | 太陽電池 | |
CN205752192U (zh) | 一种晶格匹配的五结太阳能电池 | |
CN205790002U (zh) | 一种Si衬底GaAs单结太阳能电池结构 | |
CN104465846A (zh) | 一种含量子结构的双面生长四结太阳电池 | |
CN204118088U (zh) | 一种含量子阱结构的三结太阳能电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17915770 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17915770 Country of ref document: EP Kind code of ref document: A1 |