WO2018235830A1 - Steering device and intermediate shaft - Google Patents

Steering device and intermediate shaft Download PDF

Info

Publication number
WO2018235830A1
WO2018235830A1 PCT/JP2018/023345 JP2018023345W WO2018235830A1 WO 2018235830 A1 WO2018235830 A1 WO 2018235830A1 JP 2018023345 W JP2018023345 W JP 2018023345W WO 2018235830 A1 WO2018235830 A1 WO 2018235830A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
groove
impact absorbing
absorbing portion
intermediate shaft
Prior art date
Application number
PCT/JP2018/023345
Other languages
French (fr)
Japanese (ja)
Inventor
誠一 森山
圭佑 中尾
哲也 狩野
高橋 正樹
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017120446A external-priority patent/JP6939123B2/en
Priority claimed from JP2017120447A external-priority patent/JP6939124B2/en
Priority claimed from JP2017120449A external-priority patent/JP6939125B2/en
Priority claimed from JP2017212313A external-priority patent/JP7024329B2/en
Priority claimed from JP2017220275A external-priority patent/JP6992427B2/en
Priority claimed from JP2017220272A external-priority patent/JP7052310B2/en
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201890000948.9U priority Critical patent/CN212332763U/en
Publication of WO2018235830A1 publication Critical patent/WO2018235830A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/19Steering columns yieldable or adjustable, e.g. tiltable incorporating energy-absorbing arrangements, e.g. by being yieldable or collapsible

Definitions

  • the present invention relates to a steering device and an intermediate shaft.
  • the vehicle is provided with a steering device as a device for transmitting an operation of a steering wheel of an operator (driver) to the wheels.
  • a steering device that makes it difficult to transmit an impact to a steering wheel when a vehicle collision occurs.
  • Patent Document 1 describes an intermediate shaft having a tubular bellows. According to Patent Document 1, the impact is absorbed by the deformation of the bellows at the time of the primary collision.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a steering device which absorbs an impact by an intermediate shaft which can be easily manufactured and whose deformation characteristics can be easily changed.
  • a steering apparatus includes a first universal joint, a second universal joint disposed on the front side of the first universal joint, the first universal joint, and the first universal joint.
  • An intermediate shaft located between the two universal joints, and the intermediate shaft includes a first shock absorbing portion having a groove in an outer circumferential surface.
  • the first impact absorbing portion can be formed by cutting or the like, no mold is required when forming the first impact absorbing portion. Therefore, the formation of the first impact absorbing portion is facilitated. Further, the deformation characteristics of the first impact absorbing portion change in accordance with the shape of the groove of the first impact absorbing portion. Since it is easy to change the shape of the groove by changing the cutting range, it is easy to adjust the deformation characteristics of the first shock absorber. Thus, the steering device can absorb the impact by means of the intermediate shaft which can be easily manufactured and whose deformation characteristics can be easily changed.
  • the intermediate shaft is a solid member.
  • the intermediate shaft can be easily manufactured and the strength can be improved.
  • the intermediate shaft includes a first shaft which is a solid member, and a cylindrical second shaft which is releasably connected to the first shaft, and the first shaft is The first shock absorber is provided.
  • the steering device can absorb an impact by the friction generated between the first shaft and the second shaft.
  • the first shaft includes a first fitting portion having a serration on an outer peripheral surface
  • the second shaft includes a second fitting portion having a serration on an inner peripheral surface
  • the steering device can suppress the variation in the shock absorbing capability of the intermediate shaft.
  • the intermediate shaft includes a first shaft which is a hollow member whose inner diameter is constant over the entire axial length, and the first shaft includes the first impact absorbing portion.
  • the intermediate shaft can be easily manufactured and reduced in weight.
  • the first shaft includes a second impact absorbing portion having an outer diameter smaller than the outer diameter of the first impact absorbing portion at a position corresponding to the bottom of the groove.
  • the intermediate shaft can exhibit a predetermined shock absorbing capability.
  • At least a part of the surface of the first shock absorber facing the groove has a first arc in a cross section obtained by cutting the first shaft in a plane perpendicular to the radial direction, At least a portion of the surface of the second impact absorbing portion draws a second arc, and the radius of curvature of the second arc is larger than the radius of curvature of the first arc.
  • the intermediate shaft when bending stress occurs in the intermediate shaft, stress concentration is more likely to occur in the first impact absorbing portion than in the second impact absorbing portion. Therefore, the intermediate shaft bends not from the second impact absorbing portion but from the first impact absorbing portion. Therefore, when a vehicle collision occurs, the intermediate shaft can exhibit a predetermined shock absorbing capability.
  • the minimum thickness of the second impact absorbing portion is 10% or more and 20% or less of the outer diameter of the second impact absorbing portion.
  • the intermediate shaft includes a cylindrical second shaft which is releasably connected to the first shaft.
  • the steering device can absorb an impact by the friction generated between the first shaft and the second shaft.
  • the first impact absorbing portion includes a plurality of the grooves, and the grooves are annular.
  • the above-mentioned slot is helical.
  • the maximum width of the groove is 1 mm or more and 3 mm or less, and in a cross section obtained by cutting the intermediate shaft in a plane perpendicular to the radial direction, the first impact absorbing portion facing the groove At least a portion of the surface draws an arc having a radius of curvature of 0.2 mm or more and 1.0 mm or less.
  • the width of the groove is reduced toward the bottom of the groove.
  • An intermediate shaft is an intermediate shaft used in a steering apparatus, and includes a first impact absorbing portion having a groove on an outer circumferential surface.
  • the first impact absorbing portion can be formed by cutting or the like, no mold is required when forming the first impact absorbing portion. Therefore, the formation of the first impact absorbing portion is facilitated. Further, the deformation characteristics of the first impact absorbing portion change in accordance with the shape of the groove of the first impact absorbing portion. Since it is easy to change the shape of the groove by changing the cutting range, it is easy to adjust the deformation characteristics of the first shock absorber. Thus, the intermediate shaft can be easily manufactured and can easily change its deformation characteristics.
  • FIG. 1 is a schematic view of a steering apparatus according to the first embodiment.
  • FIG. 2 is a perspective view of the steering device of the first embodiment.
  • FIG. 3 is a side view of the intermediate shaft of the first embodiment.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is an enlarged view of the periphery of the groove in FIG.
  • FIG. 6 is a perspective view of the intermediate shaft after bending.
  • FIG. 7 is a side view of the shock absorber in the intermediate shaft of the first modification of the first embodiment.
  • FIG. 8 is an enlarged view of the periphery of the groove in the intermediate shaft of the second modified example of the first embodiment.
  • FIG. 9 is a perspective view of the steering device of the second embodiment.
  • FIG. 10 is a side view of the intermediate shaft of the second embodiment.
  • FIG. 11 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 12 is an enlarged view of the periphery of the groove in FIG.
  • FIG. 13 is a cross-sectional view taken along the line CC in FIG.
  • FIG. 14 is a perspective view of the intermediate shaft after bending.
  • FIG. 15 is a perspective view of the steering device of the third embodiment.
  • FIG. 16 is a side view of the intermediate shaft of the third embodiment.
  • FIG. 17 is a cross-sectional view taken along the line DD in FIG.
  • FIG. 18 is an enlarged view of the periphery of the groove in FIG.
  • FIG. 19 is a perspective view of the intermediate shaft after bending.
  • FIG. 11 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 12 is an enlarged view of the periphery of the groove in FIG.
  • FIG. 13 is a cross
  • FIG. 20 is a graph showing the relationship between displacement and load when the intermediate shaft of the comparative example is bent.
  • FIG. 21 is a graph showing the relationship between displacement and load when the intermediate shaft of the third embodiment bends.
  • FIG. 22 is a side view of an impact absorbing portion in the intermediate shaft of the first modified example of the third embodiment.
  • FIG. 23 is a side view showing an intermediate shaft of a second modified example of the third embodiment.
  • FIG. 24 is a cross-sectional view taken along line EE in FIG.
  • FIG. 25 is a side view of an intermediate shaft of a third modified example of the third embodiment.
  • FIG. 26 is a cross-sectional view along the line FF in FIG.
  • FIG. 27 is a cross-sectional view of a groove located at the center of the shock absorbing portion.
  • FIG. 28 is a cross-sectional view of a groove located at the end of the shock absorbing part.
  • FIG. 29 is a perspective view of the steering device of the fourth embodiment.
  • FIG. 30 is a perspective view of the intermediate shaft of the fourth embodiment.
  • FIG. 31 is a cross-sectional view of the intermediate shaft of the fourth embodiment.
  • FIG. 32 is an enlarged cross-sectional view of a first impact absorbing portion and a lower fitting portion of the lower shaft.
  • FIG. 33 is an enlarged cross-sectional view of the periphery of the groove of the first impact absorbing portion.
  • FIG. 34 is an enlarged cross-sectional view of a second impact absorbing portion of the lower shaft.
  • FIG. 35 is a front view of an example of the stopper.
  • FIG. 35 is a front view of an example of the stopper.
  • FIG. 36 is a front view of an example of a stopper.
  • FIG. 37 is a front view of an example of a stopper.
  • FIG. 38 is a front view of an example of a stopper.
  • FIG. 39 is a front view of an example of a stopper.
  • FIG. 40 is a front view of an example of the stopper.
  • FIG. 41 is a cross-sectional view taken along the line GG in FIG.
  • FIG. 42 is a cross-sectional view taken along the line HH in FIG.
  • FIG. 43 is a perspective view of the intermediate shaft after the lower shaft has entered the upper shaft.
  • FIG. 44 is a perspective view of the intermediate shaft after the lower shaft is bent.
  • FIG. 45 is a perspective view of the steering device of the fifth embodiment.
  • FIG. 46 is a perspective view of the intermediate shaft of the fifth embodiment.
  • FIG. 47 is a cross-sectional view of the intermediate shaft of the fifth embodiment.
  • FIG. 48 is an enlarged cross-sectional view of the first impact absorbing portion and the first fitting portion of the first shaft.
  • FIG. 49 is an enlarged cross-sectional view of the periphery of the groove of the first impact absorbing portion.
  • FIG. 50 is an enlarged sectional view of a second impact absorbing portion of the first shaft.
  • FIG. 53 is a perspective view of the intermediate shaft after the first shaft has entered the second shaft.
  • FIG. 54 is a perspective view of the intermediate shaft after the first shaft is bent.
  • FIG. 55 is an enlarged cross-sectional view of a peripheral portion of a groove of a first impact absorbing portion in a first modified example of the fifth embodiment.
  • FIG. 56 is an enlarged cross-sectional view of a first impact absorbing portion in a second modified example of the fifth embodiment.
  • FIG. 57 is a cross-sectional view of the intermediate shaft of the third modified example of the fifth embodiment.
  • FIG. 58 is a perspective view of the steering device of the sixth embodiment.
  • FIG. 59 is a side view of the intermediate shaft of the sixth embodiment.
  • FIG. 60 is a cross-sectional view of the intermediate shaft of the sixth embodiment.
  • FIG. 61 is an enlarged view of the first shock absorber in FIG. 60.
  • Figure 62 is an enlarged view of the groove of Figure 60; FIG.
  • FIG. 63 is an enlarged view of a second shock absorber shown in FIG. 60.
  • FIG. 64 is a side view of the intermediate shaft after bending.
  • FIG. 65 is a perspective view of an intermediate shaft of a first modified example of the sixth embodiment.
  • FIG. 66 is a cross-sectional view of the intermediate shaft of the first modified example of the sixth embodiment.
  • FIG. 67 is an enlarged cross-sectional view of a first impact absorbing portion and a first fitting portion of a first shaft.
  • FIG. 70 is a perspective view of the intermediate shaft after the first shaft is in the second shaft.
  • FIG. 71 is a perspective view of the intermediate shaft after the first shaft is bent.
  • FIG. 72 is a cross-sectional view of the intermediate shaft of the second modified example of the sixth embodiment.
  • FIG. 73 is an enlarged cross-sectional view of a peripheral portion of a groove of a first impact absorbing portion in a third modified example of the sixth embodiment.
  • FIG. 74 is an enlarged cross-sectional view of a first shock absorber in a fourth modification of the sixth embodiment.
  • FIG. 1 is a schematic view of a steering apparatus according to the first embodiment.
  • FIG. 2 is a perspective view of the steering device of the first embodiment.
  • the steering wheel 81, the steering shaft 82, the steering force assist mechanism 83, the first universal joint 84, and the intermediate shaft 85 are transmitted in the order of transmission of the force applied by the operator.
  • the front of the vehicle on which the steering device 80 is mounted is described simply as the front, and the rear of the vehicle is described as the rear.
  • the steering shaft 82 includes an input shaft 82a and an output shaft 82b.
  • One end of the input shaft 82a is connected to the steering wheel 81, and the other end of the input shaft 82a is connected to the output shaft 82b.
  • one end of the output shaft 82b is connected to the input shaft 82a, and the other end of the output shaft 82b is connected to the first universal joint 84.
  • the intermediate shaft 85 connects the first universal joint 84 and the second universal joint 86.
  • One end of the intermediate shaft 85 is connected to the first universal joint 84, and the other end is connected to the second universal joint 86.
  • One end of the pinion shaft 87 is connected to the second universal joint 86, and the other end of the pinion shaft 87 is connected to the steering gear 88.
  • the first universal joint 84 and the second universal joint 86 are, for example, cardan joints.
  • the rotation of the steering shaft 82 is transmitted to the pinion shaft 87 via the intermediate shaft 85. That is, the intermediate shaft 85 rotates with the steering shaft 82.
  • the steering gear 88 includes a pinion 88 a and a rack 88 b.
  • the pinion 88 a is coupled to the pinion shaft 87.
  • the rack 88 b meshes with the pinion 88 a.
  • the steering gear 88 converts the rotational motion transmitted to the pinion 88a into a linear motion at the rack 88b.
  • the rack 88 b is connected to the tie rod 89. The movement of the rack 88b changes the angle of the wheel.
  • the steering force assist mechanism 83 includes a reduction gear 92 and an electric motor 93.
  • the reduction gear 92 is, for example, a worm reduction gear.
  • the torque generated by the electric motor 93 is transmitted to the worm wheel via the worm in the reduction gear 92 to rotate the worm wheel.
  • the reduction gear 92 increases the torque generated by the electric motor 93 by the worm and the worm wheel. Then, the reduction gear 92 applies an auxiliary steering torque to the output shaft 82b. That is, the steering device 80 is a column assist system.
  • the steering device 80 includes an ECU (Electronic Control Unit) 90, a torque sensor 94, and a vehicle speed sensor 95.
  • the electric motor 93, the torque sensor 94, and the vehicle speed sensor 95 are electrically connected to the ECU 90.
  • the torque sensor 94 outputs the steering torque transmitted to the input shaft 82 a to the ECU 90 by CAN (Controller Area Network) communication.
  • the vehicle speed sensor 95 detects the traveling speed (vehicle speed) of the vehicle body on which the steering device 80 is mounted.
  • the vehicle speed sensor 95 is provided on the vehicle body and outputs the vehicle speed to the ECU 90 by CAN communication.
  • the ECU 90 controls the operation of the electric motor 93.
  • the ECU 90 obtains signals from the torque sensor 94 and the vehicle speed sensor 95, respectively. Electric power is supplied to the ECU 90 from the power supply device 99 (for example, an on-board battery) while the ignition switch 98 is on.
  • the ECU 90 calculates the assist steering command value based on the steering torque and the vehicle speed.
  • the ECU 90 adjusts the power value supplied to the electric motor 93 based on the assist steering command value.
  • the ECU 90 acquires information on the induced voltage from the electric motor 93 or information output from a resolver or the like provided in the electric motor 93.
  • the control of the electric motor 93 by the ECU 90 reduces the force required to operate the steering wheel 81.
  • FIG. 3 is a side view of the intermediate shaft of the first embodiment.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is an enlarged view of the periphery of the groove in FIG.
  • the intermediate shaft 85 is a substantially cylindrical solid member.
  • the intermediate shaft 85 is formed of S35C which is carbon steel for machine structure (SC material).
  • SC material carbon steel for machine structure
  • the intermediate shaft 85 includes a base 11, a shock absorber 15, and a base 19.
  • the base 11 is connected to a first universal joint 84.
  • the diameter of the base 11 is constant.
  • the shock absorber 15 is located in front of the base 11.
  • the shock absorbing portion 15 is located at the center of the intermediate shaft 85 in the axial direction of the intermediate shaft 85.
  • the base 19 is connected to the second universal joint 86.
  • the diameter of the base 19 is constant and equal to the diameter of the base 11.
  • the axial direction of the intermediate shaft 85 is simply described as the axial direction, and the direction orthogonal to the axial direction is described as the radial direction.
  • 4 and 5 are cross sections of the intermediate shaft 85 cut in a plane orthogonal to the radial direction.
  • the shock absorption unit 15 includes a plurality of grooves 3 and a plurality of protrusions 4.
  • the groove 3 is annular.
  • the grooves 3 are formed by cutting, for example.
  • the plurality of grooves 3 are arranged at equal intervals in the axial direction.
  • the protrusion 4 is located between the two grooves 3.
  • the diameter D1 of the shock absorbing portion 15 at the position corresponding to the convex portion 4 is equal to the diameters of the base 11 and the base 19.
  • the shock absorbing portion 15 has a first side surface 31, a second side surface 33, a bottom surface 35, a first connection surface 36 and a second connection surface 37 as surfaces facing the groove 3. ,including.
  • the first side surface 31 and the second side surface 33 are perpendicular to the axial direction. That is, the second side surface 33 is parallel to the first side surface 31.
  • the bottom surface 35 is located between the first side surface 31 and the second side surface 33.
  • the first side surface 31 is located rearward with respect to the bottom surface 35, and the second side surface 33 is located forward with respect to the bottom surface 35.
  • the bottom surface 35 is a curved surface.
  • the first connection surface 36 is a curved surface connecting the first side surface 31 and the bottom surface 35.
  • the second connection surface 37 is a curved surface connecting the second side surface 33 and the bottom surface 35.
  • the maximum width W of the groove 3 is preferably 1 mm or more and 3 mm or less.
  • the maximum width W of the groove 3 is set so that the shock absorber 15 does not break when the shock absorber 15 is bent.
  • the maximum width W of the groove 3 is set such that, when the shock absorbing portion 15 is bent, adjacent convex portions 4 are in contact before the shock absorbing portion 15 breaks.
  • the first connection surface 36 and the second connection surface 37 draw the same arc.
  • the radius of curvature C1 of the arc drawn by the first connection surface 36 and the second connection surface 37 is preferably 0.2 mm or more and 1.0 mm or less.
  • the curvature radius C1 in the first embodiment is 0.3 mm.
  • the shock absorber 15 is designed to transmit a torque of, for example, 300 Nm.
  • the diameter D2 of the impact absorbing portion 15 at the position corresponding to the bottom of the groove 3 is about 14 mm or more and 16 mm or less.
  • the diameter D2 is determined by the depth H of the groove 3 shown in FIG.
  • FIG. 6 is a perspective view of the intermediate shaft after bending.
  • a load is applied to the steering gear 88 at the time of a primary collision of the vehicle.
  • the load applied to the steering gear 88 generates bending stress on the intermediate shaft 85.
  • stress concentration occurs in the first connection surface 36 and the second connection surface 37, so that the shock absorbing portion 15 is bent starting from the first connection surface 36 and the second connection surface 37.
  • One side in the radial direction of the groove 3 expands, and the other side in the radial direction of the groove 3 contracts.
  • the convex portion 4 is in contact with the adjacent convex portion 4.
  • the bent intermediate shaft 85 enters the clearance of the peripheral parts of the intermediate shaft 85.
  • the impact absorbing portion 15 bends to absorb the impact due to the collision. As a result, the shock transmitted to the steering wheel 81 is reduced.
  • the shock absorbing portion 15 includes the plurality of grooves 3, when bending stress acts on the intermediate shaft 85, stress concentration occurs at a plurality of portions of the shock absorbing portion 15. As a result, the range of the deformed portion of the shock absorbing portion 15 tends to be large, so that the shock absorbing ability of the intermediate shaft 85 is improved.
  • the groove 3 of the impact absorbing portion 15 may not necessarily have the above-described shape.
  • the first connection surface 36 and the second connection surface 37 may be connected without the bottom surface 35 interposed therebetween. That is, in a cross section obtained by cutting the intermediate shaft 85 in a plane perpendicular to the radial direction, the surface of the shock absorber 15 at a position corresponding to the bottom of the groove 3 may draw a semicircle.
  • the first connection surface 36 and the second connection surface 37 may not be present. That is, the first side surface 31 and the second side surface 33 may be directly connected to the bottom surface 35. This description is also applicable to the other embodiments described below.
  • the number of grooves 3 provided in the impact absorbing portion 15 may not necessarily be as shown in the drawing.
  • the shock absorber 15 may have at least one groove 3. This description is also applicable to the other embodiments described below.
  • the diameter D1 of the impact absorbing portion 15 at the position corresponding to the convex portion 4 may not necessarily be equal to the diameter of the base 11.
  • the diameter D1 may be larger than the diameter D2 of the shock absorber 15 at a position corresponding to at least the bottom of the groove 3.
  • the diameter D 1 may be smaller than the diameter of the base 11 or larger than the diameter of the base 11. This description is also applicable to the other embodiments described below.
  • the steering apparatus 80 includes the first universal joint 84, the second universal joint 86 disposed on the front side of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85, which is a solid member connecting the two.
  • the intermediate shaft 85 includes an impact absorbing portion 15 having a groove 3 on the outer peripheral surface.
  • the steering device 80 can absorb the impact by means of the intermediate shaft 85 which can be easily manufactured and whose deformation characteristics can be easily changed.
  • the impact absorbing portion 15 is provided with a plurality of grooves 3.
  • the grooves 3 are annular.
  • the maximum width W of the groove 3 is 1 mm or more and 3 mm or less.
  • a cross section obtained by cutting the intermediate shaft 85 in a plane perpendicular to the radial direction at least a part of the surface of the shock absorbing portion 15 facing the groove 3 has an arc having a curvature radius of 0.2 mm or more and 1.0 mm or less Draw.
  • FIG. 7 is a side view of the shock absorber in the intermediate shaft of the first modification of the first embodiment.
  • symbol is attached
  • the impact absorbing portion 15 ⁇ / b> A of the first modified example of the first embodiment includes a groove 3 ⁇ / b> A.
  • the groove 3A is helical.
  • the description of the maximum width W and the curvature radius C1 of the groove 3 described above can be applied to the groove 3A.
  • the intermediate shaft 85 when bending stress acts on the intermediate shaft 85, stress concentration occurs at a plurality of portions of the impact absorbing portion 15A. Therefore, the deformation of the shock absorbing portion 15A is likely to be large, so that the shock absorbing ability of the intermediate shaft 85 is improved. Furthermore, since the groove 3A is helical, the bending direction of the intermediate shaft 85 is unlikely to be limited.
  • FIG. 8 is an enlarged view of the periphery of the groove in the intermediate shaft of the second modified example of the first embodiment.
  • symbol is attached
  • the impact absorbing portion 15B of the second modified example of the first embodiment includes a plurality of grooves 3B.
  • the impact absorbing portion 15B has a first side 31B, a second side 33B, a bottom 35B, a first connection surface 36B, and a second connection surface 37B as surfaces facing the groove 3B. ,including.
  • the bottom surface 35B is located between the first side 31B and the second side 33B.
  • the first connection surface 36B is a curved surface connecting the first side surface 31B and the bottom surface 35B.
  • the second connection surface 37B is a curved surface connecting the second side surface 33B and the bottom surface 35B.
  • the distance between the first side surface 31B and the second side surface 33B decreases toward the bottom surface 35B. That is, the width of the groove 3B decreases toward the bottom of the groove 3B.
  • the configurations of the first modification of the first embodiment and the second modification of the first embodiment are also applicable to the second and subsequent embodiments.
  • FIG. 9 is a perspective view of the steering device of the second embodiment.
  • FIG. 10 is a side view of the intermediate shaft of the second embodiment.
  • FIG. 11 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 12 is an enlarged view of the periphery of the groove in FIG.
  • FIG. 13 is a cross-sectional view taken along the line CC in FIG.
  • symbol is attached
  • the intermediate shaft 85C is a substantially cylindrical solid member.
  • the intermediate shaft 85C is formed of S35C which is carbon steel for machine structure (SC material).
  • SC material carbon steel for machine structure
  • the intermediate shaft 85C includes a base 11C, a first shock absorber 15C, a base 16C, a second shock absorber 17C, and a base 19C.
  • the base 11C is connected to the first universal joint 84.
  • the diameter of the base 11C is constant.
  • the first shock absorber 15C is located in front of the base 11C.
  • the first impact absorbing portion 15C is located at the center of the intermediate shaft 85C in the axial direction of the intermediate shaft 85C.
  • the base 16C is located in front of the first shock absorber 15C.
  • the second shock absorber 17C is located in front of the base 16C.
  • the second impact absorbing portion 17C is located forward of the center of the intermediate shaft 85C in the axial direction of the intermediate shaft 85C.
  • the base 19C is connected to the second universal joint 86.
  • the diameter of the base 19C is constant and equal to the diameter of the base 11C.
  • the first impact absorbing portion 15C includes a plurality of grooves 3C and a plurality of convex portions 4C.
  • the groove 3C is annular.
  • the grooves 3C are formed by cutting, for example.
  • the plurality of grooves 3C are arranged at equal intervals in the axial direction.
  • the convex portion 4C is located between the two grooves 3C.
  • the diameter D1C of the first shock absorber 15C at a position corresponding to the convex portion 4C is equal to the diameters of the base 11C, the base 16C, and the base 19C.
  • the first impact absorbing portion 15C has a first side 31C, a second side 33C, a bottom 35C, a first connection surface 36C, and a second connection surface as surfaces facing the groove 3C. And 37C.
  • the first side surface 31C and the second side surface 33C are perpendicular to the axial direction. That is, the second side surface 33C is parallel to the first side surface 31C.
  • the bottom surface 35C is located between the first side 31C and the second side 33C.
  • the first side surface 31C is located rearward with respect to the bottom surface 35C, and the second side surface 33C is located forward with respect to the bottom surface 35C.
  • the bottom surface 35C is a curved surface.
  • the first connection surface 36C is a curved surface connecting the first side surface 31C and the bottom surface 35C.
  • the second connection surface 37C is a curved surface connecting the second side surface 33C and the bottom surface 35C.
  • the maximum width WC of the groove 3C is preferably 1 mm or more and 3 mm or less.
  • the maximum width WC of the groove 3C is set so that the first shock absorber 15C does not break when the first shock absorber 15C bends.
  • the maximum width WC of the groove 3C is set such that, when the first impact absorbing portion 15C is bent, adjacent convex portions 4C are in contact before the first impact absorbing portion 15C breaks.
  • the first connection surface 36C and the second connection surface 37C draw the same arc (hereinafter referred to as a first arc).
  • the radius of curvature C1C of the first arc is preferably 0.2 mm or more and 1.0 mm or less.
  • the curvature radius C1C in the second embodiment is 0.3 mm.
  • the first shock absorber 15C is designed to transmit, for example, a torque of 300 Nm.
  • the diameter D2C of the first shock absorber 15C at a position corresponding to the bottom of the groove 3C is about 14 mm or more and 16 mm or less.
  • the diameter D2C is determined by the depth HC of the groove 3C shown in FIG.
  • FIG. 14 is a perspective view of the intermediate shaft after bending.
  • a load is applied to the steering gear 88 at the time of a primary collision of the vehicle.
  • the load applied to the steering gear 88 generates bending stress on the intermediate shaft 85C.
  • stress concentration occurs in the first connection surface 36C and the second connection surface 37C, and the first impact absorbing portion 15C is bent starting from the first connection surface 36C and the second connection surface 37C.
  • One side of the groove 3C in the radial direction expands, and the other side of the groove 3C in the radial direction contracts.
  • the convex portion 4C is in contact with the adjacent convex portion 4C.
  • the bent intermediate shaft 85C enters the clearance of the peripheral parts of the intermediate shaft 85C.
  • the first impact absorbing portion 15C includes the plurality of grooves 3C, when bending stress acts on the intermediate shaft 85C, stress concentration occurs in the plurality of portions of the first impact absorbing portion 15C. For this reason, the range of the deformed portion of the first impact absorbing portion 15C is likely to be large, so that the impact absorbing capability of the intermediate shaft 85C is improved.
  • the second impact absorbing portion 17C includes a small diameter portion 175C, a first connection portion 171C, and a second connection portion 179C.
  • the small diameter portion 175C is cylindrical.
  • the diameter D3C of the small diameter portion 175C is smaller than the diameter D2C shown in FIG.
  • the axial length LC of the small diameter portion 175C is larger than the maximum width WC of the groove 3C.
  • the first connection portion 171C connects the base portion 16C and the small diameter portion 175C.
  • the second connection portion 179C connects the base 19C and the small diameter portion 175C. In the cross section shown in FIG.
  • the surfaces of the first connection portion 171C and the second connection portion 179C draw the same arc (hereinafter, referred to as a second arc).
  • the radius of curvature C2C of the second arc is larger than the radius of curvature C1C of the first arc.
  • the curvature radius C2C is preferably 5 mm or more.
  • the radius of curvature C2C is 8 mm.
  • the second impact absorbing portion 17C is designed to be deformed by a torque of, for example, 150 Nm or more and 250 Nm or less.
  • the diameter D3C is about 13 mm or more and 15.5 mm or less.
  • the diameter D3C is 13 mm.
  • the intermediate shaft 85C may generate bending stress due to the primary collision, and may receive a large torque (twisting force) when the vehicle runs on a curb or the like. Therefore, the intermediate shaft 85C is required to be able to suppress damage when receiving a large torque and to absorb an impact at the time of a primary collision.
  • the diameter D3C is smaller than the diameter D2C. For this reason, the second impact absorbing portion 17C is deformed (twisted) when the vehicle rides on a curb or the like. The deformation of the second impact absorbing portion 17C absorbs the energy input to the intermediate shaft 85C. Since energy is absorbed by the second impact absorbing portion 17C, deformation of the first impact absorbing portion 15C is suppressed.
  • the curvature radius C2C is larger than the curvature radius C1C.
  • the steering device 80C includes the first universal joint 84, the second universal joint 86 disposed forward of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85C which is a solid member connecting the two.
  • the intermediate shaft 85C has a first impact absorbing portion 15C having a groove 3C on the outer peripheral surface, and a second impact absorbing portion having a diameter D3C smaller than the diameter D2C of the first impact absorbing portion 15C at a position corresponding to the bottom of the groove 3C. And 17C.
  • the steering device 80C can absorb an impact by the intermediate shaft 85C which can be easily manufactured and can easily change its deformation characteristics.
  • the intermediate shaft 85C can exhibit a predetermined shock absorbing capability.
  • At least a portion of the surface of the first shock absorber 15C facing the groove 3C draws a first arc
  • the second shock absorber 17C At least a portion of the surface of the circle draws a second arc.
  • the radius of curvature C2C of the second arc is larger than the radius of curvature C1C of the first arc.
  • the intermediate shaft 85C bends not from the second impact absorbing portion 17C but from the first impact absorbing portion 15C. Therefore, when a collision of a vehicle occurs, the intermediate shaft 85C can exhibit a predetermined shock absorbing capability.
  • FIG. 15 is a perspective view of the steering device of the third embodiment.
  • FIG. 16 is a side view of the intermediate shaft of the third embodiment.
  • FIG. 17 is a cross-sectional view taken along the line DD in FIG.
  • FIG. 18 is an enlarged view of the periphery of the groove in FIG.
  • symbol is attached
  • the intermediate shaft 85D is a substantially cylindrical solid member.
  • the intermediate shaft 85D is formed of S35C which is carbon steel for machine structure (SC material).
  • SC material carbon steel for machine structure
  • the intermediate shaft 85D includes a base 11D, a shock absorber 15D, and a base 19D.
  • the base 11D is connected to the first universal joint 84.
  • the diameter of the base 11D is constant.
  • the shock absorbing portion 15D is located in front of the base 11D.
  • the shock absorbing portion 15D is located at the center of the intermediate shaft 85D in the axial direction of the intermediate shaft 85D.
  • the base 19D is connected to the second universal joint 86.
  • the diameter of the base 19D is constant and equal to the diameter of the base 11D.
  • FIGS. 17 and 18 are cross sections of the intermediate shaft 85D cut in a plane orthogonal to the radial direction.
  • the impact absorbing portion 15D includes a plurality of grooves 3D and a plurality of convex portions 4D.
  • the grooves 3D are annular.
  • the grooves 3D are formed by cutting, for example.
  • the plurality of grooves 3D are arranged at equal intervals in the axial direction.
  • the protrusion 4D is located between the two grooves 3D.
  • the diameter D1 of the impact absorbing portion 15D at the position corresponding to the convex portion 4D is equal to the diameters of the base 11D and the base 19D.
  • the plurality of grooves 3D are a groove 3aD, a groove 3bD, a groove 3cD, a groove 3dD, a groove 3eD, a groove 3fD, a groove 3gD, a groove 3hD, a groove 3iD, and a groove 3jD and a groove 3kD.
  • Grooves 3aD to 3kD line up from the rear end to the front end of the impact absorbing portion 15D.
  • the groove 3fD is located at the center of the shock absorber 15D in the axial direction.
  • the shape of the groove 3kD is the same as the shape of the groove 3aD.
  • the shape of the groove 3jD is the same as the shape of the groove 3bD.
  • the shape of the groove 3iD is the same as the shape of the groove 3cD.
  • the shape of the groove 3hD is the same as the shape of the groove 3dD.
  • the shape of the groove 3gD is the same as the shape of the groove 3eD.
  • the diameter of the impact absorbing portion 15D at a position corresponding to the groove 3aD to the bottom of the groove 3kD is from the diameter DaD to the diameter DkD.
  • the diameter DfD is the largest, and the diameter DaD and the diameter DkD are the smallest.
  • the diameter of the shock absorber 15D at a position corresponding to the bottom of one groove 3D is the shock absorber at a position corresponding to the bottom of another groove 3D located axially on the center side of the intermediate shaft 85D than the groove 3D. Less than 15D diameter.
  • the shock absorbing portion 15D has a first side 31D, a second side 33D, a bottom 35D, a first connection surface 36D, and a second connection surface 37D as surfaces facing the groove 3D.
  • FIG. 18 shows the groove 3fD, but the grooves 3aD to 3eD and the grooves 3gD to 3kD have the same structure except for the depth.
  • the first side surface 31D and the second side surface 33D are perpendicular to the axial direction. That is, the second side surface 33D is parallel to the first side surface 31D.
  • the bottom surface 35D is located between the first side 31D and the second side 33D.
  • the first side surface 31D is located rearward with respect to the bottom surface 35D, and the second side surface 33D is located forward with respect to the bottom surface 35D.
  • the bottom surface 35D is a curved surface.
  • the first connection surface 36D is a curved surface connecting the first side surface 31D and the bottom surface 35D.
  • the second connection surface 37D is a curved surface connecting the second side surface 33D and the bottom surface 35D.
  • the maximum width WD of the groove 3D is preferably 1 mm or more and 3 mm or less.
  • the maximum width WD of the groove 3D is set so that the shock absorber 15D does not break when the shock absorber 15D is bent.
  • the maximum width WD of the groove 3D is set such that, when the shock absorbing portion 15D is bent, adjacent convex portions 4D are in contact before the shock absorbing portion 15D breaks.
  • the first connection surface 36D and the second connection surface 37D draw the same arc.
  • the curvature radius C1D of the arc drawn by the first connection surface 36D and the second connection surface 37D is preferably 0.2 mm or more and 1.0 mm or less.
  • the curvature radius C1D in the present embodiment is 0.3 mm.
  • the shock absorber 15D is designed to transmit, for example, a torque of 300 Nm.
  • the diameter DaD and the diameter DkD are about 14 mm or more and 16 mm or less.
  • FIG. 19 is a perspective view of the intermediate shaft after bending.
  • a load is applied to the steering gear 88 at the time of a primary collision of the vehicle.
  • the load applied to the steering gear 88 generates bending stress on the intermediate shaft 85D.
  • stress concentration occurs in the first connection surface 36D and the second connection surface 37D, so that the impact absorbing portion 15D is bent starting from the first connection surface 36D and the second connection surface 37D.
  • One side of the groove 3D in the radial direction expands, and the other side of the groove 3D in the radial direction contracts.
  • the convex portion 4D is in contact with the adjacent convex portion 4D.
  • the bent intermediate shaft 85D enters the clearance of the peripheral parts of the intermediate shaft 85D.
  • the impact absorbing portion 15D includes the plurality of grooves 3D, when bending stress acts on the intermediate shaft 85D, stress concentration occurs in a plurality of portions of the impact absorbing portion 15D. As a result, the range of the deformed portion of the shock absorbing portion 15D tends to be large, so that the shock absorbing ability of the intermediate shaft 85D is improved.
  • FIG. 20 is a graph showing the relationship between displacement and load when the intermediate shaft of the comparative example is bent.
  • FIG. 21 is a graph showing the relationship between displacement and load when the intermediate shaft of the third embodiment bends. 20 and 21 are conceptual diagrams for explaining the difference between the comparative example and the third embodiment.
  • the comparative example is different from the third embodiment in that all the grooves 3D have the same shape. That is, in the comparative example, the diameter of the impact absorbing portion 15D at a position corresponding to the bottom of the groove 3D is constant. The magnitude of the bending moment acting on the intermediate shaft 85D due to the load applied to the steering gear 88 varies depending on the axial position. The bending moment is maximum at the center of the intermediate shaft 85D in the axial direction and decreases toward the end. For this reason, in the comparative example, the load required to bend the end of the impact absorbing portion 15D is larger than the load required to bend the center of the impact absorbing portion 15D. As a result, as shown in FIG. 20, after the center of the shock absorbing portion 15D is bent, the load required to bend the shock absorbing portion 15D increases as the displacement of the shock absorbing portion 15D increases.
  • the diameter of the shock absorbing portion 15D at the position corresponding to the bottom of one groove 3D is the other one located axially on the center side of the intermediate shaft 85D than the groove 3D.
  • the diameter is smaller than the diameter of the shock absorber 15D at a position corresponding to the bottom of the groove 3D. Therefore, the difference between the load required to bend the center of the impact absorbing portion 15D and the load required to bend the end of the impact absorbing portion 15D is reduced.
  • the load required to bend the other portion of the shock absorbing portion 15D hardly changes. That is, variation in load required to deform the intermediate shaft 85D is suppressed.
  • the number of grooves 3D provided in the impact absorbing portion 15D may not necessarily be as shown in the drawing.
  • the shock absorbing portion 15D may have at least two grooves 3D.
  • the diameter D1 of the impact absorbing portion 15D at the position corresponding to the convex portion 4D may not necessarily be equal to the diameter of the base 11D.
  • the diameter D1 may be larger than the diameter DfD of the shock absorber 15D at a position corresponding to at least the bottom of the groove 3fD.
  • the diameter D1 may be smaller than the diameter of the base 11D or larger than the diameter of the base 11D.
  • the steering device 80D includes the first universal joint 84, the second universal joint 86 disposed forward of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85D which is a solid member connecting the two.
  • the intermediate shaft 85D includes an impact absorbing portion 15D having a first groove (for example, a groove 3aD) and a second groove (for example, a groove 3fD) on the outer peripheral surface.
  • the diameter (for example, diameter DfD) of impact absorbing portion 15D at the position corresponding to the bottom of the second groove is different from the diameter (for example, diameter DaD) of impact absorbing portion 15D at the position corresponding to the bottom of the first groove.
  • the steering device 80D can absorb an impact by means of the intermediate shaft 85D which can be easily manufactured and whose deformation characteristics can be easily changed.
  • the steering device 80D it is possible to make the section coefficient of the portion corresponding to the first groove of the impact absorbing portion 15D different from the section coefficient of the portion corresponding to the second groove. For this reason, adjustment of the bending stress in each cross section of impact-absorbing part 15D is possible.
  • the second groove (for example, the groove 3fD) is located on the center side of the intermediate shaft 85D in the axial direction of the intermediate shaft 85D with respect to the first groove (for example, the groove 3aD).
  • the diameter (for example, the diameter DfD) of the impact absorbing portion 15D at a position corresponding to the bottom of the second groove is larger than the diameter (for example, the diameter DaD) of the impact absorbing portion 15D at a position corresponding to the bottom of the first groove.
  • the first groove for example, the groove 3aD
  • the second groove for example, the groove 3fD
  • the maximum widths WD of the first groove (for example, the groove 3aD) and the second groove (for example, the groove 3fD) are 1 mm or more and 3 mm or less.
  • a cross section obtained by cutting the intermediate shaft 85D in a plane perpendicular to the radial direction at least a part of the surface of the shock absorbing portion 15D facing the first groove and at least the surface of the shock absorbing portion 15D facing the second groove
  • One part draws the circular arc whose curvature radius is 0.2 mm or more and 1.0 mm or less.
  • FIG. 22 is a side view of an impact absorbing portion in the intermediate shaft of the first modified example of the third embodiment.
  • symbol is attached
  • the impact absorbing portion 15E of the first modified example of the third embodiment includes a plurality of grooves 3aE.
  • the plurality of grooves 3E include a groove 3aE, a groove 3bE, a groove 3cE, a groove 3dE, and a groove 3eE.
  • the grooves 3aE to 3eE are each in a spiral shape.
  • the grooves 3aE to 3eE may be connected or may be separate grooves.
  • the radius of the shock absorbing portion 15E at a position corresponding to the groove 3aE to the bottom of the groove 3eE is set from a radius RaE to a radius RaE.
  • the radius RcE is the largest, and the radius RaE and the radius ReE are the smallest.
  • the diameter of the shock absorber 15E at a position corresponding to the bottom of one groove 3E is the shock absorber at a position corresponding to the bottom of another groove 3E located axially on the center side of the intermediate shaft 85D with respect to the groove 3E. Less than 15E diameter.
  • the description of the maximum width WD and the curvature radius C1D of the groove 3D described above can be applied to the groove 3aE to the groove 3eE.
  • FIG. 23 is a side view showing an intermediate shaft of a second modified example of the third embodiment.
  • FIG. 24 is a cross-sectional view taken along line EE in FIG.
  • symbol is attached
  • the impact absorbing portion 15F in the second modification of the third embodiment is closer to the rear side than the center of the intermediate shaft 85F in the axial direction. More specifically, the front end of the shock absorbing portion 15F is located rearward of the center of the intermediate shaft 85F in the axial direction.
  • the shock absorbing portion 15F includes a plurality of grooves 3F.
  • the plurality of grooves 3F include grooves 3aF, grooves 3bF, grooves 3cF, grooves 3dF, grooves 3eF, and grooves 3fF.
  • Grooves 3aF to 3fF are arranged from the rear end to the front end of the shock absorbing portion 15F.
  • the diameter of the shock absorbing portion 15F at the position corresponding to the groove 3aF to the bottom of the groove 3fF is set from the diameter DaF to the diameter DfF.
  • the diameter DaF to the diameter DfF is the largest and the diameter DaF is the smallest.
  • the diameter of the shock absorbing portion 15F at a position corresponding to the bottom of one groove 3F is the shock absorbing portion at a position corresponding to the bottom of another groove 3F located on the center side of the intermediate shaft 85F in the axial direction than the groove 3F. Less than 15F diameter.
  • FIG. 25 is a side view of an intermediate shaft of a third modified example of the third embodiment.
  • FIG. 26 is a cross-sectional view along the line FF in FIG.
  • FIG. 27 is a cross-sectional view of a groove located at the center of the shock absorbing portion.
  • FIG. 28 is a cross-sectional view of a groove located at the end of the shock absorbing part.
  • symbol is attached
  • the shock absorbing portion 15G of the third modified example of the third embodiment is located at the center of the intermediate shaft 85G in the axial direction.
  • the shock absorbing portion 15G includes a plurality of grooves 3G.
  • the plurality of grooves 3G are a groove 3aG, a groove 3bG, a groove 3cG, a groove 3dG, a groove 3eG, a groove 3fG, a groove 3gG, a groove 3hG, a groove 3iG, and a groove 3jG and grooves 3kG.
  • a groove 3aG to a groove 3kG are axially aligned from the rear end to the front end of the shock absorbing portion 15G.
  • the groove 3fG is located at the center of the shock absorbing portion 15G in the axial direction.
  • the shape of the groove 3kG is the same as the shape of the groove 3aG.
  • the shape of the groove 3jG is the same as the shape of the groove 3bG.
  • the shape of the groove 3iG is the same as the shape of the groove 3cG.
  • the shape of the groove 3hG is the same as the shape of the groove 3dG.
  • the shape of the groove 3gG is the same as the shape of the groove 3eG.
  • the shock absorbing portion 15G includes a first connection surface 36fG and a second connection surface 37fG as a surface facing the groove 3fG.
  • the shock absorbing portion 15G includes a first connection surface 36aG and a second connection surface 37aG as surfaces facing the groove 3aG.
  • the grooves 3bG to 3eG and the grooves 3gG to 3kG have the same configuration except for the shapes of the first connection surface and the second connection surface.
  • first connection surface 36fG and the second connection surface 37fG draw the same arc.
  • the radius of curvature of the arc drawn by the first connection surface 36fG and the second connection surface 37fG is taken as the curvature radius CfG.
  • first connection surface 36aG and the second connection surface 37aG draw the same arc.
  • the curvature radius of the arc drawn by the first connection surface 36aG and the second connection surface 37aG is taken as a curvature radius CaG.
  • the radius of curvature of the arc drawn by the first connecting surface and the second connecting surface of the groove 3bG, the groove 3cG, the groove 3dG, the groove 3eD, the groove 3gG, the groove 3hG, the groove 3iG, the groove 3jG, and the groove 3kG is the radius of curvature CbG
  • the curvature radius CfG is the largest, and the curvature radius CaG and the curvature radius CkG are the smallest.
  • the radius of curvature of the arc drawn by the surface of the shock absorbing portion 15G facing one groove 3G is the same as that of the other groove 3G located on the center side of the intermediate shaft 85G in the axial direction than the groove 3G.
  • the radius of curvature of the arc drawn by the surface of the facing shock absorbing portion 15G is smaller than that of the arc.
  • the curvature radius CkG is preferably 0.2 mm or more and 1.0 mm or less.
  • the shock absorber 15G is designed to transmit a torque of, for example, 300 Nm.
  • the diameter D2D is about 14 mm or more and 16 mm or less.
  • the diameter D2D is a diameter of the shock absorber 15G at a position corresponding to the bottom of the groove 3G.
  • the diameter D2D is constant.
  • the steering device 80D of the third modified example of the third embodiment includes the first universal joint 84, the second universal joint 86 disposed on the front side of the first universal joint 84, and the first universal joint 86.
  • an intermediate shaft 85G which is a solid member connecting the universal joint 84 and the second universal joint 86.
  • the intermediate shaft 85G includes an impact absorbing portion 15G having a first groove (for example, a groove 3aG) and a second groove (for example, a groove 3fG) on the outer peripheral surface.
  • the bending stress generated in the portion corresponding to the corner of the first groove of the impact absorbing portion 15G and the bending stress generated in the portion corresponding to the corner of the second groove And can be different. For this reason, adjustment of the bending stress in each cross section of impact-absorbing part 15G is possible.
  • the second groove (for example, the groove 3fG) is located on the center side of the intermediate shaft 85G in the axial direction with respect to the first groove (for example, the groove 3aG).
  • the radius of curvature (for example, radius of curvature CfG) of the second arc is larger than the radius of curvature (for example, radius of curvature CaG) of the first arc.
  • FIG. 29 is a perspective view of the steering device of the fourth embodiment.
  • FIG. 30 is a perspective view of the intermediate shaft of the fourth embodiment.
  • FIG. 31 is a cross-sectional view of the intermediate shaft of the fourth embodiment.
  • FIG. 32 is an enlarged cross-sectional view of a first impact absorbing portion and a lower fitting portion of the lower shaft.
  • FIG. 33 is an enlarged cross-sectional view of the periphery of the groove of the first impact absorbing portion.
  • FIG. 34 is an enlarged cross-sectional view of a second impact absorbing portion of the lower shaft.
  • 35 to 40 are front views of an example of the stopper.
  • FIG. 41 is a cross-sectional view taken along the line GG in FIG.
  • FIG. 42 is a cross-sectional view taken along the line HH in FIG.
  • symbol is attached
  • the intermediate shaft 85H includes a lower shaft 1H and an upper shaft 2H.
  • the lower shaft 1H is a substantially cylindrical solid member.
  • the lower shaft 1H is formed of S35C which is carbon steel for machine structure (SC material).
  • SC material carbon steel for machine structure
  • the lower shaft 1H includes a base 10H, a first shock absorber 15H, a stopper 16H, a base 11H, a second shock absorber (fuse) 12H, a base 13H, and a lower fitting. And a unit 17H.
  • the base 10H is fixed to the second universal joint 86.
  • the diameter of the base 10H is constant.
  • the first shock absorber 15H is located behind the base 10H. Further, the first impact absorbing portion 15H is located forward of the center of the lower shaft 1H in the axial direction of the lower shaft 1H.
  • the stopper 16H is located behind the first impact absorbing portion 15H in the axial direction of the lower shaft 1H. Further, the stopper 16H is located at a position slightly closer to the center of the lower shaft 1H in the axial direction of the lower shaft 1H. The base 11H is located behind the stopper 16H.
  • the second impact absorbing portion 12H is located rearward of the base 11H in the axial direction of the lower shaft 1H.
  • the base 13H is located behind the second shock absorber 12H.
  • the diameter of the base 13H is constant and equal to the diameters of the base 10H and the base 11H.
  • the lower fitting portion 17H is located at the rear end of the lower shaft 1H.
  • the lower fitting portion 17H includes male splines (or male serrations) 17aH on the outer peripheral surface.
  • the male spline (or male serration) 17aH meshes with a female spline (or female serration) 21aH described later.
  • the lower fitting portion 17H has a recess 170H on the end face on the rear side.
  • the base 10H, the base 11H, the second impact absorbing portion (fuse) 12H, the base 13H, the stopper 16H, the first impact absorbing portion 15H, and the lower fitting portion 17H And may be provided.
  • the base 10H and the base 11H are integrally continuous, and the second shock absorber 12H is located on the front side of the lower shaft 1H.
  • the axial direction of the lower shaft 1H is simply described as the axial direction, and the direction orthogonal to the axial direction is described as the radial direction.
  • 31 to 34 are cross sections obtained by cutting the lower shaft 1H in a plane orthogonal to the radial direction.
  • the first impact absorbing portion 15H includes a plurality of grooves 3H and a plurality of convex portions 4H.
  • the groove 3H is annular.
  • the grooves 3H are formed by cutting, for example.
  • the plurality of grooves 3H are arranged at equal intervals in the axial direction.
  • the protrusion 4H is located between the two grooves 3H.
  • the diameter D1H of the first impact absorbing portion 15H at the position corresponding to the convex portion 4H is equal to the diameters of the base 10H, the base 11H and the base 13H. Further, the diameter D1H is smaller than the minimum diameter D4H of the lower fitting portion 17H.
  • the minimum diameter D4H is the diameter of the lower fitting portion 17H at a position corresponding to the valley of the male spline 17aH.
  • the first impact absorbing portion 15H has a first side 31H, a second side 33H, a bottom 35H, a first connecting surface 36H, and a second connecting surface as surfaces facing the groove 3H. And 37H.
  • the first side surface 31H and the second side surface 33H are perpendicular to the axial direction.
  • the second side surface 33H is parallel to the first side surface 31H.
  • the bottom surface 35H is located between the first side 31H and the second side 33H.
  • the first side surface 31H is located rearward with respect to the bottom surface 35H, and the second side surface 33H is located forward with respect to the bottom surface 35H.
  • the bottom surface 35H is a curved surface.
  • the first connection surface 36H is a curved surface connecting the first side surface 31H and the bottom surface 35H.
  • the second connection surface 37H is a curved surface connecting the second side surface 33H and the bottom surface 35H.
  • the maximum width WH of the groove 3H is preferably 1 mm or more and 3 mm or less.
  • the maximum width WH of the groove 3H is set so that the first impact absorbing portion 15H does not break when the first impact absorbing portion 15H is bent.
  • the maximum width WH of the groove 3H is set such that, when the first impact absorbing portion 15H is bent, adjacent convex portions 4H are in contact before the first impact absorbing portion 15H breaks.
  • the first connection surface 36H and the second connection surface 37H draw the same arc (hereinafter, referred to as a first arc).
  • the radius of curvature C1H of the first arc is preferably 0.2 mm or more and 1.0 mm or less.
  • the curvature radius C1H in the fourth embodiment is 0.3 mm.
  • the first shock absorber 15H is designed to transmit, for example, a torque of 300 Nm.
  • the diameter D2H of the first impact absorbing portion 15H at the position corresponding to the bottom of the groove 3H is about 14 mm or more and 16 mm or less.
  • the diameter D2H is determined by the depth HH of the groove 3H shown in FIG.
  • the second impact absorbing portion 12H includes a small diameter portion 125H, a first connection portion 121H, and a second connection portion 129H.
  • the small diameter portion 125H is cylindrical.
  • the diameter D3 of the small diameter portion 125H is smaller than the diameter D2H shown in FIG.
  • the axial length LH of the small diameter portion 125H is larger than the maximum width WH of the groove 3H.
  • the first connection portion 121H connects the base 11H and the small diameter portion 125H.
  • the second connection portion 129H connects the base 13H and the small diameter portion 125H. In the cross section shown in FIG.
  • the curvature radius C2 of the second arc is larger than the curvature radius C1H of the first arc.
  • the curvature radius C2 is preferably 5 mm or more.
  • the curvature radius C2 is 8 mm.
  • the second impact absorbing portion 12H is designed to be deformed by, for example, a torque of about 150 Nm to 250 Nm.
  • the diameter D3 of the small diameter portion 125H is about 13 mm or more and 15.5 mm or less.
  • the diameter D3 is 13 mm.
  • the stopper 16H has a function of restricting the relative displacement amount (collapse amount) in the axial direction.
  • the stopper 16H is a member formed on the lower shaft 1H in order to restrict the distance (collapse stroke S) in which the lower shaft 1H can move in the axial direction with respect to the upper shaft 2H.
  • the stopper 16H has an outer diameter larger than the minimum diameter D4H of the lower fitting portion 17H shown in FIG.
  • an annular retaining ring made of metal of the same quality as that of the lower shaft 1H is formed at a predetermined position of the collapse stroke S in the axial direction.
  • the stopper 16H may be a stopper member integrated by welding to the lower shaft 1H.
  • the stopper 16H may be configured by a combination of a C-shaped retaining ring or an E-shaped retaining ring and another member.
  • the fixing method of the stopper 16H can be appropriately adopted, and it is not particularly limited.
  • FIGS. 35 to 40 can be used.
  • the one shown in FIG. 35 is made by bending and forming an elastic cross-sectional circular wire rod, and the ring-shaped retaining ring main body having an annular shape and the radial outward direction from both circumferential end portions of the retaining ring main body And a pair of locking rings.
  • the one shown in FIG. 36 is generally called a C-shaped ring, and is manufactured by punching and forming a metal plate.
  • the one shown in FIG. 36 includes a notched annular retaining ring main body, and a pair of ear portions projecting radially outward from both end portions in the circumferential direction of the retaining ring main body.
  • the one shown in FIG. 37 is generally called an E-shaped ring, and is manufactured by punching and forming a metal plate.
  • the one shown in FIG. 37 includes a notched annular retaining ring main body, and three claws projecting radially inward from both circumferential end portions of the retaining ring main body and the circumferential center.
  • the one shown in FIG. 38 is provided with an annular portion and a plurality of tongues projecting radially inward from a plurality of circumferential positions of the annular portion.
  • the one shown in FIG. 39 is made of, for example, a material having a lower shear resistance than synthetic resins and iron-based materials such as copper and aluminum.
  • the whole of what is shown in FIG. 39 is configured to be an annulus.
  • the one shown in FIG. 40 is made of a material having a lower shear resistance than an iron-based material.
  • the one shown in FIG. 40 is configured in a pin shape.
  • the stopper 16H one having a shape other than an annular or shaft shape can be used.
  • Various fixing structures conventionally known such as welding, bonding, press-fitting, caulking, screwing, etc. can be adopted as a structure for fixing the stopper 16H to the lower shaft 1H.
  • the timing of contraction and bending of the intermediate shaft can be controlled.
  • the upper shaft 2H is cylindrical.
  • the upper shaft 2H is formed of carbon steel tube for mechanical structure (STKM material (Carbon Steel Tubes for Machine Structural Purposes)).
  • STKM material Carbon Steel Tubes for Machine Structural Purposes
  • the upper shaft 2H includes an upper fitting portion 21H, a large diameter portion 23H, and a base 25H.
  • the upper fitting portion 21H is disposed at the front end of the upper shaft 2H.
  • the lower fitting portion 17H is inserted into the upper fitting portion 21H.
  • the upper fitting portion 21H is provided with a female spline 21aH on the inner circumferential surface.
  • the female splines 21aH mesh with the male splines 17aH.
  • the outer shape of the lower fitting portion 17H draws a circle in a cross section orthogonal to the axial direction.
  • the outer shape of the upper fitting portion 21H draws an ellipse.
  • the outer shape of the lower fitting portion 17H draws an ellipse in a cross section different from that of FIG. 41 among the cross sections orthogonal to the axial direction.
  • the outer shape of the upper fitting portion 21H draws a circle.
  • the shapes of the upper fitting portion 21H of FIG. 41 and the lower fitting portion 17H of FIG. 42 are exaggerated for the sake of description, and are different from the actual shapes.
  • all the teeth of the female spline 21aH are respectively located between the two teeth of the male spline 17aH. That is, the teeth of the female spline 21aH located on the left and right sides of FIG. 41 are not in contact with the teeth of the male spline 17aH, but are located between the two teeth of the male spline 17aH.
  • the teeth of the female splines 21aH located on the upper side and the lower side of FIG. 42 are not in contact with the teeth of the male splines 17aH, but are located between the two teeth of the male splines 17aH.
  • connection method such elliptical fitting enables relative displacement when a strong impact load is applied in the axial direction of the intermediate shaft 85H
  • another embodiment which enables relative displacement in the light axial direction
  • connection methods using so-called resin-coated sliders and rolling elements balls and rollers.
  • the outer peripheral surface of the lower fitting portion 17H is coated with a synthetic resin, and further, grease is applied to be fitted to the lower fitting portion 17H.
  • a synthetic resin for example, the outer peripheral surface of the lower fitting portion 17H is coated with a synthetic resin, and further, grease is applied to be fitted to the lower fitting portion 17H.
  • the outer surface of at least one of the lower fitting portion 17H and the upper fitting portion 21H may be coated with a lubricating coating with either or both of synthetic resin and grease.
  • the lubricating film may be coated with resin or grease on the outer shape of at least one of the lower fitting portion 17H and the upper fitting portion 21H.
  • connection method using rolling elements for example, a rolling element in which a ball or a roller and a combination of a ball and a roller are interposed between the lower fitting portion 17H and the upper fitting portion 21H.
  • a rolling element in which a ball or a roller and a combination of a ball and a roller are interposed between the lower fitting portion 17H and the upper fitting portion 21H As a result, it is possible to reduce wear of a contact portion of the upper fitting portion 21H with the lower fitting portion 17H and to reduce frictional resistance.
  • the movement of the upper fitting portion 21H with respect to the lower fitting portion 17H is restricted by the friction generated at the contact portion between the lower fitting portion 17H and the upper fitting portion 21H. That is, in normal use (when no collision occurs), the upper fitting portion 21H does not move relative to the lower fitting portion 17H.
  • a predetermined axial load is applied to the upper shaft 2H at the time of a collision, the upper fitting portion 21H moves by the collapse stroke S relative to the lower fitting portion 17H.
  • the predetermined load is, for example, about 1 kN or more and 3 kN or less.
  • the upper shaft 2H is connected to the lower shaft 1H so as to be separated from the lower shaft 1H at the time of a collision.
  • the impact is absorbed by the friction between the upper fitting portion 21H and the lower fitting portion 17H.
  • the impact is absorbed by the friction between the upper fitting portion 21H and the lower fitting portion 17H.
  • the large diameter portion 23H is disposed in front of the upper fitting portion 21H.
  • the outer diameter of the large diameter portion 23H is constant.
  • the outer diameter of the large diameter portion 23H is larger than the outer diameter of the upper fitting portion 21H.
  • the base 25H is disposed at the front end of the upper shaft 2H.
  • the base 25H is fixed to the second universal joint 86.
  • the outer diameter of the base 25H is constant.
  • the outer diameter of the base 25H is equal to the outer diameter of the upper fitting portion 21H.
  • FIG. 43 is a perspective view of the intermediate shaft after the lower shaft has entered the upper shaft.
  • FIG. 44 is a perspective view of the intermediate shaft after the lower shaft is bent.
  • first connection surface 36H and the second connection surface 37H stress concentration occurs in the first connection surface 36H and the second connection surface 37H, whereby the first impact absorbing portion 15H is bent as shown in FIG. 44 starting from the first connection surface 36H and the second connection surface 37H.
  • One side of the groove 3H in the radial direction expands, and the other side of the groove 3H in the radial direction contracts.
  • the convex portion 4H is in contact with the adjacent convex portion 4H.
  • the bent intermediate shaft 85H enters the clearance of the peripheral parts of the intermediate shaft 85H.
  • the first impact absorbing portion 15H includes the plurality of grooves 3H, when bending stress acts on the intermediate shaft 85H, stress concentration occurs in the plurality of portions of the first impact absorbing portion 15H. For this reason, the range of the deformed portion of the first impact absorbing portion 15H tends to be large, so that the impact absorbing ability of the intermediate shaft 85H is improved.
  • the intermediate shaft 85H may generate bending stress due to the primary collision, and may receive a large torque (twisting force) when the vehicle runs on a curb or the like. Therefore, the intermediate shaft 85H is required to be able to suppress damage when receiving a large torque and to absorb an impact at the time of a primary collision.
  • the diameter D3 is smaller than the diameter D2H. For this reason, the second impact absorbing portion 12H is deformed (twisted) when the vehicle rides on a curb or the like.
  • the energy input to the intermediate shaft 85H is absorbed by the deformation of the second impact absorbing portion 12H. Since energy is absorbed by the second impact absorbing portion 12H, deformation of the first impact absorbing portion 15H is suppressed.
  • the transmission of the impact to the first impact absorbing portion 15H can be performed. It can be relaxed as appropriate.
  • the curvature radius C2 is larger than the curvature radius C1H. Therefore, when bending stress is generated in the intermediate shaft 85H at the time of the primary collision, the first impact absorbing portion 15H, not the second impact absorbing portion 12H, is deformed (bent).
  • the groove 3H of the first impact absorbing portion 15H may not necessarily have the above-described shape.
  • the first connection surface 36H and the second connection surface 37H may be connected without the bottom surface 35H. That is, in a cross section obtained by cutting the intermediate shaft 85H in a plane perpendicular to the radial direction, the surface of the first shock absorber 15H at a position corresponding to the bottom of the groove 3H may draw a semicircle.
  • the first connection surface 36H and the second connection surface 37H may not be necessary. That is, the first side surface 31H and the second side surface 33H may be directly connected to the bottom surface 35H.
  • the number of grooves 3H provided in the first impact absorbing portion 15H may not necessarily be as shown in the drawing.
  • the first shock absorber 15H may have at least one groove 3H.
  • the diameter D1H of the first impact absorbing portion 15H at the position corresponding to the convex portion 4H may not necessarily be equal to the diameter of the base 11H.
  • the diameter D1H should be at least larger than the diameter D2H of the first shock absorber 15H at a position corresponding to the bottom of the groove 3H and smaller than the minimum diameter D4H of the lower fitting portion 17H.
  • the diameter D1H may be smaller than the diameter of the base 11H or larger than the diameter of the base 11H.
  • the steering device 80H includes the first universal joint 84, the second universal joint 86 disposed on the front side of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85H connecting the two.
  • the intermediate shaft 85H includes a lower shaft 1H which is a solid member, and a cylindrical upper shaft 2H which is detachably coupled to the lower shaft 1H.
  • the lower shaft 1H includes a first impact absorbing portion 15H having a groove 3H on the outer peripheral surface. Further, the lower shaft is provided with a stopper capable of restricting the amount of axial collapse of the lower shaft with respect to the upper shaft.
  • the steering device 80H can absorb an impact by the intermediate shaft 85H which can be easily manufactured and can easily change its deformation characteristics.
  • the steering device 80H can absorb an impact by the friction generated between the lower shaft 1H and the upper shaft 2H.
  • the lower shaft 1H further includes a lower fitting portion 17H having a male spline 17aH on the outer peripheral surface.
  • the upper shaft 2H includes an upper fitting portion 21H having a female spline 21aH on the inner circumferential surface.
  • the lower fitting portion 17H fits into the upper fitting portion 21H.
  • the maximum outer diameter (diameter D1H) of the first impact absorbing portion 15H is smaller than the minimum diameter D4H of the lower fitting portion 17H.
  • the steering device 80H can suppress the variation in the shock absorbing capability of the intermediate shaft 85H.
  • the first impact absorbing portion 15H includes a plurality of grooves 3H.
  • the grooves 3H are annular.
  • the maximum width WH of the groove 3H is 1 mm or more and 3 mm or less.
  • a cross section obtained by cutting the intermediate shaft 85H in a plane perpendicular to the radial direction at least a part of the surface of the first shock absorber 15H facing the groove 3H has a curvature radius of 0.2 mm or more and 1.0 mm or less Draw an arc.
  • the fuse in the torsion direction absorbs the impact in the portion near the upper fitting portion 21H.
  • the lower shaft 1H moves to the stopper 16H with respect to the upper shaft 2H to absorb the shock.
  • the first impact absorbing portion 15H is bent at the plurality of grooves 3H, and the lower shaft 1H enters the gaps of the peripheral parts, whereby the impact is absorbed.
  • the collapsing stroke S of the upper shaft 2H can be adjusted in view of the behavior of the vehicle body in various collisions. For this reason, the transmission of the impact can be suitably mitigated by the intermediate shaft.
  • FIG. 45 is a perspective view of the steering device of the fifth embodiment.
  • FIG. 46 is a perspective view of the intermediate shaft of the fifth embodiment.
  • FIG. 47 is a cross-sectional view of the intermediate shaft of the fifth embodiment.
  • FIG. 48 is an enlarged cross-sectional view of the first impact absorbing portion and the first fitting portion of the first shaft.
  • FIG. 49 is an enlarged cross-sectional view of the periphery of the groove of the first impact absorbing portion.
  • FIG. 50 is an enlarged sectional view of a second impact absorbing portion of the first shaft.
  • 51 is a cross-sectional view taken along line II in FIG. 52 is a cross-sectional view taken along line JJ in FIG.
  • symbol is attached
  • the intermediate shaft 85I includes a first shaft 1I and a second shaft 2I.
  • the first shaft 1I is a substantially cylindrical solid member.
  • the first shaft 1I is formed of S35C which is carbon steel for machine structure (SC material).
  • the first shaft 1I includes a base 11I, a second impact absorbing portion 12I, a base 13I, a first impact absorbing portion 15I, and a first fitting portion 17I.
  • the base 11I is fixed to the first universal joint 84.
  • the diameter of the base 11I is constant.
  • the second shock absorber 12I is located in front of the base 11I.
  • the second impact absorbing portion 12I is located rearward of the center of the first shaft 1I in the axial direction of the first shaft 1I.
  • the base 13I is located in front of the second shock absorber 12I.
  • the diameter of the base 13I is constant and equal to the diameter of the base 11I.
  • the first shock absorber 15I is located in front of the base 13I.
  • the first impact absorbing portion 15I is located at the center of the first shaft 1I in the axial direction of the first shaft 1I.
  • the first fitting portion 17I is located at the front end of the first shaft 1I.
  • the first fitting portion 17I includes serrations 17aI on the outer peripheral surface. Further, as shown in FIG. 47, the first fitting portion 17I has a recess 170I on the end face on the front side.
  • the serrations 17aI may be splines.
  • the axial direction of the first shaft 1I is simply described as the axial direction, and the direction orthogonal to the axial direction is described as the radial direction. 47 to 50 are cross sections obtained by cutting the first shaft 1I in a plane orthogonal to the radial direction.
  • the first impact absorbing portion 15I includes a plurality of grooves 3I and a plurality of convex portions 4I.
  • the grooves 3I are annular.
  • the grooves 3I are formed by cutting, for example.
  • the plurality of grooves 3I are arranged at equal intervals in the axial direction.
  • the protrusion 4I is located between the two grooves 3I.
  • the diameter D1I of the first impact absorbing portion 15I at the position corresponding to the convex portion 4I is equal to the diameters of the base 11I and the base 13I. Further, the diameter D1I is smaller than the minimum diameter D4I of the first fitting portion 17I.
  • the minimum diameter D4I is the diameter of the first fitting portion 17I at a position corresponding to the valley of the serration 17aI.
  • the diameter D1I may not necessarily be equal to the diameter of the base 11I.
  • the diameter D1I should be at least larger than the diameter D2I of the first impact absorbing portion 15I at a position corresponding to the bottom of the groove 3I and smaller than the minimum diameter D4I of the first fitting portion 17I.
  • the first impact absorbing portion 15I includes the first side surface 31I, the second side surface 33I, the bottom surface 35I, the first connection surface 36I, and the second connection surface. And 37I.
  • the first side surface 31I and the second side surface 33I are perpendicular to the axial direction. That is, the second side surface 33I is parallel to the first side surface 31I.
  • the bottom surface 35I is located between the first side surface 31I and the second side surface 33I.
  • the first side surface 31I is located rearward with respect to the bottom surface 35I, and the second side surface 33I is located forward with respect to the bottom surface 35I.
  • the bottom surface 35I is a curved surface.
  • the first connection surface 36I is a curved surface connecting the first side surface 31I and the bottom surface 35I.
  • the second connection surface 37I is a curved surface connecting the second side surface 33I and the bottom surface 35I.
  • the maximum width WI of the groove 3I is preferably 1 mm or more and 3 mm or less.
  • the maximum width WI of the groove 3I is set so that the first impact absorbing portion 15I does not break when the first impact absorbing portion 15I is bent.
  • the maximum width WI of the groove 3I is set such that, when the first impact absorbing portion 15I is bent, adjacent convex portions 4I are in contact before the first impact absorbing portion 15I breaks.
  • the first connection surface 36I and the second connection surface 37I draw the same arc (hereinafter, referred to as a first arc).
  • the radius of curvature C1I of the first arc is preferably 0.2 mm or more and 1.0 mm or less.
  • the curvature radius C1I in the fifth embodiment is 0.3 mm.
  • the first shock absorber 15I is designed to transmit a torque of, for example, 300 Nm.
  • the diameter D2I of the first impact absorbing portion 15I at a position corresponding to the bottom of the groove 3I is approximately 14 mm or more and 16 mm or less.
  • the diameter D2I is determined by the depth HI of the groove 3I shown in FIG.
  • the second impact absorbing portion 12I includes a small diameter portion 125I, a first connection portion 121I, and a second connection portion 129I.
  • the small diameter portion 125I is cylindrical.
  • the diameter D3 of the small diameter portion 125I is smaller than the diameter D2I shown in FIG.
  • the axial length L of the small diameter portion 125I is larger than the maximum width WI of the groove 3I.
  • the first connection portion 121I connects the base 11I and the small diameter portion 125I.
  • the second connection portion 129I connects the base 13I and the small diameter portion 125I. In the cross section shown in FIG.
  • the curvature radius C2I of the second arc is larger than the curvature radius C1I of the first arc.
  • the curvature radius C2I is preferably 5 mm or more.
  • the curvature radius C2I is 8 mm.
  • the second impact absorbing portion 12I is designed to be deformed by, for example, a torque of about 150 Nm or more and 250 Nm or less.
  • the diameter D3 is about 13 mm or more and 15.5 mm or less.
  • the diameter D3 is 13 mm.
  • the second shaft 2I is cylindrical.
  • the second shaft 2I is formed of carbon steel pipe for machine structure (STKM material).
  • the second shaft 2I includes a second fitting portion 21I, a large diameter portion 23I, and a base 25I.
  • the second fitting portion 21I is disposed at the rear end of the second shaft 2I.
  • the first fitting portion 17I is inserted into the second fitting portion 21I.
  • the second fitting portion 21I includes serrations 21aI on the inner circumferential surface.
  • the serration 21aI meshes with the serration 17aI.
  • the serrations 21aI may be splines.
  • the outer shape of the first fitting portion 17I draws a circle in a cross section orthogonal to the axial direction.
  • the outer shape of the second fitting portion 21I draws an ellipse.
  • the outer shape of the first fitting portion 17I draws an ellipse in a cross section different from that of FIG. 51 among the cross sections orthogonal to the axial direction.
  • the outer shape of the second fitting portion 21I draws a circle.
  • the shapes of the second fitting portion 21I of FIG. 51 and the first fitting portion 17I of FIG. 52 are exaggerated for the sake of description, and are different from the actual shapes.
  • all the teeth of serration 21aI are located between the two teeth of serration 17aI respectively. That is, the teeth of serration 21aI located on the left side and the right side of FIG. 51 are not in contact with the teeth of serration 17aI, but are located between the two teeth of serration 17aI. The teeth of serration 21aI located on the upper and lower sides of FIG. 52 are not in contact with the teeth of serration 17aI, but are located between the two teeth of serration 17aI.
  • the movement of the second fitting portion 21I with respect to the first fitting portion 17I is restricted by the friction generated in the contact portion of the first fitting portion 17I with the second fitting portion 21I. That is, in normal use (when no collision occurs), the second fitting portion 21I does not move with respect to the first fitting portion 17I.
  • a predetermined load in the axial direction is applied to the second shaft 2I at the time of a collision, the second fitting portion 21I moves relative to the first fitting portion 17I.
  • the predetermined load is, for example, about 1 kN or more and 3 kN or less. That is, the second shaft 2I is connected to the first shaft 1I so that it can be separated from the first shaft 1I at the time of a collision. An impact is absorbed by the friction between the second fitting portion 21I and the first fitting portion 17I.
  • the large diameter portion 23I is disposed in front of the second fitting portion 21I.
  • the outer diameter of the large diameter portion 23I is constant.
  • the outer diameter of the large diameter portion 23I is larger than the outer diameter of the second fitting portion 21I.
  • the base 25I is disposed at the front end of the second shaft 2I.
  • the base 25I is fixed to the second universal joint 86.
  • the outer diameter of the base 25I is constant.
  • the outer diameter of the base 25I is equal to the outer diameter of the second fitting portion 21I.
  • FIG. 53 is a perspective view of the intermediate shaft after the first shaft has entered the second shaft.
  • FIG. 54 is a perspective view of the intermediate shaft after the first shaft is bent.
  • the convex portion 4I On the side where the groove 3I is contracted, the convex portion 4I is in contact with the adjacent convex portion 4I.
  • the bent intermediate shaft 85I enters the clearance of the peripheral parts of the intermediate shaft 85I.
  • the first impact absorbing portion 15I includes the plurality of grooves 3I, when bending stress acts on the intermediate shaft 85I, stress concentration occurs in the plurality of portions of the first impact absorbing portion 15I. Therefore, the range of the deformed portion of the first impact absorbing portion 15I is likely to be large, so that the impact absorbing ability of the intermediate shaft 85I is improved.
  • the intermediate shaft 85I may generate bending stress due to the primary collision, and may receive a large torque (twisting force) when the vehicle runs on a curb or the like. Therefore, the intermediate shaft 85I is required to be able to suppress damage when receiving a large torque and to absorb an impact at the time of a primary collision.
  • the diameter D3 is smaller than the diameter D2I. For this reason, the second impact absorbing portion 12I is deformed (twisted) when the vehicle rides on a curb or the like.
  • the energy input to the intermediate shaft 85I is absorbed by the deformation of the second impact absorbing portion 12I. Since energy is absorbed by the second impact absorbing portion 12I, deformation of the first impact absorbing portion 15I is suppressed.
  • the curvature radius C2I is larger than the curvature radius C1I. Therefore, when bending stress is generated in the intermediate shaft 85I at the time of the primary collision, the first impact absorbing portion 15I, not the second impact absorbing portion 12I, is deformed (bent).
  • connection method of the 1st fitting part 17I and the 2nd fitting part 21I may be a connection method using a resin coat slider, or a connection method using a rolling element.
  • the connection method using the resin-coated slider is a method of fitting the first fitting portion 17I having a lubricating film to the second fitting portion 21I.
  • the lubricating coating is formed, for example, by applying a grease on a coating of a synthetic resin on the outer peripheral surface of the first fitting portion 17I.
  • a lubricating film may be provided in the 2nd fitting part 21I, and may be provided in both the 1st fitting part 17I and the 2nd fitting part 21I.
  • the connection method using a rolling element is a method of connecting the 1st fitting part 17I and the 2nd fitting part 21I via a rolling element.
  • rolling elements include balls or rollers. Balls and rollers may be combined as rolling elements.
  • the steering device 80I includes the first universal joint 84, the second universal joint 86 disposed forward of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85I connecting the two.
  • the intermediate shaft 85I includes a first shaft 1I which is a solid member, and a cylindrical second shaft 2I releasably connected to the first shaft 1I.
  • the first shaft 1I includes a first impact absorbing portion 15I having a groove 3I on the outer peripheral surface.
  • the steering device 80I can absorb an impact by the intermediate shaft 85I which can be easily manufactured and can easily change its deformation characteristics.
  • the second shaft 2I moves relative to the first shaft 1I at the time of the primary collision.
  • the steering device 80I can absorb an impact by the friction generated between the first shaft 1I and the second shaft 2I.
  • first shaft 1I includes a first fitting portion 17I having serrations 17aI on the outer peripheral surface.
  • the second shaft 2I includes a second fitting portion 21I having serrations 21aI on its inner circumferential surface.
  • the first fitting portion 17I fits into the second fitting portion 21I.
  • the maximum outer diameter (diameter D1I) of the first impact absorbing portion 15I is smaller than the minimum diameter D4I of the first fitting portion 17I.
  • the steering device 80I can suppress the variation in the shock absorbing capability of the intermediate shaft 85I.
  • FIG. 55 is an enlarged cross-sectional view of a peripheral portion of a groove of a first impact absorbing portion in a first modified example of the fifth embodiment.
  • symbol is attached
  • the covering material 5I is provided in the first impact absorbing portion 15J.
  • the covering material 5I covers the surfaces (the first side surface 31I, the second side surface 33I, the bottom surface 35I, the first connection surface 36I and the second connection surface 37I) facing the groove 3I of the first impact absorbing portion 15J. That is, the covering material 5I covers the inner peripheral surface of the groove 3I.
  • the covering material 5I covers the main surface 150I which is the surface outside the groove 3I of the first impact absorbing portion 15J. That is, in the first modification of the fifth embodiment, the covering material 5I covers the entire surface of the first impact absorbing portion 15J.
  • the covering material 5I is an antirust film.
  • the covering material 5I contains, for example, zinc or nickel. In other words, zinc plating, nickel plating, or the like is applied to the surface of the first impact absorbing portion 15J.
  • the covering material 5I does not necessarily need to cover the whole surface of the 1st impact-absorbing part 15J.
  • the covering material 5I should just cover at least one part of the surface which faces the groove 3I of the 1st impact-absorbing part 15J.
  • the covering material 5I preferably covers at least the bottom surface 35I, the first connection surface 36I, and the second connection surface 37I.
  • the covering material 5I may be, for example, a grease. In this case, the viscosity of the grease is preferably high.
  • the steering device 80I includes the covering material 5I covering at least a part of the surface of the first impact absorbing portion 15J facing the groove 3I.
  • the covering material 5I is an antirust film.
  • the first shock absorber 15J is designed to transmit a predetermined torque (for example, 300 Nm).
  • a predetermined torque for example, 300 Nm.
  • the first shock absorber 15J is designed in consideration of a sufficient safety factor, there is a possibility that the first shock absorber 15J can not withstand a predetermined torque if rust occurs in the first shock absorber 15J. is there.
  • the covering material 5I suppresses the occurrence of rust on the surface facing the groove 3I. The reduction in strength of the portion of the first impact absorbing portion 15J corresponding to the groove 3I is suppressed.
  • the first modification of the fifth embodiment is particularly effective when disposed at a place where water such as rain may be applied.
  • the covering material 5I covers the main surface 150I which is the surface outside the groove 3I of the first impact absorbing portion 15J.
  • the first shaft 1I and the second shaft 2I move relatively. If a bending moment is also applied to the intermediate shaft 85I, the second shaft 2I may be caught by the first impact absorbing portion 15J. In contrast, the friction between the second shaft 2I and the first impact absorbing portion 15J is reduced by covering the main surface 150I with the covering material 5I. Therefore, even if the second shaft 2I contacts the first impact absorbing portion 15J, the second shaft 2I is unlikely to be caught by the first impact absorbing portion 15J. For this reason, the movement of the second shaft 2I becomes smooth.
  • FIG. 56 is an enlarged cross-sectional view of a first impact absorbing portion in a second modified example of the fifth embodiment.
  • symbol is attached
  • the filler 6I is provided in the groove 3I.
  • the filler 6I is disposed in all of the plurality of grooves 3I.
  • the depth of the filler 6I is equal to the depth HI of the groove 3I (see FIG. 49).
  • the filler 6I is preferably a resin or rubber.
  • the filler 6I is preferably a rubber which is a closed cell.
  • the Young's modulus of the filler 6I is smaller than the Young's modulus of the first impact absorbing portion 15K. When a bending moment is applied to the first impact absorbing portion 15K, the filler 6I is easily deformed.
  • the depth of the filler 6I may be smaller than the depth HI (see FIG. 49) of the groove 3I. That is, the volume of the filler 6I embedded in one groove 3I may be smaller than the volume of one groove 3I.
  • the filler 6I preferably covers the bottom surface 35I, the first connection surface 36I and the second connection surface 37I.
  • both the filler 6I and the covering 5I described in the first modification of the fifth embodiment may be provided in the groove 3I. That is, the covering material 5I may cover the first impact absorbing portion 15K, and the filling material 6I may cover the covering material 5I.
  • the filler 6I may be, for example, grease. In this case, the viscosity of the grease is preferably high.
  • the steering device 80I of the second modified example of the fifth embodiment includes the filler 6I disposed in the groove 3I.
  • the filling material 6I makes it difficult for water to enter the groove 3I. For this reason, the generation of rust on the surface of the first impact absorbing portion 15K facing the groove 3I is suppressed. The reduction in strength of the portion of the first impact absorbing portion 15K corresponding to the groove 3I is suppressed.
  • the second modification of the fifth embodiment is particularly effective in the case of being disposed at a place where water such as rain may be applied.
  • the filler 6I is a resin. This makes it difficult for the filler 6I to inhibit the deformation of the first impact absorbing portion 15K.
  • the filler 6I is rubber. This makes it difficult for the filler 6I to inhibit the deformation of the first impact absorbing portion 15K.
  • the filler 6I is a closed cell. Thereby, the increase in the weight of the first shock absorber 15K is suppressed.
  • volume of the filler 6I is the same as the volume of the groove 3I.
  • the groove 3I is filled with the filler 6I, so the outer peripheral surface of the first impact absorbing portion 15K becomes smooth.
  • the friction between the second shaft 2I and the first shock absorber 15K is reduced. Therefore, even when the second shaft 2I contacts the first impact absorbing portion 15K, the second shaft 2I is unlikely to be caught by the first impact absorbing portion 15K. For this reason, the movement of the second shaft 2I becomes smooth.
  • FIG. 57 is a cross-sectional view of the intermediate shaft of the third modified example of the fifth embodiment.
  • symbol is attached
  • the first shaft 1I is located in front of the second shaft 2I.
  • the first shaft 1I includes a stopper 14I and a base 19I.
  • the stopper 14I protrudes radially from the outer peripheral surface of the base 13I.
  • the stopper 14I is integrally formed with the base 13I.
  • the stopper 14I overlaps the end face of the second fitting portion 21I when viewed from the axial direction.
  • the stopper 14I is located behind the first impact absorbing portion 15I. For this reason, the distance from the end face of the second fitting portion 21I to the stopper 14I is smaller than the distance from the end face of the second fitting portion 21I to the first impact absorbing portion 15I.
  • the base 19I is located in front of the first shock absorber 15I and connected to the second universal joint 86.
  • the diameter of the base 19I is constant and equal to the diameter of the base 11I.
  • the stopper 14I contacts the end face of the second fitting portion 21I.
  • the stopper 14I regulates the relative movement amount of the first shaft 1I and the second shaft 2I. Since the stopper 14I is located at the rear of the first shock absorbing portion 15I, the stopper 14I contacts the second fitting portion 21I before the first shock absorbing portion 15I enters the second shaft 2I. Thus, the first shaft 1I can bend after being moved relative to the second shaft 2I.
  • the stopper 14I may be provided on the second shaft 2I.
  • the stopper 14I may be provided on the inner circumferential surface of the second shaft 2I and may overlap the first fitting portion 17I when viewed in the axial direction.
  • the distance from the end face of the first fitting portion 17I to the stopper 14I is preferably smaller than the distance from the end face of the second fitting portion 21I to the first impact absorbing portion 15I.
  • the first fitting portion 17I contacts the stopper 14I before the first impact absorbing portion 15I enters the second shaft 2I.
  • the first shaft 1I can bend after being moved relative to the second shaft 2I.
  • the stopper 14I may be connected to the base 13I by welding or the like.
  • a C-type retaining ring or an E-type retaining ring may be used as the stopper 14I.
  • the intermediate shaft 85L includes the stopper 14I that regulates the relative movement amount of the first shaft 1I and the second shaft 2I.
  • FIG. 58 is a perspective view of the steering device of the sixth embodiment.
  • FIG. 59 is a side view of the intermediate shaft of the sixth embodiment.
  • FIG. 60 is a cross-sectional view of the intermediate shaft of the sixth embodiment.
  • FIG. 61 is an enlarged view of the first shock absorber in FIG. 60.
  • Figure 62 is an enlarged view of the groove of Figure 60;
  • FIG. 63 is an enlarged view of a second shock absorber shown in FIG. 60.
  • the axial direction of the intermediate shaft 85M is simply described as the axial direction, and the direction orthogonal to the axial direction is described as the radial direction.
  • 60 to 63 are cross sections obtained by cutting the intermediate shaft 85M in a plane orthogonal to the radial direction.
  • the intermediate shaft 85M is a substantially cylindrical hollow member.
  • the intermediate shaft 85M is formed of carbon steel pipe for machine structure (STKM material).
  • the intermediate shaft 85M is preferably formed of STKM 12B (JIS G 3445).
  • the tensile strength of STKM 12B is 340 MPa or more, and the elongation in the direction perpendicular to the tube axis is 20% or more. For this reason, the intermediate shaft 85M is easy to twist and does not easily buckle.
  • the intermediate shaft 85M may be formed of STKM 13A or STKM 15A (JIS G 3445) or the like. As shown in FIG. 60, the intermediate shaft 85M is provided with a hole 10M.
  • the inner diameter D10M (diameter of the hole 10M) of the intermediate shaft 85M is constant over the entire axial length.
  • the inner diameter D10M is preferably 9 mm or more and 15 mm or less.
  • the inner diameter D10M in the sixth embodiment is 9.4 mm.
  • the tolerance of the inner diameter D10M is preferably within ⁇ 0.1 mm.
  • the intermediate shaft 85M includes a base 11M, a first shock absorber 15M, a base 16M, a second shock absorber 17M, and a base 19M.
  • the base 11M is connected to the first universal joint 84.
  • the base 11M is cylindrical, and the outer diameter of the base 11M is constant.
  • the base 11M has an outer diameter D1M.
  • the outer diameter D1M is preferably 15 mm or more and 18 mm or less.
  • the outer diameter D1M in the sixth embodiment is 16.8 mm.
  • the tolerance of the outer diameter D1M is preferably within +0.2 mm.
  • the thickness T1M of the base 11M is 3.7 mm.
  • the first shock absorber 15M is located in front of the base 11M.
  • the first impact absorbing portion 15M is located at the center of the intermediate shaft 85M in the axial direction of the intermediate shaft 85M.
  • the base 16M is located in front of the first shock absorber 15M.
  • the outer diameter of the base 16M is constant and equal to the outer diameter D1M.
  • the second shock absorber 17M is located in front of the base 16M.
  • the second shock absorber 17M is located forward of the center of the intermediate shaft 85M.
  • the base 19M is connected to the second universal joint 86.
  • the outer diameter of the base 19M is constant and equal to the outer diameter D1M.
  • the first impact absorbing portion 15M includes a plurality of grooves 3M and a plurality of convex portions 4M.
  • the groove 3M is annular.
  • the groove 3M is formed, for example, by cutting the outer peripheral surface of the carbon steel pipe for machine structure.
  • the plurality of grooves 3M are arranged at equal intervals in the axial direction.
  • the protrusion 4M is located between the two grooves 3M.
  • the outer diameter of the first impact absorbing portion 15M at the position corresponding to the convex portion 4M is equal to the outer diameter D1M.
  • the first impact absorbing portion 15M has a first side 31M, a second side 33M, a bottom 35M, a first connection surface 36M, and a second connection surface as surfaces facing the groove 3M. And 37M.
  • the first side surface 31M and the second side surface 33M are perpendicular to the axial direction. That is, the second side surface 33M is parallel to the first side surface 31M.
  • the bottom surface 35M is located between the first side 31M and the second side 33M.
  • the first side surface 31M is located rearward with respect to the bottom surface 35M, and the second side surface 33M is located forward with respect to the bottom surface 35M.
  • the bottom surface 35M is a curved surface.
  • the first connection surface 36M is a curved surface connecting the first side surface 31M and the bottom surface 35M.
  • the second connection surface 37M is a curved surface connecting the second side surface 33M and the bottom surface 35M.
  • the first shock absorber 15M is designed to transmit, for example, a torque of 300 Nm.
  • the torque that can be transmitted by the first shock absorber 15M is determined by the outer diameter D2M of the first shock absorber 15M at the position corresponding to the groove 3M (determined by the depth HM of the groove 3M shown in FIG. 62).
  • the outer diameter D2M is preferably 15.5 mm or more and 16.5 mm or less.
  • the outer diameter D2M in the sixth embodiment is 16 mm.
  • the maximum width WM of the groove 3M is preferably 1 mm or more and 3 mm or less.
  • the maximum width WM of the groove 3M is set so that the first shock absorber 15M does not break when the first shock absorber 15M is bent.
  • the maximum width WM of the groove 3M is set such that, when the first impact absorbing portion 15M is bent, adjacent convex portions 4M are in contact before the first impact absorbing portion 15M breaks.
  • the first connection surface 36M and the second connection surface 37M draw the same arc (hereinafter referred to as a first arc).
  • the curvature radius C 1 M of the first arc is preferably 0.2 mm or more and 1.0 mm or less (the curvature of the first arc is preferably 1.0 mm ⁇ 1 or more and 5.0 mm 1 or less).
  • the radius of curvature C1M in the sixth embodiment is 0.3 mm (the curvature of the first arc is 10/3 mm ⁇ 1).
  • the second impact absorbing portion 17M includes a small diameter portion 175M, a first connection portion 171M, and a second connection portion 179M.
  • the small diameter portion 175M, the first connection portion 171M and the second connection portion 179M are formed, for example, by cutting the outer peripheral surface of the carbon steel pipe for machine structure.
  • the arithmetic mean roughness (Ra) of the small diameter portion 175M, the first connection portion 171M and the second connection portion 179M is preferably 6.3 ⁇ m or less.
  • the arithmetic mean roughness (Ra) in the sixth embodiment is 3.2 ⁇ m.
  • the small diameter portion 175M is cylindrical, and the outer diameter of the small diameter portion 175M is constant.
  • the small diameter portion 175M has an outer diameter D3M.
  • the outer diameter D3M is smaller than the outer diameter D1M.
  • the second impact absorbing portion 17M is designed to be deformed by a torque of, for example, 150 Nm or more and 250 Nm or less. Therefore, the outer diameter D3M is preferably 14 mm or more and 16 mm or less.
  • the outer diameter D3M is 15 mm.
  • the tolerance of the outer diameter D3M is preferably within ⁇ 0.05 mm.
  • the thickness T3M of the small diameter portion 175M shown in FIG. 7 is 2.8 mm.
  • the thickness T3M is preferably 10% or more and 20% or less of the outer diameter D3M. That is, in the sixth embodiment, the thickness T3M is preferably 1.5 mm or more and 3.0 mm or less. Thereby, the buckling of the small diameter portion 175M is suppressed and the small diameter portion 175M is easily twisted.
  • the axial length LM of the small diameter portion 175M is larger than the maximum width WM of the groove 3M.
  • the length LM is preferably 10 mm or more and 50 mm or less. For example, the length LM in the sixth embodiment is 15 mm. As the length LM increases, the small diameter portion 175M is more easily twisted.
  • the intermediate shaft 85M may be formed of a material whose elongation in the direction perpendicular to the tube axis is smaller than STKM 12B.
  • the smaller the length LM the easier the formation of the small diameter portion 175M.
  • the first connection portion 171M connects the base 16M and the small diameter portion 175M.
  • the outer diameter of the first connection portion 171M decreases toward the small diameter portion 175M.
  • the second connection portion 179M connects the base 19M and the small diameter portion 175M.
  • the outer diameter of the second connection portion 179M decreases toward the small diameter portion 175M.
  • the surfaces of the first connection portion 171M and the second connection portion 179M draw the same arc (hereinafter, referred to as a second arc).
  • the curvature radius C2M of the second arc is larger than the curvature radius C1M of the first arc (the curvature of the second arc is smaller than the curvature of the first arc).
  • the radius of curvature C2M is preferably 2 mm or more (the curvature of the second arc is preferably 0.5 mm-1 or less).
  • the radius of curvature C2M is 8 mm (the curvature of the second arc is 0.125 mm-1).
  • FIG. 64 is a side view of the intermediate shaft after bending.
  • a load is applied to the steering gear 88 at the time of a primary collision of the vehicle.
  • the load applied to the steering gear 88 generates bending stress on the intermediate shaft 85M.
  • bending stress due to a primary collision may occur in the intermediate shaft 85M, and a large torque (torsion force) may be input when the vehicle runs on a curb or the like. Therefore, the intermediate shaft 85M is required to be able to suppress damage when receiving a large torque and to absorb an impact at the time of a primary collision.
  • the first impact absorbing portion 15M and the second impact absorbing portion 17M are more easily deformed than the other portions.
  • the radius of curvature C2M shown in FIG. 63 is larger than the radius of curvature C1M shown in FIG. Therefore, when bending stress occurs in the intermediate shaft 85M, the first impact absorbing portion 15M bends from the first connection surface 36M and the second connection surface 37M where stress concentration easily occurs.
  • One side in the radial direction of the groove 3M expands, and the other side in the radial direction of the groove 3M contracts.
  • the convex portion 4M is in contact with the adjacent convex portion 4M.
  • the bent intermediate shaft 85M enters the clearance of the peripheral parts of the intermediate shaft 85M.
  • the outer diameter of the intermediate shaft 85M is minimized at the small diameter portion 175M. Therefore, when a large torque is input to the intermediate shaft 85M, the second impact absorbing portion 17M is deformed (twisted). The energy input to the intermediate shaft 85M is absorbed by the deformation of the second impact absorbing portion 17M. Since energy is absorbed by the second impact absorbing portion 17M, deformation of the first impact absorbing portion 15M is suppressed. For this reason, in the first impact absorbing portion 15M, the designed deformation characteristic to the bending stress is maintained. The energy absorbed by the deformation (twisting) of the second impact absorbing portion 17M is required to be, for example, about 300 J or more and about 500 J.
  • the intermediate shaft 85M may not necessarily be formed of carbon steel pipe for machine structure, and may be formed of other materials. However, in order to facilitate manufacture, the intermediate shaft 85M is preferably formed of a cylindrical material.
  • the groove 3M of the first impact absorbing portion 15M may not necessarily have the above-described shape.
  • the first connection surface 36M and the second connection surface 37M may be connected without the bottom surface 35M. That is, in a cross section obtained by cutting the intermediate shaft 85M in a plane perpendicular to the radial direction, the surface of the first shock absorber 15M at a position corresponding to the bottom of the groove 3M may draw a semicircle.
  • the first connection surface 36M and the second connection surface 37M may not be present. That is, the first side surface 31M and the second side surface 33M may be directly connected to the bottom surface 35M.
  • the number of grooves 3M provided in the first impact absorbing portion 15M may not necessarily be as shown in the drawing.
  • the first shock absorber 15M may have at least one groove 3M.
  • the outer diameter of the first impact absorbing portion 15M at the position corresponding to the convex portion 4M may not necessarily be equal to the outer diameter D1M, and may be at least larger than the outer diameter D2M.
  • the intermediate shaft 85M may have a plurality of members.
  • the intermediate shaft 85M may include a first shaft and a second shaft coupled to the first shaft.
  • at least one of the first shaft and the second shaft may have the above-described configuration of the intermediate shaft 85M.
  • the intermediate shaft 85M is the first shaft.
  • the steering device 80M includes the first universal joint 84, the second universal joint 86 disposed on the front side of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85M positioned therebetween.
  • the intermediate shaft 85M is a hollow member whose inner diameter is constant over the entire axial length.
  • the intermediate shaft 85M includes a first impact absorbing portion 15M having a groove 3M on the outer circumferential surface.
  • the first impact absorbing portion 15M can be formed by cutting or the like, no mold is required when forming the first impact absorbing portion 15M. Therefore, the formation of the first impact absorbing portion 15M is facilitated. Also, the deformation characteristics of the first impact absorbing portion 15M change according to the shape of the groove 3M of the first impact absorbing portion 15M. Since it is easy to change the shape of the groove 3M by changing the cutting range, it is easy to adjust the deformation characteristics of the first impact absorbing portion 15M. Accordingly, the steering device 80M can absorb an impact by the intermediate shaft 85M which can be easily manufactured and can easily change its deformation characteristics.
  • the intermediate shaft 85M also includes a second impact absorbing portion 17M having an outer diameter D3M smaller than the outer diameter D2M of the first impact absorbing portion 15M at a position corresponding to the bottom of the groove 3M.
  • the intermediate shaft 85M when a large torque acts on the intermediate shaft 85M, energy is absorbed by deformation of the second impact absorbing portion 17M. On the other hand, the deformation of the first shock absorber 15M is suppressed. For this reason, the designed deformation characteristic of the first impact absorbing portion 15M is maintained. As a result, when a collision of a vehicle occurs, the intermediate shaft 85M can exhibit a predetermined shock absorbing capability.
  • At least a part of the surface of the first impact absorbing portion 15M facing the groove 3M draws a first arc
  • the second impact absorbing portion 17M At least a portion of the surface of the circle draws a second arc.
  • the radius of curvature C2M of the second arc is larger than the radius of curvature C1M of the first arc.
  • the intermediate shaft 85M bends not from the second impact absorbing portion 17M but from the first impact absorbing portion 15M. Therefore, when a collision of a vehicle occurs, the intermediate shaft 85M can exhibit a predetermined shock absorbing capability.
  • the minimum thickness (thickness T3M) of the second impact absorbing portion 17M is 10% or more and 20% or less of the outer diameter D3M of the second impact absorbing portion 17M.
  • FIG. 65 is a perspective view of an intermediate shaft of a first modified example of the sixth embodiment.
  • FIG. 66 is a cross-sectional view of the intermediate shaft of the first modified example of the sixth embodiment.
  • FIG. 67 is an enlarged cross-sectional view of a first impact absorbing portion and a first fitting portion of a first shaft.
  • FIG. 68 is a cross-sectional view taken along line KK in FIG. 69 is a cross-sectional view taken along line LL in FIG.
  • the same components as those described in the first embodiment described above are denoted by the same reference numerals and redundant description will be omitted.
  • the intermediate shaft 85N includes a first shaft 1M and a second shaft 2M.
  • the first shaft 1M is a substantially cylindrical hollow member.
  • the first shaft 1M is formed of carbon steel pipe for machine structure.
  • the first shaft 1M includes a base 13M and a first fitting portion 18M.
  • the second shock absorber 17M is located in front of the base 11M.
  • the second shock absorber 17M is located rearward of the center of the first shaft 1M in the axial direction.
  • the base 13M is located in front of the second shock absorber 17M.
  • the outer diameter of the base 13M is constant and equal to the outer diameter D1M.
  • the first shock absorber 15M is located in front of the base 13M.
  • the first impact absorbing portion 15M is located at the center of the first shaft 1M in the axial direction of the first shaft 1M.
  • the first fitting portion 18M is located at the front end of the first shaft 1M.
  • the first fitting portion 18M includes serrations 18aM on the outer peripheral surface. As shown in FIG.
  • the outer diameter D1M is smaller than the minimum outer diameter D4 of the first fitting portion 18M.
  • the minimum outer diameter D4 is the outer diameter of the first fitting portion 18M at a position corresponding to the valley of the serration 18aM.
  • the first fitting portion 18M has a recess 180M on the end face on the front side.
  • the serrations 18aM may be splines.
  • the second impact absorbing portion 17M is formed by cutting. Then, after the second impact absorbing portion 17M is formed, the resin coating is applied to the first shaft 1M. Thereafter, the shaving process is performed on the first shaft 1M. If cutting is performed after resin coating, cutting powder may be mixed into the resin coating. In such a case, when the first shaft 1M and the second shaft 2M move relative to each other, friction may increase and a stick-slip phenomenon (vibration due to repeated friction and sliding) may occur.
  • the second shaft 2M is cylindrical.
  • the second shaft 2M is formed of carbon steel pipe for machine structure.
  • the second shaft 2M includes a second fitting portion 21M, a large diameter portion 23M, and a base 25M.
  • the second fitting portion 21M is disposed at the rear end of the second shaft 2M.
  • the first fitting portion 18M is inserted into the second fitting portion 21M.
  • the second fitting portion 21M includes serrations 21aM on the inner circumferential surface.
  • the serration 21aM meshes with the serration 18aM.
  • the serrations 21aM may be splines.
  • the outer shape of the first fitting portion 18M draws a circle in a cross section perpendicular to the axial direction.
  • the outer shape of the second fitting portion 21M draws an ellipse.
  • the outer shape of the first fitting portion 18M draws an ellipse in a cross section different from FIG.
  • the outer shape of the second fitting portion 21M draws a circle.
  • the shapes of the second fitting portion 21M of FIG. 68 and the first fitting portion 18M of FIG. 69 are exaggerated for the sake of description, and are different from the actual shape.
  • all the teeth of serration 21aM are located between the two teeth of serration 18aM respectively. That is, the teeth of serration 21aM located on the left and right sides of FIG. 68 are not in contact with the teeth of serration 18aM, but are located between two teeth of serration 18aM.
  • the upper and lower serration 21aM teeth of FIG. 69 are not in contact with the teeth of serration 18aM, but are located between the two teeth of serration 18aM.
  • the movement of the second fitting portion 21M with respect to the first fitting portion 18M is restricted by the friction generated in the contact portion of the first fitting portion 18M with the second fitting portion 21M. That is, during normal use (when no collision occurs), the second fitting portion 21M does not move with respect to the first fitting portion 18M.
  • a predetermined load in the axial direction is applied to the second shaft 2M at the time of a collision, the second fitting portion 21M moves relative to the first fitting portion 18M.
  • the predetermined load is, for example, about 1 kN or more and 3 kN or less. That is, the second shaft 2M is connected to the first shaft 1M so that it can be separated from the first shaft 1M at the time of a collision. An impact is absorbed by the friction between the second fitting portion 21M and the first fitting portion 18M.
  • the large diameter portion 23M is disposed in front of the second fitting portion 21M.
  • the outer diameter of the large diameter portion 23M is constant.
  • the outer diameter of the large diameter portion 23M is larger than the outer diameter of the second fitting portion 21M.
  • the base 25M is disposed at the front end of the second shaft 2M.
  • the base 25M is fixed to the second universal joint 86.
  • the outer diameter of the base 25M is constant.
  • the outer diameter of the base 25M is equal to the outer diameter of the second fitting portion 21M.
  • FIG. 70 is a perspective view of the intermediate shaft after the first shaft is in the second shaft.
  • FIG. 71 is a perspective view of the intermediate shaft after the first shaft is bent.
  • connection method of the 1st fitting part 18M and the 2nd fitting part 21M may be a connection method using a resin coat slider, or a connection method using a rolling element.
  • the connection method using the resin-coated slider is a method of fitting the first fitting portion 18M having a lubricating film to the second fitting portion 21M.
  • the lubricating coating is formed, for example, by applying a grease on a coating of a synthetic resin on the outer peripheral surface of the first fitting portion 18M.
  • a lubricating film may be provided in the 2nd fitting part 21M, and may be provided in both the 1st fitting part 18M and the 2nd fitting part 21M.
  • the connection method using a rolling element is a method of connecting the 1st fitting part 18M and the 2nd fitting part 21M via a rolling element.
  • rolling elements include balls or rollers. Balls and rollers may be combined as rolling elements.
  • the intermediate shaft 85N may be provided with a stopper for preventing the relative displacement of the first shaft 1M and the second shaft 2M.
  • the stopper is, for example, a C-shaped resin ring, and is disposed around the second impact absorbing portion 17M.
  • the intermediate shaft 85N includes the cylindrical second shaft 2M releasably connected to the first shaft 1M.
  • the steering device 80M can absorb an impact by the friction generated between the first shaft 1M and the second shaft 2M.
  • first shaft 1M includes a first fitting portion 18M having serrations 18aM on the outer peripheral surface.
  • the second shaft 2M includes a second fitting portion 21M having serrations 21aM on the inner circumferential surface.
  • the first fitting portion 18M fits into the second fitting portion 21M.
  • the maximum outside diameter (outside diameter D1M) of the first impact absorbing portion 15M is smaller than the minimum outside diameter D4 of the first fitting portion 18M.
  • the steering device 80M can suppress the variation in the shock absorbing capability of the intermediate shaft 85N.
  • FIG. 72 is a cross-sectional view of the intermediate shaft of the second modified example of the sixth embodiment.
  • symbol is attached
  • the first shaft 1M is located in front of the second shaft 2M.
  • the first shaft 1M includes a stopper 14M.
  • the stoppers 14M project radially from the outer peripheral surface of the base 13M.
  • the stopper 14M is integrally formed with the base 13M.
  • the stopper 14M overlaps the end face of the second fitting portion 21M when viewed from the axial direction.
  • the stopper 14M is located at the rear of the first shock absorber 15M. Therefore, the distance from the end face of the second fitting portion 21M to the stopper 14M is smaller than the distance from the end face of the second fitting portion 21M to the first impact absorbing portion 15M.
  • the stopper 14M contacts the end face of the second fitting portion 21M.
  • the stopper 14M regulates the relative movement amount of the first shaft 1M and the second shaft 2M. Since the stopper 14M is located behind the first impact absorbing portion 15M, the stopper 14M contacts the second fitting portion 21M before the first impact absorbing portion 15M enters the second shaft 2M. Thus, the first shaft 1M can bend after being moved relative to the second shaft 2M.
  • the stopper 14M may be provided on the second shaft 2M.
  • the stopper 14M may be provided on the inner circumferential surface of the second shaft 2M and may overlap the first fitting portion 18M as viewed in the axial direction.
  • the distance from the end face of the first fitting portion 18M to the stopper 14M is preferably smaller than the distance from the end face of the second fitting portion 21M to the first impact absorbing portion 15M.
  • the first fitting portion 18M contacts the stopper 14M before the first impact absorbing portion 15M enters the second shaft 2M.
  • the first shaft 1M can bend after being moved relative to the second shaft 2M.
  • the stopper 14M may be connected to the base 13M by welding or the like.
  • a C-shaped retaining ring or an E-shaped retaining ring may be used as the stopper 14M.
  • the intermediate shaft 85P includes the stopper 14M that regulates the relative movement amount of the first shaft 1M and the second shaft 2M.
  • FIG. 73 is an enlarged cross-sectional view of a peripheral portion of a groove of a first impact absorbing portion in a third modified example of the sixth embodiment.
  • symbol is attached
  • the covering material 5M is provided in the first impact absorbing portion 15Q.
  • the covering material 5M covers the surface (the first side surface 31M, the second side surface 33M, the bottom surface 35M, the first connection surface 36M, and the second connection surface 37M) of the first shock absorber 15Q facing the groove 3M. That is, the covering material 5M covers the inner peripheral surface of the groove 3M.
  • the covering material 5M covers the main surface 150 which is the surface outside the groove 3M of the first impact absorbing portion 15Q. That is, in the third modification of the sixth embodiment, the covering material 5M covers the entire surface of the first impact absorbing portion 15Q.
  • the covering material 5M is a rustproof film.
  • the covering material 5M contains, for example, zinc or nickel. In other words, the surface of the first shock absorber 15Q is plated with zinc, nickel or the like.
  • the covering material 5M does not necessarily need to cover the whole surface of the 1st impact-absorbing part 15Q.
  • the covering material 5M should just cover at least one part of the surface which faces the groove 3M of the 1st impact-absorbing part 15Q.
  • the covering material 5M preferably covers at least the bottom surface 35M, the first connection surface 36M, and the second connection surface 37M.
  • the covering material 5M may be, for example, a grease. In this case, the viscosity of the grease is preferably high.
  • the steering device 80M includes the covering material 5M covering at least a part of the surface of the first impact absorbing portion 15Q facing the groove 3M.
  • the covering material 5M is a rustproof film.
  • the first shock absorber 15Q is designed to transmit a predetermined torque (for example, 300 Nm).
  • a predetermined torque for example, 300 Nm.
  • the first shock absorber 15Q is designed in consideration of a sufficient safety factor, there is a possibility that the first shock absorber 15Q can not withstand a predetermined torque if rust occurs in the first shock absorber 15Q. is there.
  • the covering material 5M suppresses the occurrence of rust on the surface facing the groove 3M. The reduction in strength of the portion corresponding to the groove 3M of the first impact absorbing portion 15Q is suppressed.
  • the third modification of the sixth embodiment is particularly effective when disposed at a place where water such as rain may be applied.
  • the covering material 5M When the covering material 5M is applied to the first modification of the sixth embodiment (or the second modification of the sixth embodiment) described above, the covering material 5M is closer to the groove 3M of the first impact absorbing portion 15Q. It is preferable to cover the major surface 150 which is the outer surface.
  • the first shaft 1M and the second shaft 2M move relatively. If a bending moment is also applied to the intermediate shaft 85MC, the second shaft 2M may be caught by the first impact absorbing portion 15Q.
  • the main surface 150 is covered with the covering material 5M, whereby the friction between the second shaft 2M and the first impact absorbing portion 15Q is reduced. Therefore, even if the second shaft 2M contacts the first impact absorbing portion 15Q, the second shaft 2M is less likely to be caught by the first impact absorbing portion 15Q. For this reason, the movement of the second shaft 2M becomes smooth.
  • FIG. 74 is an enlarged cross-sectional view of a first shock absorber in a fourth modification of the sixth embodiment.
  • symbol is attached
  • the filler 6M is provided in the groove 3M.
  • the filler 6M is disposed in all of the plurality of grooves 3M.
  • the depth of the filler 6M is equal to the depth HM of the groove 3M (see FIG. 62).
  • the filler 6M is preferably a resin or a rubber.
  • the filler 6M is preferably a rubber which is a closed cell.
  • the Young's modulus of the filler 6M is smaller than the Young's modulus of the first impact absorbing portion 15R. When a bending moment is applied to the first impact absorbing portion 15R, the filler 6M is easily deformed.
  • the depth of the filler 6M may be smaller than the depth HM (see FIG. 62) of the groove 3M. That is, the volume of the filler 6M embedded in one groove 3M may be smaller than the volume of one groove 3M.
  • the filler 6M preferably covers the bottom surface 35M, the first connection surface 36M, and the second connection surface 37M.
  • both the filler 6M and the covering 5M described in the third modification of the sixth embodiment may be provided in the groove 3M. That is, the covering material 5M may cover the first impact absorbing portion 15R, and the filling material 6M may cover the covering material 5M.
  • the filler 6M may be, for example, grease. In this case, the viscosity of the grease is preferably high.
  • the steering device 80M of the fourth modified example of the sixth embodiment includes the filler 6M disposed in the groove 3M.
  • the filling material 6M makes it difficult for water to enter the groove 3M. For this reason, the generation of rust on the surface of the first impact absorbing portion 15R facing the groove 3M is suppressed. The reduction in strength of the portion of the first impact absorbing portion 15R corresponding to the groove 3M is suppressed.
  • the fourth modification of the sixth embodiment is particularly effective when arranged at a place where water such as rain may be applied.
  • the filler 6M is a resin. This makes it difficult for the filler 6M to inhibit the deformation of the first impact absorbing portion 15R.
  • the filler 6M is rubber. This makes it difficult for the filler 6M to inhibit the deformation of the first impact absorbing portion 15R.
  • the filler 6M is a closed cell. Thereby, the increase in the weight of the first impact absorbing portion 15R is suppressed.
  • the volume of the filler 6M is the same as the volume of the groove 3M. Is preferred.
  • the groove 3M is filled with the filler 6M, the outer peripheral surface of the first impact absorbing portion 15R becomes smooth.
  • the friction between the second shaft 2M and the first impact absorbing portion 15R is reduced. Therefore, even if the second shaft 2M contacts the first impact absorbing portion 15R, the second shaft 2M is unlikely to be caught by the first impact absorbing portion 15R. For this reason, the movement of the second shaft 2M becomes smooth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Controls (AREA)

Abstract

This steering device is provided with: a first universal joint; a second universal joint which is arranged in a more anterior position than the first universal joint; and an intermediate shaft which is positioned between the first universal joint and the second universal joint. The intermediate shaft is provided with a first shock absorbing part which has a groove in the outer circumferential surface.

Description

ステアリング装置及び中間シャフトSteering device and intermediate shaft
 本発明は、ステアリング装置及び中間シャフトに関する。 The present invention relates to a steering device and an intermediate shaft.
 車両には、操作者(運転者)のステアリングホイールに対する操作を車輪に伝えるための装置としてステアリング装置が設けられている。車両の衝突が生じた時に衝撃をステアリングホイールに伝えにくくするステアリング装置が知られている。例えば特許文献1には、管状のベローズを備える中間シャフトが記載されている。特許文献1によれば、1次衝突時においてベローズが変形することで衝撃が吸収される。 The vehicle is provided with a steering device as a device for transmitting an operation of a steering wheel of an operator (driver) to the wheels. There is known a steering device that makes it difficult to transmit an impact to a steering wheel when a vehicle collision occurs. For example, Patent Document 1 describes an intermediate shaft having a tubular bellows. According to Patent Document 1, the impact is absorbed by the deformation of the bellows at the time of the primary collision.
特開2005-145164号公報JP 2005-145164 A
 しかしながら、管状のベローズの作製には専用且つ高額な設備が必要となる。さらに、個別に求められる衝撃吸収性能に応じてベローズの変形特性を変更するためには、金型の変更が必要となる。このため、容易に製造でき且つ容易に変形特性を変更することができる中間シャフトが求められていた。 However, the production of tubular bellows requires dedicated and expensive equipment. Furthermore, in order to change the deformation characteristics of the bellows in accordance with the individually determined shock absorption performance, it is necessary to change the mold. For this reason, there has been a demand for an intermediate shaft which can be easily manufactured and whose deformation characteristics can be easily changed.
 本発明は、上記の課題に鑑みてなされたものであって、容易に製造でき且つ容易に変形特性を変更することができる中間シャフトにより衝撃を吸収するステアリング装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a steering device which absorbs an impact by an intermediate shaft which can be easily manufactured and whose deformation characteristics can be easily changed.
 上記の目的を達成するため、本開示の一態様のステアリング装置は、第1ユニバーサルジョイントと、前記第1ユニバーサルジョイントより前方側に配置される第2ユニバーサルジョイントと、前記第1ユニバーサルジョイントと前記第2ユニバーサルジョイントとの間に位置する中間シャフトと、を備え、前記中間シャフトは、外周面に溝を有する第1衝撃吸収部を備える。 In order to achieve the above object, a steering apparatus according to an aspect of the present disclosure includes a first universal joint, a second universal joint disposed on the front side of the first universal joint, the first universal joint, and the first universal joint. An intermediate shaft located between the two universal joints, and the intermediate shaft includes a first shock absorbing portion having a groove in an outer circumferential surface.
 これにより、第1衝撃吸収部は切削加工等により形成できるので、第1衝撃吸収部の形成に際して金型が不要である。このため、第1衝撃吸収部の形成が容易となる。また、第1衝撃吸収部の変形特性は、第1衝撃吸収部の溝の形状に応じて変化する。切削範囲の変更により溝の形状を変更することは容易であるため、第1衝撃吸収部の変形特性の調整は容易である。したがって、ステアリング装置は、容易に製造でき且つ容易に変形特性を変更することができる中間シャフトにより衝撃を吸収することができる。 Thereby, since the first impact absorbing portion can be formed by cutting or the like, no mold is required when forming the first impact absorbing portion. Therefore, the formation of the first impact absorbing portion is facilitated. Further, the deformation characteristics of the first impact absorbing portion change in accordance with the shape of the groove of the first impact absorbing portion. Since it is easy to change the shape of the groove by changing the cutting range, it is easy to adjust the deformation characteristics of the first shock absorber. Thus, the steering device can absorb the impact by means of the intermediate shaft which can be easily manufactured and whose deformation characteristics can be easily changed.
 ステアリング装置の望ましい態様として、前記中間シャフトは、中実部材である。 As a desirable mode of the steering device, the intermediate shaft is a solid member.
 これにより、中間シャフトは、容易に製造できると共に、強度を向上させることができる。 Thereby, the intermediate shaft can be easily manufactured and the strength can be improved.
 ステアリング装置の望ましい態様として、前記中間シャフトは、中実部材である第1シャフトと、前記第1シャフトに離脱可能に連結される筒状の第2シャフトと、を備え、前記第1シャフトは、前記第1衝撃吸収部を備える。 As a desirable mode of the steering apparatus, the intermediate shaft includes a first shaft which is a solid member, and a cylindrical second shaft which is releasably connected to the first shaft, and the first shaft is The first shock absorber is provided.
 これにより、1次衝突時に第2シャフトが第1シャフトに対して相対的に移動する。ステアリング装置は、第1シャフトと第2シャフトとの間で生じる摩擦によって衝撃を吸収することができる。 Thereby, the second shaft moves relative to the first shaft at the time of the primary collision. The steering device can absorb an impact by the friction generated between the first shaft and the second shaft.
 ステアリング装置の望ましい態様として、前記第1シャフトは、外周面にセレーションを有する第1嵌合部を備え、前記第2シャフトは、内周面にセレーションを有する第2嵌合部を備え、前記第1嵌合部が前記第2嵌合部に嵌まり、前記第1衝撃吸収部の最大直径は、前記第1嵌合部の最小直径よりも小さい。 As a desirable mode of the steering apparatus, the first shaft includes a first fitting portion having a serration on an outer peripheral surface, and the second shaft includes a second fitting portion having a serration on an inner peripheral surface, One fitting portion fits into the second fitting portion, and the maximum diameter of the first impact absorbing portion is smaller than the minimum diameter of the first fitting portion.
 これにより、第2シャフトが第1シャフトに対して相対的に移動する時に、第1衝撃吸収部と第2嵌合部のセレーションとが干渉しにくくなる。このため、ステアリング装置は、中間シャフトの衝撃吸収能力のバラツキを抑制することができる。 Thereby, when the second shaft moves relative to the first shaft, the serrations of the first impact absorbing portion and the second fitting portion are less likely to interfere with each other. For this reason, the steering device can suppress the variation in the shock absorbing capability of the intermediate shaft.
 ステアリング装置の望ましい態様として、前記中間シャフトは、軸方向の全長に亘って内径が一定である中空部材である第1シャフトを備え、前記第1シャフトは、前記第1衝撃吸収部を備える。 As a desirable mode of the steering device, the intermediate shaft includes a first shaft which is a hollow member whose inner diameter is constant over the entire axial length, and the first shaft includes the first impact absorbing portion.
 これにより、中間シャフトは、容易に製造できると共に、軽量化できる。 Thus, the intermediate shaft can be easily manufactured and reduced in weight.
 ステアリング装置の望ましい態様として、前記第1シャフトは、前記溝の底に対応する位置における前記第1衝撃吸収部の外径よりも小さい外径を有する第2衝撃吸収部を備える。 As a desirable mode of the steering device, the first shaft includes a second impact absorbing portion having an outer diameter smaller than the outer diameter of the first impact absorbing portion at a position corresponding to the bottom of the groove.
 これにより、中間シャフトに大きなトルクが作用した場合、第2衝撃吸収部が変形することでエネルギーが吸収される。一方、第1衝撃吸収部の変形は抑制される。このため、第1衝撃吸収部の設計された変形特性が保たれる。その結果、車両の衝突が生じた時に、中間シャフトは所定の衝撃吸収能力を発揮することができる。 Thus, when a large torque acts on the intermediate shaft, energy is absorbed by the deformation of the second impact absorbing portion. On the other hand, deformation of the first impact absorbing portion is suppressed. For this reason, the designed deformation characteristics of the first shock absorber are maintained. As a result, when a vehicle collision occurs, the intermediate shaft can exhibit a predetermined shock absorbing capability.
 ステアリング装置の望ましい態様として、径方向に対して垂直な平面で前記第1シャフトを切った断面において、前記溝に面する前記第1衝撃吸収部の表面の少なくとも一部が第1円弧を描き、前記第2衝撃吸収部の表面の少なくとも一部が第2円弧を描き、前記第2円弧の曲率半径は、前記第1円弧の曲率半径よりも大きい。 As a desirable mode of the steering device, at least a part of the surface of the first shock absorber facing the groove has a first arc in a cross section obtained by cutting the first shaft in a plane perpendicular to the radial direction, At least a portion of the surface of the second impact absorbing portion draws a second arc, and the radius of curvature of the second arc is larger than the radius of curvature of the first arc.
 これにより、中間シャフトに曲げ応力が生じた時、第2衝撃吸収部よりも第1衝撃吸収部に応力集中が生じやすくなる。このため、中間シャフトが、第2衝撃吸収部ではなく第1衝撃吸収部を起点として曲がる。したがって、車両の衝突が生じた時に、中間シャフトは所定の衝撃吸収能力を発揮することができる。 Thus, when bending stress occurs in the intermediate shaft, stress concentration is more likely to occur in the first impact absorbing portion than in the second impact absorbing portion. Therefore, the intermediate shaft bends not from the second impact absorbing portion but from the first impact absorbing portion. Therefore, when a vehicle collision occurs, the intermediate shaft can exhibit a predetermined shock absorbing capability.
 ステアリング装置の望ましい態様として、前記第2衝撃吸収部の最小肉厚は、前記第2衝撃吸収部の外径の10%以上20%以下である。 As a desirable mode of the steering device, the minimum thickness of the second impact absorbing portion is 10% or more and 20% or less of the outer diameter of the second impact absorbing portion.
 これにより、第2衝撃吸収部の座屈が抑制され且つ第2衝撃吸収部が捩れやすくなる。このため、中間シャフトの衝撃吸収能力が向上する。 Thereby, the buckling of the second impact absorbing portion is suppressed and the second impact absorbing portion is easily twisted. For this reason, the shock absorbing ability of the intermediate shaft is improved.
 ステアリング装置の望ましい態様として、前記中間シャフトは、前記第1シャフトに離脱可能に連結される筒状の第2シャフトを備える。 As a desirable mode of the steering device, the intermediate shaft includes a cylindrical second shaft which is releasably connected to the first shaft.
 これにより、1次衝突時に第2シャフトが第1シャフトに対して相対的に移動する。ステアリング装置は、第1シャフトと第2シャフトとの間で生じる摩擦によって衝撃を吸収することができる。 Thereby, the second shaft moves relative to the first shaft at the time of the primary collision. The steering device can absorb an impact by the friction generated between the first shaft and the second shaft.
 ステアリング装置の望ましい態様として、前記第1衝撃吸収部は、複数の前記溝を備え、前記溝は、環状である。 As a desirable mode of the steering device, the first impact absorbing portion includes a plurality of the grooves, and the grooves are annular.
 これにより、中間シャフトに曲げ応力が作用すると、第1衝撃吸収部の複数の部分で応力集中が生じる。このため、第1衝撃吸収部の変形する部分の範囲が大きくなりやすいので、中間シャフトの衝撃吸収能力が向上する。さらに、溝が環状なので、中間シャフトの曲がる方向が限定されにくくなる。 Thus, when bending stress acts on the intermediate shaft, stress concentration occurs in the plurality of portions of the first impact absorbing portion. For this reason, the range of the deformed portion of the first impact absorbing portion tends to be large, so that the impact absorbing capability of the intermediate shaft is improved. Furthermore, since the groove is annular, it is difficult to limit the bending direction of the intermediate shaft.
 ステアリング装置の望ましい態様として、前記溝は、螺旋状である。 As a desirable mode of a steering device, the above-mentioned slot is helical.
 これにより、中間シャフトに曲げ応力が作用すると、第1衝撃吸収部の複数の部分で応力集中が生じる。このため、第1衝撃吸収部の変形が大きくなりやすいので、中間シャフトの衝撃吸収能力が向上する。さらに、溝が螺旋状なので、中間シャフトの曲がる方向が限定されにくくなる。 Thus, when bending stress acts on the intermediate shaft, stress concentration occurs in the plurality of portions of the first impact absorbing portion. Therefore, the deformation of the first impact absorbing portion tends to be large, and the impact absorbing capability of the intermediate shaft is improved. Furthermore, since the groove is spiral, it is difficult to limit the bending direction of the intermediate shaft.
 ステアリング装置の望ましい態様として、前記溝の最大幅は1mm以上3mm以下であり、径方向に対して垂直な平面で前記中間シャフトを切った断面において、前記溝に面する前記第1衝撃吸収部の表面の少なくとも一部は、曲率半径が0.2mm以上1.0mm以下である円弧を描く。 As a desirable mode of the steering apparatus, the maximum width of the groove is 1 mm or more and 3 mm or less, and in a cross section obtained by cutting the intermediate shaft in a plane perpendicular to the radial direction, the first impact absorbing portion facing the groove At least a portion of the surface draws an arc having a radius of curvature of 0.2 mm or more and 1.0 mm or less.
 これにより、第1衝撃吸収部において極端な応力集中が生じなくなり、且つ第1衝撃吸収部が曲がり易くなる。 As a result, extreme stress concentration does not occur in the first impact absorbing portion, and the first impact absorbing portion is easily bent.
 ステアリング装置の望ましい態様として、前記溝の幅は、前記溝の底に向かって小さくなっている As a desirable mode of the steering apparatus, the width of the groove is reduced toward the bottom of the groove.
 これにより、中間シャフトに曲げ応力が生じた時に、応力集中が生じやすくなる。 As a result, when bending stress occurs in the intermediate shaft, stress concentration tends to occur.
 本開示の一態様の中間シャフトは、ステアリング装置に用いられる中間シャフトであって、外周面に溝を有する第1衝撃吸収部を備える。 An intermediate shaft according to an aspect of the present disclosure is an intermediate shaft used in a steering apparatus, and includes a first impact absorbing portion having a groove on an outer circumferential surface.
 これにより、第1衝撃吸収部は切削加工等により形成できるので、第1衝撃吸収部の形成に際して金型が不要である。このため、第1衝撃吸収部の形成が容易となる。また、第1衝撃吸収部の変形特性は、第1衝撃吸収部の溝の形状に応じて変化する。切削範囲の変更により溝の形状を変更することは容易であるため、第1衝撃吸収部の変形特性の調整は容易である。したがって、中間シャフトは、容易に製造でき且つ容易に変形特性を変更することができる。 Thereby, since the first impact absorbing portion can be formed by cutting or the like, no mold is required when forming the first impact absorbing portion. Therefore, the formation of the first impact absorbing portion is facilitated. Further, the deformation characteristics of the first impact absorbing portion change in accordance with the shape of the groove of the first impact absorbing portion. Since it is easy to change the shape of the groove by changing the cutting range, it is easy to adjust the deformation characteristics of the first shock absorber. Thus, the intermediate shaft can be easily manufactured and can easily change its deformation characteristics.
 本発明によれば、容易に製造でき且つ容易に変形特性を変更することができる中間シャフトにより衝撃を吸収するステアリング装置を提供することができる。 According to the present invention, it is possible to provide a steering device that absorbs shock with an intermediate shaft which can be easily manufactured and whose deformation characteristics can be easily changed.
図1は、第1実施形態のステアリング装置の模式図である。FIG. 1 is a schematic view of a steering apparatus according to the first embodiment. 図2は、第1実施形態のステアリング装置の斜視図である。FIG. 2 is a perspective view of the steering device of the first embodiment. 図3は、第1実施形態の中間シャフトの側面図である。FIG. 3 is a side view of the intermediate shaft of the first embodiment. 図4は、図3におけるA-A断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 図5は、図4における溝の周辺部の拡大図である。FIG. 5 is an enlarged view of the periphery of the groove in FIG. 図6は、曲がった後の中間シャフトの斜視図である。FIG. 6 is a perspective view of the intermediate shaft after bending. 図7は、第1実施形態の第1変形例の中間シャフトにおける衝撃吸収部の側面図である。FIG. 7 is a side view of the shock absorber in the intermediate shaft of the first modification of the first embodiment. 図8は、第1実施形態の第2変形例の中間シャフトにおける溝の周辺部の拡大図である。FIG. 8 is an enlarged view of the periphery of the groove in the intermediate shaft of the second modified example of the first embodiment. 図9は、第2実施形態のステアリング装置の斜視図である。FIG. 9 is a perspective view of the steering device of the second embodiment. 図10は、第2実施形態の中間シャフトの側面図である。FIG. 10 is a side view of the intermediate shaft of the second embodiment. 図11は、図10におけるB-B断面図である。FIG. 11 is a cross-sectional view taken along the line BB in FIG. 図12は、図11における溝の周辺部の拡大図である。FIG. 12 is an enlarged view of the periphery of the groove in FIG. 図13は、図10におけるC-C断面図である。FIG. 13 is a cross-sectional view taken along the line CC in FIG. 図14は、曲がった後の中間シャフトの斜視図である。FIG. 14 is a perspective view of the intermediate shaft after bending. 図15は、第3実施形態のステアリング装置の斜視図である。FIG. 15 is a perspective view of the steering device of the third embodiment. 図16は、第3実施形態の中間シャフトの側面図である。FIG. 16 is a side view of the intermediate shaft of the third embodiment. 図17は、図16におけるD-D断面図である。FIG. 17 is a cross-sectional view taken along the line DD in FIG. 図18は、図17における溝の周辺部の拡大図である。FIG. 18 is an enlarged view of the periphery of the groove in FIG. 図19は、曲がった後の中間シャフトの斜視図である。FIG. 19 is a perspective view of the intermediate shaft after bending. 図20は、比較例の中間シャフトが曲がる時の変位と荷重の関係を示すグラフである。FIG. 20 is a graph showing the relationship between displacement and load when the intermediate shaft of the comparative example is bent. 図21は、第3実施形態の中間シャフトが曲がる時の変位と荷重の関係を示すグラフである。FIG. 21 is a graph showing the relationship between displacement and load when the intermediate shaft of the third embodiment bends. 図22は、第3実施形態の第1変形例の中間シャフトにおける衝撃吸収部の側面図である。FIG. 22 is a side view of an impact absorbing portion in the intermediate shaft of the first modified example of the third embodiment. 図23は、第3実施形態の第2変形例の中間シャフトを示す側面図である。FIG. 23 is a side view showing an intermediate shaft of a second modified example of the third embodiment. 図24は、図23におけるE-E断面図である。FIG. 24 is a cross-sectional view taken along line EE in FIG. 図25は、第3実施形態の第3変形例の中間シャフトの側面図である。FIG. 25 is a side view of an intermediate shaft of a third modified example of the third embodiment. 図26は、図25におけるF-F断面図である。FIG. 26 is a cross-sectional view along the line FF in FIG. 図27は、衝撃吸収部の中央に位置する溝の断面図である。FIG. 27 is a cross-sectional view of a groove located at the center of the shock absorbing portion. 図28は、衝撃吸収部の端部に位置する溝の断面図である。FIG. 28 is a cross-sectional view of a groove located at the end of the shock absorbing part. 図29は、第4実施形態のステアリング装置の斜視図である。FIG. 29 is a perspective view of the steering device of the fourth embodiment. 図30は、第4実施形態の中間シャフトの斜視図である。FIG. 30 is a perspective view of the intermediate shaft of the fourth embodiment. 図31は、第4実施形態の中間シャフトの断面図である。FIG. 31 is a cross-sectional view of the intermediate shaft of the fourth embodiment. 図32は、ロアシャフトの第1衝撃吸収部及びロア嵌合部を拡大した断面図である。FIG. 32 is an enlarged cross-sectional view of a first impact absorbing portion and a lower fitting portion of the lower shaft. 図33は、第1衝撃吸収部の溝の周辺部を拡大した断面図である。FIG. 33 is an enlarged cross-sectional view of the periphery of the groove of the first impact absorbing portion. 図34は、ロアシャフトの第2衝撃吸収部を拡大した断面図である。FIG. 34 is an enlarged cross-sectional view of a second impact absorbing portion of the lower shaft. 図35は、ストッパーの一例の正面図である。FIG. 35 is a front view of an example of the stopper. 図36は、ストッパーの一例の正面図である。FIG. 36 is a front view of an example of a stopper. 図37は、ストッパーの一例の正面図である。FIG. 37 is a front view of an example of a stopper. 図38は、ストッパーの一例の正面図である。FIG. 38 is a front view of an example of a stopper. 図39は、ストッパーの一例の正面図である。FIG. 39 is a front view of an example of a stopper. 図40は、ストッパーの一例の正面図である。FIG. 40 is a front view of an example of the stopper. 図41は、図31におけるG-G断面図である。FIG. 41 is a cross-sectional view taken along the line GG in FIG. 図42は、図31におけるH-H断面図である。FIG. 42 is a cross-sectional view taken along the line HH in FIG. 図43は、ロアシャフトがアッパーシャフトの中に入った後の中間シャフトの斜視図である。FIG. 43 is a perspective view of the intermediate shaft after the lower shaft has entered the upper shaft. 図44は、ロアシャフトが曲がった後の中間シャフトの斜視図である。FIG. 44 is a perspective view of the intermediate shaft after the lower shaft is bent. 図45は、第5実施形態のステアリング装置の斜視図である。FIG. 45 is a perspective view of the steering device of the fifth embodiment. 図46は、第5実施形態の中間シャフトの斜視図である。FIG. 46 is a perspective view of the intermediate shaft of the fifth embodiment. 図47は、第5実施形態の中間シャフトの断面図である。FIG. 47 is a cross-sectional view of the intermediate shaft of the fifth embodiment. 図48は、第1シャフトの第1衝撃吸収部及び第1嵌合部を拡大した断面図である。FIG. 48 is an enlarged cross-sectional view of the first impact absorbing portion and the first fitting portion of the first shaft. 図49は、第1衝撃吸収部の溝の周辺部を拡大した断面図である。FIG. 49 is an enlarged cross-sectional view of the periphery of the groove of the first impact absorbing portion. 図50は、第1シャフトの第2衝撃吸収部を拡大した断面図である。FIG. 50 is an enlarged sectional view of a second impact absorbing portion of the first shaft. 図51は、図47におけるI-I断面図である。51 is a cross-sectional view taken along line II in FIG. 図52は、図47におけるJ-J断面図である。52 is a cross-sectional view taken along line JJ in FIG. 図53は、第1シャフトが第2シャフトの中に入った後の中間シャフトの斜視図である。FIG. 53 is a perspective view of the intermediate shaft after the first shaft has entered the second shaft. 図54は、第1シャフトが曲がった後の中間シャフトの斜視図である。FIG. 54 is a perspective view of the intermediate shaft after the first shaft is bent. 図55は、第5実施形態の第1変形例における第1衝撃吸収部の溝の周辺部を拡大した断面図である。FIG. 55 is an enlarged cross-sectional view of a peripheral portion of a groove of a first impact absorbing portion in a first modified example of the fifth embodiment. 図56は、第5実施形態の第2変形例における第1衝撃吸収部を拡大した断面図である。FIG. 56 is an enlarged cross-sectional view of a first impact absorbing portion in a second modified example of the fifth embodiment. 図57は、第5実施形態の第3変形例の中間シャフトの断面図である。FIG. 57 is a cross-sectional view of the intermediate shaft of the third modified example of the fifth embodiment. 図58は、第6実施形態のステアリング装置の斜視図である。FIG. 58 is a perspective view of the steering device of the sixth embodiment. 図59は、第6実施形態の中間シャフトの側面図である。FIG. 59 is a side view of the intermediate shaft of the sixth embodiment. 図60は、第6実施形態の中間シャフトの断面図である。FIG. 60 is a cross-sectional view of the intermediate shaft of the sixth embodiment. 図61は、図60の第1衝撃吸収部の拡大図である。FIG. 61 is an enlarged view of the first shock absorber in FIG. 60. 図62は、図60の溝の拡大図である。Figure 62 is an enlarged view of the groove of Figure 60; 図63は、図60の第2衝撃吸収部の拡大図である。FIG. 63 is an enlarged view of a second shock absorber shown in FIG. 60. 図64は、曲がった後の中間シャフトの側面図である。FIG. 64 is a side view of the intermediate shaft after bending. 図65は、第6実施形態の第1変形例の中間シャフトの斜視図である。FIG. 65 is a perspective view of an intermediate shaft of a first modified example of the sixth embodiment. 図66は、第6実施形態の第1変形例の中間シャフトの断面図である。FIG. 66 is a cross-sectional view of the intermediate shaft of the first modified example of the sixth embodiment. 図67は、第1シャフトの第1衝撃吸収部及び第1嵌合部を拡大した断面図である。FIG. 67 is an enlarged cross-sectional view of a first impact absorbing portion and a first fitting portion of a first shaft. 図68は、図66におけるK-K断面図である。FIG. 68 is a cross-sectional view taken along line KK in FIG. 図69は、図66におけるL-L断面図である。69 is a cross-sectional view taken along line LL in FIG. 図70は、第1シャフトが第2シャフトの中に入った後の中間シャフトの斜視図である。FIG. 70 is a perspective view of the intermediate shaft after the first shaft is in the second shaft. 図71は、第1シャフトが曲がった後の中間シャフトの斜視図である。FIG. 71 is a perspective view of the intermediate shaft after the first shaft is bent. 図72は、第6実施形態の第2変形例の中間シャフトの断面図である。FIG. 72 is a cross-sectional view of the intermediate shaft of the second modified example of the sixth embodiment. 図73は、第6実施形態の第3変形例における第1衝撃吸収部の溝の周辺部を拡大した断面図である。FIG. 73 is an enlarged cross-sectional view of a peripheral portion of a groove of a first impact absorbing portion in a third modified example of the sixth embodiment. 図74は、第6実施形態の第4変形例における第1衝撃吸収部を拡大した断面図である。FIG. 74 is an enlarged cross-sectional view of a first shock absorber in a fourth modification of the sixth embodiment.
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited by the following embodiments (hereinafter referred to as embodiments). Further, constituent elements in the following embodiments include those which can be easily conceived by those skilled in the art, those substantially the same, and so-called equivalent ranges. Furthermore, the components disclosed in the following embodiments can be combined as appropriate.
(第1実施形態)
 図1は、第1実施形態のステアリング装置の模式図である。図2は、第1実施形態のステアリング装置の斜視図である。図1に示すように、ステアリング装置80は、操作者から与えられる力が伝達する順に、ステアリングホイール81と、ステアリングシャフト82と、操舵力アシスト機構83と、第1ユニバーサルジョイント84と、中間シャフト85と、第2ユニバーサルジョイント86と、を備えピニオンシャフト87に接合されている。以下の説明においては、ステアリング装置80が搭載された車両における前方は単に前方と記載され、車両における後方は単に後方と記載される。
First Embodiment
FIG. 1 is a schematic view of a steering apparatus according to the first embodiment. FIG. 2 is a perspective view of the steering device of the first embodiment. As shown in FIG. 1, in the steering device 80, the steering wheel 81, the steering shaft 82, the steering force assist mechanism 83, the first universal joint 84, and the intermediate shaft 85 are transmitted in the order of transmission of the force applied by the operator. And a second universal joint 86, and is joined to the pinion shaft 87. In the following description, the front of the vehicle on which the steering device 80 is mounted is described simply as the front, and the rear of the vehicle is described as the rear.
 図1に示すように、ステアリングシャフト82は、入力軸82aと、出力軸82bとを備える。入力軸82aの一方の端部がステアリングホイール81に連結され、入力軸82aの他方の端部が出力軸82bに連結される。また、出力軸82bの一方の端部が入力軸82aに連結され、出力軸82bの他方の端部が第1ユニバーサルジョイント84に連結される。 As shown in FIG. 1, the steering shaft 82 includes an input shaft 82a and an output shaft 82b. One end of the input shaft 82a is connected to the steering wheel 81, and the other end of the input shaft 82a is connected to the output shaft 82b. Further, one end of the output shaft 82b is connected to the input shaft 82a, and the other end of the output shaft 82b is connected to the first universal joint 84.
 図1に示すように、中間シャフト85は、第1ユニバーサルジョイント84と第2ユニバーサルジョイント86とを連結している。中間シャフト85の一方の端部が第1ユニバーサルジョイント84に連結され、他方の端部が第2ユニバーサルジョイント86に連結される。ピニオンシャフト87の一方の端部が第2ユニバーサルジョイント86に連結され、ピニオンシャフト87の他方の端部がステアリングギヤ88に連結される。第1ユニバーサルジョイント84及び第2ユニバーサルジョイント86は、例えばカルダンジョイントである。ステアリングシャフト82の回転が中間シャフト85を介してピニオンシャフト87に伝わる。すなわち、中間シャフト85はステアリングシャフト82に伴って回転する。 As shown in FIG. 1, the intermediate shaft 85 connects the first universal joint 84 and the second universal joint 86. One end of the intermediate shaft 85 is connected to the first universal joint 84, and the other end is connected to the second universal joint 86. One end of the pinion shaft 87 is connected to the second universal joint 86, and the other end of the pinion shaft 87 is connected to the steering gear 88. The first universal joint 84 and the second universal joint 86 are, for example, cardan joints. The rotation of the steering shaft 82 is transmitted to the pinion shaft 87 via the intermediate shaft 85. That is, the intermediate shaft 85 rotates with the steering shaft 82.
 図1に示すように、ステアリングギヤ88は、ピニオン88aと、ラック88bとを備える。ピニオン88aは、ピニオンシャフト87に連結される。ラック88bは、ピニオン88aに噛み合う。ステアリングギヤ88は、ピニオン88aに伝達された回転運動をラック88bで直進運動に変換する。ラック88bは、タイロッド89に連結される。ラック88bが移動することで車輪の角度が変化する。 As shown in FIG. 1, the steering gear 88 includes a pinion 88 a and a rack 88 b. The pinion 88 a is coupled to the pinion shaft 87. The rack 88 b meshes with the pinion 88 a. The steering gear 88 converts the rotational motion transmitted to the pinion 88a into a linear motion at the rack 88b. The rack 88 b is connected to the tie rod 89. The movement of the rack 88b changes the angle of the wheel.
 図1に示すように、操舵力アシスト機構83は、減速装置92と、電動モータ93とを備える。減速装置92は、例えばウォーム減速装置である。電動モータ93で生じたトルクは、減速装置92の内部のウォームを介してウォームホイールに伝達され、ウォームホイールを回転させる。減速装置92は、ウォーム及びウォームホイールによって、電動モータ93で生じたトルクを増加させる。そして、減速装置92は、出力軸82bに補助操舵トルクを与える。すなわち、ステアリング装置80はコラムアシスト方式である。 As shown in FIG. 1, the steering force assist mechanism 83 includes a reduction gear 92 and an electric motor 93. The reduction gear 92 is, for example, a worm reduction gear. The torque generated by the electric motor 93 is transmitted to the worm wheel via the worm in the reduction gear 92 to rotate the worm wheel. The reduction gear 92 increases the torque generated by the electric motor 93 by the worm and the worm wheel. Then, the reduction gear 92 applies an auxiliary steering torque to the output shaft 82b. That is, the steering device 80 is a column assist system.
 図1に示すように、ステアリング装置80は、ECU(Electronic Control Unit)90と、トルクセンサ94と、車速センサ95と、を備える。電動モータ93、トルクセンサ94及び車速センサ95は、ECU90と電気的に接続される。トルクセンサ94は、入力軸82aに伝達された操舵トルクをCAN(Controller Area Network)通信によりECU90に出力する。車速センサ95は、ステアリング装置80が搭載される車体の走行速度(車速)を検出する。車速センサ95は、車体に備えられ、車速をCAN通信によりECU90に出力する。 As shown in FIG. 1, the steering device 80 includes an ECU (Electronic Control Unit) 90, a torque sensor 94, and a vehicle speed sensor 95. The electric motor 93, the torque sensor 94, and the vehicle speed sensor 95 are electrically connected to the ECU 90. The torque sensor 94 outputs the steering torque transmitted to the input shaft 82 a to the ECU 90 by CAN (Controller Area Network) communication. The vehicle speed sensor 95 detects the traveling speed (vehicle speed) of the vehicle body on which the steering device 80 is mounted. The vehicle speed sensor 95 is provided on the vehicle body and outputs the vehicle speed to the ECU 90 by CAN communication.
 ECU90は、電動モータ93の動作を制御する。ECU90は、トルクセンサ94及び車速センサ95のそれぞれから信号を取得する。ECU90には、イグニッションスイッチ98がオンの状態で、電源装置99(例えば車載のバッテリ)から電力が供給される。ECU90は、操舵トルク及び車速に基づいて補助操舵指令値を算出する。ECU90は、補助操舵指令値に基づいて電動モータ93へ供給する電力値を調節する。ECU90は、電動モータ93から誘起電圧の情報又は電動モータ93に設けられたレゾルバ等から出力される情報を取得する。ECU90が電動モータ93を制御することで、ステアリングホイール81の操作に要する力が小さくなる。 The ECU 90 controls the operation of the electric motor 93. The ECU 90 obtains signals from the torque sensor 94 and the vehicle speed sensor 95, respectively. Electric power is supplied to the ECU 90 from the power supply device 99 (for example, an on-board battery) while the ignition switch 98 is on. The ECU 90 calculates the assist steering command value based on the steering torque and the vehicle speed. The ECU 90 adjusts the power value supplied to the electric motor 93 based on the assist steering command value. The ECU 90 acquires information on the induced voltage from the electric motor 93 or information output from a resolver or the like provided in the electric motor 93. The control of the electric motor 93 by the ECU 90 reduces the force required to operate the steering wheel 81.
 図3は、第1実施形態の中間シャフトの側面図である。図4は、図3におけるA-A断面図である。図5は、図4における溝の周辺部の拡大図である。 FIG. 3 is a side view of the intermediate shaft of the first embodiment. FIG. 4 is a cross-sectional view taken along line AA in FIG. FIG. 5 is an enlarged view of the periphery of the groove in FIG.
 中間シャフト85は、略円柱状の中実部材である。例えば、中間シャフト85は、機械構造用炭素鋼(SC材)であるS35Cで形成される。図3に示すように、中間シャフト85は、基部11と、衝撃吸収部15と、基部19と、を備える。 The intermediate shaft 85 is a substantially cylindrical solid member. For example, the intermediate shaft 85 is formed of S35C which is carbon steel for machine structure (SC material). As shown in FIG. 3, the intermediate shaft 85 includes a base 11, a shock absorber 15, and a base 19.
 基部11は、第1ユニバーサルジョイント84に接続される。基部11の直径は一定である。衝撃吸収部15は、基部11の前方に位置する。衝撃吸収部15は、中間シャフト85の軸方向において、中間シャフト85の中央に位置する。基部19は、第2ユニバーサルジョイント86に接続される。基部19の直径は一定であり、基部11の直径に等しい。 The base 11 is connected to a first universal joint 84. The diameter of the base 11 is constant. The shock absorber 15 is located in front of the base 11. The shock absorbing portion 15 is located at the center of the intermediate shaft 85 in the axial direction of the intermediate shaft 85. The base 19 is connected to the second universal joint 86. The diameter of the base 19 is constant and equal to the diameter of the base 11.
 以下の説明において、中間シャフト85の軸方向は単に軸方向と記載され、軸方向に対して直交する方向は径方向と記載される。図4及び図5は、径方向に対して直交する平面で中間シャフト85を切った断面である。 In the following description, the axial direction of the intermediate shaft 85 is simply described as the axial direction, and the direction orthogonal to the axial direction is described as the radial direction. 4 and 5 are cross sections of the intermediate shaft 85 cut in a plane orthogonal to the radial direction.
 図4に示すように、衝撃吸収部15は、複数の溝3と、複数の凸部4と、を備える。溝3は環状である。溝3は、例えば切削により形成される。複数の溝3は、軸方向で等間隔に配置されている。凸部4は、2つの溝3の間に位置する。凸部4に対応する位置における衝撃吸収部15の直径D1は、基部11及び基部19の直径に等しい。 As shown in FIG. 4, the shock absorption unit 15 includes a plurality of grooves 3 and a plurality of protrusions 4. The groove 3 is annular. The grooves 3 are formed by cutting, for example. The plurality of grooves 3 are arranged at equal intervals in the axial direction. The protrusion 4 is located between the two grooves 3. The diameter D1 of the shock absorbing portion 15 at the position corresponding to the convex portion 4 is equal to the diameters of the base 11 and the base 19.
 図5に示すように、衝撃吸収部15は、溝3に面する表面として、第1側面31と、第2側面33と、底面35と、第1接続面36と、第2接続面37と、を含む。第1側面31及び第2側面33は、軸方向に対して垂直である。すなわち、第2側面33は、第1側面31と平行である。底面35は、第1側面31と第2側面33との間に位置する。第1側面31が底面35に対して後方に位置し、第2側面33が底面35に対して前方に位置する。底面35は曲面である。第1接続面36は、第1側面31と底面35とを繋ぐ曲面である。第2接続面37は、第2側面33と底面35とを繋ぐ曲面である。 As shown in FIG. 5, the shock absorbing portion 15 has a first side surface 31, a second side surface 33, a bottom surface 35, a first connection surface 36 and a second connection surface 37 as surfaces facing the groove 3. ,including. The first side surface 31 and the second side surface 33 are perpendicular to the axial direction. That is, the second side surface 33 is parallel to the first side surface 31. The bottom surface 35 is located between the first side surface 31 and the second side surface 33. The first side surface 31 is located rearward with respect to the bottom surface 35, and the second side surface 33 is located forward with respect to the bottom surface 35. The bottom surface 35 is a curved surface. The first connection surface 36 is a curved surface connecting the first side surface 31 and the bottom surface 35. The second connection surface 37 is a curved surface connecting the second side surface 33 and the bottom surface 35.
 溝3の最大幅Wは、1mm以上3mm以下であることが好ましい。溝3の最大幅Wは、衝撃吸収部15が曲がった場合に衝撃吸収部15が破断しないように設定される。溝3の最大幅Wは、衝撃吸収部15が曲がった場合に、衝撃吸収部15が破断する前に隣接する凸部4が接するように設定される。図5に示す断面において、第1接続面36及び第2接続面37は同じ円弧を描く。第1接続面36及び第2接続面37が描く円弧の曲率半径C1は、0.2mm以上1.0mm以下であることが好ましい。例えば、第1実施形態における曲率半径C1は0.3mmである。 The maximum width W of the groove 3 is preferably 1 mm or more and 3 mm or less. The maximum width W of the groove 3 is set so that the shock absorber 15 does not break when the shock absorber 15 is bent. The maximum width W of the groove 3 is set such that, when the shock absorbing portion 15 is bent, adjacent convex portions 4 are in contact before the shock absorbing portion 15 breaks. In the cross section shown in FIG. 5, the first connection surface 36 and the second connection surface 37 draw the same arc. The radius of curvature C1 of the arc drawn by the first connection surface 36 and the second connection surface 37 is preferably 0.2 mm or more and 1.0 mm or less. For example, the curvature radius C1 in the first embodiment is 0.3 mm.
 衝撃吸収部15は、例えば300Nmのトルクを伝達できるように設計される。中間シャフト85がS35Cで形成される場合、溝3の底に対応する位置における衝撃吸収部15の直径D2は、14mm以上16mm以下程度となる。直径D2は、図5に示す溝3の深さHにより決まる。 The shock absorber 15 is designed to transmit a torque of, for example, 300 Nm. When the intermediate shaft 85 is formed of S35C, the diameter D2 of the impact absorbing portion 15 at the position corresponding to the bottom of the groove 3 is about 14 mm or more and 16 mm or less. The diameter D2 is determined by the depth H of the groove 3 shown in FIG.
 図6は、曲がった後の中間シャフトの斜視図である。車両の1次衝突時においてステアリングギヤ88に荷重が加わる。ステアリングギヤ88に加わった荷重により中間シャフト85には曲げ応力が生じる。この時、第1接続面36及び第2接続面37に応力集中が生じることで、第1接続面36及び第2接続面37を起点として衝撃吸収部15が曲がる。溝3の径方向における一方側が拡がり、溝3の径方向における他方側が縮む。溝3が縮む側においては、凸部4が隣接する凸部4に接する。曲がった中間シャフト85は、中間シャフト85の周辺部品の隙間に入り込む。衝撃吸収部15が曲がることにより、衝突による衝撃が吸収される。その結果、ステアリングホイール81に伝わる衝撃が低減する。 FIG. 6 is a perspective view of the intermediate shaft after bending. A load is applied to the steering gear 88 at the time of a primary collision of the vehicle. The load applied to the steering gear 88 generates bending stress on the intermediate shaft 85. At this time, stress concentration occurs in the first connection surface 36 and the second connection surface 37, so that the shock absorbing portion 15 is bent starting from the first connection surface 36 and the second connection surface 37. One side in the radial direction of the groove 3 expands, and the other side in the radial direction of the groove 3 contracts. On the side where the groove 3 is contracted, the convex portion 4 is in contact with the adjacent convex portion 4. The bent intermediate shaft 85 enters the clearance of the peripheral parts of the intermediate shaft 85. The impact absorbing portion 15 bends to absorb the impact due to the collision. As a result, the shock transmitted to the steering wheel 81 is reduced.
 衝撃吸収部15は複数の溝3を備えるので、中間シャフト85に曲げ応力が作用すると、衝撃吸収部15の複数の部分で応力集中が生じる。このため、衝撃吸収部15の変形する部分の範囲が大きくなりやすいので、中間シャフト85の衝撃吸収能力が向上する。 Since the shock absorbing portion 15 includes the plurality of grooves 3, when bending stress acts on the intermediate shaft 85, stress concentration occurs at a plurality of portions of the shock absorbing portion 15. As a result, the range of the deformed portion of the shock absorbing portion 15 tends to be large, so that the shock absorbing ability of the intermediate shaft 85 is improved.
 なお、衝撃吸収部15の溝3は、必ずしも上述した形状を有していなくてもよい。例えば、第1接続面36及び第2接続面37が底面35を介さずに繋がっていてもよい。すなわち、径方向に対して垂直な平面で中間シャフト85を切った断面において、溝3の底に対応する位置における衝撃吸収部15の表面が半円を描いていてもよい。また、第1接続面36及び第2接続面37がなくてもよい。すなわち、第1側面31及び第2側面33が底面35に直接繋がっていてもよい。この説明は、以下で説明する他の実施形態にも適用できる。 The groove 3 of the impact absorbing portion 15 may not necessarily have the above-described shape. For example, the first connection surface 36 and the second connection surface 37 may be connected without the bottom surface 35 interposed therebetween. That is, in a cross section obtained by cutting the intermediate shaft 85 in a plane perpendicular to the radial direction, the surface of the shock absorber 15 at a position corresponding to the bottom of the groove 3 may draw a semicircle. Also, the first connection surface 36 and the second connection surface 37 may not be present. That is, the first side surface 31 and the second side surface 33 may be directly connected to the bottom surface 35. This description is also applicable to the other embodiments described below.
 なお、衝撃吸収部15が備える溝3の数は、必ずしも図に示すような数でなくてもよい。衝撃吸収部15は少なくとも1つの溝3を有していればよい。この説明は、以下で説明する他の実施形態にも適用できる。 The number of grooves 3 provided in the impact absorbing portion 15 may not necessarily be as shown in the drawing. The shock absorber 15 may have at least one groove 3. This description is also applicable to the other embodiments described below.
 なお、凸部4に対応する位置における衝撃吸収部15の直径D1は、必ずしも基部11の直径に等しくなくてもよい。直径D1は、少なくとも溝3の底に対応する位置における衝撃吸収部15の直径D2よりも大きければよい。直径D1は、基部11の直径よりも小さくてもよいし、基部11の直径よりも大きくてもよい。この説明は、以下で説明する他の実施形態にも適用できる。 The diameter D1 of the impact absorbing portion 15 at the position corresponding to the convex portion 4 may not necessarily be equal to the diameter of the base 11. The diameter D1 may be larger than the diameter D2 of the shock absorber 15 at a position corresponding to at least the bottom of the groove 3. The diameter D 1 may be smaller than the diameter of the base 11 or larger than the diameter of the base 11. This description is also applicable to the other embodiments described below.
 以上で説明したように、ステアリング装置80は、第1ユニバーサルジョイント84と、第1ユニバーサルジョイント84より前方側に配置される第2ユニバーサルジョイント86と、第1ユニバーサルジョイント84と第2ユニバーサルジョイント86とを連結する中実部材である中間シャフト85と、を備える。中間シャフト85は、外周面に溝3を有する衝撃吸収部15を備える。 As described above, the steering apparatus 80 includes the first universal joint 84, the second universal joint 86 disposed on the front side of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85, which is a solid member connecting the two. The intermediate shaft 85 includes an impact absorbing portion 15 having a groove 3 on the outer peripheral surface.
 これにより、衝撃吸収部15の形成に際して金型が不要であるので、衝撃吸収部15の形成が容易となる。また、衝撃吸収部15の変形特性は、衝撃吸収部15の溝3の形状に応じて変化する。溝3の形状を変更することは容易であるため、衝撃吸収部15の変形特性の調整は容易である。したがって、ステアリング装置80は、容易に製造でき且つ容易に変形特性を変更することができる中間シャフト85により衝撃を吸収することができる。 As a result, no mold is required when forming the shock absorbing portion 15, so that the shock absorbing portion 15 can be easily formed. Further, the deformation characteristics of the shock absorbing portion 15 change in accordance with the shape of the groove 3 of the shock absorbing portion 15. Since it is easy to change the shape of the groove 3, it is easy to adjust the deformation characteristics of the impact absorbing portion 15. Thus, the steering device 80 can absorb the impact by means of the intermediate shaft 85 which can be easily manufactured and whose deformation characteristics can be easily changed.
 また、ステアリング装置80においては、衝撃吸収部15は、複数の溝3を備える。溝3は、環状である。 Further, in the steering device 80, the impact absorbing portion 15 is provided with a plurality of grooves 3. The grooves 3 are annular.
 これにより、中間シャフト85に曲げ応力が作用すると、衝撃吸収部15の複数の部分で応力集中が生じる。このため、衝撃吸収部15の変形する部分の範囲が大きくなりやすいので、中間シャフト85の衝撃吸収能力が向上する。さらに、溝3が環状なので、中間シャフト85の曲がる方向が限定されにくくなる。 As a result, when bending stress acts on the intermediate shaft 85, stress concentration occurs at a plurality of portions of the impact absorbing portion 15. As a result, the range of the deformed portion of the shock absorbing portion 15 tends to be large, so that the shock absorbing ability of the intermediate shaft 85 is improved. Furthermore, since the groove 3 is annular, the bending direction of the intermediate shaft 85 is unlikely to be limited.
 また、ステアリング装置80においては、溝3の最大幅Wは1mm以上3mm以下である。径方向に対して垂直な平面で中間シャフト85を切った断面において、溝3に面する衝撃吸収部15の表面の少なくとも一部は、曲率半径が0.2mm以上1.0mm以下である円弧を描く。 Further, in the steering device 80, the maximum width W of the groove 3 is 1 mm or more and 3 mm or less. In a cross section obtained by cutting the intermediate shaft 85 in a plane perpendicular to the radial direction, at least a part of the surface of the shock absorbing portion 15 facing the groove 3 has an arc having a curvature radius of 0.2 mm or more and 1.0 mm or less Draw.
 これにより、衝撃吸収部15において極端な応力集中が生じなくなり、且つ衝撃吸収部15が曲がり易くなる。 As a result, extreme stress concentration does not occur in the shock absorbing portion 15, and the shock absorbing portion 15 is easily bent.
(第1実施形態の第1変形例)
 図7は、第1実施形態の第1変形例の中間シャフトにおける衝撃吸収部の側面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
First Modified Example of First Embodiment
FIG. 7 is a side view of the shock absorber in the intermediate shaft of the first modification of the first embodiment. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図7に示すように、第1実施形態の第1変形例の衝撃吸収部15Aは、溝3Aを備える。溝3Aは、螺旋状である。上述した溝3の最大幅W及び曲率半径C1の説明は、溝3Aに対しても適用できる。 As shown in FIG. 7, the impact absorbing portion 15 </ b> A of the first modified example of the first embodiment includes a groove 3 </ b> A. The groove 3A is helical. The description of the maximum width W and the curvature radius C1 of the groove 3 described above can be applied to the groove 3A.
 これにより、中間シャフト85に曲げ応力が作用すると、衝撃吸収部15Aの複数の部分で応力集中が生じる。このため、衝撃吸収部15Aの変形が大きくなりやすいので、中間シャフト85の衝撃吸収能力が向上する。さらに、溝3Aが螺旋状なので、中間シャフト85の曲がる方向が限定されにくくなる。 As a result, when bending stress acts on the intermediate shaft 85, stress concentration occurs at a plurality of portions of the impact absorbing portion 15A. Therefore, the deformation of the shock absorbing portion 15A is likely to be large, so that the shock absorbing ability of the intermediate shaft 85 is improved. Furthermore, since the groove 3A is helical, the bending direction of the intermediate shaft 85 is unlikely to be limited.
(第1実施形態の第2変形例)
 図8は、第1実施形態の第2変形例の中間シャフトにおける溝の周辺部の拡大図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Second Modified Example of First Embodiment
FIG. 8 is an enlarged view of the periphery of the groove in the intermediate shaft of the second modified example of the first embodiment. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 第1実施形態の第2変形例の衝撃吸収部15Bは、複数の溝3Bを備える。図8に示すように、衝撃吸収部15Bは、溝3Bに面する表面として、第1側面31Bと、第2側面33Bと、底面35Bと、第1接続面36Bと、第2接続面37Bと、を含む。底面35Bは、第1側面31Bと第2側面33Bとの間に位置する。第1接続面36Bは、第1側面31Bと底面35Bとを繋ぐ曲面である。第2接続面37Bは、第2側面33Bと底面35Bとを繋ぐ曲面である。第1側面31Bと第2側面33Bとの間の距離は、底面35Bに向かって小さくなっている。すなわち、溝3Bの幅は、溝3Bの底に向かって小さくなっている。 The impact absorbing portion 15B of the second modified example of the first embodiment includes a plurality of grooves 3B. As shown in FIG. 8, the impact absorbing portion 15B has a first side 31B, a second side 33B, a bottom 35B, a first connection surface 36B, and a second connection surface 37B as surfaces facing the groove 3B. ,including. The bottom surface 35B is located between the first side 31B and the second side 33B. The first connection surface 36B is a curved surface connecting the first side surface 31B and the bottom surface 35B. The second connection surface 37B is a curved surface connecting the second side surface 33B and the bottom surface 35B. The distance between the first side surface 31B and the second side surface 33B decreases toward the bottom surface 35B. That is, the width of the groove 3B decreases toward the bottom of the groove 3B.
 これにより、中間シャフト85に曲げ応力が作用した時に、応力集中が生じやすくなる。 As a result, when bending stress acts on the intermediate shaft 85, stress concentration tends to occur.
 なお、第1実施形態の第1変形例及び第1実施形態の第2変形例の構成は、第2実施形態以降の実施形態にも適用可能である。 The configurations of the first modification of the first embodiment and the second modification of the first embodiment are also applicable to the second and subsequent embodiments.
(第2実施形態)
 図9は、第2実施形態のステアリング装置の斜視図である。図10は、第2実施形態の中間シャフトの側面図である。図11は、図10におけるB-B断面図である。図12は、図11における溝の周辺部の拡大図である。図13は、図10におけるC-C断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Second Embodiment
FIG. 9 is a perspective view of the steering device of the second embodiment. FIG. 10 is a side view of the intermediate shaft of the second embodiment. FIG. 11 is a cross-sectional view taken along the line BB in FIG. FIG. 12 is an enlarged view of the periphery of the groove in FIG. FIG. 13 is a cross-sectional view taken along the line CC in FIG. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 中間シャフト85Cは、略円柱状の中実部材である。例えば、中間シャフト85Cは、機械構造用炭素鋼(SC材)であるS35Cで形成される。図10に示すように、中間シャフト85Cは、基部11Cと、第1衝撃吸収部15Cと、基部16Cと、第2衝撃吸収部17Cと、基部19Cと、を備える。 The intermediate shaft 85C is a substantially cylindrical solid member. For example, the intermediate shaft 85C is formed of S35C which is carbon steel for machine structure (SC material). As shown in FIG. 10, the intermediate shaft 85C includes a base 11C, a first shock absorber 15C, a base 16C, a second shock absorber 17C, and a base 19C.
 基部11Cは、第1ユニバーサルジョイント84に接続される。基部11Cの直径は一定である。第1衝撃吸収部15Cは、基部11Cの前方に位置する。第1衝撃吸収部15Cは、中間シャフト85Cの軸方向において、中間シャフト85Cの中央に位置する。基部16Cは、第1衝撃吸収部15Cの前方に位置する。第2衝撃吸収部17Cは、基部16Cの前方に位置する。第2衝撃吸収部17Cは、中間シャフト85Cの軸方向において、中間シャフト85Cの中央よりも前方側に位置する。基部19Cは、第2ユニバーサルジョイント86に接続される。基部19Cの直径は一定であり、基部11Cの直径に等しい。 The base 11C is connected to the first universal joint 84. The diameter of the base 11C is constant. The first shock absorber 15C is located in front of the base 11C. The first impact absorbing portion 15C is located at the center of the intermediate shaft 85C in the axial direction of the intermediate shaft 85C. The base 16C is located in front of the first shock absorber 15C. The second shock absorber 17C is located in front of the base 16C. The second impact absorbing portion 17C is located forward of the center of the intermediate shaft 85C in the axial direction of the intermediate shaft 85C. The base 19C is connected to the second universal joint 86. The diameter of the base 19C is constant and equal to the diameter of the base 11C.
 図11に示すように、第1衝撃吸収部15Cは、複数の溝3Cと、複数の凸部4Cと、を備える。溝3Cは環状である。溝3Cは、例えば切削により形成される。複数の溝3Cは、軸方向で等間隔に配置されている。凸部4Cは、2つの溝3Cの間に位置する。凸部4Cに対応する位置における第1衝撃吸収部15Cの直径D1Cは、基部11C、基部16C及び基部19Cの直径に等しい。 As shown in FIG. 11, the first impact absorbing portion 15C includes a plurality of grooves 3C and a plurality of convex portions 4C. The groove 3C is annular. The grooves 3C are formed by cutting, for example. The plurality of grooves 3C are arranged at equal intervals in the axial direction. The convex portion 4C is located between the two grooves 3C. The diameter D1C of the first shock absorber 15C at a position corresponding to the convex portion 4C is equal to the diameters of the base 11C, the base 16C, and the base 19C.
 図12に示すように、第1衝撃吸収部15Cは、溝3Cに面する表面として、第1側面31Cと、第2側面33Cと、底面35Cと、第1接続面36Cと、第2接続面37Cと、を含む。第1側面31C及び第2側面33Cは、軸方向に対して垂直である。すなわち、第2側面33Cは、第1側面31Cと平行である。底面35Cは、第1側面31Cと第2側面33Cとの間に位置する。第1側面31Cが底面35Cに対して後方に位置し、第2側面33Cが底面35Cに対して前方に位置する。底面35Cは曲面である。第1接続面36Cは、第1側面31Cと底面35Cとを繋ぐ曲面である。第2接続面37Cは、第2側面33Cと底面35Cとを繋ぐ曲面である。 As shown in FIG. 12, the first impact absorbing portion 15C has a first side 31C, a second side 33C, a bottom 35C, a first connection surface 36C, and a second connection surface as surfaces facing the groove 3C. And 37C. The first side surface 31C and the second side surface 33C are perpendicular to the axial direction. That is, the second side surface 33C is parallel to the first side surface 31C. The bottom surface 35C is located between the first side 31C and the second side 33C. The first side surface 31C is located rearward with respect to the bottom surface 35C, and the second side surface 33C is located forward with respect to the bottom surface 35C. The bottom surface 35C is a curved surface. The first connection surface 36C is a curved surface connecting the first side surface 31C and the bottom surface 35C. The second connection surface 37C is a curved surface connecting the second side surface 33C and the bottom surface 35C.
 溝3Cの最大幅WCは、1mm以上3mm以下であることが好ましい。溝3Cの最大幅WCは、第1衝撃吸収部15Cが曲がった場合に第1衝撃吸収部15Cが破断しないように設定される。溝3Cの最大幅WCは、第1衝撃吸収部15Cが曲がった場合に、第1衝撃吸収部15Cが破断する前に隣接する凸部4Cが接するように設定される。図12に示す断面において、第1接続面36C及び第2接続面37Cは同じ円弧(以下、第1円弧という)を描く。第1円弧の曲率半径C1Cは、0.2mm以上1.0mm以下であることが好ましい。例えば、第2実施形態における曲率半径C1Cは0.3mmである。 The maximum width WC of the groove 3C is preferably 1 mm or more and 3 mm or less. The maximum width WC of the groove 3C is set so that the first shock absorber 15C does not break when the first shock absorber 15C bends. The maximum width WC of the groove 3C is set such that, when the first impact absorbing portion 15C is bent, adjacent convex portions 4C are in contact before the first impact absorbing portion 15C breaks. In the cross section shown in FIG. 12, the first connection surface 36C and the second connection surface 37C draw the same arc (hereinafter referred to as a first arc). The radius of curvature C1C of the first arc is preferably 0.2 mm or more and 1.0 mm or less. For example, the curvature radius C1C in the second embodiment is 0.3 mm.
 第1衝撃吸収部15Cは、例えば300Nmのトルクを伝達できるように設計される。中間シャフト85CがS35Cで形成される場合、溝3Cの底に対応する位置における第1衝撃吸収部15Cの直径D2Cは、14mm以上16mm以下程度となる。直径D2Cは、図12に示す溝3Cの深さHCにより決まる。 The first shock absorber 15C is designed to transmit, for example, a torque of 300 Nm. When the intermediate shaft 85C is formed of S35C, the diameter D2C of the first shock absorber 15C at a position corresponding to the bottom of the groove 3C is about 14 mm or more and 16 mm or less. The diameter D2C is determined by the depth HC of the groove 3C shown in FIG.
 図14は、曲がった後の中間シャフトの斜視図である。車両の1次衝突時においてステアリングギヤ88に荷重が加わる。ステアリングギヤ88に加わった荷重により中間シャフト85Cには曲げ応力が生じる。この時、第1接続面36C及び第2接続面37Cに応力集中が生じることで、第1接続面36C及び第2接続面37Cを起点として第1衝撃吸収部15Cが曲がる。溝3Cの径方向における一方側が拡がり、溝3Cの径方向における他方側が縮む。溝3Cが縮む側においては、凸部4Cが隣接する凸部4Cに接する。曲がった中間シャフト85Cは、中間シャフト85Cの周辺部品の隙間に入り込む。第1衝撃吸収部15Cが曲がることにより、衝突による衝撃が吸収される。その結果、ステアリングホイール81に伝わる衝撃が低減する。 FIG. 14 is a perspective view of the intermediate shaft after bending. A load is applied to the steering gear 88 at the time of a primary collision of the vehicle. The load applied to the steering gear 88 generates bending stress on the intermediate shaft 85C. At this time, stress concentration occurs in the first connection surface 36C and the second connection surface 37C, and the first impact absorbing portion 15C is bent starting from the first connection surface 36C and the second connection surface 37C. One side of the groove 3C in the radial direction expands, and the other side of the groove 3C in the radial direction contracts. On the side where the groove 3C is contracted, the convex portion 4C is in contact with the adjacent convex portion 4C. The bent intermediate shaft 85C enters the clearance of the peripheral parts of the intermediate shaft 85C. By bending the first impact absorbing portion 15C, the impact due to the collision is absorbed. As a result, the shock transmitted to the steering wheel 81 is reduced.
 第1衝撃吸収部15Cは複数の溝3Cを備えるので、中間シャフト85Cに曲げ応力が作用すると、第1衝撃吸収部15Cの複数の部分で応力集中が生じる。このため、第1衝撃吸収部15Cの変形する部分の範囲が大きくなりやすいので、中間シャフト85Cの衝撃吸収能力が向上する。 Since the first impact absorbing portion 15C includes the plurality of grooves 3C, when bending stress acts on the intermediate shaft 85C, stress concentration occurs in the plurality of portions of the first impact absorbing portion 15C. For this reason, the range of the deformed portion of the first impact absorbing portion 15C is likely to be large, so that the impact absorbing capability of the intermediate shaft 85C is improved.
 図13に示すように、第2衝撃吸収部17Cは、小径部175Cと、第1接続部171Cと、第2接続部179Cと、を含む。小径部175Cは、円柱状である。小径部175Cの直径D3Cは、図11に示す直径D2Cよりも小さい。小径部175Cの軸方向の長さLCは、溝3Cの最大幅WCよりも大きい。第1接続部171Cは、基部16Cと小径部175Cとを接続する。第2接続部179Cは、基部19Cと小径部175Cとを接続する。図13に示す断面において、第1接続部171C及び第2接続部179Cの表面は同じ円弧(以下、第2円弧という)を描く。第2円弧の曲率半径C2Cは、第1円弧の曲率半径C1Cよりも大きい。曲率半径C2Cは、5mm以上であることが好ましい。例えば、曲率半径C2Cは8mmである。 As shown in FIG. 13, the second impact absorbing portion 17C includes a small diameter portion 175C, a first connection portion 171C, and a second connection portion 179C. The small diameter portion 175C is cylindrical. The diameter D3C of the small diameter portion 175C is smaller than the diameter D2C shown in FIG. The axial length LC of the small diameter portion 175C is larger than the maximum width WC of the groove 3C. The first connection portion 171C connects the base portion 16C and the small diameter portion 175C. The second connection portion 179C connects the base 19C and the small diameter portion 175C. In the cross section shown in FIG. 13, the surfaces of the first connection portion 171C and the second connection portion 179C draw the same arc (hereinafter, referred to as a second arc). The radius of curvature C2C of the second arc is larger than the radius of curvature C1C of the first arc. The curvature radius C2C is preferably 5 mm or more. For example, the radius of curvature C2C is 8 mm.
 第2衝撃吸収部17Cは、例えば150Nm以上250Nm以下程度のトルクで変形するように設計される。中間シャフト85CがS35Cで形成される場合、直径D3Cは、13mm以上15.5mm以下程度となる。例えば、第2実施形態において直径D3Cは、13mmである。 The second impact absorbing portion 17C is designed to be deformed by a torque of, for example, 150 Nm or more and 250 Nm or less. When the intermediate shaft 85C is formed of S35C, the diameter D3C is about 13 mm or more and 15.5 mm or less. For example, in the second embodiment, the diameter D3C is 13 mm.
 中間シャフト85Cには、1次衝突による曲げ応力が生じることがあると共に、車両が縁石へ乗り上げた場合等において大きなトルク(捩り力)が入力されることがある。このため、中間シャフト85Cには、大きなトルクを受けた時の破損を抑制し且つ1次衝突時に衝撃を吸収することができることが求められる。 The intermediate shaft 85C may generate bending stress due to the primary collision, and may receive a large torque (twisting force) when the vehicle runs on a curb or the like. Therefore, the intermediate shaft 85C is required to be able to suppress damage when receiving a large torque and to absorb an impact at the time of a primary collision.
 第2実施形態の中間シャフト85Cでは、直径D3Cが直径D2Cよりも小さい。このため、車両が縁石へ乗り上げた場合等において、第2衝撃吸収部17Cが変形する(捩れる)。第2衝撃吸収部17Cが変形することで、中間シャフト85Cに入力されたエネルギーが吸収される。第2衝撃吸収部17Cでエネルギーが吸収されるので、第1衝撃吸収部15Cの変形が抑制される。 In the intermediate shaft 85C of the second embodiment, the diameter D3C is smaller than the diameter D2C. For this reason, the second impact absorbing portion 17C is deformed (twisted) when the vehicle rides on a curb or the like. The deformation of the second impact absorbing portion 17C absorbs the energy input to the intermediate shaft 85C. Since energy is absorbed by the second impact absorbing portion 17C, deformation of the first impact absorbing portion 15C is suppressed.
 一方、第2実施形態の中間シャフト85Cにおいては、曲率半径C2Cが曲率半径C1Cよりも大きい。このため、1次衝突時に中間シャフト85Cに曲げ応力が生じると、第2衝撃吸収部17Cではなく第1衝撃吸収部15Cが変形する(曲がる)。 On the other hand, in the middle shaft 85C of the second embodiment, the curvature radius C2C is larger than the curvature radius C1C. For this reason, when bending stress is generated in the intermediate shaft 85C at the time of the primary collision, the first impact absorbing portion 15C, not the second impact absorbing portion 17C, is deformed (bent).
 以上で説明したように、ステアリング装置80Cは、第1ユニバーサルジョイント84と、第1ユニバーサルジョイント84より前方側に配置される第2ユニバーサルジョイント86と、第1ユニバーサルジョイント84と第2ユニバーサルジョイント86とを連結する中実部材である中間シャフト85Cと、を備える。中間シャフト85Cは、外周面に溝3Cを備える第1衝撃吸収部15Cと、溝3Cの底に対応する位置における第1衝撃吸収部15Cの直径D2Cよりも小さい直径D3Cを有する第2衝撃吸収部17Cと、を備える。 As described above, the steering device 80C includes the first universal joint 84, the second universal joint 86 disposed forward of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85C which is a solid member connecting the two. The intermediate shaft 85C has a first impact absorbing portion 15C having a groove 3C on the outer peripheral surface, and a second impact absorbing portion having a diameter D3C smaller than the diameter D2C of the first impact absorbing portion 15C at a position corresponding to the bottom of the groove 3C. And 17C.
 これにより、第1衝撃吸収部15Cの形成に際して金型が不要であるので、第1衝撃吸収部15Cの形成が容易となる。また、第1衝撃吸収部15Cの変形特性は、第1衝撃吸収部15Cの溝3Cの形状に応じて変化する。溝3Cの形状を変更することは容易であるため、第1衝撃吸収部15Cの変形特性の調整は容易である。したがって、ステアリング装置80Cは、容易に製造でき且つ容易に変形特性を変更することができる中間シャフト85Cにより衝撃を吸収することができる。 As a result, no mold is required when forming the first impact absorbing portion 15C, so the formation of the first impact absorbing portion 15C is facilitated. Also, the deformation characteristics of the first impact absorbing portion 15C change in accordance with the shape of the groove 3C of the first impact absorbing portion 15C. Since it is easy to change the shape of the groove 3C, it is easy to adjust the deformation characteristics of the first shock absorber 15C. Therefore, the steering device 80C can absorb an impact by the intermediate shaft 85C which can be easily manufactured and can easily change its deformation characteristics.
 さらに、中間シャフト85Cに大きなトルクが作用した場合、第2衝撃吸収部17Cが変形することでエネルギーが吸収される。一方、第1衝撃吸収部15Cの変形は抑制される。このため、第1衝撃吸収部15Cの設計された変形特性が保たれる。その結果、車両の衝突が生じた時に、中間シャフト85Cは所定の衝撃吸収能力を発揮することができる。 Furthermore, when a large torque acts on the intermediate shaft 85C, energy is absorbed by the deformation of the second impact absorbing portion 17C. On the other hand, the deformation of the first shock absorber 15C is suppressed. For this reason, the designed deformation characteristics of the first shock absorber 15C are maintained. As a result, when a collision of a vehicle occurs, the intermediate shaft 85C can exhibit a predetermined shock absorbing capability.
 また、径方向に対して垂直な平面で中間シャフト85Cを切った断面において、溝3Cに面する第1衝撃吸収部15Cの表面の少なくとも一部が第1円弧を描き、第2衝撃吸収部17Cの表面の少なくとも一部が第2円弧を描く。第2円弧の曲率半径C2Cは、第1円弧の曲率半径C1Cよりも大きい。 Further, in a cross section obtained by cutting the intermediate shaft 85C in a plane perpendicular to the radial direction, at least a portion of the surface of the first shock absorber 15C facing the groove 3C draws a first arc, and the second shock absorber 17C At least a portion of the surface of the circle draws a second arc. The radius of curvature C2C of the second arc is larger than the radius of curvature C1C of the first arc.
 これにより、中間シャフト85Cに曲げ応力が作用した時、第1衝撃吸収部15Cに応力集中が生じやすくなる。このため、中間シャフト85Cが、第2衝撃吸収部17Cではなく第1衝撃吸収部15Cを起点として曲がる。したがって、車両の衝突が生じた時に、中間シャフト85Cは所定の衝撃吸収能力を発揮することができる。 As a result, when bending stress acts on the intermediate shaft 85C, stress concentration tends to occur in the first impact absorbing portion 15C. Therefore, the intermediate shaft 85C bends not from the second impact absorbing portion 17C but from the first impact absorbing portion 15C. Therefore, when a collision of a vehicle occurs, the intermediate shaft 85C can exhibit a predetermined shock absorbing capability.
(第3実施形態)
 図15は、第3実施形態のステアリング装置の斜視図である。図16は、第3実施形態の中間シャフトの側面図である。図17は、図16におけるD-D断面図である。図18は、図17における溝の周辺部の拡大図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Third Embodiment
FIG. 15 is a perspective view of the steering device of the third embodiment. FIG. 16 is a side view of the intermediate shaft of the third embodiment. FIG. 17 is a cross-sectional view taken along the line DD in FIG. FIG. 18 is an enlarged view of the periphery of the groove in FIG. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 中間シャフト85Dは、略円柱状の中実部材である。例えば、中間シャフト85Dは、機械構造用炭素鋼(SC材)であるS35Cで形成される。図16に示すように、中間シャフト85Dは、基部11Dと、衝撃吸収部15Dと、基部19Dと、を備える。 The intermediate shaft 85D is a substantially cylindrical solid member. For example, the intermediate shaft 85D is formed of S35C which is carbon steel for machine structure (SC material). As shown in FIG. 16, the intermediate shaft 85D includes a base 11D, a shock absorber 15D, and a base 19D.
 基部11Dは、第1ユニバーサルジョイント84に接続される。基部11Dの直径は一定である。衝撃吸収部15Dは、基部11Dの前方に位置する。衝撃吸収部15Dは、中間シャフト85Dの軸方向において、中間シャフト85Dの中央に位置する。基部19Dは、第2ユニバーサルジョイント86に接続される。基部19Dの直径は一定であり、基部11Dの直径に等しい。 The base 11D is connected to the first universal joint 84. The diameter of the base 11D is constant. The shock absorbing portion 15D is located in front of the base 11D. The shock absorbing portion 15D is located at the center of the intermediate shaft 85D in the axial direction of the intermediate shaft 85D. The base 19D is connected to the second universal joint 86. The diameter of the base 19D is constant and equal to the diameter of the base 11D.
 以下の説明において、中間シャフト85Dの軸方向は単に軸方向と記載され、軸方向に対して直交する方向は径方向と記載される。図17及び図18は、径方向に対して直交する平面で中間シャフト85Dを切った断面である。 In the following description, the axial direction of the intermediate shaft 85D is simply described as the axial direction, and the direction orthogonal to the axial direction is described as the radial direction. FIGS. 17 and 18 are cross sections of the intermediate shaft 85D cut in a plane orthogonal to the radial direction.
 図17に示すように、衝撃吸収部15Dは、複数の溝3Dと、複数の凸部4Dと、を備える。溝3Dは環状である。溝3Dは、例えば切削により形成される。複数の溝3Dは、軸方向で等間隔に配置されている。凸部4Dは、2つの溝3Dの間に位置する。凸部4Dに対応する位置における衝撃吸収部15Dの直径D1は、基部11D及び基部19Dの直径に等しい。 As shown in FIG. 17, the impact absorbing portion 15D includes a plurality of grooves 3D and a plurality of convex portions 4D. The grooves 3D are annular. The grooves 3D are formed by cutting, for example. The plurality of grooves 3D are arranged at equal intervals in the axial direction. The protrusion 4D is located between the two grooves 3D. The diameter D1 of the impact absorbing portion 15D at the position corresponding to the convex portion 4D is equal to the diameters of the base 11D and the base 19D.
 図17に示すように、複数の溝3Dは、溝3aDと、溝3bDと、溝3cDと、溝3dDと、溝3eDと、溝3fDと、溝3gDと、溝3hDと、溝3iDと、溝3jDと、溝3kDと、を含む。衝撃吸収部15Dの後方端部から前方端部に向かって溝3aDから溝3kDが並んでいる。溝3fDは、軸方向において衝撃吸収部15Dの中央に位置する。 As shown in FIG. 17, the plurality of grooves 3D are a groove 3aD, a groove 3bD, a groove 3cD, a groove 3dD, a groove 3eD, a groove 3fD, a groove 3gD, a groove 3hD, a groove 3iD, and a groove 3jD and a groove 3kD. Grooves 3aD to 3kD line up from the rear end to the front end of the impact absorbing portion 15D. The groove 3fD is located at the center of the shock absorber 15D in the axial direction.
 溝3kDの形状は、溝3aDの形状と同じである。溝3jDの形状は、溝3bDの形状と同じである。溝3iDの形状は、溝3cDの形状と同じである。溝3hDの形状は、溝3dDの形状と同じである。溝3gDの形状は、溝3eDの形状と同じである。図17に示すように、溝3aDから溝3kDの底に対応する位置における衝撃吸収部15Dの直径を、直径DaDから直径DkDとする。直径DaDから直径DkDのうち、直径DfDが最も大きく、直径DaD及び直径DkDが最も小さい。1つの溝3Dの底に対応する位置における衝撃吸収部15Dの直径は、当該溝3Dよりも軸方向で中間シャフト85Dの中央側に位置する他の溝3Dの底に対応する位置における衝撃吸収部15Dの直径よりも小さい。 The shape of the groove 3kD is the same as the shape of the groove 3aD. The shape of the groove 3jD is the same as the shape of the groove 3bD. The shape of the groove 3iD is the same as the shape of the groove 3cD. The shape of the groove 3hD is the same as the shape of the groove 3dD. The shape of the groove 3gD is the same as the shape of the groove 3eD. As shown in FIG. 17, the diameter of the impact absorbing portion 15D at a position corresponding to the groove 3aD to the bottom of the groove 3kD is from the diameter DaD to the diameter DkD. Among the diameter DaD to the diameter DkD, the diameter DfD is the largest, and the diameter DaD and the diameter DkD are the smallest. The diameter of the shock absorber 15D at a position corresponding to the bottom of one groove 3D is the shock absorber at a position corresponding to the bottom of another groove 3D located axially on the center side of the intermediate shaft 85D than the groove 3D. Less than 15D diameter.
 図18に示すように、衝撃吸収部15Dは、溝3Dに面する表面として、第1側面31Dと、第2側面33Dと、底面35Dと、第1接続面36Dと、第2接続面37Dと、を含む。図18は溝3fDを示すが、溝3aDから溝3eD及び溝3gDから溝3kDについても深さを除き同様の構成を有する。第1側面31D及び第2側面33Dは、軸方向に対して垂直である。すなわち、第2側面33Dは、第1側面31Dと平行である。底面35Dは、第1側面31Dと第2側面33Dとの間に位置する。第1側面31Dが底面35Dに対して後方に位置し、第2側面33Dが底面35Dに対して前方に位置する。底面35Dは曲面である。第1接続面36Dは、第1側面31Dと底面35Dとを繋ぐ曲面である。第2接続面37Dは、第2側面33Dと底面35Dとを繋ぐ曲面である。 As shown in FIG. 18, the shock absorbing portion 15D has a first side 31D, a second side 33D, a bottom 35D, a first connection surface 36D, and a second connection surface 37D as surfaces facing the groove 3D. ,including. FIG. 18 shows the groove 3fD, but the grooves 3aD to 3eD and the grooves 3gD to 3kD have the same structure except for the depth. The first side surface 31D and the second side surface 33D are perpendicular to the axial direction. That is, the second side surface 33D is parallel to the first side surface 31D. The bottom surface 35D is located between the first side 31D and the second side 33D. The first side surface 31D is located rearward with respect to the bottom surface 35D, and the second side surface 33D is located forward with respect to the bottom surface 35D. The bottom surface 35D is a curved surface. The first connection surface 36D is a curved surface connecting the first side surface 31D and the bottom surface 35D. The second connection surface 37D is a curved surface connecting the second side surface 33D and the bottom surface 35D.
 溝3Dの最大幅WDは、1mm以上3mm以下であることが好ましい。溝3Dの最大幅WDは、衝撃吸収部15Dが曲がった場合に衝撃吸収部15Dが破断しないように設定される。溝3Dの最大幅WDは、衝撃吸収部15Dが曲がった場合に、衝撃吸収部15Dが破断する前に隣接する凸部4Dが接するように設定される。図18に示す断面において、第1接続面36D及び第2接続面37Dは同じ円弧を描く。第1接続面36D及び第2接続面37Dが描く円弧の曲率半径C1Dは、0.2mm以上1.0mm以下であることが好ましい。例えば、本実施形態における曲率半径C1Dは0.3mmである。 The maximum width WD of the groove 3D is preferably 1 mm or more and 3 mm or less. The maximum width WD of the groove 3D is set so that the shock absorber 15D does not break when the shock absorber 15D is bent. The maximum width WD of the groove 3D is set such that, when the shock absorbing portion 15D is bent, adjacent convex portions 4D are in contact before the shock absorbing portion 15D breaks. In the cross section shown in FIG. 18, the first connection surface 36D and the second connection surface 37D draw the same arc. The curvature radius C1D of the arc drawn by the first connection surface 36D and the second connection surface 37D is preferably 0.2 mm or more and 1.0 mm or less. For example, the curvature radius C1D in the present embodiment is 0.3 mm.
 衝撃吸収部15Dは、例えば300Nmのトルクを伝達できるように設計される。中間シャフト85DがS35Cで形成される場合、直径DaD及び直径DkDは、14mm以上16mm以下程度となる。 The shock absorber 15D is designed to transmit, for example, a torque of 300 Nm. When the intermediate shaft 85D is formed of S35C, the diameter DaD and the diameter DkD are about 14 mm or more and 16 mm or less.
 図19は、曲がった後の中間シャフトの斜視図である。車両の1次衝突時においてステアリングギヤ88に荷重が加わる。ステアリングギヤ88に加わった荷重により中間シャフト85Dには曲げ応力が生じる。この時、第1接続面36D及び第2接続面37Dに応力集中が生じることで、第1接続面36D及び第2接続面37Dを起点として衝撃吸収部15Dが曲がる。溝3Dの径方向における一方側が拡がり、溝3Dの径方向における他方側が縮む。溝3Dが縮む側においては、凸部4Dが隣接する凸部4Dに接する。曲がった中間シャフト85Dは、中間シャフト85Dの周辺部品の隙間に入り込む。衝撃吸収部15Dが曲がることにより、衝突による衝撃が吸収される。その結果、ステアリングホイール81に伝わる衝撃が低減する。 FIG. 19 is a perspective view of the intermediate shaft after bending. A load is applied to the steering gear 88 at the time of a primary collision of the vehicle. The load applied to the steering gear 88 generates bending stress on the intermediate shaft 85D. At this time, stress concentration occurs in the first connection surface 36D and the second connection surface 37D, so that the impact absorbing portion 15D is bent starting from the first connection surface 36D and the second connection surface 37D. One side of the groove 3D in the radial direction expands, and the other side of the groove 3D in the radial direction contracts. On the side where the groove 3D is contracted, the convex portion 4D is in contact with the adjacent convex portion 4D. The bent intermediate shaft 85D enters the clearance of the peripheral parts of the intermediate shaft 85D. By the impact absorbing portion 15D being bent, the impact due to the collision is absorbed. As a result, the shock transmitted to the steering wheel 81 is reduced.
 衝撃吸収部15Dは複数の溝3Dを備えるので、中間シャフト85Dに曲げ応力が作用すると、衝撃吸収部15Dの複数の部分で応力集中が生じる。このため、衝撃吸収部15Dの変形する部分の範囲が大きくなりやすいので、中間シャフト85Dの衝撃吸収能力が向上する。 Since the impact absorbing portion 15D includes the plurality of grooves 3D, when bending stress acts on the intermediate shaft 85D, stress concentration occurs in a plurality of portions of the impact absorbing portion 15D. As a result, the range of the deformed portion of the shock absorbing portion 15D tends to be large, so that the shock absorbing ability of the intermediate shaft 85D is improved.
 図20は、比較例の中間シャフトが曲がる時の変位と荷重の関係を示すグラフである。図21は、第3実施形態の中間シャフトが曲がる時の変位と荷重の関係を示すグラフである。なお、図20及び図21は、比較例と第3実施形態との相違を説明するための概念図である。 FIG. 20 is a graph showing the relationship between displacement and load when the intermediate shaft of the comparative example is bent. FIG. 21 is a graph showing the relationship between displacement and load when the intermediate shaft of the third embodiment bends. 20 and 21 are conceptual diagrams for explaining the difference between the comparative example and the third embodiment.
 比較例は、全ての溝3Dが同じ形状を有する点で第3実施形態と異なる。すなわち、比較例においては、溝3Dの底に対応する位置における衝撃吸収部15Dの直径が一定である。ステアリングギヤ88に加わる荷重により中間シャフト85Dに作用する曲げモーメントの大きさは、軸方向の位置によって異なる。曲げモーメントは、軸方向における中間シャフト85Dの中央で最大となり、端部に向かうにしたがって小さくなる。このため、比較例においては、衝撃吸収部15Dの中央を曲げるために要する荷重よりも、衝撃吸収部15Dの端部を曲げるために要する荷重の方が大きくなる。その結果、図20に示すように、衝撃吸収部15Dの中央が曲がった後、衝撃吸収部15Dの変位が大きくなるにつれて衝撃吸収部15Dを曲げるために要する荷重が大きくなる。 The comparative example is different from the third embodiment in that all the grooves 3D have the same shape. That is, in the comparative example, the diameter of the impact absorbing portion 15D at a position corresponding to the bottom of the groove 3D is constant. The magnitude of the bending moment acting on the intermediate shaft 85D due to the load applied to the steering gear 88 varies depending on the axial position. The bending moment is maximum at the center of the intermediate shaft 85D in the axial direction and decreases toward the end. For this reason, in the comparative example, the load required to bend the end of the impact absorbing portion 15D is larger than the load required to bend the center of the impact absorbing portion 15D. As a result, as shown in FIG. 20, after the center of the shock absorbing portion 15D is bent, the load required to bend the shock absorbing portion 15D increases as the displacement of the shock absorbing portion 15D increases.
 これに対して、第3実施形態においては、1つの溝3Dの底に対応する位置における衝撃吸収部15Dの直径は、当該溝3Dよりも軸方向で中間シャフト85Dの中央側に位置する他の溝3Dの底に対応する位置における衝撃吸収部15Dの直径よりも小さい。したがって、衝撃吸収部15Dの中央を曲げるために要する荷重と、衝撃吸収部15Dの端部を曲げるために要する荷重との差が小さくなる。その結果、図21に示すように、衝撃吸収部15Dの一部が曲がった後、衝撃吸収部15Dの他の部分を曲げるために要する荷重に変化が生じにくい。すなわち、中間シャフト85Dを変形させるために要する荷重のバラツキが抑制される。 On the other hand, in the third embodiment, the diameter of the shock absorbing portion 15D at the position corresponding to the bottom of one groove 3D is the other one located axially on the center side of the intermediate shaft 85D than the groove 3D. The diameter is smaller than the diameter of the shock absorber 15D at a position corresponding to the bottom of the groove 3D. Therefore, the difference between the load required to bend the center of the impact absorbing portion 15D and the load required to bend the end of the impact absorbing portion 15D is reduced. As a result, as shown in FIG. 21, after a portion of the shock absorbing portion 15D is bent, the load required to bend the other portion of the shock absorbing portion 15D hardly changes. That is, variation in load required to deform the intermediate shaft 85D is suppressed.
 なお、衝撃吸収部15Dが備える溝3Dの数は、必ずしも図に示すような数でなくてもよい。衝撃吸収部15Dは少なくとも2つの溝3Dを有していればよい。 The number of grooves 3D provided in the impact absorbing portion 15D may not necessarily be as shown in the drawing. The shock absorbing portion 15D may have at least two grooves 3D.
 なお、凸部4Dに対応する位置における衝撃吸収部15Dの直径D1は、必ずしも基部11Dの直径に等しくなくてもよい。直径D1は、少なくとも溝3fDの底に対応する位置における衝撃吸収部15Dの直径DfDよりも大きければよい。直径D1は、基部11Dの直径よりも小さくてもよいし、基部11Dの直径よりも大きくてもよい。 The diameter D1 of the impact absorbing portion 15D at the position corresponding to the convex portion 4D may not necessarily be equal to the diameter of the base 11D. The diameter D1 may be larger than the diameter DfD of the shock absorber 15D at a position corresponding to at least the bottom of the groove 3fD. The diameter D1 may be smaller than the diameter of the base 11D or larger than the diameter of the base 11D.
 以上で説明したように、ステアリング装置80Dは、第1ユニバーサルジョイント84と、第1ユニバーサルジョイント84より前方側に配置される第2ユニバーサルジョイント86と、第1ユニバーサルジョイント84と第2ユニバーサルジョイント86とを連結する中実部材である中間シャフト85Dと、を備える。中間シャフト85Dは、外周面に第1溝(例えば溝3aD)及び第2溝(例えば溝3fD)を有する衝撃吸収部15Dを備える。第2溝の底に対応する位置における衝撃吸収部15Dの直径(例えば直径DfD)は、第1溝の底に対応する位置における衝撃吸収部15Dの直径(例えば直径DaD)とは異なる。 As described above, the steering device 80D includes the first universal joint 84, the second universal joint 86 disposed forward of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85D which is a solid member connecting the two. The intermediate shaft 85D includes an impact absorbing portion 15D having a first groove (for example, a groove 3aD) and a second groove (for example, a groove 3fD) on the outer peripheral surface. The diameter (for example, diameter DfD) of impact absorbing portion 15D at the position corresponding to the bottom of the second groove is different from the diameter (for example, diameter DaD) of impact absorbing portion 15D at the position corresponding to the bottom of the first groove.
 これにより、衝撃吸収部15Dの形成に際して金型が不要であるので、衝撃吸収部15Dの形成が容易となる。また、衝撃吸収部15Dの変形特性は、衝撃吸収部15Dの溝3Dの形状に応じて変化する。溝3Dの形状を変更することは容易であるため、衝撃吸収部15Dの変形特性の調整は容易である。したがって、ステアリング装置80Dは、容易に製造でき且つ容易に変形特性を変更することができる中間シャフト85Dにより衝撃を吸収することができる。 As a result, no mold is required when forming the impact absorbing portion 15D, so the formation of the impact absorbing portion 15D is facilitated. Further, the deformation characteristics of the shock absorbing portion 15D change according to the shape of the groove 3D of the shock absorbing portion 15D. Since it is easy to change the shape of the groove 3D, it is easy to adjust the deformation characteristics of the impact absorbing portion 15D. Accordingly, the steering device 80D can absorb an impact by means of the intermediate shaft 85D which can be easily manufactured and whose deformation characteristics can be easily changed.
 さらに、ステアリング装置80Dにおいては、衝撃吸収部15Dの第1溝に対応する部分の断面係数と、第2溝に対応する部分の断面係数とを異ならせることが可能である。このため、衝撃吸収部15Dの各断面における曲げ応力の調整が可能である。 Furthermore, in the steering device 80D, it is possible to make the section coefficient of the portion corresponding to the first groove of the impact absorbing portion 15D different from the section coefficient of the portion corresponding to the second groove. For this reason, adjustment of the bending stress in each cross section of impact-absorbing part 15D is possible.
 また、ステアリング装置80Dにおいては、第2溝(例えば溝3fD)は、第1溝(例えば溝3aD)に対して、中間シャフト85Dの軸方向において中間シャフト85Dの中央側に位置する。第2溝の底に対応する位置における衝撃吸収部15Dの直径(例えば直径DfD)は、第1溝の底に対応する位置における衝撃吸収部15Dの直径(例えば直径DaD)よりも大きい。 In the steering device 80D, the second groove (for example, the groove 3fD) is located on the center side of the intermediate shaft 85D in the axial direction of the intermediate shaft 85D with respect to the first groove (for example, the groove 3aD). The diameter (for example, the diameter DfD) of the impact absorbing portion 15D at a position corresponding to the bottom of the second groove is larger than the diameter (for example, the diameter DaD) of the impact absorbing portion 15D at a position corresponding to the bottom of the first groove.
 このため、衝撃吸収部15Dの第1溝に対応する部分を曲げるために要する荷重と、衝撃吸収部15Dの第2溝に対応する部分を曲げるために要する荷重との差が小さくなる。したがって、中間シャフト85Dを変形させるために要する荷重のバラツキが抑制される。 Therefore, the difference between the load required to bend the portion corresponding to the first groove of the impact absorbing portion 15D and the load required to bend the portion corresponding to the second groove of the impact absorbing portion 15D is reduced. Therefore, the variation in load required to deform the intermediate shaft 85D is suppressed.
 また、ステアリング装置80Dにおいては、第1溝(例えば溝3aD)及び第2溝(例えば溝3fD)は、環状である。 Further, in the steering device 80D, the first groove (for example, the groove 3aD) and the second groove (for example, the groove 3fD) are annular.
 これにより、中間シャフト85Dの曲がる方向が限定されにくくなる。 This makes it difficult to limit the bending direction of the intermediate shaft 85D.
 また、ステアリング装置80Dにおいては、第1溝(例えば溝3aD)及び第2溝(例えば溝3fD)の最大幅WDは1mm以上3mm以下である。径方向に対して垂直な平面で中間シャフト85Dを切った断面において、第1溝に面する衝撃吸収部15Dの表面の少なくとも一部、及び第2溝に面する衝撃吸収部15Dの表面の少なくとも一部は、曲率半径が0.2mm以上1.0mm以下である円弧を描く。 Further, in the steering device 80D, the maximum widths WD of the first groove (for example, the groove 3aD) and the second groove (for example, the groove 3fD) are 1 mm or more and 3 mm or less. In a cross section obtained by cutting the intermediate shaft 85D in a plane perpendicular to the radial direction, at least a part of the surface of the shock absorbing portion 15D facing the first groove and at least the surface of the shock absorbing portion 15D facing the second groove One part draws the circular arc whose curvature radius is 0.2 mm or more and 1.0 mm or less.
 これにより、衝撃吸収部15Dにおいて極端な応力集中が生じなくなり、且つ衝撃吸収部15Dが曲がり易くなる。 As a result, extreme stress concentration does not occur in the impact absorbing portion 15D, and the impact absorbing portion 15D is easily bent.
(第3実施形態の第1変形例)
 図22は、第3実施形態の第1変形例の中間シャフトにおける衝撃吸収部の側面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
First Modification of Third Embodiment
FIG. 22 is a side view of an impact absorbing portion in the intermediate shaft of the first modified example of the third embodiment. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図22に示すように、第3実施形態の第1変形例の衝撃吸収部15Eは、複数の溝3aEを備える。複数の溝3Eは、溝3aEと、溝3bEと、溝3cEと、溝3dEと、溝3eEと、を含む。溝3aEから溝3eEは、それぞれ螺旋状である。溝3aEから溝3eEは、繋がっていてもよいし、別々の溝であってもよい。図22に示すように、溝3aEから溝3eEの底に対応する位置における衝撃吸収部15Eの半径を、半径RaEから半径RaEとする。半径RaEから半径ReEのうち、半径RcEが最も大きく、半径RaE及び半径ReEが最も小さい。1つの溝3Eの底に対応する位置における衝撃吸収部15Eの直径は、当該溝3Eよりも軸方向で中間シャフト85Dの中央側に位置する他の溝3Eの底に対応する位置における衝撃吸収部15Eの直径よりも小さい。上述した溝3Dの最大幅WD及び曲率半径C1Dの説明は、溝3aEから溝3eEに対しても適用できる。 As shown in FIG. 22, the impact absorbing portion 15E of the first modified example of the third embodiment includes a plurality of grooves 3aE. The plurality of grooves 3E include a groove 3aE, a groove 3bE, a groove 3cE, a groove 3dE, and a groove 3eE. The grooves 3aE to 3eE are each in a spiral shape. The grooves 3aE to 3eE may be connected or may be separate grooves. As shown in FIG. 22, the radius of the shock absorbing portion 15E at a position corresponding to the groove 3aE to the bottom of the groove 3eE is set from a radius RaE to a radius RaE. Among the radius RaE to the radius ReE, the radius RcE is the largest, and the radius RaE and the radius ReE are the smallest. The diameter of the shock absorber 15E at a position corresponding to the bottom of one groove 3E is the shock absorber at a position corresponding to the bottom of another groove 3E located axially on the center side of the intermediate shaft 85D with respect to the groove 3E. Less than 15E diameter. The description of the maximum width WD and the curvature radius C1D of the groove 3D described above can be applied to the groove 3aE to the groove 3eE.
 これにより、中間シャフト85Eの曲がる方向が限定されにくくなる。 This makes it difficult to limit the bending direction of the intermediate shaft 85E.
(第3実施形態の第2変形例)
 図23は、第3実施形態の第2変形例の中間シャフトを示す側面図である。図24は、図23におけるE-E断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Second Modified Example of Third Embodiment
FIG. 23 is a side view showing an intermediate shaft of a second modified example of the third embodiment. FIG. 24 is a cross-sectional view taken along line EE in FIG. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図23に示すように、第3実施形態の第2変形例における衝撃吸収部15Fは、軸方向において中間シャフト85Fの中央よりも後方側に寄っている。より具体的には、衝撃吸収部15Fの前方端部が、軸方向において中間シャフト85Fの中央よりも後方側に位置する。衝撃吸収部15Fは、複数の溝3Fを備える。 As shown in FIG. 23, the impact absorbing portion 15F in the second modification of the third embodiment is closer to the rear side than the center of the intermediate shaft 85F in the axial direction. More specifically, the front end of the shock absorbing portion 15F is located rearward of the center of the intermediate shaft 85F in the axial direction. The shock absorbing portion 15F includes a plurality of grooves 3F.
 図24に示すように、複数の溝3Fは、溝3aFと、溝3bFと、溝3cFと、溝3dFと、溝3eFと、溝3fFと、を含む。衝撃吸収部15Fの後方端部から前方端部に向かって溝3aFから溝3fFが並んでいる。図24に示すように、溝3aFから溝3fFの底に対応する位置における衝撃吸収部15Fの直径を、直径DaFから直径DfFとする。直径DaFから直径DfFのうち、直径DfFが最も大きく、直径DaFが最も小さい。1つの溝3Fの底に対応する位置における衝撃吸収部15Fの直径は、当該溝3Fよりも軸方向で中間シャフト85Fの中央側に位置する他の溝3Fの底に対応する位置における衝撃吸収部15Fの直径よりも小さい。 As shown in FIG. 24, the plurality of grooves 3F include grooves 3aF, grooves 3bF, grooves 3cF, grooves 3dF, grooves 3eF, and grooves 3fF. Grooves 3aF to 3fF are arranged from the rear end to the front end of the shock absorbing portion 15F. As shown in FIG. 24, the diameter of the shock absorbing portion 15F at the position corresponding to the groove 3aF to the bottom of the groove 3fF is set from the diameter DaF to the diameter DfF. Among the diameter DaF to the diameter DfF, the diameter DfF is the largest and the diameter DaF is the smallest. The diameter of the shock absorbing portion 15F at a position corresponding to the bottom of one groove 3F is the shock absorbing portion at a position corresponding to the bottom of another groove 3F located on the center side of the intermediate shaft 85F in the axial direction than the groove 3F. Less than 15F diameter.
(第3実施形態の第3変形例)
 図25は、第3実施形態の第3変形例の中間シャフトの側面図である。図26は、図25におけるF-F断面図である。図27は、衝撃吸収部の中央に位置する溝の断面図である。図28は、衝撃吸収部の端部に位置する溝の断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Third Modified Example of Third Embodiment
FIG. 25 is a side view of an intermediate shaft of a third modified example of the third embodiment. FIG. 26 is a cross-sectional view along the line FF in FIG. FIG. 27 is a cross-sectional view of a groove located at the center of the shock absorbing portion. FIG. 28 is a cross-sectional view of a groove located at the end of the shock absorbing part. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図25に示すように、第3実施形態の第3変形例の衝撃吸収部15Gは、軸方向において中間シャフト85Gの中央に位置する。衝撃吸収部15Gは、複数の溝3Gを備える。 As shown in FIG. 25, the shock absorbing portion 15G of the third modified example of the third embodiment is located at the center of the intermediate shaft 85G in the axial direction. The shock absorbing portion 15G includes a plurality of grooves 3G.
 図26に示すように、複数の溝3Gは、溝3aGと、溝3bGと、溝3cGと、溝3dGと、溝3eGと、溝3fGと、溝3gGと、溝3hGと、溝3iGと、溝3jGと、溝3kGと、を含む。衝撃吸収部15Gの後方端部から前方端部に向かって溝3aGから溝3kGが軸方向に並んでいる。溝3fGは、軸方向において衝撃吸収部15Gの中央に位置する。 As shown in FIG. 26, the plurality of grooves 3G are a groove 3aG, a groove 3bG, a groove 3cG, a groove 3dG, a groove 3eG, a groove 3fG, a groove 3gG, a groove 3hG, a groove 3iG, and a groove 3jG and grooves 3kG. A groove 3aG to a groove 3kG are axially aligned from the rear end to the front end of the shock absorbing portion 15G. The groove 3fG is located at the center of the shock absorbing portion 15G in the axial direction.
 溝3kGの形状は、溝3aGの形状と同じである。溝3jGの形状は、溝3bGの形状と同じである。溝3iGの形状は、溝3cGの形状と同じである。溝3hGの形状は、溝3dGの形状と同じである。溝3gGの形状は、溝3eGの形状と同じである。 The shape of the groove 3kG is the same as the shape of the groove 3aG. The shape of the groove 3jG is the same as the shape of the groove 3bG. The shape of the groove 3iG is the same as the shape of the groove 3cG. The shape of the groove 3hG is the same as the shape of the groove 3dG. The shape of the groove 3gG is the same as the shape of the groove 3eG.
 図27に示すように、衝撃吸収部15Gは、溝3fGに面する表面として、第1接続面36fGと、第2接続面37fGと、を含む。図28に示すように、衝撃吸収部15Gは、溝3aGに面する表面として、第1接続面36aGと、第2接続面37aGと、を含む。溝3bGから溝3eG及び溝3gGから溝3kGについても第1接続面及び第2接続面の形状を除き同様の構成を有する。 As shown in FIG. 27, the shock absorbing portion 15G includes a first connection surface 36fG and a second connection surface 37fG as a surface facing the groove 3fG. As shown in FIG. 28, the shock absorbing portion 15G includes a first connection surface 36aG and a second connection surface 37aG as surfaces facing the groove 3aG. The grooves 3bG to 3eG and the grooves 3gG to 3kG have the same configuration except for the shapes of the first connection surface and the second connection surface.
 図27に示す断面において、第1接続面36fG及び第2接続面37fGは同じ円弧を描く。第1接続面36fG及び第2接続面37fGが描く円弧の曲率半径を曲率半径CfGとする。図28に示す断面において、第1接続面36aG及び第2接続面37aGは同じ円弧を描く。第1接続面36aG及び第2接続面37aGが描く円弧の曲率半径を曲率半径CaGとする。同様に、溝3bG、溝3cG、溝3dG、溝3eD、溝3gG、溝3hG、溝3iG、溝3jG、溝3kGにおける第1接続面及び第2接続面が描く円弧の曲率半径を、曲率半径CbG、曲率半径CcG、曲率半径CdG、曲率半径CeG、曲率半径CgG、曲率半径ChG、曲率半径CiG、曲率半径CjG、曲率半径CkGとする。 In the cross section shown in FIG. 27, the first connection surface 36fG and the second connection surface 37fG draw the same arc. The radius of curvature of the arc drawn by the first connection surface 36fG and the second connection surface 37fG is taken as the curvature radius CfG. In the cross section shown in FIG. 28, the first connection surface 36aG and the second connection surface 37aG draw the same arc. The curvature radius of the arc drawn by the first connection surface 36aG and the second connection surface 37aG is taken as a curvature radius CaG. Similarly, the radius of curvature of the arc drawn by the first connecting surface and the second connecting surface of the groove 3bG, the groove 3cG, the groove 3dG, the groove 3eD, the groove 3gG, the groove 3hG, the groove 3iG, the groove 3jG, and the groove 3kG is the radius of curvature CbG The radius of curvature CcG, the radius of curvature CdG, the radius of curvature CeG, the radius of curvature CgG, the radius of curvature ChG, the radius of curvature CiG, the radius of curvature CjG, and the radius of curvature CkG.
 曲率半径CaGから曲率半径CkGのうち、曲率半径CfGが最も大きく、曲率半径CaG及び曲率半径CkGが最も小さい。図26に示す断面において、1つの溝3Gに面する衝撃吸収部15Gの表面が描く円弧の曲率半径は、当該溝3Gよりも軸方向で中間シャフト85Gの中央側に位置する他の溝3Gに面する衝撃吸収部15Gの表面が描く円弧の曲率半径よりも小さい。例えば、曲率半径CaGから曲率半径CkGは、0.2mm以上1.0mm以下であることが好ましい。 Among the curvature radius CaG to the curvature radius CkG, the curvature radius CfG is the largest, and the curvature radius CaG and the curvature radius CkG are the smallest. In the cross section shown in FIG. 26, the radius of curvature of the arc drawn by the surface of the shock absorbing portion 15G facing one groove 3G is the same as that of the other groove 3G located on the center side of the intermediate shaft 85G in the axial direction than the groove 3G. The radius of curvature of the arc drawn by the surface of the facing shock absorbing portion 15G is smaller than that of the arc. For example, from the curvature radius CaG, the curvature radius CkG is preferably 0.2 mm or more and 1.0 mm or less.
 衝撃吸収部15Gは、例えば300Nmのトルクを伝達できるように設計される。中間シャフト85GがS35Cで形成される場合、直径D2Dは、14mm以上16mm以下程度となる。直径D2Dは、溝3Gの底に対応する位置における衝撃吸収部15Gの直径である。第3実施形態の第3変形例において、直径D2Dは一定である。 The shock absorber 15G is designed to transmit a torque of, for example, 300 Nm. When the intermediate shaft 85G is formed of S35C, the diameter D2D is about 14 mm or more and 16 mm or less. The diameter D2D is a diameter of the shock absorber 15G at a position corresponding to the bottom of the groove 3G. In a third variant of the third embodiment, the diameter D2D is constant.
 以上で説明したように、第3実施形態の第3変形例のステアリング装置80Dは、第1ユニバーサルジョイント84と、第1ユニバーサルジョイント84より前方側に配置される第2ユニバーサルジョイント86と、第1ユニバーサルジョイント84と第2ユニバーサルジョイント86とを連結する中実部材である中間シャフト85Gと、を備える。中間シャフト85Gは、外周面に第1溝(例えば溝3aG)及び第2溝(例えば溝3fG)を備える衝撃吸収部15Gを備える。径方向に対して垂直な平面で中間シャフト85Gを切った断面において、第1溝に面する衝撃吸収部15Gの表面の少なくとも一部(例えば第1接続面36aG)は第1円弧を描き、第2溝に面する衝撃吸収部15Gの表面の少なくとも一部(例えば第1接続面36fG)は第2円弧を描く。第2円弧の曲率半径(例えば曲率半径CfG)は、第1円弧の曲率半径(例えば曲率半径CaG)とは異なる。 As described above, the steering device 80D of the third modified example of the third embodiment includes the first universal joint 84, the second universal joint 86 disposed on the front side of the first universal joint 84, and the first universal joint 86. And an intermediate shaft 85G which is a solid member connecting the universal joint 84 and the second universal joint 86. The intermediate shaft 85G includes an impact absorbing portion 15G having a first groove (for example, a groove 3aG) and a second groove (for example, a groove 3fG) on the outer peripheral surface. In a cross section obtained by cutting the intermediate shaft 85G in a plane perpendicular to the radial direction, at least a portion of the surface of the shock absorbing portion 15G facing the first groove (for example, the first connection surface 36aG) draws a first arc, and the first At least a part of the surface of the shock absorbing portion 15G facing the two grooves (for example, the first connection surface 36fG) draws a second arc. The radius of curvature of the second arc (eg, radius of curvature CfG) is different from the radius of curvature of the first arc (eg, radius of curvature CaG).
 これにより、第3実施形態の第3変形例においては、衝撃吸収部15Gの第1溝の隅角に対応する部分に生じる曲げ応力と、第2溝の隅角に対応する部分に生じる曲げ応力とを異ならせることが可能である。このため、衝撃吸収部15Gの各断面における曲げ応力の調整が可能である。 Thereby, in the third modification of the third embodiment, the bending stress generated in the portion corresponding to the corner of the first groove of the impact absorbing portion 15G and the bending stress generated in the portion corresponding to the corner of the second groove And can be different. For this reason, adjustment of the bending stress in each cross section of impact-absorbing part 15G is possible.
 また、第3実施形態の第3変形例においては、第2溝(例えば溝3fG)は、第1溝(例えば溝3aG)に対して、軸方向において中間シャフト85Gの中央側に位置する。第2円弧の曲率半径(例えば曲率半径CfG)は、第1円弧の曲率半径(例えば曲率半径CaG)よりも大きい。 In the third modification of the third embodiment, the second groove (for example, the groove 3fG) is located on the center side of the intermediate shaft 85G in the axial direction with respect to the first groove (for example, the groove 3aG). The radius of curvature (for example, radius of curvature CfG) of the second arc is larger than the radius of curvature (for example, radius of curvature CaG) of the first arc.
 このため、衝撃吸収部15Gの第1溝に対応する部分を曲げるために要する荷重と、衝撃吸収部15Gの第2溝に対応する部分を曲げるために要する荷重との差が小さくなる。したがって、中間シャフト85Gを変形させるために要する荷重のバラツキが抑制される。 Therefore, the difference between the load required to bend the portion corresponding to the first groove of the impact absorbing portion 15G and the load required to bend the portion corresponding to the second groove of the impact absorbing portion 15G is reduced. Therefore, the variation in load required to deform the intermediate shaft 85G is suppressed.
(第4実施形態)
 図29は、第4実施形態のステアリング装置の斜視図である。図30は、第4実施形態の中間シャフトの斜視図である。図31は、第4実施形態の中間シャフトの断面図である。図32は、ロアシャフトの第1衝撃吸収部及びロア嵌合部を拡大した断面図である。図33は、第1衝撃吸収部の溝の周辺部を拡大した断面図である。図34は、ロアシャフトの第2衝撃吸収部を拡大した断面図である。図35から図40は、ストッパーの一例の正面図である。図41は、図31におけるG-G断面図である。図42は、図31におけるH-H断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Fourth Embodiment
FIG. 29 is a perspective view of the steering device of the fourth embodiment. FIG. 30 is a perspective view of the intermediate shaft of the fourth embodiment. FIG. 31 is a cross-sectional view of the intermediate shaft of the fourth embodiment. FIG. 32 is an enlarged cross-sectional view of a first impact absorbing portion and a lower fitting portion of the lower shaft. FIG. 33 is an enlarged cross-sectional view of the periphery of the groove of the first impact absorbing portion. FIG. 34 is an enlarged cross-sectional view of a second impact absorbing portion of the lower shaft. 35 to 40 are front views of an example of the stopper. FIG. 41 is a cross-sectional view taken along the line GG in FIG. FIG. 42 is a cross-sectional view taken along the line HH in FIG. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図30に示すように、中間シャフト85Hは、ロアシャフト1Hと、アッパーシャフト2Hと、を備える。 As shown in FIG. 30, the intermediate shaft 85H includes a lower shaft 1H and an upper shaft 2H.
 ロアシャフト1Hは、略円柱状の中実部材である。例えば、ロアシャフト1Hは、機械構造用炭素鋼(SC材)であるS35Cで形成される。図31に示すように、ロアシャフト1Hは、基部10Hと、第1衝撃吸収部15Hと、ストッパー16Hと、基部11Hと、第2衝撃吸収部(ヒューズ)12Hと、基部13Hと、ロア嵌合部17Hと、を備える。 The lower shaft 1H is a substantially cylindrical solid member. For example, the lower shaft 1H is formed of S35C which is carbon steel for machine structure (SC material). As shown in FIG. 31, the lower shaft 1H includes a base 10H, a first shock absorber 15H, a stopper 16H, a base 11H, a second shock absorber (fuse) 12H, a base 13H, and a lower fitting. And a unit 17H.
 図30及び図31に示すように、基部10Hは、第2ユニバーサルジョイント86に固定される。基部10Hの直径は一定である。第1衝撃吸収部15Hは、基部10Hの後方に位置する。また、第1衝撃吸収部15Hは、ロアシャフト1Hの軸方向において、ロアシャフト1Hの中央よりも前方に位置している。 As shown in FIGS. 30 and 31, the base 10H is fixed to the second universal joint 86. The diameter of the base 10H is constant. The first shock absorber 15H is located behind the base 10H. Further, the first impact absorbing portion 15H is located forward of the center of the lower shaft 1H in the axial direction of the lower shaft 1H.
 ストッパー16Hは、ロアシャフト1Hの軸方向において、第1衝撃吸収部15Hの後方に位置する。また、ストッパー16Hは、ロアシャフト1Hの軸方向において、ロアシャフト1Hのやや中央よりに位置している。基部11Hは、ストッパー16Hの後方に位置する。 The stopper 16H is located behind the first impact absorbing portion 15H in the axial direction of the lower shaft 1H. Further, the stopper 16H is located at a position slightly closer to the center of the lower shaft 1H in the axial direction of the lower shaft 1H. The base 11H is located behind the stopper 16H.
 第2衝撃吸収部12Hは、ロアシャフト1Hの軸方向において、基部11Hよりも後方側に位置する。基部13Hは、第2衝撃吸収部12Hの後方に位置する。基部13Hの直径は一定であり、基部10H、基部11Hの直径に等しい。 The second impact absorbing portion 12H is located rearward of the base 11H in the axial direction of the lower shaft 1H. The base 13H is located behind the second shock absorber 12H. The diameter of the base 13H is constant and equal to the diameters of the base 10H and the base 11H.
 ロア嵌合部17Hは、ロアシャフト1Hの後方端部に位置する。ロア嵌合部17Hは、外周面に雄スプライン(又は雄セレーション)17aHを備える。雄スプライン(又は雄セレーション)17aHは、後述する雌スプライン(又は雌セレーション)21aHと噛み合う。 The lower fitting portion 17H is located at the rear end of the lower shaft 1H. The lower fitting portion 17H includes male splines (or male serrations) 17aH on the outer peripheral surface. The male spline (or male serration) 17aH meshes with a female spline (or female serration) 21aH described later.
 また、ロア嵌合部17Hは、図31に示すように後方側の端面に凹部170Hを有する。 Further, as shown in FIG. 31, the lower fitting portion 17H has a recess 170H on the end face on the rear side.
 なお、ロアシャフト1Hの軸方向において、基部10Hと、基部11Hと、第2衝撃吸収部(ヒューズ)12Hと、基部13Hと、ストッパー16Hと、第1衝撃吸収部15Hと、ロア嵌合部17Hと、を備えても構わない。この場合、基部10Hと基部11Hは一体に連続し、第2衝撃吸収部12Hは、ロアシャフト1Hの前方側に位置する。 In the axial direction of the lower shaft 1H, the base 10H, the base 11H, the second impact absorbing portion (fuse) 12H, the base 13H, the stopper 16H, the first impact absorbing portion 15H, and the lower fitting portion 17H And may be provided. In this case, the base 10H and the base 11H are integrally continuous, and the second shock absorber 12H is located on the front side of the lower shaft 1H.
 以下の説明において、ロアシャフト1Hの軸方向は単に軸方向と記載され、軸方向に対して直交する方向は径方向と記載される。図31から図34は、径方向に対して直交する平面でロアシャフト1Hを切った断面である。 In the following description, the axial direction of the lower shaft 1H is simply described as the axial direction, and the direction orthogonal to the axial direction is described as the radial direction. 31 to 34 are cross sections obtained by cutting the lower shaft 1H in a plane orthogonal to the radial direction.
 図32に示すように、第1衝撃吸収部15Hは、複数の溝3Hと、複数の凸部4Hと、を備える。溝3Hは環状である。溝3Hは、例えば切削により形成される。複数の溝3Hは、軸方向で等間隔に配置されている。凸部4Hは、2つの溝3Hの間に位置する。凸部4Hに対応する位置における第1衝撃吸収部15Hの直径D1Hは、基部10H、基部11H及び基部13Hの直径に等しい。また、直径D1Hは、ロア嵌合部17Hの最小直径D4Hよりも小さい。最小直径D4Hは、雄スプライン17aHの谷に対応する位置におけるロア嵌合部17Hの直径である。 As shown in FIG. 32, the first impact absorbing portion 15H includes a plurality of grooves 3H and a plurality of convex portions 4H. The groove 3H is annular. The grooves 3H are formed by cutting, for example. The plurality of grooves 3H are arranged at equal intervals in the axial direction. The protrusion 4H is located between the two grooves 3H. The diameter D1H of the first impact absorbing portion 15H at the position corresponding to the convex portion 4H is equal to the diameters of the base 10H, the base 11H and the base 13H. Further, the diameter D1H is smaller than the minimum diameter D4H of the lower fitting portion 17H. The minimum diameter D4H is the diameter of the lower fitting portion 17H at a position corresponding to the valley of the male spline 17aH.
 図33に示すように、第1衝撃吸収部15Hは、溝3Hに面する表面として、第1側面31Hと、第2側面33Hと、底面35Hと、第1接続面36Hと、第2接続面37Hと、を含む。第1側面31H及び第2側面33Hは、軸方向に対して垂直である。 As shown in FIG. 33, the first impact absorbing portion 15H has a first side 31H, a second side 33H, a bottom 35H, a first connecting surface 36H, and a second connecting surface as surfaces facing the groove 3H. And 37H. The first side surface 31H and the second side surface 33H are perpendicular to the axial direction.
 すなわち、第2側面33Hは、第1側面31Hと平行である。底面35Hは、第1側面31Hと第2側面33Hとの間に位置する。第1側面31Hが底面35Hに対して後方に位置し、第2側面33Hが底面35Hに対して前方に位置する。底面35Hは曲面である。第1接続面36Hは、第1側面31Hと底面35Hとを繋ぐ曲面である。第2接続面37Hは、第2側面33Hと底面35Hとを繋ぐ曲面である。 That is, the second side surface 33H is parallel to the first side surface 31H. The bottom surface 35H is located between the first side 31H and the second side 33H. The first side surface 31H is located rearward with respect to the bottom surface 35H, and the second side surface 33H is located forward with respect to the bottom surface 35H. The bottom surface 35H is a curved surface. The first connection surface 36H is a curved surface connecting the first side surface 31H and the bottom surface 35H. The second connection surface 37H is a curved surface connecting the second side surface 33H and the bottom surface 35H.
 溝3Hの最大幅WHは、1mm以上3mm以下であることが好ましい。溝3Hの最大幅WHは、第1衝撃吸収部15Hが曲がった場合に第1衝撃吸収部15Hが破断しないように設定される。溝3Hの最大幅WHは、第1衝撃吸収部15Hが曲がった場合に、第1衝撃吸収部15Hが破断する前に隣接する凸部4Hが接するように設定される。図33に示す断面において、第1接続面36H及び第2接続面37Hは同じ円弧(以下、第1円弧という)を描く。第1円弧の曲率半径C1Hは、0.2mm以上1.0mm以下であることが好ましい。例えば、第4実施形態における曲率半径C1Hは0.3mmである。 The maximum width WH of the groove 3H is preferably 1 mm or more and 3 mm or less. The maximum width WH of the groove 3H is set so that the first impact absorbing portion 15H does not break when the first impact absorbing portion 15H is bent. The maximum width WH of the groove 3H is set such that, when the first impact absorbing portion 15H is bent, adjacent convex portions 4H are in contact before the first impact absorbing portion 15H breaks. In the cross section shown in FIG. 33, the first connection surface 36H and the second connection surface 37H draw the same arc (hereinafter, referred to as a first arc). The radius of curvature C1H of the first arc is preferably 0.2 mm or more and 1.0 mm or less. For example, the curvature radius C1H in the fourth embodiment is 0.3 mm.
 第1衝撃吸収部15Hは、例えば300Nmのトルクを伝達できるように設計される。ロアシャフト1HがS35Cで形成される場合、溝3Hの底に対応する位置における第1衝撃吸収部15Hの直径D2Hは、14mm以上16mm以下程度となる。直径D2Hは、図33に示す溝3Hの深さHHにより決まる。 The first shock absorber 15H is designed to transmit, for example, a torque of 300 Nm. When the lower shaft 1H is formed of S35C, the diameter D2H of the first impact absorbing portion 15H at the position corresponding to the bottom of the groove 3H is about 14 mm or more and 16 mm or less. The diameter D2H is determined by the depth HH of the groove 3H shown in FIG.
 図34に示すように、第2衝撃吸収部12Hは、小径部125Hと、第1接続部121Hと、第2接続部129Hと、を含む。小径部125Hは、円柱状である。小径部125Hの直径D3は、図32に示す直径D2Hよりも小さい。小径部125Hの軸方向の長さLHは、溝3Hの最大幅WHよりも大きい。第1接続部121Hは、基部11Hと小径部125Hとを接続する。第2接続部129Hは、基部13Hと小径部125Hとを接続する。図34に示す断面において、第1接続部121H及び第2接続部129Hの表面は同じ円弧(以下、第2円弧という)を描く。第2円弧の曲率半径C2は、第1円弧の曲率半径C1Hよりも大きい。曲率半径C2は、5mm以上であることが好ましい。例えば、曲率半径C2は8mmである。 As shown in FIG. 34, the second impact absorbing portion 12H includes a small diameter portion 125H, a first connection portion 121H, and a second connection portion 129H. The small diameter portion 125H is cylindrical. The diameter D3 of the small diameter portion 125H is smaller than the diameter D2H shown in FIG. The axial length LH of the small diameter portion 125H is larger than the maximum width WH of the groove 3H. The first connection portion 121H connects the base 11H and the small diameter portion 125H. The second connection portion 129H connects the base 13H and the small diameter portion 125H. In the cross section shown in FIG. 34, the surfaces of the first connection portion 121H and the second connection portion 129H draw the same arc (hereinafter, referred to as a second arc). The curvature radius C2 of the second arc is larger than the curvature radius C1H of the first arc. The curvature radius C2 is preferably 5 mm or more. For example, the curvature radius C2 is 8 mm.
 第2衝撃吸収部12Hは、例えば150Nm以上250Nm以下程度のトルクで変形するように設計される。中間シャフト85HがS35Cで形成される場合、小径部125Hの直径D3は、13mm以上15.5mm以下程度となる。例えば、第4実施形態において直径D3は、13mmである。 The second impact absorbing portion 12H is designed to be deformed by, for example, a torque of about 150 Nm to 250 Nm. When the intermediate shaft 85H is formed of S35C, the diameter D3 of the small diameter portion 125H is about 13 mm or more and 15.5 mm or less. For example, in the fourth embodiment, the diameter D3 is 13 mm.
 図31に示すように、ストッパー16Hは、軸方向の相対変位量(コラプス量)を規制する機能を有する。ストッパー16Hは、アッパーシャフト2Hに対してロアシャフト1Hが軸方向に移動できる距離(コラプスストロークS)を規制するためにロアシャフト1Hに形成された部材である。例えば、ストッパー16Hは、図32に示すロア嵌合部17Hの最小直径D4Hよりも大きい外径を有する。 As shown in FIG. 31, the stopper 16H has a function of restricting the relative displacement amount (collapse amount) in the axial direction. The stopper 16H is a member formed on the lower shaft 1H in order to restrict the distance (collapse stroke S) in which the lower shaft 1H can move in the axial direction with respect to the upper shaft 2H. For example, the stopper 16H has an outer diameter larger than the minimum diameter D4H of the lower fitting portion 17H shown in FIG.
 第4実施形態では、ストッパー16Hの一例として、軸方向のコラプスストロークSの所定位置にロアシャフト1Hと同質の金属製の円環状の止め輪が形成されている。ストッパー16Hは、ロアシャフト1Hに溶接することで一体となったストッパー部材であってもよい。又は、ストッパー16Hは、C型止め輪又はE型止め輪と別部材との組み合わせにより構成されてもよい。ストッパー16Hの固定方法は適宜採用でき、特に問わない。 In the fourth embodiment, as an example of the stopper 16H, an annular retaining ring made of metal of the same quality as that of the lower shaft 1H is formed at a predetermined position of the collapse stroke S in the axial direction. The stopper 16H may be a stopper member integrated by welding to the lower shaft 1H. Alternatively, the stopper 16H may be configured by a combination of a C-shaped retaining ring or an E-shaped retaining ring and another member. The fixing method of the stopper 16H can be appropriately adopted, and it is not particularly limited.
 例えば、図35から図40に示した部材を使用することができる。 For example, the members shown in FIGS. 35 to 40 can be used.
 図35に示したものは、弾性を有する断面円形状の線材を曲げ形成する事により造られており、欠円環状の止め輪本体と、止め輪本体の円周方向両端部から径方向外方に折れ曲がった1対の係止環部とを備えている。 The one shown in FIG. 35 is made by bending and forming an elastic cross-sectional circular wire rod, and the ring-shaped retaining ring main body having an annular shape and the radial outward direction from both circumferential end portions of the retaining ring main body And a pair of locking rings.
 図36に示したものは、一般的にC型リングと呼ばれるもので、金属板を打ち抜き形成する事により造られている。図36に示したものは、欠円環状の止め輪本体と、止め輪本体の円周方向両端部から径方向外方に突出した1対の耳部とを備えている。 The one shown in FIG. 36 is generally called a C-shaped ring, and is manufactured by punching and forming a metal plate. The one shown in FIG. 36 includes a notched annular retaining ring main body, and a pair of ear portions projecting radially outward from both end portions in the circumferential direction of the retaining ring main body.
 図37に示したものは、一般的にE型リングと呼ばれるもので、金属板を打ち抜き形成する事により造られている。図37に示したものは、欠円環状の止め輪本体と、止め輪本体の円周方向両端部及び円周方向中央部から径方向内方に突出した3つの爪部とを備えている。 The one shown in FIG. 37 is generally called an E-shaped ring, and is manufactured by punching and forming a metal plate. The one shown in FIG. 37 includes a notched annular retaining ring main body, and three claws projecting radially inward from both circumferential end portions of the retaining ring main body and the circumferential center.
 図38に示したものは、円環部と、円環部の円周方向複数箇所から径方向内方に突出した複数の舌片とを備えている。 The one shown in FIG. 38 is provided with an annular portion and a plurality of tongues projecting radially inward from a plurality of circumferential positions of the annular portion.
 図39に示したものは、例えば合成樹脂や銅、アルミニウムなどの鉄系材料に比べてせん断抵抗の低い材料から造られたものである。図39に示したものの全体は欠円環状に構成されている。 The one shown in FIG. 39 is made of, for example, a material having a lower shear resistance than synthetic resins and iron-based materials such as copper and aluminum. The whole of what is shown in FIG. 39 is configured to be an annulus.
 図40に示したものも、図39に示したものと同様に、鉄系材料に比べてせん断抵抗の低い材料から造られたものである。図40に示したものは、ピン状に構成されている。 Similar to the one shown in FIG. 39, the one shown in FIG. 40 is made of a material having a lower shear resistance than an iron-based material. The one shown in FIG. 40 is configured in a pin shape.
 更に、ストッパー16Hとして、円環状や軸状以外の形状のものを使用する事ができる。溶接、接着、圧入、かしめ、ねじ止め等、従来から知られた各種固定構造を、ストッパー16Hをロアシャフト1Hに対して固定する構造として採用できる。 Furthermore, as the stopper 16H, one having a shape other than an annular or shaft shape can be used. Various fixing structures conventionally known such as welding, bonding, press-fitting, caulking, screwing, etc. can be adopted as a structure for fixing the stopper 16H to the lower shaft 1H.
 このようなストッパー16Hにより、一次衝突時にアッパーシャフト2Hに対してロアシャフト1HがコラプスストロークSだけ移動すると、ストッパー16Hがアッパー嵌合部21Hの前方端部に当たり、ロアシャフト1Hの移動が停止する。この結果、ロアシャフト1Hは軸方向に変位し衝撃荷重を吸収するように伸縮するが、ストッパー16Hによって止まる。第1衝撃吸収部15Hに荷重がかかることでアッパーシャフト2H側に無理な荷重が付加されることが回避される。 When the lower shaft 1H moves by the collapsing stroke S with respect to the upper shaft 2H at the time of the primary collision by such a stopper 16H, the stopper 16H abuts on the front end of the upper fitting portion 21H, and the movement of the lower shaft 1H stops. As a result, the lower shaft 1H is displaced in the axial direction and expands and contracts so as to absorb an impact load, but is stopped by the stopper 16H. By applying a load to the first impact absorbing portion 15H, it is avoided that an excessive load is applied to the upper shaft 2H side.
 したがって、衝突時の衝撃度に応じてコラプスストロークSを最適化することで、中間シャフトの縮みと曲がりのタイミングをコントロールすることができる。 Therefore, by optimizing the collapse stroke S in accordance with the degree of impact at the time of collision, the timing of contraction and bending of the intermediate shaft can be controlled.
 図31に示すように、アッパーシャフト2Hは筒状である。例えば、アッパーシャフト2Hは、機械構造用炭素鋼鋼管(STKM材(Carbon Steel Tubes for Machine Structural Purposes))で形成される。アッパーシャフト2Hは、アッパー嵌合部21Hと、大径部23Hと、基部25Hと、を備える。 As shown in FIG. 31, the upper shaft 2H is cylindrical. For example, the upper shaft 2H is formed of carbon steel tube for mechanical structure (STKM material (Carbon Steel Tubes for Machine Structural Purposes)). The upper shaft 2H includes an upper fitting portion 21H, a large diameter portion 23H, and a base 25H.
 アッパー嵌合部21Hは、アッパーシャフト2Hの前方端部に配置される。アッパー嵌合部21Hには、ロア嵌合部17Hが挿入されている。アッパー嵌合部21Hは、内周面に雌スプライン21aHを備える。雌スプライン21aHは、雄スプライン17aHと噛み合う。 The upper fitting portion 21H is disposed at the front end of the upper shaft 2H. The lower fitting portion 17H is inserted into the upper fitting portion 21H. The upper fitting portion 21H is provided with a female spline 21aH on the inner circumferential surface. The female splines 21aH mesh with the male splines 17aH.
 図41に示すように、軸方向に対して直交する断面においてロア嵌合部17Hの外形が円を描く。図41に示す断面において、アッパー嵌合部21Hの外形は楕円を描く。図42に示すように、軸方向に対して直交する断面のうち図41とは異なる断面において、ロア嵌合部17Hの外形が楕円を描く。図42に示す断面において、アッパー嵌合部21Hの外形は円を描く。なお、図41のアッパー嵌合部21H及び図42のロア嵌合部17Hの形状は、説明のために誇張して描かれており、実際の形状とは異なる。実際には、雌スプライン21aHの全ての歯は、それぞれ雄スプライン17aHの2つの歯の間に位置する。すなわち、図41の左側及び右側に位置する雌スプライン21aHの歯は、雄スプライン17aHの歯に接していないが、雄スプライン17aHの2つの歯の間に位置する。図42の上側及び下側に位置する雌スプライン21aHの歯は、雄スプライン17aHの歯に接していないが、雄スプライン17aHの2つの歯の間に位置する。 As shown in FIG. 41, the outer shape of the lower fitting portion 17H draws a circle in a cross section orthogonal to the axial direction. In the cross section shown in FIG. 41, the outer shape of the upper fitting portion 21H draws an ellipse. As shown in FIG. 42, the outer shape of the lower fitting portion 17H draws an ellipse in a cross section different from that of FIG. 41 among the cross sections orthogonal to the axial direction. In the cross section shown in FIG. 42, the outer shape of the upper fitting portion 21H draws a circle. The shapes of the upper fitting portion 21H of FIG. 41 and the lower fitting portion 17H of FIG. 42 are exaggerated for the sake of description, and are different from the actual shapes. In practice, all the teeth of the female spline 21aH are respectively located between the two teeth of the male spline 17aH. That is, the teeth of the female spline 21aH located on the left and right sides of FIG. 41 are not in contact with the teeth of the male spline 17aH, but are located between the two teeth of the male spline 17aH. The teeth of the female splines 21aH located on the upper side and the lower side of FIG. 42 are not in contact with the teeth of the male splines 17aH, but are located between the two teeth of the male splines 17aH.
 中間シャフト85Hを組み立てる時、ロア嵌合部17Hの一部がアッパー嵌合部21Hに挿入される。そして、ロア嵌合部17H及びアッパー嵌合部21Hが凹部170Hに対応する位置で2方向からプレスされる。その後、ロア嵌合部17Hがアッパー嵌合部21Hの中にさらに押し込まれる。これにより、図41及び図42に示す断面形状が形成される。なお、ロア嵌合部17H及びアッパー嵌合部21Hのこのような連結方法は、楕円嵌合と呼ばれることがある。 When assembling the intermediate shaft 85H, a part of the lower fitting portion 17H is inserted into the upper fitting portion 21H. Then, the lower fitting portion 17H and the upper fitting portion 21H are pressed from two directions at a position corresponding to the recess 170H. Thereafter, the lower fitting portion 17H is further pushed into the upper fitting portion 21H. Thereby, cross-sectional shapes shown in FIGS. 41 and 42 are formed. In addition, such a connection method of lower fitting part 17H and upper fitting part 21H may be called elliptical fitting.
 また、このような楕円嵌合と呼ばれる連結方法は中間シャフト85Hの軸方向に強い衝撃荷重が加わった場合に相対変位可能としているが、軽い軸方向での相対変位を可能とする他の実施形態として、いわゆる樹脂コートスライダー及び転動体(ボールやローラ)を用いた連結方法がある。 Moreover, although the connection method called such elliptical fitting enables relative displacement when a strong impact load is applied in the axial direction of the intermediate shaft 85H, another embodiment which enables relative displacement in the light axial direction There are connection methods using so-called resin-coated sliders and rolling elements (balls and rollers).
 樹脂コートスライダーを用いた連結方法とは、例えば、ロア嵌合部17Hの外周面に合成樹脂をコーティングし、さらにグリースを塗布して、ロア嵌合部17Hに内嵌させる。これにより、ロア嵌合部17Hとアッパー嵌合部21Hとの接触部分の磨耗を低減するとともに摩擦抵抗を削減することができる。 In the connection method using the resin-coated slider, for example, the outer peripheral surface of the lower fitting portion 17H is coated with a synthetic resin, and further, grease is applied to be fitted to the lower fitting portion 17H. As a result, it is possible to reduce wear of the contact portion between the lower fitting portion 17H and the upper fitting portion 21H and to reduce the frictional resistance.
 なお、ロア嵌合部17Hとアッパー嵌合部21Hの少なくともいずれか一方の外形に合成樹脂又はグリースのいずれか一方又は双方で潤滑被膜がコーティングされていれば良い。 Note that the outer surface of at least one of the lower fitting portion 17H and the upper fitting portion 21H may be coated with a lubricating coating with either or both of synthetic resin and grease.
 なお、ロア嵌合部17H又はアッパー嵌合部21Hの少なくともいずれか一方の外形に樹脂やグリースで潤滑被膜がコーティングされていれば良い。 In addition, the lubricating film may be coated with resin or grease on the outer shape of at least one of the lower fitting portion 17H and the upper fitting portion 21H.
 転動体を用いた連結方法とは、例えば、ロア嵌合部17Hとアッパー嵌合部21Hの間にボール或いはローラ、ボールとローラとを組合せた転動体を介在させている。これにより、アッパー嵌合部21Hのロア嵌合部17Hとの接触部分の磨耗を低減するとともに摩擦抵抗を削減することができる。 In the connection method using rolling elements, for example, a rolling element in which a ball or a roller and a combination of a ball and a roller are interposed between the lower fitting portion 17H and the upper fitting portion 21H. As a result, it is possible to reduce wear of a contact portion of the upper fitting portion 21H with the lower fitting portion 17H and to reduce frictional resistance.
 ロア嵌合部17Hとアッパー嵌合部21Hとのとの接触部分に生じる摩擦により、ロア嵌合部17Hに対するアッパー嵌合部21Hの移動が規制されている。すなわち、通常使用時(衝突が生じていない時)において、アッパー嵌合部21Hはロア嵌合部17Hに対して移動しない。一方、衝突時においてアッパーシャフト2Hに軸方向の所定荷重が加わった場合、アッパー嵌合部21Hがロア嵌合部17Hに対して、コラプスストロークSだけ移動する。所定荷重は、例えば1kN以上3kN以下程度である。 The movement of the upper fitting portion 21H with respect to the lower fitting portion 17H is restricted by the friction generated at the contact portion between the lower fitting portion 17H and the upper fitting portion 21H. That is, in normal use (when no collision occurs), the upper fitting portion 21H does not move relative to the lower fitting portion 17H. On the other hand, when a predetermined axial load is applied to the upper shaft 2H at the time of a collision, the upper fitting portion 21H moves by the collapse stroke S relative to the lower fitting portion 17H. The predetermined load is, for example, about 1 kN or more and 3 kN or less.
 すなわち、アッパーシャフト2Hは、衝突時にロアシャフト1Hから離脱できるようにロアシャフト1Hに連結されている。アッパー嵌合部21Hとロア嵌合部17Hとの間の摩擦により衝撃が吸収される。アッパー嵌合部21Hとロア嵌合部17Hとの間の摩擦により衝撃が吸収される。 That is, the upper shaft 2H is connected to the lower shaft 1H so as to be separated from the lower shaft 1H at the time of a collision. The impact is absorbed by the friction between the upper fitting portion 21H and the lower fitting portion 17H. The impact is absorbed by the friction between the upper fitting portion 21H and the lower fitting portion 17H.
 大径部23Hは、アッパー嵌合部21Hの前方に配置される。大径部23Hの外径は一定である。大径部23Hの外径は、アッパー嵌合部21Hの外径よりも大きい。 The large diameter portion 23H is disposed in front of the upper fitting portion 21H. The outer diameter of the large diameter portion 23H is constant. The outer diameter of the large diameter portion 23H is larger than the outer diameter of the upper fitting portion 21H.
 基部25Hは、アッパーシャフト2Hの前方端部に配置される。基部25Hは、第2ユニバーサルジョイント86に固定されている。基部25Hの外径は一定である。基部25Hの外径は、アッパー嵌合部21Hの外径に等しい。 The base 25H is disposed at the front end of the upper shaft 2H. The base 25H is fixed to the second universal joint 86. The outer diameter of the base 25H is constant. The outer diameter of the base 25H is equal to the outer diameter of the upper fitting portion 21H.
 図43は、ロアシャフトがアッパーシャフトの中に入った後の中間シャフトの斜視図である。図44は、ロアシャフトが曲がった後の中間シャフトの斜視図である。 FIG. 43 is a perspective view of the intermediate shaft after the lower shaft has entered the upper shaft. FIG. 44 is a perspective view of the intermediate shaft after the lower shaft is bent.
 車両が衝突するとステアリングギヤ88に荷重が加わる。ステアリングギヤ88に加わった荷重は、第2ユニバーサルジョイント86を介してアッパーシャフト2Hに伝わる。車両の前面の全てが衝突対象物に当たった場合(フルラップ衝突の場合)、アッパーシャフト2Hには軸方向の荷重が加わることが多い。フルラップ衝突の場合には、図43に示すようにアッパーシャフト2Hがロアシャフト1Hに対してストッパー16Hまで移動することで衝撃が吸収される(図43の矢印Pに示す)。その結果、ステアリングホイール81に伝わる衝撃が低減する。 When the vehicle collides, a load is applied to the steering gear 88. The load applied to the steering gear 88 is transmitted to the upper shaft 2H via the second universal joint 86. If all of the front of the vehicle collides with the collision object (in the case of a full wrap collision), the upper shaft 2H is often subjected to an axial load. In the case of a full wrap collision, as shown in FIG. 43, the upper shaft 2H moves to the stopper 16H with respect to the lower shaft 1H to absorb the shock (indicated by arrow P in FIG. 43). As a result, the shock transmitted to the steering wheel 81 is reduced.
 一方、車両の前面の一部が衝突対象物に当たった場合(オフセット衝突の場合)、さらに力が加わり(図44の矢印Qに示す)、アッパーシャフト2Hには軸方向でない荷重が加わることが多い。このため、アッパーシャフト2Hがロアシャフト1Hに対して真っ直ぐに移動できない。オフセット衝突の場合には、中間シャフト85Hには曲げ応力が生じる。 On the other hand, when a part of the front of the vehicle hits a collision target (in the case of an offset collision), a further force is applied (indicated by arrow Q in FIG. 44) and a non-axial load is applied to the upper shaft 2H. There are many. Therefore, the upper shaft 2H can not move straight with respect to the lower shaft 1H. In the case of an offset collision, bending stress occurs in the intermediate shaft 85H.
 この時、第1接続面36H及び第2接続面37Hに応力集中が生じることで、第1接続面36H及び第2接続面37Hを起点として図44に示すように第1衝撃吸収部15Hが曲がる。溝3Hの径方向における一方側が拡がり、溝3Hの径方向における他方側が縮む。溝3Hが縮む側においては、凸部4Hが隣接する凸部4Hに接する。曲がった中間シャフト85Hは、中間シャフト85Hの周辺部品の隙間に入り込む。第1衝撃吸収部15Hが曲がることにより、衝突による衝撃が吸収される。その結果、ステアリングホイール81に伝わる衝撃が低減する。 At this time, stress concentration occurs in the first connection surface 36H and the second connection surface 37H, whereby the first impact absorbing portion 15H is bent as shown in FIG. 44 starting from the first connection surface 36H and the second connection surface 37H. . One side of the groove 3H in the radial direction expands, and the other side of the groove 3H in the radial direction contracts. On the side where the groove 3H is contracted, the convex portion 4H is in contact with the adjacent convex portion 4H. The bent intermediate shaft 85H enters the clearance of the peripheral parts of the intermediate shaft 85H. By bending the first impact absorbing portion 15H, an impact due to a collision is absorbed. As a result, the shock transmitted to the steering wheel 81 is reduced.
 第1衝撃吸収部15Hは複数の溝3Hを備えるので、中間シャフト85Hに曲げ応力が作用すると、第1衝撃吸収部15Hの複数の部分で応力集中が生じる。このため、第1衝撃吸収部15Hの変形する部分の範囲が大きくなりやすいので、中間シャフト85Hの衝撃吸収能力が向上する。 Since the first impact absorbing portion 15H includes the plurality of grooves 3H, when bending stress acts on the intermediate shaft 85H, stress concentration occurs in the plurality of portions of the first impact absorbing portion 15H. For this reason, the range of the deformed portion of the first impact absorbing portion 15H tends to be large, so that the impact absorbing ability of the intermediate shaft 85H is improved.
 中間シャフト85Hには、1次衝突による曲げ応力が生じることがあると共に、車両が縁石へ乗り上げた場合等において大きなトルク(捩り力)が入力されることがある。このため、中間シャフト85Hには、大きなトルクを受けた時の破損を抑制し且つ1次衝突時に衝撃を吸収することができることが求められる。 The intermediate shaft 85H may generate bending stress due to the primary collision, and may receive a large torque (twisting force) when the vehicle runs on a curb or the like. Therefore, the intermediate shaft 85H is required to be able to suppress damage when receiving a large torque and to absorb an impact at the time of a primary collision.
 第4実施形態の中間シャフト85Hでは、直径D3が直径D2Hよりも小さい。このため、車両が縁石へ乗り上げた場合等において、第2衝撃吸収部12Hが変形する(捩れる)。第2衝撃吸収部12Hが変形することで、中間シャフト85Hに入力されたエネルギーが吸収される。第2衝撃吸収部12Hでエネルギーが吸収されるので、第1衝撃吸収部15Hの変形が抑制される。 In the intermediate shaft 85H of the fourth embodiment, the diameter D3 is smaller than the diameter D2H. For this reason, the second impact absorbing portion 12H is deformed (twisted) when the vehicle rides on a curb or the like. The energy input to the intermediate shaft 85H is absorbed by the deformation of the second impact absorbing portion 12H. Since energy is absorbed by the second impact absorbing portion 12H, deformation of the first impact absorbing portion 15H is suppressed.
 これにより、ロア嵌合部17Hに近い部分に捩じり方向の第2衝撃吸収部12Hを設けることで、衝突時における車体の挙動に鑑みて、第1衝撃吸収部15Hへの衝撃の伝達を適宜緩和することができる。 Thus, by providing the second impact absorbing portion 12H in the twisting direction in a portion close to the lower fitting portion 17H, in view of the behavior of the vehicle body at the time of a collision, the transmission of the impact to the first impact absorbing portion 15H can be performed. It can be relaxed as appropriate.
 一方、第4実施形態の中間シャフト85Hにおいては、曲率半径C2が曲率半径C1Hよりも大きい。このため、1次衝突時に中間シャフト85Hに曲げ応力が生じると、第2衝撃吸収部12Hではなく第1衝撃吸収部15Hが変形する(曲がる)。 On the other hand, in the intermediate shaft 85H of the fourth embodiment, the curvature radius C2 is larger than the curvature radius C1H. Therefore, when bending stress is generated in the intermediate shaft 85H at the time of the primary collision, the first impact absorbing portion 15H, not the second impact absorbing portion 12H, is deformed (bent).
 このとき、第2衝撃吸収部12Hは、ロアシャフト1HはコラプスストロークSであるストッパー16Hまで移動することからアッパーシャフト2Hの中に入る。 At this time, the second impact absorbing portion 12H moves into the upper shaft 2H since the lower shaft 1H moves to the stopper 16H which is the collapse stroke S.
 なお、第1衝撃吸収部15Hの溝3Hは、必ずしも上述した形状を有していなくてもよい。例えば、第1接続面36H及び第2接続面37Hが底面35Hを介さずに繋がっていてもよい。すなわち、径方向に対して垂直な平面で中間シャフト85Hを切った断面において、溝3Hの底に対応する位置における第1衝撃吸収部15Hの表面が半円を描いていてもよい。また、第1接続面36H及び第2接続面37Hがなくてもよい。すなわち、第1側面31H及び第2側面33Hが底面35Hに直接繋がっていてもよい。 The groove 3H of the first impact absorbing portion 15H may not necessarily have the above-described shape. For example, the first connection surface 36H and the second connection surface 37H may be connected without the bottom surface 35H. That is, in a cross section obtained by cutting the intermediate shaft 85H in a plane perpendicular to the radial direction, the surface of the first shock absorber 15H at a position corresponding to the bottom of the groove 3H may draw a semicircle. In addition, the first connection surface 36H and the second connection surface 37H may not be necessary. That is, the first side surface 31H and the second side surface 33H may be directly connected to the bottom surface 35H.
 なお、第1衝撃吸収部15Hが備える溝3Hの数は、必ずしも図に示すような数でなくてもよい。第1衝撃吸収部15Hは少なくとも1つの溝3Hを有していればよい。 The number of grooves 3H provided in the first impact absorbing portion 15H may not necessarily be as shown in the drawing. The first shock absorber 15H may have at least one groove 3H.
 なお、凸部4Hに対応する位置における第1衝撃吸収部15Hの直径D1Hは、必ずしも基部11Hの直径に等しくなくてもよい。直径D1Hは、少なくとも溝3Hの底に対応する位置における第1衝撃吸収部15Hの直径D2Hよりも大きく且つ、ロア嵌合部17Hの最小直径D4Hよりも小さければよい。直径D1Hは、基部11Hの直径よりも小さくてもよいし、基部11Hの直径よりも大きくてもよい。 The diameter D1H of the first impact absorbing portion 15H at the position corresponding to the convex portion 4H may not necessarily be equal to the diameter of the base 11H. The diameter D1H should be at least larger than the diameter D2H of the first shock absorber 15H at a position corresponding to the bottom of the groove 3H and smaller than the minimum diameter D4H of the lower fitting portion 17H. The diameter D1H may be smaller than the diameter of the base 11H or larger than the diameter of the base 11H.
 以上で説明したように、ステアリング装置80Hは、第1ユニバーサルジョイント84と、第1ユニバーサルジョイント84より前方側に配置される第2ユニバーサルジョイント86と、第1ユニバーサルジョイント84と第2ユニバーサルジョイント86とを連結する中間シャフト85Hと、を備える。中間シャフト85Hは、中実部材であるロアシャフト1Hと、ロアシャフト1Hに離脱可能に連結される筒状のアッパーシャフト2Hと、を備える。ロアシャフト1Hは、外周面に溝3Hを有する第1衝撃吸収部15Hを備える。さらに、前記ロアシャフトには、前記アッパーシャフトに対して前記ロアシャフトが軸方向のコラプス量を規制できるストッパーを備える。 As described above, the steering device 80H includes the first universal joint 84, the second universal joint 86 disposed on the front side of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85H connecting the two. The intermediate shaft 85H includes a lower shaft 1H which is a solid member, and a cylindrical upper shaft 2H which is detachably coupled to the lower shaft 1H. The lower shaft 1H includes a first impact absorbing portion 15H having a groove 3H on the outer peripheral surface. Further, the lower shaft is provided with a stopper capable of restricting the amount of axial collapse of the lower shaft with respect to the upper shaft.
 これにより、第1衝撃吸収部15Hの形成に際して金型が不要であるので、第1衝撃吸収部15Hの形成が容易となる。また、第1衝撃吸収部15Hの変形特性は、第1衝撃吸収部15Hの溝3Hの形状に応じて変化する。溝3Hの形状を変更することは容易であるため、第1衝撃吸収部15Hの変形特性の調整は容易である。したがって、ステアリング装置80Hは、容易に製造でき且つ容易に変形特性を変更することができる中間シャフト85Hにより衝撃を吸収することができる。 As a result, no mold is required when forming the first impact absorbing portion 15H, so the formation of the first impact absorbing portion 15H is facilitated. Further, the deformation characteristics of the first impact absorbing portion 15H change in accordance with the shape of the groove 3H of the first impact absorbing portion 15H. Since it is easy to change the shape of the groove 3H, it is easy to adjust the deformation characteristics of the first impact absorbing portion 15H. Therefore, the steering device 80H can absorb an impact by the intermediate shaft 85H which can be easily manufactured and can easily change its deformation characteristics.
 さらに、1次衝突時にアッパーシャフト2Hがロアシャフト1Hに対して相対的に移動する。ステアリング装置80Hは、ロアシャフト1Hとアッパーシャフト2Hとの間で生じる摩擦によって衝撃を吸収することができる。 Furthermore, the upper shaft 2H moves relative to the lower shaft 1H at the time of the primary collision. The steering device 80H can absorb an impact by the friction generated between the lower shaft 1H and the upper shaft 2H.
 また、ロアシャフト1Hは、外周面に雄スプライン17aHを有するロア嵌合部17Hを備える。アッパーシャフト2Hは、内周面に雌スプライン21aHを有するアッパー嵌合部21Hを備える。ロア嵌合部17Hがアッパー嵌合部21Hに嵌まる。第1衝撃吸収部15Hの最大外径(直径D1H)は、ロア嵌合部17Hの最小直径D4Hよりも小さい。 The lower shaft 1H further includes a lower fitting portion 17H having a male spline 17aH on the outer peripheral surface. The upper shaft 2H includes an upper fitting portion 21H having a female spline 21aH on the inner circumferential surface. The lower fitting portion 17H fits into the upper fitting portion 21H. The maximum outer diameter (diameter D1H) of the first impact absorbing portion 15H is smaller than the minimum diameter D4H of the lower fitting portion 17H.
 これにより、アッパーシャフト2Hがロアシャフト1Hに対して相対的に移動する時に、第1衝撃吸収部15Hとアッパー嵌合部21Hの雌スプライン21aHとが干渉しにくくなる。このため、ステアリング装置80Hは、中間シャフト85Hの衝撃吸収能力のバラツキを抑制することができる。 As a result, when the upper shaft 2H moves relative to the lower shaft 1H, the first impact absorbing portion 15H and the female spline 21aH of the upper fitting portion 21H do not easily interfere with each other. Therefore, the steering device 80H can suppress the variation in the shock absorbing capability of the intermediate shaft 85H.
 また、ステアリング装置80Hにおいては、第1衝撃吸収部15Hは、複数の溝3Hを備える。溝3Hは、環状である。 Further, in the steering device 80H, the first impact absorbing portion 15H includes a plurality of grooves 3H. The grooves 3H are annular.
 これにより、中間シャフト85Hに曲げ応力が作用すると、第1衝撃吸収部15Hの複数の部分で応力集中が生じる。このため、第1衝撃吸収部15Hの変形する部分の範囲が大きくなりやすいので、中間シャフト85Hの衝撃吸収能力が向上する。さらに、溝3Hが環状なので、中間シャフト85Hの曲がる方向が限定されにくくなる。 As a result, when bending stress acts on the intermediate shaft 85H, stress concentration occurs in a plurality of portions of the first impact absorbing portion 15H. For this reason, the range of the deformed portion of the first impact absorbing portion 15H tends to be large, so that the impact absorbing ability of the intermediate shaft 85H is improved. Furthermore, since the groove 3H is annular, the bending direction of the intermediate shaft 85H is unlikely to be limited.
 また、ステアリング装置80Hにおいては、溝3Hの最大幅WHは1mm以上3mm以下である。径方向に対して垂直な平面で中間シャフト85Hを切った断面において、溝3Hに面する第1衝撃吸収部15Hの表面の少なくとも一部は、曲率半径が0.2mm以上1.0mm以下である円弧を描く。 In the steering device 80H, the maximum width WH of the groove 3H is 1 mm or more and 3 mm or less. In a cross section obtained by cutting the intermediate shaft 85H in a plane perpendicular to the radial direction, at least a part of the surface of the first shock absorber 15H facing the groove 3H has a curvature radius of 0.2 mm or more and 1.0 mm or less Draw an arc.
 これにより、第1衝撃吸収部15Hにおいて極端な応力集中が生じなくなり、且つ第1衝撃吸収部15Hが曲がり易くなる。 As a result, extreme stress concentration does not occur in the first impact absorbing portion 15H, and the first impact absorbing portion 15H is easily bent.
 以上の説明のとおり、第4実施形態のステアリング装置においては、縁石に衝突した程度の一次衝突などの場合、アッパー嵌合部21Hに近い部分に捩じり方向のヒューズにより、衝撃が吸収される。フルラップ衝突の場合には、ロアシャフト1Hがアッパーシャフト2Hに対してストッパー16Hまで移動することにより、衝撃が吸収される。さらにオフセット衝突の場合には、第1衝撃吸収部15Hが複数の溝3Hにて折れ曲がり且つロアシャフト1Hが周辺部品の隙間に入り込むことにより、衝撃が吸収される。 As described above, in the steering apparatus according to the fourth embodiment, in the case of a primary collision or the like which has collided with a curb, the fuse in the torsion direction absorbs the impact in the portion near the upper fitting portion 21H. . In the case of a full wrap collision, the lower shaft 1H moves to the stopper 16H with respect to the upper shaft 2H to absorb the shock. Furthermore, in the case of an offset collision, the first impact absorbing portion 15H is bent at the plurality of grooves 3H, and the lower shaft 1H enters the gaps of the peripheral parts, whereby the impact is absorbed.
 したがって、種々な衝突時における車体の挙動に鑑みて、アッパーシャフト2HのコラプスストロークSを調整できる。このため、衝撃の伝達を中間シャフトにて適宜緩和することができる。 Therefore, the collapsing stroke S of the upper shaft 2H can be adjusted in view of the behavior of the vehicle body in various collisions. For this reason, the transmission of the impact can be suitably mitigated by the intermediate shaft.
(第5実施形態)
 図45は、第5実施形態のステアリング装置の斜視図である。図46は、第5実施形態の中間シャフトの斜視図である。図47は、第5実施形態の中間シャフトの断面図である。図48は、第1シャフトの第1衝撃吸収部及び第1嵌合部を拡大した断面図である。図49は、第1衝撃吸収部の溝の周辺部を拡大した断面図である。図50は、第1シャフトの第2衝撃吸収部を拡大した断面図である。図51は、図47におけるI-I断面図である。図52は、図47におけるJ-J断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Fifth Embodiment
FIG. 45 is a perspective view of the steering device of the fifth embodiment. FIG. 46 is a perspective view of the intermediate shaft of the fifth embodiment. FIG. 47 is a cross-sectional view of the intermediate shaft of the fifth embodiment. FIG. 48 is an enlarged cross-sectional view of the first impact absorbing portion and the first fitting portion of the first shaft. FIG. 49 is an enlarged cross-sectional view of the periphery of the groove of the first impact absorbing portion. FIG. 50 is an enlarged sectional view of a second impact absorbing portion of the first shaft. 51 is a cross-sectional view taken along line II in FIG. 52 is a cross-sectional view taken along line JJ in FIG. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図46に示すように、中間シャフト85Iは、第1シャフト1Iと、第2シャフト2Iと、を備える。 As shown in FIG. 46, the intermediate shaft 85I includes a first shaft 1I and a second shaft 2I.
 第1シャフト1Iは、略円柱状の中実部材である。例えば、第1シャフト1Iは、機械構造用炭素鋼(SC材)であるS35Cで形成される。図47に示すように、第1シャフト1Iは、基部11Iと、第2衝撃吸収部12Iと、基部13Iと、第1衝撃吸収部15Iと、第1嵌合部17Iと、を備える。 The first shaft 1I is a substantially cylindrical solid member. For example, the first shaft 1I is formed of S35C which is carbon steel for machine structure (SC material). As shown in FIG. 47, the first shaft 1I includes a base 11I, a second impact absorbing portion 12I, a base 13I, a first impact absorbing portion 15I, and a first fitting portion 17I.
 基部11Iは、第1ユニバーサルジョイント84に固定される。基部11Iの直径は一定である。第2衝撃吸収部12Iは、基部11Iの前方に位置する。第2衝撃吸収部12Iは、第1シャフト1Iの軸方向において、第1シャフト1Iの中央よりも後方側に位置する。基部13Iは、第2衝撃吸収部12Iの前方に位置する。基部13Iの直径は一定であり、基部11Iの直径に等しい。第1衝撃吸収部15Iは、基部13Iの前方に位置する。第1衝撃吸収部15Iは、第1シャフト1Iの軸方向において、第1シャフト1Iの中央に位置している。第1嵌合部17Iは、第1シャフト1Iの前方端部に位置する。第1嵌合部17Iは、外周面にセレーション17aIを備える。また、第1嵌合部17Iは、図47に示すように前方側の端面に凹部170Iを有する。なお、セレーション17aIは、スプラインであってもよい。 The base 11I is fixed to the first universal joint 84. The diameter of the base 11I is constant. The second shock absorber 12I is located in front of the base 11I. The second impact absorbing portion 12I is located rearward of the center of the first shaft 1I in the axial direction of the first shaft 1I. The base 13I is located in front of the second shock absorber 12I. The diameter of the base 13I is constant and equal to the diameter of the base 11I. The first shock absorber 15I is located in front of the base 13I. The first impact absorbing portion 15I is located at the center of the first shaft 1I in the axial direction of the first shaft 1I. The first fitting portion 17I is located at the front end of the first shaft 1I. The first fitting portion 17I includes serrations 17aI on the outer peripheral surface. Further, as shown in FIG. 47, the first fitting portion 17I has a recess 170I on the end face on the front side. The serrations 17aI may be splines.
 以下の説明において、第1シャフト1Iの軸方向は単に軸方向と記載され、軸方向に対して直交する方向は径方向と記載される。図47から図50は、径方向に対して直交する平面で第1シャフト1Iを切った断面である。 In the following description, the axial direction of the first shaft 1I is simply described as the axial direction, and the direction orthogonal to the axial direction is described as the radial direction. 47 to 50 are cross sections obtained by cutting the first shaft 1I in a plane orthogonal to the radial direction.
 図48に示すように、第1衝撃吸収部15Iは、複数の溝3Iと、複数の凸部4Iと、を備える。溝3Iは環状である。溝3Iは、例えば切削により形成される。複数の溝3Iは、軸方向で等間隔に配置されている。凸部4Iは、2つの溝3Iの間に位置する。凸部4Iに対応する位置における第1衝撃吸収部15Iの直径D1Iは、基部11I及び基部13Iの直径に等しい。また、直径D1Iは、第1嵌合部17Iの最小直径D4Iよりも小さい。最小直径D4Iは、セレーション17aIの谷に対応する位置における第1嵌合部17Iの直径である。なお、直径D1Iは、必ずしも基部11Iの直径に等しくなくてもよい。直径D1Iは、少なくとも溝3Iの底に対応する位置における第1衝撃吸収部15Iの直径D2Iよりも大きく且つ、第1嵌合部17Iの最小直径D4Iよりも小さければよい。 As shown in FIG. 48, the first impact absorbing portion 15I includes a plurality of grooves 3I and a plurality of convex portions 4I. The grooves 3I are annular. The grooves 3I are formed by cutting, for example. The plurality of grooves 3I are arranged at equal intervals in the axial direction. The protrusion 4I is located between the two grooves 3I. The diameter D1I of the first impact absorbing portion 15I at the position corresponding to the convex portion 4I is equal to the diameters of the base 11I and the base 13I. Further, the diameter D1I is smaller than the minimum diameter D4I of the first fitting portion 17I. The minimum diameter D4I is the diameter of the first fitting portion 17I at a position corresponding to the valley of the serration 17aI. The diameter D1I may not necessarily be equal to the diameter of the base 11I. The diameter D1I should be at least larger than the diameter D2I of the first impact absorbing portion 15I at a position corresponding to the bottom of the groove 3I and smaller than the minimum diameter D4I of the first fitting portion 17I.
 図49に示すように、第1衝撃吸収部15Iは、溝3Iに面する表面として、第1側面31Iと、第2側面33Iと、底面35Iと、第1接続面36Iと、第2接続面37Iと、を含む。第1側面31I及び第2側面33Iは、軸方向に対して垂直である。すなわち、第2側面33Iは、第1側面31Iと平行である。底面35Iは、第1側面31Iと第2側面33Iとの間に位置する。第1側面31Iが底面35Iに対して後方に位置し、第2側面33Iが底面35Iに対して前方に位置する。底面35Iは曲面である。第1接続面36Iは、第1側面31Iと底面35Iとを繋ぐ曲面である。第2接続面37Iは、第2側面33Iと底面35Iとを繋ぐ曲面である。 As shown in FIG. 49, the first impact absorbing portion 15I, as the surface facing the groove 3I, includes the first side surface 31I, the second side surface 33I, the bottom surface 35I, the first connection surface 36I, and the second connection surface. And 37I. The first side surface 31I and the second side surface 33I are perpendicular to the axial direction. That is, the second side surface 33I is parallel to the first side surface 31I. The bottom surface 35I is located between the first side surface 31I and the second side surface 33I. The first side surface 31I is located rearward with respect to the bottom surface 35I, and the second side surface 33I is located forward with respect to the bottom surface 35I. The bottom surface 35I is a curved surface. The first connection surface 36I is a curved surface connecting the first side surface 31I and the bottom surface 35I. The second connection surface 37I is a curved surface connecting the second side surface 33I and the bottom surface 35I.
 溝3Iの最大幅WIは、1mm以上3mm以下であることが好ましい。溝3Iの最大幅WIは、第1衝撃吸収部15Iが曲がった場合に第1衝撃吸収部15Iが破断しないように設定される。溝3Iの最大幅WIは、第1衝撃吸収部15Iが曲がった場合に、第1衝撃吸収部15Iが破断する前に隣接する凸部4Iが接するように設定される。図49に示す断面において、第1接続面36I及び第2接続面37Iは同じ円弧(以下、第1円弧という)を描く。第1円弧の曲率半径C1Iは、0.2mm以上1.0mm以下であることが好ましい。例えば、第5実施形態における曲率半径C1Iは0.3mmである。 The maximum width WI of the groove 3I is preferably 1 mm or more and 3 mm or less. The maximum width WI of the groove 3I is set so that the first impact absorbing portion 15I does not break when the first impact absorbing portion 15I is bent. The maximum width WI of the groove 3I is set such that, when the first impact absorbing portion 15I is bent, adjacent convex portions 4I are in contact before the first impact absorbing portion 15I breaks. In the cross section shown in FIG. 49, the first connection surface 36I and the second connection surface 37I draw the same arc (hereinafter, referred to as a first arc). The radius of curvature C1I of the first arc is preferably 0.2 mm or more and 1.0 mm or less. For example, the curvature radius C1I in the fifth embodiment is 0.3 mm.
 第1衝撃吸収部15Iは、例えば300Nmのトルクを伝達できるように設計される。第1シャフト1IがS35Cで形成される場合、溝3Iの底に対応する位置における第1衝撃吸収部15Iの直径D2Iは、14mm以上16mm以下程度となる。直径D2Iは、図49に示す溝3Iの深さHIにより決まる。 The first shock absorber 15I is designed to transmit a torque of, for example, 300 Nm. When the first shaft 1I is formed of S35C, the diameter D2I of the first impact absorbing portion 15I at a position corresponding to the bottom of the groove 3I is approximately 14 mm or more and 16 mm or less. The diameter D2I is determined by the depth HI of the groove 3I shown in FIG.
 図50に示すように、第2衝撃吸収部12Iは、小径部125Iと、第1接続部121Iと、第2接続部129Iと、を含む。小径部125Iは、円柱状である。小径部125Iの直径D3は、図48に示す直径D2Iよりも小さい。小径部125Iの軸方向の長さLは、溝3Iの最大幅WIよりも大きい。第1接続部121Iは、基部11Iと小径部125Iとを接続する。第2接続部129Iは、基部13Iと小径部125Iとを接続する。図50に示す断面において、第1接続部121I及び第2接続部129Iの表面は同じ円弧(以下、第2円弧という)を描く。第2円弧の曲率半径C2Iは、第1円弧の曲率半径C1Iよりも大きい。曲率半径C2Iは、5mm以上であることが好ましい。例えば、曲率半径C2Iは8mmである。 As shown in FIG. 50, the second impact absorbing portion 12I includes a small diameter portion 125I, a first connection portion 121I, and a second connection portion 129I. The small diameter portion 125I is cylindrical. The diameter D3 of the small diameter portion 125I is smaller than the diameter D2I shown in FIG. The axial length L of the small diameter portion 125I is larger than the maximum width WI of the groove 3I. The first connection portion 121I connects the base 11I and the small diameter portion 125I. The second connection portion 129I connects the base 13I and the small diameter portion 125I. In the cross section shown in FIG. 50, the surfaces of the first connection portion 121I and the second connection portion 129I draw the same arc (hereinafter, referred to as a second arc). The curvature radius C2I of the second arc is larger than the curvature radius C1I of the first arc. The curvature radius C2I is preferably 5 mm or more. For example, the curvature radius C2I is 8 mm.
 第2衝撃吸収部12Iは、例えば150Nm以上250Nm以下程度のトルクで変形するように設計される。中間シャフト85IがS35Cで形成される場合、直径D3は、13mm以上15.5mm以下程度となる。例えば、第5実施形態において直径D3は、13mmである。 The second impact absorbing portion 12I is designed to be deformed by, for example, a torque of about 150 Nm or more and 250 Nm or less. When the intermediate shaft 85I is formed of S35C, the diameter D3 is about 13 mm or more and 15.5 mm or less. For example, in the fifth embodiment, the diameter D3 is 13 mm.
 図47に示すように、第2シャフト2Iは筒状である。例えば、第2シャフト2Iは、機械構造用炭素鋼鋼管(STKM材)で形成される。第2シャフト2Iは、第2嵌合部21Iと、大径部23Iと、基部25Iと、を備える。 As shown in FIG. 47, the second shaft 2I is cylindrical. For example, the second shaft 2I is formed of carbon steel pipe for machine structure (STKM material). The second shaft 2I includes a second fitting portion 21I, a large diameter portion 23I, and a base 25I.
 第2嵌合部21Iは、第2シャフト2Iの後方端部に配置される。第2嵌合部21Iには、第1嵌合部17Iが挿入されている。第2嵌合部21Iは、内周面にセレーション21aIを備える。セレーション21aIは、セレーション17aIと噛み合う。なお、セレーション21aIは、スプラインであってもよい。 The second fitting portion 21I is disposed at the rear end of the second shaft 2I. The first fitting portion 17I is inserted into the second fitting portion 21I. The second fitting portion 21I includes serrations 21aI on the inner circumferential surface. The serration 21aI meshes with the serration 17aI. The serrations 21aI may be splines.
 図51に示すように、軸方向に対して直交する断面において第1嵌合部17Iの外形が円を描く。図51に示す断面において、第2嵌合部21Iの外形は楕円を描く。図52に示すように、軸方向に対して直交する断面のうち図51とは異なる断面において、第1嵌合部17Iの外形が楕円を描く。図52に示す断面において、第2嵌合部21Iの外形は円を描く。なお、図51の第2嵌合部21I及び図52の第1嵌合部17Iの形状は、説明のために誇張して描かれており、実際の形状とは異なる。実際には、セレーション21aIの全ての歯は、それぞれセレーション17aIの2つの歯の間に位置する。すなわち、図51の左側及び右側に位置するセレーション21aIの歯は、セレーション17aIの歯に接していないが、セレーション17aIの2つの歯の間に位置する。図52の上側及び下側に位置するセレーション21aIの歯は、セレーション17aIの歯に接していないが、セレーション17aIの2つの歯の間に位置する。 As shown in FIG. 51, the outer shape of the first fitting portion 17I draws a circle in a cross section orthogonal to the axial direction. In the cross section shown in FIG. 51, the outer shape of the second fitting portion 21I draws an ellipse. As shown in FIG. 52, the outer shape of the first fitting portion 17I draws an ellipse in a cross section different from that of FIG. 51 among the cross sections orthogonal to the axial direction. In the cross section shown in FIG. 52, the outer shape of the second fitting portion 21I draws a circle. The shapes of the second fitting portion 21I of FIG. 51 and the first fitting portion 17I of FIG. 52 are exaggerated for the sake of description, and are different from the actual shapes. In fact, all the teeth of serration 21aI are located between the two teeth of serration 17aI respectively. That is, the teeth of serration 21aI located on the left side and the right side of FIG. 51 are not in contact with the teeth of serration 17aI, but are located between the two teeth of serration 17aI. The teeth of serration 21aI located on the upper and lower sides of FIG. 52 are not in contact with the teeth of serration 17aI, but are located between the two teeth of serration 17aI.
 中間シャフト85Iを組み立てる時、第1嵌合部17Iの一部が第2嵌合部21Iに挿入される。そして、第1嵌合部17I及び第2嵌合部21Iが凹部170Iに対応する位置で2方向からプレスされる。その後、第1嵌合部17Iが第2嵌合部21Iの中にさらに押し込まれる。これにより、図51及び図52に示す断面形状が形成される。なお、第1嵌合部17I及び第2嵌合部21Iのこのような連結方法は、楕円嵌合と呼ばれることがある。 When assembling the intermediate shaft 85I, a part of the first fitting portion 17I is inserted into the second fitting portion 21I. Then, the first fitting portion 17I and the second fitting portion 21I are pressed from two directions at the position corresponding to the recess 170I. Thereafter, the first fitting portion 17I is further pushed into the second fitting portion 21I. Thereby, cross-sectional shapes shown in FIGS. 51 and 52 are formed. In addition, such a connection method of the 1st fitting part 17I and the 2nd fitting part 21I may be called an elliptical fitting.
 第1嵌合部17Iの第2嵌合部21Iとの接触部分に生じる摩擦により、第1嵌合部17Iに対する第2嵌合部21Iの移動が規制されている。すなわち、通常使用時(衝突が生じていない時)において、第2嵌合部21Iは第1嵌合部17Iに対して移動しない。一方、衝突時において第2シャフト2Iに軸方向の所定荷重が加わった場合、第2嵌合部21Iが第1嵌合部17Iに対して移動する。所定荷重は、例えば1kN以上3kN以下程度である。すなわち、第2シャフト2Iは、衝突時に第1シャフト1Iから離脱できるように第1シャフト1Iに連結されている。第2嵌合部21Iと第1嵌合部17Iとの間の摩擦により衝撃が吸収される。 The movement of the second fitting portion 21I with respect to the first fitting portion 17I is restricted by the friction generated in the contact portion of the first fitting portion 17I with the second fitting portion 21I. That is, in normal use (when no collision occurs), the second fitting portion 21I does not move with respect to the first fitting portion 17I. On the other hand, when a predetermined load in the axial direction is applied to the second shaft 2I at the time of a collision, the second fitting portion 21I moves relative to the first fitting portion 17I. The predetermined load is, for example, about 1 kN or more and 3 kN or less. That is, the second shaft 2I is connected to the first shaft 1I so that it can be separated from the first shaft 1I at the time of a collision. An impact is absorbed by the friction between the second fitting portion 21I and the first fitting portion 17I.
 大径部23Iは、第2嵌合部21Iの前方に配置される。大径部23Iの外径は一定である。大径部23Iの外径は、第2嵌合部21Iの外径よりも大きい。 The large diameter portion 23I is disposed in front of the second fitting portion 21I. The outer diameter of the large diameter portion 23I is constant. The outer diameter of the large diameter portion 23I is larger than the outer diameter of the second fitting portion 21I.
 基部25Iは、第2シャフト2Iの前方端部に配置される。基部25Iは、第2ユニバーサルジョイント86に固定されている。基部25Iの外径は一定である。基部25Iの外径は、第2嵌合部21Iの外径に等しい。 The base 25I is disposed at the front end of the second shaft 2I. The base 25I is fixed to the second universal joint 86. The outer diameter of the base 25I is constant. The outer diameter of the base 25I is equal to the outer diameter of the second fitting portion 21I.
 図53は、第1シャフトが第2シャフトの中に入った後の中間シャフトの斜視図である。図54は、第1シャフトが曲がった後の中間シャフトの斜視図である。 FIG. 53 is a perspective view of the intermediate shaft after the first shaft has entered the second shaft. FIG. 54 is a perspective view of the intermediate shaft after the first shaft is bent.
 車両が衝突するとステアリングギヤ88に荷重が加わる。ステアリングギヤ88に加わった荷重は、第2ユニバーサルジョイント86を介して第2シャフト2Iに伝わる。車両の前面の全てが衝突対象物に当たった場合(フルラップ衝突の場合)、第2シャフト2Iには軸方向の荷重が加わることが多い。フルラップ衝突の場合には、図53に示すように第2シャフト2Iが第1シャフト1Iに対して移動することで衝撃が吸収される。その結果、ステアリングホイール81に伝わる衝撃が低減する。 When the vehicle collides, a load is applied to the steering gear 88. The load applied to the steering gear 88 is transmitted to the second shaft 2I via the second universal joint 86. If all of the front of the vehicle hit the collision object (in the case of a full wrap collision), the second shaft 2I is often subjected to an axial load. In the case of a full wrap collision, as shown in FIG. 53, the impact is absorbed by moving the second shaft 2I relative to the first shaft 1I. As a result, the shock transmitted to the steering wheel 81 is reduced.
 一方、車両の前面の一部が衝突対象物に当たった場合(オフセット衝突の場合)、第2シャフト2Iには軸方向でない荷重が加わることが多い。このため、第2シャフト2Iが第1シャフト1Iに対して真っ直ぐに移動できない。オフセット衝突の場合には、中間シャフト85Iには曲げ応力が生じる。この時、第1接続面36I及び第2接続面37Iに応力集中が生じることで、第1接続面36I及び第2接続面37Iを起点として図54に示すように第1衝撃吸収部15Iが曲がる。溝3Iの径方向における一方側が拡がり、溝3Iの径方向における他方側が縮む。溝3Iが縮む側においては、凸部4Iが隣接する凸部4Iに接する。曲がった中間シャフト85Iは、中間シャフト85Iの周辺部品の隙間に入り込む。第1衝撃吸収部15Iが曲がることにより、衝突による衝撃が吸収される。その結果、ステアリングホイール81に伝わる衝撃が低減する。 On the other hand, when a part of the front of the vehicle collides with the collision target (in the case of an offset collision), a non-axial load is often applied to the second shaft 2I. For this reason, the second shaft 2I can not move straight with respect to the first shaft 1I. In the case of an offset collision, bending stress occurs in the intermediate shaft 85I. At this time, stress concentration occurs in the first connection surface 36I and the second connection surface 37I, whereby the first impact absorbing portion 15I is bent as shown in FIG. 54 starting from the first connection surface 36I and the second connection surface 37I. . One side of the groove 3I in the radial direction expands, and the other side of the groove 3I in the radial direction contracts. On the side where the groove 3I is contracted, the convex portion 4I is in contact with the adjacent convex portion 4I. The bent intermediate shaft 85I enters the clearance of the peripheral parts of the intermediate shaft 85I. By the bending of the first impact absorbing portion 15I, the impact due to the collision is absorbed. As a result, the shock transmitted to the steering wheel 81 is reduced.
 第1衝撃吸収部15Iは複数の溝3Iを備えるので、中間シャフト85Iに曲げ応力が作用すると、第1衝撃吸収部15Iの複数の部分で応力集中が生じる。このため、第1衝撃吸収部15Iの変形する部分の範囲が大きくなりやすいので、中間シャフト85Iの衝撃吸収能力が向上する。 Since the first impact absorbing portion 15I includes the plurality of grooves 3I, when bending stress acts on the intermediate shaft 85I, stress concentration occurs in the plurality of portions of the first impact absorbing portion 15I. Therefore, the range of the deformed portion of the first impact absorbing portion 15I is likely to be large, so that the impact absorbing ability of the intermediate shaft 85I is improved.
 中間シャフト85Iには、1次衝突による曲げ応力が生じることがあると共に、車両が縁石へ乗り上げた場合等において大きなトルク(捩り力)が入力されることがある。このため、中間シャフト85Iには、大きなトルクを受けた時の破損を抑制し且つ1次衝突時に衝撃を吸収することができることが求められる。 The intermediate shaft 85I may generate bending stress due to the primary collision, and may receive a large torque (twisting force) when the vehicle runs on a curb or the like. Therefore, the intermediate shaft 85I is required to be able to suppress damage when receiving a large torque and to absorb an impact at the time of a primary collision.
 第5実施形態の中間シャフト85Iでは、直径D3が直径D2Iよりも小さい。このため、車両が縁石へ乗り上げた場合等において、第2衝撃吸収部12Iが変形する(捩れる)。第2衝撃吸収部12Iが変形することで、中間シャフト85Iに入力されたエネルギーが吸収される。第2衝撃吸収部12Iでエネルギーが吸収されるので、第1衝撃吸収部15Iの変形が抑制される。 In the intermediate shaft 85I of the fifth embodiment, the diameter D3 is smaller than the diameter D2I. For this reason, the second impact absorbing portion 12I is deformed (twisted) when the vehicle rides on a curb or the like. The energy input to the intermediate shaft 85I is absorbed by the deformation of the second impact absorbing portion 12I. Since energy is absorbed by the second impact absorbing portion 12I, deformation of the first impact absorbing portion 15I is suppressed.
 一方、第5実施形態の中間シャフト85Iにおいては、曲率半径C2Iが曲率半径C1Iよりも大きい。このため、1次衝突時に中間シャフト85Iに曲げ応力が生じると、第2衝撃吸収部12Iではなく第1衝撃吸収部15Iが変形する(曲がる)。 On the other hand, in the intermediate shaft 85I of the fifth embodiment, the curvature radius C2I is larger than the curvature radius C1I. Therefore, when bending stress is generated in the intermediate shaft 85I at the time of the primary collision, the first impact absorbing portion 15I, not the second impact absorbing portion 12I, is deformed (bent).
 なお、第1嵌合部17I及び第2嵌合部21Iの連結方法は、樹脂コートスライダーを用いた連結方法、又は転動体を用いた連結方法であってもよい。樹脂コートスライダーを用いた連結方法は、潤滑皮膜を有する第1嵌合部17Iを第2嵌合部21Iに嵌める方法である。潤滑皮膜は、例えば、第1嵌合部17Iの外周面に合成樹脂のコーティングを施した上にグリースが塗布されることで形成される。これにより、第1嵌合部17Iと第2嵌合部21Iとの接触部分の磨耗が低減されると共に摩擦抵抗が低減される。なお、潤滑皮膜は、第2嵌合部21Iに設けられてもよいし、第1嵌合部17I及び第2嵌合部21Iの両方に設けられてもよい。また、転動体を用いた連結方法は、第1嵌合部17Iと第2嵌合部21Iとを転動体を介して連結する方法である。転動体の例としては、ボール又はローラが挙げられる。転動体としてボールとローラが組み合わされていてもよい。これにより、第1嵌合部17Iと第2嵌合部21Iとの接触部分の磨耗が低減されると共に摩擦抵抗が低減される。 In addition, the connection method of the 1st fitting part 17I and the 2nd fitting part 21I may be a connection method using a resin coat slider, or a connection method using a rolling element. The connection method using the resin-coated slider is a method of fitting the first fitting portion 17I having a lubricating film to the second fitting portion 21I. The lubricating coating is formed, for example, by applying a grease on a coating of a synthetic resin on the outer peripheral surface of the first fitting portion 17I. As a result, the wear on the contact portion between the first fitting portion 17I and the second fitting portion 21I is reduced and the frictional resistance is reduced. In addition, a lubricating film may be provided in the 2nd fitting part 21I, and may be provided in both the 1st fitting part 17I and the 2nd fitting part 21I. Moreover, the connection method using a rolling element is a method of connecting the 1st fitting part 17I and the 2nd fitting part 21I via a rolling element. Examples of rolling elements include balls or rollers. Balls and rollers may be combined as rolling elements. As a result, the wear on the contact portion between the first fitting portion 17I and the second fitting portion 21I is reduced and the frictional resistance is reduced.
 以上で説明したように、ステアリング装置80Iは、第1ユニバーサルジョイント84と、第1ユニバーサルジョイント84より前方側に配置される第2ユニバーサルジョイント86と、第1ユニバーサルジョイント84と第2ユニバーサルジョイント86とを連結する中間シャフト85Iと、を備える。中間シャフト85Iは、中実部材である第1シャフト1Iと、第1シャフト1Iに離脱可能に連結される筒状の第2シャフト2Iと、を備える。第1シャフト1Iは、外周面に溝3Iを有する第1衝撃吸収部15Iを備える。 As described above, the steering device 80I includes the first universal joint 84, the second universal joint 86 disposed forward of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85I connecting the two. The intermediate shaft 85I includes a first shaft 1I which is a solid member, and a cylindrical second shaft 2I releasably connected to the first shaft 1I. The first shaft 1I includes a first impact absorbing portion 15I having a groove 3I on the outer peripheral surface.
 これにより、第1衝撃吸収部15Iの形成に際して金型が不要であるので、第1衝撃吸収部15Iの形成が容易となる。また、第1衝撃吸収部15Iの変形特性は、第1衝撃吸収部15Iの溝3Iの形状に応じて変化する。溝3Iの形状を変更することは容易であるため、第1衝撃吸収部15Iの変形特性の調整は容易である。したがって、ステアリング装置80Iは、容易に製造でき且つ容易に変形特性を変更することができる中間シャフト85Iにより衝撃を吸収することができる。 As a result, no mold is required when forming the first impact absorbing portion 15I, so the formation of the first impact absorbing portion 15I is facilitated. Also, the deformation characteristics of the first impact absorbing portion 15I change according to the shape of the groove 3I of the first impact absorbing portion 15I. Since it is easy to change the shape of the groove 3I, it is easy to adjust the deformation characteristics of the first impact absorbing portion 15I. Therefore, the steering device 80I can absorb an impact by the intermediate shaft 85I which can be easily manufactured and can easily change its deformation characteristics.
 さらに、1次衝突時に第2シャフト2Iが第1シャフト1Iに対して相対的に移動する。ステアリング装置80Iは、第1シャフト1Iと第2シャフト2Iとの間で生じる摩擦によって衝撃を吸収することができる。 Furthermore, the second shaft 2I moves relative to the first shaft 1I at the time of the primary collision. The steering device 80I can absorb an impact by the friction generated between the first shaft 1I and the second shaft 2I.
 また、第1シャフト1Iは、外周面にセレーション17aIを有する第1嵌合部17Iを備える。第2シャフト2Iは、内周面にセレーション21aIを有する第2嵌合部21Iを備える。第1嵌合部17Iが第2嵌合部21Iに嵌まる。第1衝撃吸収部15Iの最大外径(直径D1I)は、第1嵌合部17Iの最小直径D4Iよりも小さい。 In addition, the first shaft 1I includes a first fitting portion 17I having serrations 17aI on the outer peripheral surface. The second shaft 2I includes a second fitting portion 21I having serrations 21aI on its inner circumferential surface. The first fitting portion 17I fits into the second fitting portion 21I. The maximum outer diameter (diameter D1I) of the first impact absorbing portion 15I is smaller than the minimum diameter D4I of the first fitting portion 17I.
 これにより、第2シャフト2Iが第1シャフト1Iに対して相対的に移動する時に、第1衝撃吸収部15Iと第2嵌合部21Iのセレーション21aIとが干渉しにくくなる。このため、ステアリング装置80Iは、中間シャフト85Iの衝撃吸収能力のバラツキを抑制することができる。 As a result, when the second shaft 2I moves relative to the first shaft 1I, interference between the first impact absorbing portion 15I and the serration 21aI of the second fitting portion 21I becomes difficult. Therefore, the steering device 80I can suppress the variation in the shock absorbing capability of the intermediate shaft 85I.
(第5実施形態の第1変形例)
 図55は、第5実施形態の第1変形例における第1衝撃吸収部の溝の周辺部を拡大した断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
First Modification of Fifth Embodiment
FIG. 55 is an enlarged cross-sectional view of a peripheral portion of a groove of a first impact absorbing portion in a first modified example of the fifth embodiment. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図55に示すように、第5実施形態の第1変形例においては、第1衝撃吸収部15Jに被覆材5Iが設けられる。被覆材5Iは、第1衝撃吸収部15Jの溝3Iに面する表面(第1側面31I、第2側面33I、底面35I、第1接続面36I及び第2接続面37I)を覆う。すなわち、被覆材5Iは溝3Iの内周面を覆う。また被覆材5Iは、第1衝撃吸収部15Jの溝3Iよりも外側の表面である主表面150Iを覆う。すなわち、第5実施形態の第1変形例においては、被覆材5Iが第1衝撃吸収部15Jの表面の全体を覆う。被覆材5Iは、防錆皮膜である。被覆材5Iは、例えば亜鉛又はニッケル等を含む。言い換えると、第1衝撃吸収部15Jの表面には、亜鉛メッキ又はニッケルメッキ等が施されている。 As shown in FIG. 55, in the first modification of the fifth embodiment, the covering material 5I is provided in the first impact absorbing portion 15J. The covering material 5I covers the surfaces (the first side surface 31I, the second side surface 33I, the bottom surface 35I, the first connection surface 36I and the second connection surface 37I) facing the groove 3I of the first impact absorbing portion 15J. That is, the covering material 5I covers the inner peripheral surface of the groove 3I. In addition, the covering material 5I covers the main surface 150I which is the surface outside the groove 3I of the first impact absorbing portion 15J. That is, in the first modification of the fifth embodiment, the covering material 5I covers the entire surface of the first impact absorbing portion 15J. The covering material 5I is an antirust film. The covering material 5I contains, for example, zinc or nickel. In other words, zinc plating, nickel plating, or the like is applied to the surface of the first impact absorbing portion 15J.
 なお、被覆材5Iは、必ずしも第1衝撃吸収部15Jの表面の全体を覆わなくてもよい。被覆材5Iは、第1衝撃吸収部15Jの溝3Iに面する表面の少なくとも一部を覆っていればよい。被覆材5Iは、少なくとも底面35I、第1接続面36I及び第2接続面37Iを覆うことが好ましい。また被覆材5Iは、例えばグリースであってもよい。この場合、グリースの粘度は高い方が好ましい。 In addition, the covering material 5I does not necessarily need to cover the whole surface of the 1st impact-absorbing part 15J. The covering material 5I should just cover at least one part of the surface which faces the groove 3I of the 1st impact-absorbing part 15J. The covering material 5I preferably covers at least the bottom surface 35I, the first connection surface 36I, and the second connection surface 37I. Also, the covering material 5I may be, for example, a grease. In this case, the viscosity of the grease is preferably high.
 上述したように、第5実施形態の第1変形例のステアリング装置80Iは、溝3Iに面する第1衝撃吸収部15Jの表面の少なくとも一部を覆う被覆材5Iを備える。被覆材5Iは、防錆皮膜である。 As described above, the steering device 80I according to the first modified example of the fifth embodiment includes the covering material 5I covering at least a part of the surface of the first impact absorbing portion 15J facing the groove 3I. The covering material 5I is an antirust film.
 第1衝撃吸収部15Jは、所定のトルク(例えば300Nm)を伝達できるように設計される。溝3Iを有する第1衝撃吸収部15Jにおいては、溝3Iに対応する部分のトルクに対する強度が低くなる。第1衝撃吸収部15Jは十分な安全率を考慮して設計されているものの、第1衝撃吸収部15Jに錆が生じると、第1衝撃吸収部15Jが所定のトルクに耐えられなくなる可能性がある。これに対して、第1衝撃吸収部15Jにおいては、被覆材5Iによって溝3Iに面する表面での錆の発生が抑制される。第1衝撃吸収部15Jの溝3Iに対応する部分の強度低下が抑制される。第5実施形態の第1変形例は、特に雨等の水がかかる可能性のある場所に配置される場合に有効である。 The first shock absorber 15J is designed to transmit a predetermined torque (for example, 300 Nm). In the first impact absorbing portion 15J having the groove 3I, the strength against torque of the portion corresponding to the groove 3I is low. Although the first shock absorber 15J is designed in consideration of a sufficient safety factor, there is a possibility that the first shock absorber 15J can not withstand a predetermined torque if rust occurs in the first shock absorber 15J. is there. On the other hand, in the first impact absorbing portion 15J, the covering material 5I suppresses the occurrence of rust on the surface facing the groove 3I. The reduction in strength of the portion of the first impact absorbing portion 15J corresponding to the groove 3I is suppressed. The first modification of the fifth embodiment is particularly effective when disposed at a place where water such as rain may be applied.
 また被覆材5Iは、第1衝撃吸収部15Jの溝3Iよりも外側の表面である主表面150Iを覆う。 In addition, the covering material 5I covers the main surface 150I which is the surface outside the groove 3I of the first impact absorbing portion 15J.
 上述したように中間シャフト85Iに軸方向の所定荷重が加わった場合、第1シャフト1I及び第2シャフト2Iが相対的に移動する。中間シャフト85Iに曲げモーメントも加わっていると、第2シャフト2Iが第1衝撃吸収部15Jに引っ掛かる可能性がある。これに対して、主表面150Iが被覆材5Iで覆われていることにより、第2シャフト2Iと第1衝撃吸収部15Jとの間の摩擦が低減される。このため、仮に第2シャフト2Iが第1衝撃吸収部15Jに接触した場合でも、第2シャフト2Iが第1衝撃吸収部15Jに引っ掛かりにくい。このため、第2シャフト2Iの移動が滑らかになる。 As described above, when a predetermined load in the axial direction is applied to the intermediate shaft 85I, the first shaft 1I and the second shaft 2I move relatively. If a bending moment is also applied to the intermediate shaft 85I, the second shaft 2I may be caught by the first impact absorbing portion 15J. In contrast, the friction between the second shaft 2I and the first impact absorbing portion 15J is reduced by covering the main surface 150I with the covering material 5I. Therefore, even if the second shaft 2I contacts the first impact absorbing portion 15J, the second shaft 2I is unlikely to be caught by the first impact absorbing portion 15J. For this reason, the movement of the second shaft 2I becomes smooth.
(第5実施形態の第2変形例)
 図56は、第5実施形態の第2変形例における第1衝撃吸収部を拡大した断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Second Modification of Fifth Embodiment
FIG. 56 is an enlarged cross-sectional view of a first impact absorbing portion in a second modified example of the fifth embodiment. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図56に示すように、第5実施形態の第2変形例においては、充填材6Iが溝3Iに設けられる。例えば、充填材6Iは、複数の溝3Iの全てに配置されている。例えば、充填材6Iの深さは溝3Iの深さHI(図49参照)に等しい。充填材6Iは、樹脂又はゴムであることが好ましい。さらに、充填材6Iは独立気泡体であるゴムであることが好ましい。充填材6Iのヤング率は、第1衝撃吸収部15Kのヤング率よりも小さい。第1衝撃吸収部15Kに曲げモーメントが加わった時、充填材6Iは容易に変形する。 As shown in FIG. 56, in the second modification of the fifth embodiment, the filler 6I is provided in the groove 3I. For example, the filler 6I is disposed in all of the plurality of grooves 3I. For example, the depth of the filler 6I is equal to the depth HI of the groove 3I (see FIG. 49). The filler 6I is preferably a resin or rubber. Furthermore, the filler 6I is preferably a rubber which is a closed cell. The Young's modulus of the filler 6I is smaller than the Young's modulus of the first impact absorbing portion 15K. When a bending moment is applied to the first impact absorbing portion 15K, the filler 6I is easily deformed.
 なお、充填材6Iの深さは溝3Iの深さHI(図49参照)よりも小さくてもよい。すなわち、1つの溝3Iに埋められる充填材6Iの体積は、1つの溝3Iの体積よりも小さくてもよい。充填材6Iは、底面35I、第1接続面36I及び第2接続面37Iを覆うことが好ましい。また、溝3Iには充填材6I及び第5実施形態の第1変形例で説明した被覆材5Iの両方が設けられていてもよい。すなわち、被覆材5Iが第1衝撃吸収部15Kを覆い且つ充填材6Iが被覆材5Iを覆っていてもよい。また充填材6Iは、例えばグリースであってもよい。この場合、グリースの粘度は高い方が好ましい。 The depth of the filler 6I may be smaller than the depth HI (see FIG. 49) of the groove 3I. That is, the volume of the filler 6I embedded in one groove 3I may be smaller than the volume of one groove 3I. The filler 6I preferably covers the bottom surface 35I, the first connection surface 36I and the second connection surface 37I. In addition, both the filler 6I and the covering 5I described in the first modification of the fifth embodiment may be provided in the groove 3I. That is, the covering material 5I may cover the first impact absorbing portion 15K, and the filling material 6I may cover the covering material 5I. The filler 6I may be, for example, grease. In this case, the viscosity of the grease is preferably high.
 上述したように、第5実施形態の第2変形例のステアリング装置80Iは、溝3Iに配置される充填材6Iを備える。 As described above, the steering device 80I of the second modified example of the fifth embodiment includes the filler 6I disposed in the groove 3I.
 第5実施形態の第2変形例の第1衝撃吸収部15Kにおいては、充填材6Iにより溝3Iに水が入りにくくなっている。このため、溝3Iに面する第1衝撃吸収部15Kの表面での錆の発生が抑制される。第1衝撃吸収部15Kの溝3Iに対応する部分の強度低下が抑制される。第5実施形態の第2変形例は、特に雨等の水がかかる可能性のある場所に配置される場合に有効である。 In the first impact absorbing portion 15K of the second modified example of the fifth embodiment, the filling material 6I makes it difficult for water to enter the groove 3I. For this reason, the generation of rust on the surface of the first impact absorbing portion 15K facing the groove 3I is suppressed. The reduction in strength of the portion of the first impact absorbing portion 15K corresponding to the groove 3I is suppressed. The second modification of the fifth embodiment is particularly effective in the case of being disposed at a place where water such as rain may be applied.
 また充填材6Iは、樹脂である。これにより、充填材6Iが第1衝撃吸収部15Kの変形を阻害しにくくなる。 The filler 6I is a resin. This makes it difficult for the filler 6I to inhibit the deformation of the first impact absorbing portion 15K.
 また充填材6Iは、ゴムである。これにより、充填材6Iが第1衝撃吸収部15Kの変形を阻害しにくくなる。 The filler 6I is rubber. This makes it difficult for the filler 6I to inhibit the deformation of the first impact absorbing portion 15K.
 また充填材6Iは、独立気泡体である。これにより、第1衝撃吸収部15Kの重量の増加が抑制される。 The filler 6I is a closed cell. Thereby, the increase in the weight of the first shock absorber 15K is suppressed.
 また、充填材6Iの体積は、溝3Iの体積と同じである。 Further, the volume of the filler 6I is the same as the volume of the groove 3I.
 これにより、溝3Iが充填材6Iで埋められるので、第1衝撃吸収部15Kの外周面が滑らかになる。第2シャフト2Iと第1衝撃吸収部15Kとの間の摩擦が低減される。このため、仮に第2シャフト2Iが第1衝撃吸収部15Kに接触した場合でも、第2シャフト2Iが第1衝撃吸収部15Kに引っ掛かりにくい。このため、第2シャフト2Iの移動が滑らかになる。 As a result, the groove 3I is filled with the filler 6I, so the outer peripheral surface of the first impact absorbing portion 15K becomes smooth. The friction between the second shaft 2I and the first shock absorber 15K is reduced. Therefore, even when the second shaft 2I contacts the first impact absorbing portion 15K, the second shaft 2I is unlikely to be caught by the first impact absorbing portion 15K. For this reason, the movement of the second shaft 2I becomes smooth.
(第5実施形態の第3変形例)
 図57は、第5実施形態の第3変形例の中間シャフトの断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Third Modification of Fifth Embodiment)
FIG. 57 is a cross-sectional view of the intermediate shaft of the third modified example of the fifth embodiment. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図57に示すように、第5実施形態の第3変形例においては、第1シャフト1Iが第2シャフト2Iの前方に位置する。第1シャフト1Iは、ストッパー14Iと、基部19Iと、を備える。ストッパー14Iは、基部13Iの外周面から径方向に突出している。ストッパー14Iは、基部13Iと一体に形成されている。ストッパー14Iは、軸方向から見て第2嵌合部21Iの端面に重なる。ストッパー14Iは、第1衝撃吸収部15Iの後方に位置する。このため、第2嵌合部21Iの端面からストッパー14Iまでの距離は、第2嵌合部21Iの端面から第1衝撃吸収部15Iまでの距離よりも小さい。基部19Iは、第1衝撃吸収部15Iの前方に位置し、第2ユニバーサルジョイント86に接続される。基部19Iの直径は一定であり、基部11Iの直径に等しい。 As shown in FIG. 57, in the third modification of the fifth embodiment, the first shaft 1I is located in front of the second shaft 2I. The first shaft 1I includes a stopper 14I and a base 19I. The stopper 14I protrudes radially from the outer peripheral surface of the base 13I. The stopper 14I is integrally formed with the base 13I. The stopper 14I overlaps the end face of the second fitting portion 21I when viewed from the axial direction. The stopper 14I is located behind the first impact absorbing portion 15I. For this reason, the distance from the end face of the second fitting portion 21I to the stopper 14I is smaller than the distance from the end face of the second fitting portion 21I to the first impact absorbing portion 15I. The base 19I is located in front of the first shock absorber 15I and connected to the second universal joint 86. The diameter of the base 19I is constant and equal to the diameter of the base 11I.
 第1シャフト1I及び第2シャフト2Iが相対的に移動すると、ストッパー14Iは第2嵌合部21Iの端面に接する。ストッパー14Iは、第1シャフト1I及び第2シャフト2Iの相対的な移動量を規制する。ストッパー14Iが第1衝撃吸収部15Iの後方に位置するので、第1衝撃吸収部15Iが第2シャフト2Iの中に入る前にストッパー14Iが第2嵌合部21Iに接する。このため、第1シャフト1Iは、第2シャフト2Iに対して相対的に移動した後に曲がることができる。 When the first shaft 1I and the second shaft 2I move relative to each other, the stopper 14I contacts the end face of the second fitting portion 21I. The stopper 14I regulates the relative movement amount of the first shaft 1I and the second shaft 2I. Since the stopper 14I is located at the rear of the first shock absorbing portion 15I, the stopper 14I contacts the second fitting portion 21I before the first shock absorbing portion 15I enters the second shaft 2I. Thus, the first shaft 1I can bend after being moved relative to the second shaft 2I.
 なお、ストッパー14Iは、第2シャフト2Iに設けられてもよい。例えば、ストッパー14Iは、第2シャフト2Iの内周面に設けられ、軸方向から見て第1嵌合部17Iに重なればよい。このような場合、第1嵌合部17Iの端面からストッパー14Iまでの距離は、第2嵌合部21Iの端面から第1衝撃吸収部15Iまでの距離よりも小さいことが好ましい。これにより、第1衝撃吸収部15Iが第2シャフト2Iの中に入る前に第1嵌合部17Iがストッパー14Iに接する。このため、第1シャフト1Iは、第2シャフト2Iに対して相対的に移動した後に曲がることができる。 The stopper 14I may be provided on the second shaft 2I. For example, the stopper 14I may be provided on the inner circumferential surface of the second shaft 2I and may overlap the first fitting portion 17I when viewed in the axial direction. In such a case, the distance from the end face of the first fitting portion 17I to the stopper 14I is preferably smaller than the distance from the end face of the second fitting portion 21I to the first impact absorbing portion 15I. Thus, the first fitting portion 17I contacts the stopper 14I before the first impact absorbing portion 15I enters the second shaft 2I. Thus, the first shaft 1I can bend after being moved relative to the second shaft 2I.
 なお、ストッパー14Iは、基部13Iに溶接等により接続されていてもよい。ストッパー14Iとして、C型止め輪又はE型止め輪が用いられてもよい。 The stopper 14I may be connected to the base 13I by welding or the like. A C-type retaining ring or an E-type retaining ring may be used as the stopper 14I.
 上述したように、中間シャフト85Lは、第1シャフト1I及び第2シャフト2Iの相対的な移動量を規制するストッパー14Iを備える。 As described above, the intermediate shaft 85L includes the stopper 14I that regulates the relative movement amount of the first shaft 1I and the second shaft 2I.
 これにより、第1シャフト1I及び第2シャフト2Iの相対的な移動量を調節することが可能となるので、第2シャフト2Iに過大な荷重が加わることが防止される。 This makes it possible to adjust the relative movement amount of the first shaft 1I and the second shaft 2I, so that it is possible to prevent an excessive load from being applied to the second shaft 2I.
(第6実施形態)
 図58は、第6実施形態のステアリング装置の斜視図である。図59は、第6実施形態の中間シャフトの側面図である。図60は、第6実施形態の中間シャフトの断面図である。図61は、図60の第1衝撃吸収部の拡大図である。図62は、図60の溝の拡大図である。図63は、図60の第2衝撃吸収部の拡大図である。
Sixth Embodiment
FIG. 58 is a perspective view of the steering device of the sixth embodiment. FIG. 59 is a side view of the intermediate shaft of the sixth embodiment. FIG. 60 is a cross-sectional view of the intermediate shaft of the sixth embodiment. FIG. 61 is an enlarged view of the first shock absorber in FIG. 60. Figure 62 is an enlarged view of the groove of Figure 60; FIG. 63 is an enlarged view of a second shock absorber shown in FIG. 60.
 以下の説明において、中間シャフト85Mの軸方向は単に軸方向と記載され、軸方向に対して直交する方向は径方向と記載される。図60から図63は、径方向に対して直交する平面で中間シャフト85Mを切った断面である。 In the following description, the axial direction of the intermediate shaft 85M is simply described as the axial direction, and the direction orthogonal to the axial direction is described as the radial direction. 60 to 63 are cross sections obtained by cutting the intermediate shaft 85M in a plane orthogonal to the radial direction.
 中間シャフト85Mは、略円柱状の中空部材である。例えば、中間シャフト85Mは機械構造用炭素鋼鋼管(STKM材)で形成される。中間シャフト85Mは、STKM12B(JIS G 3445)で形成されることが好ましい。STKM12Bの引張強度は340MPa以上であり、管軸直角方向の伸びは20%以上である。このため、中間シャフト85Mは捩れやすく且つ座屈しにくい。中間シャフト85Mは、STKM13A又はSTKM15A(JIS G 3445)等で形成されてもよい。図60に示すように中間シャフト85Mは孔10Mを備える。中間シャフト85Mの内径D10M(孔10Mの直径)は、軸方向の全長に亘って一定である。内径D10Mは、9mm以上15mm以下であることが好ましい。例えば第6実施形態における内径D10Mは、9.4mmである。内径D10Mの公差は、±0.1mm以内であることが好ましい。 The intermediate shaft 85M is a substantially cylindrical hollow member. For example, the intermediate shaft 85M is formed of carbon steel pipe for machine structure (STKM material). The intermediate shaft 85M is preferably formed of STKM 12B (JIS G 3445). The tensile strength of STKM 12B is 340 MPa or more, and the elongation in the direction perpendicular to the tube axis is 20% or more. For this reason, the intermediate shaft 85M is easy to twist and does not easily buckle. The intermediate shaft 85M may be formed of STKM 13A or STKM 15A (JIS G 3445) or the like. As shown in FIG. 60, the intermediate shaft 85M is provided with a hole 10M. The inner diameter D10M (diameter of the hole 10M) of the intermediate shaft 85M is constant over the entire axial length. The inner diameter D10M is preferably 9 mm or more and 15 mm or less. For example, the inner diameter D10M in the sixth embodiment is 9.4 mm. The tolerance of the inner diameter D10M is preferably within ± 0.1 mm.
 図59及び図60に示すように、中間シャフト85Mは、基部11Mと、第1衝撃吸収部15Mと、基部16Mと、第2衝撃吸収部17Mと、基部19Mと、を備える。 As shown in FIGS. 59 and 60, the intermediate shaft 85M includes a base 11M, a first shock absorber 15M, a base 16M, a second shock absorber 17M, and a base 19M.
 基部11Mは、第1ユニバーサルジョイント84に接続される。基部11Mは円柱状であり、基部11Mの外径は一定である。基部11Mは外径D1Mを有する。外径D1Mは、15mm以上18mm以下であることが好ましい。例えば第6実施形態における外径D1Mは16.8mmである。外径D1Mの公差は、+0.2mm以内であることが好ましい。基部11Mの肉厚T1Mは3.7mmである。第1衝撃吸収部15Mは、基部11Mの前方に位置する。第1衝撃吸収部15Mは、中間シャフト85Mの軸方向において、中間シャフト85Mの中央に位置する。基部16Mは、第1衝撃吸収部15Mの前方に位置する。基部16Mの外径は一定であり、外径D1Mに等しい。第2衝撃吸収部17Mは、基部16Mの前方に位置する。第2衝撃吸収部17Mは、中間シャフト85Mの中央よりも前方側に位置する。基部19Mは、第2ユニバーサルジョイント86に接続される。基部19Mの外径は一定であり、外径D1Mに等しい。 The base 11M is connected to the first universal joint 84. The base 11M is cylindrical, and the outer diameter of the base 11M is constant. The base 11M has an outer diameter D1M. The outer diameter D1M is preferably 15 mm or more and 18 mm or less. For example, the outer diameter D1M in the sixth embodiment is 16.8 mm. The tolerance of the outer diameter D1M is preferably within +0.2 mm. The thickness T1M of the base 11M is 3.7 mm. The first shock absorber 15M is located in front of the base 11M. The first impact absorbing portion 15M is located at the center of the intermediate shaft 85M in the axial direction of the intermediate shaft 85M. The base 16M is located in front of the first shock absorber 15M. The outer diameter of the base 16M is constant and equal to the outer diameter D1M. The second shock absorber 17M is located in front of the base 16M. The second shock absorber 17M is located forward of the center of the intermediate shaft 85M. The base 19M is connected to the second universal joint 86. The outer diameter of the base 19M is constant and equal to the outer diameter D1M.
 図61に示すように、第1衝撃吸収部15Mは、複数の溝3Mと、複数の凸部4Mと、を備える。溝3Mは環状である。溝3Mは、例えば機械構造用炭素鋼鋼管の外周面を切削することにより形成される。複数の溝3Mは、軸方向で等間隔に配置されている。凸部4Mは、2つの溝3Mの間に位置する。凸部4Mに対応する位置における第1衝撃吸収部15Mの外径は外径D1Mに等しい。 As shown in FIG. 61, the first impact absorbing portion 15M includes a plurality of grooves 3M and a plurality of convex portions 4M. The groove 3M is annular. The groove 3M is formed, for example, by cutting the outer peripheral surface of the carbon steel pipe for machine structure. The plurality of grooves 3M are arranged at equal intervals in the axial direction. The protrusion 4M is located between the two grooves 3M. The outer diameter of the first impact absorbing portion 15M at the position corresponding to the convex portion 4M is equal to the outer diameter D1M.
 図61に示すように、第1衝撃吸収部15Mは、溝3Mに面する表面として、第1側面31Mと、第2側面33Mと、底面35Mと、第1接続面36Mと、第2接続面37Mと、を含む。第1側面31M及び第2側面33Mは、軸方向に対して垂直である。すなわち第2側面33Mは、第1側面31Mと平行である。底面35Mは、第1側面31Mと第2側面33Mとの間に位置する。第1側面31Mが底面35Mに対して後方に位置し、第2側面33Mが底面35Mに対して前方に位置する。底面35Mは曲面である。第1接続面36Mは、第1側面31Mと底面35Mとを繋ぐ曲面である。第2接続面37Mは、第2側面33Mと底面35Mとを繋ぐ曲面である。 As shown in FIG. 61, the first impact absorbing portion 15M has a first side 31M, a second side 33M, a bottom 35M, a first connection surface 36M, and a second connection surface as surfaces facing the groove 3M. And 37M. The first side surface 31M and the second side surface 33M are perpendicular to the axial direction. That is, the second side surface 33M is parallel to the first side surface 31M. The bottom surface 35M is located between the first side 31M and the second side 33M. The first side surface 31M is located rearward with respect to the bottom surface 35M, and the second side surface 33M is located forward with respect to the bottom surface 35M. The bottom surface 35M is a curved surface. The first connection surface 36M is a curved surface connecting the first side surface 31M and the bottom surface 35M. The second connection surface 37M is a curved surface connecting the second side surface 33M and the bottom surface 35M.
 第1衝撃吸収部15Mは、例えば300Nmのトルクを伝達できるように設計される。第1衝撃吸収部15Mが伝達できるトルクは、溝3Mに対応する位置における第1衝撃吸収部15Mの外径D2Mにより決まる(図62に示す溝3Mの深さHMにより決まる)。外径D2Mは、15.5mm以上16.5mm以下であることが好ましい。例えば第6実施形態における外径D2Mは16mmである。 The first shock absorber 15M is designed to transmit, for example, a torque of 300 Nm. The torque that can be transmitted by the first shock absorber 15M is determined by the outer diameter D2M of the first shock absorber 15M at the position corresponding to the groove 3M (determined by the depth HM of the groove 3M shown in FIG. 62). The outer diameter D2M is preferably 15.5 mm or more and 16.5 mm or less. For example, the outer diameter D2M in the sixth embodiment is 16 mm.
 溝3Mの最大幅WMは、1mm以上3mm以下であることが好ましい。溝3Mの最大幅WMは、第1衝撃吸収部15Mが曲がった場合に第1衝撃吸収部15Mが破断しないように設定される。溝3Mの最大幅WMは、第1衝撃吸収部15Mが曲がった場合に、第1衝撃吸収部15Mが破断する前に隣接する凸部4Mが接するように設定される。図62に示す断面において、第1接続面36M及び第2接続面37Mは同じ円弧(以下、第1円弧という)を描く。第1円弧の曲率半径C1Mは、0.2mm以上1.0mm以下であることが好ましい(第1円弧の曲率は、1.0mm-1以上5.0mm-1以下であることが好ましい)。例えば、第6実施形態における曲率半径C1Mは0.3mmである(第1円弧の曲率は10/3mm-1である)。 The maximum width WM of the groove 3M is preferably 1 mm or more and 3 mm or less. The maximum width WM of the groove 3M is set so that the first shock absorber 15M does not break when the first shock absorber 15M is bent. The maximum width WM of the groove 3M is set such that, when the first impact absorbing portion 15M is bent, adjacent convex portions 4M are in contact before the first impact absorbing portion 15M breaks. In the cross section shown in FIG. 62, the first connection surface 36M and the second connection surface 37M draw the same arc (hereinafter referred to as a first arc). The curvature radius C 1 M of the first arc is preferably 0.2 mm or more and 1.0 mm or less (the curvature of the first arc is preferably 1.0 mm −1 or more and 5.0 mm 1 or less). For example, the radius of curvature C1M in the sixth embodiment is 0.3 mm (the curvature of the first arc is 10/3 mm −1).
 図63に示すように、第2衝撃吸収部17Mは、小径部175Mと、第1接続部171Mと、第2接続部179Mと、を含む。小径部175M、第1接続部171M及び第2接続部179Mは、例えば機械構造用炭素鋼鋼管の外周面を切削することにより形成される。小径部175M、第1接続部171M及び第2接続部179Mの算術平均粗さ(Ra)は6.3μm以下であることが好ましい。例えば、第6実施形態における算術平均粗さ(Ra)は3.2μmである。これにより、小径部175Mが捩れた時に、小径部175Mにせん断が生じにくくなる。 As shown in FIG. 63, the second impact absorbing portion 17M includes a small diameter portion 175M, a first connection portion 171M, and a second connection portion 179M. The small diameter portion 175M, the first connection portion 171M and the second connection portion 179M are formed, for example, by cutting the outer peripheral surface of the carbon steel pipe for machine structure. The arithmetic mean roughness (Ra) of the small diameter portion 175M, the first connection portion 171M and the second connection portion 179M is preferably 6.3 μm or less. For example, the arithmetic mean roughness (Ra) in the sixth embodiment is 3.2 μm. As a result, when the small diameter portion 175M is twisted, shearing is less likely to occur in the small diameter portion 175M.
 小径部175Mは円柱状であり、小径部175Mの外径は一定である。小径部175Mは外径D3Mを有する。外径D3Mは外径D1Mよりも小さい。第2衝撃吸収部17Mは、例えば150Nm以上250Nm以下程度のトルクで変形するように設計される。そのために、外径D3Mは14mm以上16mm以下であることが好ましい。例えば、第6実施形態において外径D3Mは15mmである。外径D3Mの公差は、±0.05mm以内であることが好ましい。図7に示す小径部175Mの肉厚T3Mは2.8mmである。肉厚T3Mは、外径D3Mの10%以上20%以下であることが好ましい。すなわち、第6実施形態において肉厚T3Mは1.5mm以上3.0mm以下であることが好ましい。これにより、小径部175Mの座屈が抑制され且つ小径部175Mが捩れやすくなる。小径部175Mの軸方向の長さLMは、溝3Mの最大幅WMよりも大きい。長さLMは、10mm以上50mm以下であることが好ましい。例えば第6実施形態における長さLMは15mmである。長さLMが大きくなるほど、小径部175Mは捩れやすくなる。長さLMがより大きければ、中間シャフト85Mは管軸直角方向の伸びがSTKM12Bよりも小さい材料で形成されてもよい。一方、長さLMが小さくなるほど、小径部175Mの形成が容易になる。 The small diameter portion 175M is cylindrical, and the outer diameter of the small diameter portion 175M is constant. The small diameter portion 175M has an outer diameter D3M. The outer diameter D3M is smaller than the outer diameter D1M. The second impact absorbing portion 17M is designed to be deformed by a torque of, for example, 150 Nm or more and 250 Nm or less. Therefore, the outer diameter D3M is preferably 14 mm or more and 16 mm or less. For example, in the sixth embodiment, the outer diameter D3M is 15 mm. The tolerance of the outer diameter D3M is preferably within ± 0.05 mm. The thickness T3M of the small diameter portion 175M shown in FIG. 7 is 2.8 mm. The thickness T3M is preferably 10% or more and 20% or less of the outer diameter D3M. That is, in the sixth embodiment, the thickness T3M is preferably 1.5 mm or more and 3.0 mm or less. Thereby, the buckling of the small diameter portion 175M is suppressed and the small diameter portion 175M is easily twisted. The axial length LM of the small diameter portion 175M is larger than the maximum width WM of the groove 3M. The length LM is preferably 10 mm or more and 50 mm or less. For example, the length LM in the sixth embodiment is 15 mm. As the length LM increases, the small diameter portion 175M is more easily twisted. If the length LM is larger, the intermediate shaft 85M may be formed of a material whose elongation in the direction perpendicular to the tube axis is smaller than STKM 12B. On the other hand, the smaller the length LM, the easier the formation of the small diameter portion 175M.
 第1接続部171Mは、基部16Mと小径部175Mとを接続する。第1接続部171Mの外径は、小径部175Mに向かって小さくなっている。第2接続部179Mは、基部19Mと小径部175Mとを接続する。第2接続部179Mの外径は、小径部175Mに向かって小さくなっている。図62に示す断面において、第1接続部171M及び第2接続部179Mの表面は同じ円弧(以下、第2円弧という)を描く。第2円弧の曲率半径C2Mは、第1円弧の曲率半径C1Mよりも大きい(第2円弧の曲率は第1円弧の曲率よりも小さい)。曲率半径C2Mは2mm以上であることが好ましい(第2円弧の曲率は0.5mm-1以下であることが好ましい)。例えば、曲率半径C2Mは8mmである(第2円弧の曲率は0.125mm-1である)。 The first connection portion 171M connects the base 16M and the small diameter portion 175M. The outer diameter of the first connection portion 171M decreases toward the small diameter portion 175M. The second connection portion 179M connects the base 19M and the small diameter portion 175M. The outer diameter of the second connection portion 179M decreases toward the small diameter portion 175M. In the cross section shown in FIG. 62, the surfaces of the first connection portion 171M and the second connection portion 179M draw the same arc (hereinafter, referred to as a second arc). The curvature radius C2M of the second arc is larger than the curvature radius C1M of the first arc (the curvature of the second arc is smaller than the curvature of the first arc). The radius of curvature C2M is preferably 2 mm or more (the curvature of the second arc is preferably 0.5 mm-1 or less). For example, the radius of curvature C2M is 8 mm (the curvature of the second arc is 0.125 mm-1).
 図64は、曲がった後の中間シャフトの側面図である。車両の1次衝突時においてステアリングギヤ88に荷重が加わる。ステアリングギヤ88に加わった荷重により中間シャフト85Mには曲げ応力が生じる。また中間シャフト85Mには、1次衝突による曲げ応力が生じることがあると共に、車両が縁石へ乗り上げた場合等において大きなトルク(捩り力)が入力されることがある。このため、中間シャフト85Mには、大きなトルクを受けた時の破損を抑制し且つ1次衝突時に衝撃を吸収することができることが求められる。 FIG. 64 is a side view of the intermediate shaft after bending. A load is applied to the steering gear 88 at the time of a primary collision of the vehicle. The load applied to the steering gear 88 generates bending stress on the intermediate shaft 85M. In addition, bending stress due to a primary collision may occur in the intermediate shaft 85M, and a large torque (torsion force) may be input when the vehicle runs on a curb or the like. Therefore, the intermediate shaft 85M is required to be able to suppress damage when receiving a large torque and to absorb an impact at the time of a primary collision.
 中間シャフト85Mにおいては、第1衝撃吸収部15M及び第2衝撃吸収部17Mが他の部分よりも変形しやすくなっている。上述したように、図63に示す曲率半径C2Mが図62に示す曲率半径C1Mよりも大きい。このため、中間シャフト85Mには曲げ応力が生じた場合、応力集中が生じやすい第1接続面36M及び第2接続面37Mを起点として第1衝撃吸収部15Mが曲がる。溝3Mの径方向における一方側が拡がり、溝3Mの径方向における他方側が縮む。溝3Mが縮む側においては、凸部4Mが隣接する凸部4Mに接する。曲がった中間シャフト85Mは、中間シャフト85Mの周辺部品の隙間に入り込む。第1衝撃吸収部15Mが曲がることにより、衝突による衝撃が吸収される。その結果、ステアリングホイール81に伝わる衝撃が低減する。 In the intermediate shaft 85M, the first impact absorbing portion 15M and the second impact absorbing portion 17M are more easily deformed than the other portions. As described above, the radius of curvature C2M shown in FIG. 63 is larger than the radius of curvature C1M shown in FIG. Therefore, when bending stress occurs in the intermediate shaft 85M, the first impact absorbing portion 15M bends from the first connection surface 36M and the second connection surface 37M where stress concentration easily occurs. One side in the radial direction of the groove 3M expands, and the other side in the radial direction of the groove 3M contracts. On the side where the groove 3M is contracted, the convex portion 4M is in contact with the adjacent convex portion 4M. The bent intermediate shaft 85M enters the clearance of the peripheral parts of the intermediate shaft 85M. By bending the first impact absorbing portion 15M, the impact due to the collision is absorbed. As a result, the shock transmitted to the steering wheel 81 is reduced.
 その一方で、中間シャフト85Mの外径は小径部175Mで最小となる。このため、中間シャフト85Mに大きなトルクが入力された時、第2衝撃吸収部17Mが変形する(捩れる)。第2衝撃吸収部17Mが変形することで、中間シャフト85Mに入力されたエネルギーが吸収される。第2衝撃吸収部17Mでエネルギーが吸収されるので、第1衝撃吸収部15Mの変形が抑制される。このため、第1衝撃吸収部15Mにおいて、曲げ応力に対する設計された変形特性が保たれる。なお、第2衝撃吸収部17Mが変形する(捩れる)ことで吸収されるエネルギーは、例えば300J以上500J程度であることが求められる。 On the other hand, the outer diameter of the intermediate shaft 85M is minimized at the small diameter portion 175M. Therefore, when a large torque is input to the intermediate shaft 85M, the second impact absorbing portion 17M is deformed (twisted). The energy input to the intermediate shaft 85M is absorbed by the deformation of the second impact absorbing portion 17M. Since energy is absorbed by the second impact absorbing portion 17M, deformation of the first impact absorbing portion 15M is suppressed. For this reason, in the first impact absorbing portion 15M, the designed deformation characteristic to the bending stress is maintained. The energy absorbed by the deformation (twisting) of the second impact absorbing portion 17M is required to be, for example, about 300 J or more and about 500 J.
 なお、中間シャフト85Mは、必ずしも機械構造用炭素鋼鋼管から形成されなくてもよく、その他の材料から形成されてもよい。ただし製造を容易にするために、中間シャフト85Mは円筒状の材料から形成されることが望ましい。 In addition, the intermediate shaft 85M may not necessarily be formed of carbon steel pipe for machine structure, and may be formed of other materials. However, in order to facilitate manufacture, the intermediate shaft 85M is preferably formed of a cylindrical material.
 なお、第1衝撃吸収部15Mの溝3Mは、必ずしも上述した形状を有していなくてもよい。例えば、第1接続面36M及び第2接続面37Mが底面35Mを介さずに繋がっていてもよい。すなわち、径方向に対して垂直な平面で中間シャフト85Mを切った断面において、溝3Mの底に対応する位置における第1衝撃吸収部15Mの表面が半円を描いていてもよい。また、第1接続面36M及び第2接続面37Mがなくてもよい。すなわち、第1側面31M及び第2側面33Mが底面35Mに直接繋がっていてもよい。 The groove 3M of the first impact absorbing portion 15M may not necessarily have the above-described shape. For example, the first connection surface 36M and the second connection surface 37M may be connected without the bottom surface 35M. That is, in a cross section obtained by cutting the intermediate shaft 85M in a plane perpendicular to the radial direction, the surface of the first shock absorber 15M at a position corresponding to the bottom of the groove 3M may draw a semicircle. Also, the first connection surface 36M and the second connection surface 37M may not be present. That is, the first side surface 31M and the second side surface 33M may be directly connected to the bottom surface 35M.
 なお、第1衝撃吸収部15Mが備える溝3Mの数は、必ずしも図に示すような数でなくてもよい。第1衝撃吸収部15Mは少なくとも1つの溝3Mを有していればよい。凸部4Mに対応する位置における第1衝撃吸収部15Mの外径は、必ずしも外径D1Mに等しくなくてもよく、少なくとも外径D2Mよりも大きければよい。 The number of grooves 3M provided in the first impact absorbing portion 15M may not necessarily be as shown in the drawing. The first shock absorber 15M may have at least one groove 3M. The outer diameter of the first impact absorbing portion 15M at the position corresponding to the convex portion 4M may not necessarily be equal to the outer diameter D1M, and may be at least larger than the outer diameter D2M.
 なお、中間シャフト85Mは、複数の部材を備えていてもよい。例えば、中間シャフト85Mは、第1シャフトと、第1シャフトに連結される第2シャフトとを備えていてもよい。このような場合、第1シャフト及び第2シャフトの少なくとも一方が、上述した中間シャフト85Mの構成を備えていればよい。言い換えると、第6実施形態においては中間シャフト85Mが第1シャフトである。 The intermediate shaft 85M may have a plurality of members. For example, the intermediate shaft 85M may include a first shaft and a second shaft coupled to the first shaft. In such a case, at least one of the first shaft and the second shaft may have the above-described configuration of the intermediate shaft 85M. In other words, in the sixth embodiment, the intermediate shaft 85M is the first shaft.
 以上で説明したように、ステアリング装置80Mは、第1ユニバーサルジョイント84と、第1ユニバーサルジョイント84よりも前方側に配置される第2ユニバーサルジョイント86と、第1ユニバーサルジョイント84と第2ユニバーサルジョイント86との間に位置する中間シャフト85Mと、を備える。中間シャフト85Mは、軸方向の全長に亘って内径が一定である中空部材である。中間シャフト85Mは、外周面に溝3Mを有する第1衝撃吸収部15Mを備える。 As described above, the steering device 80M includes the first universal joint 84, the second universal joint 86 disposed on the front side of the first universal joint 84, the first universal joint 84, and the second universal joint 86. And an intermediate shaft 85M positioned therebetween. The intermediate shaft 85M is a hollow member whose inner diameter is constant over the entire axial length. The intermediate shaft 85M includes a first impact absorbing portion 15M having a groove 3M on the outer circumferential surface.
 これにより、第1衝撃吸収部15Mは切削加工等により形成できるので、第1衝撃吸収部15Mの形成に際して金型が不要である。このため、第1衝撃吸収部15Mの形成が容易となる。また、第1衝撃吸収部15Mの変形特性は、第1衝撃吸収部15Mの溝3Mの形状に応じて変化する。切削範囲の変更により溝3Mの形状を変更することは容易であるため、第1衝撃吸収部15Mの変形特性の調整は容易である。したがって、ステアリング装置80Mは、容易に製造でき且つ容易に変形特性を変更することができる中間シャフト85Mにより衝撃を吸収することができる。 Thereby, since the first impact absorbing portion 15M can be formed by cutting or the like, no mold is required when forming the first impact absorbing portion 15M. Therefore, the formation of the first impact absorbing portion 15M is facilitated. Also, the deformation characteristics of the first impact absorbing portion 15M change according to the shape of the groove 3M of the first impact absorbing portion 15M. Since it is easy to change the shape of the groove 3M by changing the cutting range, it is easy to adjust the deformation characteristics of the first impact absorbing portion 15M. Accordingly, the steering device 80M can absorb an impact by the intermediate shaft 85M which can be easily manufactured and can easily change its deformation characteristics.
 また、中間シャフト85Mは、溝3Mの底に対応する位置における第1衝撃吸収部15Mの外径D2Mよりも小さい外径D3Mを有する第2衝撃吸収部17Mを備える。 The intermediate shaft 85M also includes a second impact absorbing portion 17M having an outer diameter D3M smaller than the outer diameter D2M of the first impact absorbing portion 15M at a position corresponding to the bottom of the groove 3M.
 これにより、中間シャフト85Mに大きなトルクが作用した場合、第2衝撃吸収部17Mが変形することでエネルギーが吸収される。一方、第1衝撃吸収部15Mの変形は抑制される。このため、第1衝撃吸収部15Mの設計された変形特性が保たれる。その結果、車両の衝突が生じた時に、中間シャフト85Mは所定の衝撃吸収能力を発揮することができる。 Thus, when a large torque acts on the intermediate shaft 85M, energy is absorbed by deformation of the second impact absorbing portion 17M. On the other hand, the deformation of the first shock absorber 15M is suppressed. For this reason, the designed deformation characteristic of the first impact absorbing portion 15M is maintained. As a result, when a collision of a vehicle occurs, the intermediate shaft 85M can exhibit a predetermined shock absorbing capability.
 また、径方向に対して垂直な平面で中間シャフト85Mを切った断面において、溝3Mに面する第1衝撃吸収部15Mの表面の少なくとも一部が第1円弧を描き、第2衝撃吸収部17Mの表面の少なくとも一部が第2円弧を描く。第2円弧の曲率半径C2Mは、第1円弧の曲率半径C1Mよりも大きい。 Further, in a cross section obtained by cutting the intermediate shaft 85M in a plane perpendicular to the radial direction, at least a part of the surface of the first impact absorbing portion 15M facing the groove 3M draws a first arc, and the second impact absorbing portion 17M At least a portion of the surface of the circle draws a second arc. The radius of curvature C2M of the second arc is larger than the radius of curvature C1M of the first arc.
 これにより、中間シャフト85Mに曲げ応力が生じた時、第2衝撃吸収部17Mよりも第1衝撃吸収部15Mに応力集中が生じやすくなる。このため、中間シャフト85Mが、第2衝撃吸収部17Mではなく第1衝撃吸収部15Mを起点として曲がる。したがって、車両の衝突が生じた時に、中間シャフト85Mは所定の衝撃吸収能力を発揮することができる。 As a result, when bending stress is generated in the intermediate shaft 85M, stress concentration is more likely to occur in the first impact absorbing portion 15M than in the second impact absorbing portion 17M. For this reason, the intermediate shaft 85M bends not from the second impact absorbing portion 17M but from the first impact absorbing portion 15M. Therefore, when a collision of a vehicle occurs, the intermediate shaft 85M can exhibit a predetermined shock absorbing capability.
 また、第2衝撃吸収部17Mの最小肉厚(肉厚T3M)は、第2衝撃吸収部17Mの外径D3Mの10%以上20%以下である。 The minimum thickness (thickness T3M) of the second impact absorbing portion 17M is 10% or more and 20% or less of the outer diameter D3M of the second impact absorbing portion 17M.
 これにより、第2衝撃吸収部17Mの座屈が抑制され且つ第2衝撃吸収部17Mが捩れやすくなる。このため、中間シャフト85Mの衝撃吸収能力が向上する。 Thereby, the buckling of the second impact absorbing portion 17M is suppressed and the second impact absorbing portion 17M is easily twisted. As a result, the shock absorbing ability of the intermediate shaft 85M is improved.
(第6実施形態の第1変形例)
 図65は、第6実施形態の第1変形例の中間シャフトの斜視図である。図66は、第6実施形態の第1変形例の中間シャフトの断面図である。図67は、第1シャフトの第1衝撃吸収部及び第1嵌合部を拡大した断面図である。図68は、図66におけるK-K断面図である。図69は、図66におけるL-L断面図である。なお、上述した第1実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
First Modification of Sixth Embodiment
FIG. 65 is a perspective view of an intermediate shaft of a first modified example of the sixth embodiment. FIG. 66 is a cross-sectional view of the intermediate shaft of the first modified example of the sixth embodiment. FIG. 67 is an enlarged cross-sectional view of a first impact absorbing portion and a first fitting portion of a first shaft. FIG. 68 is a cross-sectional view taken along line KK in FIG. 69 is a cross-sectional view taken along line LL in FIG. The same components as those described in the first embodiment described above are denoted by the same reference numerals and redundant description will be omitted.
 図65に示すように、中間シャフト85Nは、第1シャフト1Mと、第2シャフト2Mと、を備える。 As shown in FIG. 65, the intermediate shaft 85N includes a first shaft 1M and a second shaft 2M.
 図66に示すように、第1シャフト1Mは、略円柱状の中空部材である。第1シャフト1Mは、機械構造用炭素鋼鋼管で形成される。第1シャフト1Mは、基部13Mと、第1嵌合部18Mと、を備える。 As shown in FIG. 66, the first shaft 1M is a substantially cylindrical hollow member. The first shaft 1M is formed of carbon steel pipe for machine structure. The first shaft 1M includes a base 13M and a first fitting portion 18M.
 第2衝撃吸収部17Mは、基部11Mの前方に位置する。第2衝撃吸収部17Mは、軸方向において、第1シャフト1Mの中央よりも後方側に位置する。基部13Mは、第2衝撃吸収部17Mの前方に位置する。基部13Mの外径は一定であり、外径D1Mに等しい。第1衝撃吸収部15Mは、基部13Mの前方に位置する。第1衝撃吸収部15Mは、第1シャフト1Mの軸方向において、第1シャフト1Mの中央に位置している。第1嵌合部18Mは、第1シャフト1Mの前方端部に位置する。第1嵌合部18Mは、外周面にセレーション18aMを備える。図67に示すように外径D1Mは、第1嵌合部18Mの最小外径D4よりも小さい。最小外径D4は、セレーション18aMの谷に対応する位置における第1嵌合部18Mの外径である。また、第1嵌合部18Mは、図66に示すように前方側の端面に凹部180Mを有する。なお、セレーション18aMは、スプラインであってもよい。 The second shock absorber 17M is located in front of the base 11M. The second shock absorber 17M is located rearward of the center of the first shaft 1M in the axial direction. The base 13M is located in front of the second shock absorber 17M. The outer diameter of the base 13M is constant and equal to the outer diameter D1M. The first shock absorber 15M is located in front of the base 13M. The first impact absorbing portion 15M is located at the center of the first shaft 1M in the axial direction of the first shaft 1M. The first fitting portion 18M is located at the front end of the first shaft 1M. The first fitting portion 18M includes serrations 18aM on the outer peripheral surface. As shown in FIG. 67, the outer diameter D1M is smaller than the minimum outer diameter D4 of the first fitting portion 18M. The minimum outer diameter D4 is the outer diameter of the first fitting portion 18M at a position corresponding to the valley of the serration 18aM. Further, as shown in FIG. 66, the first fitting portion 18M has a recess 180M on the end face on the front side. The serrations 18aM may be splines.
 第1シャフト1Mの製造工程においては、第1嵌合部18Mが形成された後、切削により第2衝撃吸収部17Mが形成される。そして、第2衝撃吸収部17Mが形成された後に、第1シャフト1Mに樹脂コーティングが施される。その後、第1シャフト1Mにシェービング加工が施される。仮に樹脂コーティングの後に切削が行われる場合、切削粉が樹脂コーティングに混入する可能性がある。このような場合、第1シャフト1M及び第2シャフト2Mが相対的に移動する時に、摩擦が増大し、スティックスリップ現象(摩擦と滑りとが繰り返されることによる振動)が生じる可能性がある。これに対して、第1シャフト1Mの製造工程においては、樹脂コーティングよりも前に第2衝撃吸収部17Mを形成するための切削が行われるので、切削粉の樹脂コーティングへの混入が抑制される。このため、第1シャフト1M及び第2シャフト2Mが相対的に移動する時のスティックスリップ現象が抑制される。 In the manufacturing process of the first shaft 1M, after the first fitting portion 18M is formed, the second impact absorbing portion 17M is formed by cutting. Then, after the second impact absorbing portion 17M is formed, the resin coating is applied to the first shaft 1M. Thereafter, the shaving process is performed on the first shaft 1M. If cutting is performed after resin coating, cutting powder may be mixed into the resin coating. In such a case, when the first shaft 1M and the second shaft 2M move relative to each other, friction may increase and a stick-slip phenomenon (vibration due to repeated friction and sliding) may occur. On the other hand, in the manufacturing process of the first shaft 1M, since the cutting for forming the second impact absorbing portion 17M is performed before the resin coating, the mixing of the cutting powder into the resin coating is suppressed. . For this reason, the stick-slip phenomenon when the first shaft 1M and the second shaft 2M move relative to each other is suppressed.
 図66に示すように、第2シャフト2Mは筒状である。例えば、第2シャフト2Mは、機械構造用炭素鋼鋼管で形成される。第2シャフト2Mは、第2嵌合部21Mと、大径部23Mと、基部25Mと、を備える。 As shown in FIG. 66, the second shaft 2M is cylindrical. For example, the second shaft 2M is formed of carbon steel pipe for machine structure. The second shaft 2M includes a second fitting portion 21M, a large diameter portion 23M, and a base 25M.
 第2嵌合部21Mは、第2シャフト2Mの後方端部に配置される。第2嵌合部21Mには、第1嵌合部18Mが挿入されている。第2嵌合部21Mは、内周面にセレーション21aMを備える。セレーション21aMは、セレーション18aMと噛み合う。なお、セレーション21aMは、スプラインであってもよい。 The second fitting portion 21M is disposed at the rear end of the second shaft 2M. The first fitting portion 18M is inserted into the second fitting portion 21M. The second fitting portion 21M includes serrations 21aM on the inner circumferential surface. The serration 21aM meshes with the serration 18aM. The serrations 21aM may be splines.
 図68に示すように、軸方向に対して垂直な断面において第1嵌合部18Mの外形が円を描く。図68に示す断面において、第2嵌合部21Mの外形は楕円を描く。図69に示すように、軸方向に対して垂直な断面のうち図68とは異なる断面において、第1嵌合部18Mの外形が楕円を描く。図69に示す断面において、第2嵌合部21Mの外形は円を描く。なお、図68の第2嵌合部21M及び図69の第1嵌合部18Mの形状は、説明のために誇張して描かれており、実際の形状とは異なる。実際には、セレーション21aMの全ての歯は、それぞれセレーション18aMの2つの歯の間に位置する。すなわち、図68の左側及び右側に位置するセレーション21aMの歯は、セレーション18aMの歯に接していないが、セレーション18aMの2つの歯の間に位置する。図69の上側及び下側に位置するセレーション21aMの歯は、セレーション18aMの歯に接していないが、セレーション18aMの2つの歯の間に位置する。 As shown in FIG. 68, the outer shape of the first fitting portion 18M draws a circle in a cross section perpendicular to the axial direction. In the cross section shown in FIG. 68, the outer shape of the second fitting portion 21M draws an ellipse. As shown in FIG. 69, of the cross sections perpendicular to the axial direction, the outer shape of the first fitting portion 18M draws an ellipse in a cross section different from FIG. In the cross section shown in FIG. 69, the outer shape of the second fitting portion 21M draws a circle. The shapes of the second fitting portion 21M of FIG. 68 and the first fitting portion 18M of FIG. 69 are exaggerated for the sake of description, and are different from the actual shape. In fact, all the teeth of serration 21aM are located between the two teeth of serration 18aM respectively. That is, the teeth of serration 21aM located on the left and right sides of FIG. 68 are not in contact with the teeth of serration 18aM, but are located between two teeth of serration 18aM. The upper and lower serration 21aM teeth of FIG. 69 are not in contact with the teeth of serration 18aM, but are located between the two teeth of serration 18aM.
 中間シャフト85Nを組み立てる時、第1嵌合部18Mの一部が第2嵌合部21Mに挿入される。そして、第1嵌合部18M及び第2嵌合部21Mが凹部180Mに対応する位置で2方向からプレスされる。その後、第1嵌合部18Mが第2嵌合部21Mの中にさらに押し込まれる。これにより、図68及び図69に示す断面形状が形成される。なお、第1嵌合部18M及び第2嵌合部21Mのこのような連結方法は、楕円嵌合と呼ばれることがある。 When assembling the intermediate shaft 85N, a part of the first fitting portion 18M is inserted into the second fitting portion 21M. And the 1st fitting part 18M and the 2nd fitting part 21M are pressed from 2 directions in the position corresponding to the recessed part 180M. Thereafter, the first fitting portion 18M is further pushed into the second fitting portion 21M. Thereby, cross-sectional shapes shown in FIGS. 68 and 69 are formed. In addition, such a connection method of the 1st fitting part 18M and the 2nd fitting part 21M may be called an elliptical fitting.
 第1嵌合部18Mの第2嵌合部21Mとの接触部分に生じる摩擦により、第1嵌合部18Mに対する第2嵌合部21Mの移動が規制されている。すなわち、通常使用時(衝突が生じていない時)において、第2嵌合部21Mは第1嵌合部18Mに対して移動しない。一方、衝突時において第2シャフト2Mに軸方向の所定荷重が加わった場合、第2嵌合部21Mが第1嵌合部18Mに対して移動する。所定荷重は、例えば1kN以上3kN以下程度である。すなわち、第2シャフト2Mは、衝突時に第1シャフト1Mから離脱できるように第1シャフト1Mに連結されている。第2嵌合部21Mと第1嵌合部18Mとの間の摩擦により衝撃が吸収される。 The movement of the second fitting portion 21M with respect to the first fitting portion 18M is restricted by the friction generated in the contact portion of the first fitting portion 18M with the second fitting portion 21M. That is, during normal use (when no collision occurs), the second fitting portion 21M does not move with respect to the first fitting portion 18M. On the other hand, when a predetermined load in the axial direction is applied to the second shaft 2M at the time of a collision, the second fitting portion 21M moves relative to the first fitting portion 18M. The predetermined load is, for example, about 1 kN or more and 3 kN or less. That is, the second shaft 2M is connected to the first shaft 1M so that it can be separated from the first shaft 1M at the time of a collision. An impact is absorbed by the friction between the second fitting portion 21M and the first fitting portion 18M.
 大径部23Mは、第2嵌合部21Mの前方に配置される。大径部23Mの外径は一定である。大径部23Mの外径は、第2嵌合部21Mの外径よりも大きい。 The large diameter portion 23M is disposed in front of the second fitting portion 21M. The outer diameter of the large diameter portion 23M is constant. The outer diameter of the large diameter portion 23M is larger than the outer diameter of the second fitting portion 21M.
 基部25Mは、第2シャフト2Mの前方端部に配置される。基部25Mは、第2ユニバーサルジョイント86に固定されている。基部25Mの外径は一定である。基部25Mの外径は、第2嵌合部21Mの外径に等しい。 The base 25M is disposed at the front end of the second shaft 2M. The base 25M is fixed to the second universal joint 86. The outer diameter of the base 25M is constant. The outer diameter of the base 25M is equal to the outer diameter of the second fitting portion 21M.
 図70は、第1シャフトが第2シャフトの中に入った後の中間シャフトの斜視図である。図71は、第1シャフトが曲がった後の中間シャフトの斜視図である。車両が衝突するとステアリングギヤ88に荷重が加わる。ステアリングギヤ88に加わった荷重は、第2ユニバーサルジョイント86を介して第2シャフト2Mに伝わる。車両の前面の全てが衝突対象物に当たった場合(フルラップ衝突の場合)、第2シャフト2Mには軸方向の荷重が加わることが多い。フルラップ衝突の場合には、図70に示すように第2シャフト2Mが第1シャフト1Mに対して移動することで衝撃が吸収される。その結果、ステアリングホイール81に伝わる衝撃が低減する。 FIG. 70 is a perspective view of the intermediate shaft after the first shaft is in the second shaft. FIG. 71 is a perspective view of the intermediate shaft after the first shaft is bent. When the vehicle collides, a load is applied to the steering gear 88. The load applied to the steering gear 88 is transmitted to the second shaft 2M via the second universal joint 86. If all of the front of the vehicle hit the collision object (in the case of a full wrap collision), the second shaft 2M is often axially loaded. In the case of a full wrap collision, as shown in FIG. 70, the second shaft 2M moves relative to the first shaft 1M to absorb the shock. As a result, the shock transmitted to the steering wheel 81 is reduced.
 一方、車両の前面の一部が衝突対象物に当たった場合(オフセット衝突の場合)、第2シャフト2Mには軸方向でない荷重が加わることが多い。このため、第2シャフト2Mが第1シャフト1Mに対して真っ直ぐに移動できない。オフセット衝突の場合には、中間シャフト85Nには曲げ応力が生じる。この時、第1接続面36M及び第2接続面37M(図62参照)に応力集中が生じることで、第1接続面36M及び第2接続面37Mを起点として図71に示すように第1衝撃吸収部15Mが曲がる。曲がった中間シャフト85Nは、中間シャフト85Nの周辺部品の隙間に入り込む。第1衝撃吸収部15Mが曲がることにより、衝突による衝撃が吸収される。その結果、ステアリングホイール81に伝わる衝撃が低減する。 On the other hand, when a part of the front of the vehicle collides with the collision target (in the case of an offset collision), a non-axial load is often applied to the second shaft 2M. For this reason, the second shaft 2M can not move straight with respect to the first shaft 1M. In the case of an offset collision, bending stress occurs in the intermediate shaft 85N. At this time, stress concentration occurs in the first connection surface 36M and the second connection surface 37M (see FIG. 62), so that the first impact is generated as shown in FIG. 71 starting from the first connection surface 36M and the second connection surface 37M. Absorbent part 15M bends. The bent intermediate shaft 85N enters the gap of the peripheral parts of the intermediate shaft 85N. By bending the first impact absorbing portion 15M, the impact due to the collision is absorbed. As a result, the shock transmitted to the steering wheel 81 is reduced.
 なお、第1嵌合部18M及び第2嵌合部21Mの連結方法は、樹脂コートスライダーを用いた連結方法、又は転動体を用いた連結方法であってもよい。樹脂コートスライダーを用いた連結方法は、潤滑皮膜を有する第1嵌合部18Mを第2嵌合部21Mに嵌める方法である。潤滑皮膜は、例えば、第1嵌合部18Mの外周面に合成樹脂のコーティングを施した上にグリースが塗布されることで形成される。これにより、第1嵌合部18Mと第2嵌合部21Mとの接触部分の磨耗が低減されると共に摩擦抵抗が低減される。なお、潤滑皮膜は、第2嵌合部21Mに設けられてもよいし、第1嵌合部18M及び第2嵌合部21Mの両方に設けられてもよい。また、転動体を用いた連結方法は、第1嵌合部18Mと第2嵌合部21Mとを転動体を介して連結する方法である。転動体の例としては、ボール又はローラが挙げられる。転動体としてボールとローラが組み合わされていてもよい。これにより、第1嵌合部18Mと第2嵌合部21Mとの接触部分の磨耗が低減されると共に摩擦抵抗が低減される。 In addition, the connection method of the 1st fitting part 18M and the 2nd fitting part 21M may be a connection method using a resin coat slider, or a connection method using a rolling element. The connection method using the resin-coated slider is a method of fitting the first fitting portion 18M having a lubricating film to the second fitting portion 21M. The lubricating coating is formed, for example, by applying a grease on a coating of a synthetic resin on the outer peripheral surface of the first fitting portion 18M. As a result, the wear of the contact portion between the first fitting portion 18M and the second fitting portion 21M is reduced and the frictional resistance is reduced. In addition, a lubricating film may be provided in the 2nd fitting part 21M, and may be provided in both the 1st fitting part 18M and the 2nd fitting part 21M. Moreover, the connection method using a rolling element is a method of connecting the 1st fitting part 18M and the 2nd fitting part 21M via a rolling element. Examples of rolling elements include balls or rollers. Balls and rollers may be combined as rolling elements. As a result, the wear of the contact portion between the first fitting portion 18M and the second fitting portion 21M is reduced and the frictional resistance is reduced.
 なお、中間シャフト85Nは、第1シャフト1M及び第2シャフト2Mが相対的に過剰に移動することを防ぐためのストッパーを備えていてもよい。ストッパーは、例えばC字状の樹脂リングであり、第2衝撃吸収部17Mの周辺に配置される。 The intermediate shaft 85N may be provided with a stopper for preventing the relative displacement of the first shaft 1M and the second shaft 2M. The stopper is, for example, a C-shaped resin ring, and is disposed around the second impact absorbing portion 17M.
 上述したように、中間シャフト85Nは、第1シャフト1Mに離脱可能に連結される筒状の第2シャフト2Mを備える。 As described above, the intermediate shaft 85N includes the cylindrical second shaft 2M releasably connected to the first shaft 1M.
 これにより、1次衝突時に第2シャフト2Mが第1シャフト1Mに対して相対的に移動する。ステアリング装置80Mは、第1シャフト1Mと第2シャフト2Mとの間で生じる摩擦によって衝撃を吸収することができる。 Thereby, the second shaft 2M moves relative to the first shaft 1M at the time of the primary collision. The steering device 80M can absorb an impact by the friction generated between the first shaft 1M and the second shaft 2M.
 また、第1シャフト1Mは、外周面にセレーション18aMを有する第1嵌合部18Mを備える。第2シャフト2Mは、内周面にセレーション21aMを有する第2嵌合部21Mを備える。第1嵌合部18Mが第2嵌合部21Mに嵌まる。第1衝撃吸収部15Mの最大外径(外径D1M)は、第1嵌合部18Mの最小外径D4よりも小さい。 In addition, the first shaft 1M includes a first fitting portion 18M having serrations 18aM on the outer peripheral surface. The second shaft 2M includes a second fitting portion 21M having serrations 21aM on the inner circumferential surface. The first fitting portion 18M fits into the second fitting portion 21M. The maximum outside diameter (outside diameter D1M) of the first impact absorbing portion 15M is smaller than the minimum outside diameter D4 of the first fitting portion 18M.
 これにより、第2シャフト2Mが第1シャフト1Mに対して相対的に移動する時に、第1衝撃吸収部15Mと第2嵌合部21Mのセレーション21aMとが干渉しにくくなる。このため、ステアリング装置80Mは、中間シャフト85Nの衝撃吸収能力のバラツキを抑制することができる。 As a result, when the second shaft 2M moves relative to the first shaft 1M, the first impact absorbing portion 15M and the serrations 21aM of the second fitting portion 21M do not easily interfere with each other. Therefore, the steering device 80M can suppress the variation in the shock absorbing capability of the intermediate shaft 85N.
(第6実施形態の第2変形例)
 図72は、第6実施形態の第2変形例の中間シャフトの断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Second Modified Example of Sixth Embodiment
FIG. 72 is a cross-sectional view of the intermediate shaft of the second modified example of the sixth embodiment. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図72に示すように、第6実施形態の第2変形例においては、第1シャフト1Mが第2シャフト2Mの前方に位置する。第1シャフト1Mは、ストッパー14Mを備える。ストッパー14Mは、基部13Mの外周面から径方向に突出している。ストッパー14Mは、基部13Mと一体に形成されている。ストッパー14Mは、軸方向から見て第2嵌合部21Mの端面に重なる。ストッパー14Mは、第1衝撃吸収部15Mの後方に位置する。このため、第2嵌合部21Mの端面からストッパー14Mまでの距離は、第2嵌合部21Mの端面から第1衝撃吸収部15Mまでの距離よりも小さい。 As shown in FIG. 72, in the second modification of the sixth embodiment, the first shaft 1M is located in front of the second shaft 2M. The first shaft 1M includes a stopper 14M. The stoppers 14M project radially from the outer peripheral surface of the base 13M. The stopper 14M is integrally formed with the base 13M. The stopper 14M overlaps the end face of the second fitting portion 21M when viewed from the axial direction. The stopper 14M is located at the rear of the first shock absorber 15M. Therefore, the distance from the end face of the second fitting portion 21M to the stopper 14M is smaller than the distance from the end face of the second fitting portion 21M to the first impact absorbing portion 15M.
 第1シャフト1M及び第2シャフト2Mが相対的に移動すると、ストッパー14Mは第2嵌合部21Mの端面に接する。ストッパー14Mは、第1シャフト1M及び第2シャフト2Mの相対的な移動量を規制する。ストッパー14Mが第1衝撃吸収部15Mの後方に位置するので、第1衝撃吸収部15Mが第2シャフト2Mの中に入る前にストッパー14Mが第2嵌合部21Mに接する。このため、第1シャフト1Mは、第2シャフト2Mに対して相対的に移動した後に曲がることができる。 When the first shaft 1M and the second shaft 2M move relative to each other, the stopper 14M contacts the end face of the second fitting portion 21M. The stopper 14M regulates the relative movement amount of the first shaft 1M and the second shaft 2M. Since the stopper 14M is located behind the first impact absorbing portion 15M, the stopper 14M contacts the second fitting portion 21M before the first impact absorbing portion 15M enters the second shaft 2M. Thus, the first shaft 1M can bend after being moved relative to the second shaft 2M.
 なお、ストッパー14Mは、第2シャフト2Mに設けられてもよい。例えば、ストッパー14Mは、第2シャフト2Mの内周面に設けられ、軸方向から見て第1嵌合部18Mに重なればよい。このような場合、第1嵌合部18Mの端面からストッパー14Mまでの距離は、第2嵌合部21Mの端面から第1衝撃吸収部15Mまでの距離よりも小さいことが好ましい。これにより、第1衝撃吸収部15Mが第2シャフト2Mの中に入る前に第1嵌合部18Mがストッパー14Mに接する。このため、第1シャフト1Mは、第2シャフト2Mに対して相対的に移動した後に曲がることができる。 The stopper 14M may be provided on the second shaft 2M. For example, the stopper 14M may be provided on the inner circumferential surface of the second shaft 2M and may overlap the first fitting portion 18M as viewed in the axial direction. In such a case, the distance from the end face of the first fitting portion 18M to the stopper 14M is preferably smaller than the distance from the end face of the second fitting portion 21M to the first impact absorbing portion 15M. Thus, the first fitting portion 18M contacts the stopper 14M before the first impact absorbing portion 15M enters the second shaft 2M. Thus, the first shaft 1M can bend after being moved relative to the second shaft 2M.
 なお、ストッパー14Mは、基部13Mに溶接等により接続されていてもよい。ストッパー14Mとして、C型止め輪又はE型止め輪が用いられてもよい。 The stopper 14M may be connected to the base 13M by welding or the like. A C-shaped retaining ring or an E-shaped retaining ring may be used as the stopper 14M.
 上述したように、中間シャフト85Pは、第1シャフト1M及び第2シャフト2Mの相対的な移動量を規制するストッパー14Mを備える。 As described above, the intermediate shaft 85P includes the stopper 14M that regulates the relative movement amount of the first shaft 1M and the second shaft 2M.
 これにより、第1シャフト1M及び第2シャフト2Mの相対的な移動量を調節することが可能となるので、第2シャフト2Mに過大な荷重が加わることが防止される。 As a result, since it is possible to adjust the relative movement amount of the first shaft 1M and the second shaft 2M, it is possible to prevent an excessive load from being applied to the second shaft 2M.
(第6実施形態の第3変形例)
 図73は、第6実施形態の第3変形例における第1衝撃吸収部の溝の周辺部を拡大した断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
Third Modified Example of Sixth Embodiment
FIG. 73 is an enlarged cross-sectional view of a peripheral portion of a groove of a first impact absorbing portion in a third modified example of the sixth embodiment. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図73に示すように、第6実施形態の第3変形例においては、第1衝撃吸収部15Qに被覆材5Mが設けられる。被覆材5Mは、第1衝撃吸収部15Qの溝3Mに面する表面(第1側面31M、第2側面33M、底面35M、第1接続面36M及び第2接続面37M)を覆う。すなわち、被覆材5Mは溝3Mの内周面を覆う。また被覆材5Mは、第1衝撃吸収部15Qの溝3Mよりも外側の表面である主表面150を覆う。すなわち、第6実施形態の第3変形例においては、被覆材5Mが第1衝撃吸収部15Qの表面の全体を覆う。被覆材5Mは、防錆皮膜である。被覆材5Mは、例えば亜鉛又はニッケル等を含む。言い換えると、第1衝撃吸収部15Qの表面には、亜鉛メッキ又はニッケルメッキ等が施されている。 As shown in FIG. 73, in the third modification of the sixth embodiment, the covering material 5M is provided in the first impact absorbing portion 15Q. The covering material 5M covers the surface (the first side surface 31M, the second side surface 33M, the bottom surface 35M, the first connection surface 36M, and the second connection surface 37M) of the first shock absorber 15Q facing the groove 3M. That is, the covering material 5M covers the inner peripheral surface of the groove 3M. In addition, the covering material 5M covers the main surface 150 which is the surface outside the groove 3M of the first impact absorbing portion 15Q. That is, in the third modification of the sixth embodiment, the covering material 5M covers the entire surface of the first impact absorbing portion 15Q. The covering material 5M is a rustproof film. The covering material 5M contains, for example, zinc or nickel. In other words, the surface of the first shock absorber 15Q is plated with zinc, nickel or the like.
 なお、被覆材5Mは、必ずしも第1衝撃吸収部15Qの表面の全体を覆わなくてもよい。被覆材5Mは、第1衝撃吸収部15Qの溝3Mに面する表面の少なくとも一部を覆っていればよい。被覆材5Mは、少なくとも底面35M、第1接続面36M及び第2接続面37Mを覆うことが好ましい。また被覆材5Mは、例えばグリースであってもよい。この場合、グリースの粘度は高い方が好ましい。 In addition, the covering material 5M does not necessarily need to cover the whole surface of the 1st impact-absorbing part 15Q. The covering material 5M should just cover at least one part of the surface which faces the groove 3M of the 1st impact-absorbing part 15Q. The covering material 5M preferably covers at least the bottom surface 35M, the first connection surface 36M, and the second connection surface 37M. Further, the covering material 5M may be, for example, a grease. In this case, the viscosity of the grease is preferably high.
 上述したように、第6実施形態の第3変形例のステアリング装置80Mは、溝3Mに面する第1衝撃吸収部15Qの表面の少なくとも一部を覆う被覆材5Mを備える。被覆材5Mは、防錆皮膜である。 As described above, the steering device 80M according to the third modified example of the sixth embodiment includes the covering material 5M covering at least a part of the surface of the first impact absorbing portion 15Q facing the groove 3M. The covering material 5M is a rustproof film.
 第1衝撃吸収部15Qは、所定のトルク(例えば300Nm)を伝達できるように設計される。溝3Mを有する第1衝撃吸収部15Qにおいては、溝3Mに対応する部分のトルクに対する強度が低くなる。第1衝撃吸収部15Qは十分な安全率を考慮して設計されているものの、第1衝撃吸収部15Qに錆が生じると、第1衝撃吸収部15Qが所定のトルクに耐えられなくなる可能性がある。これに対して、第1衝撃吸収部15Qにおいては、被覆材5Mによって溝3Mに面する表面での錆の発生が抑制される。第1衝撃吸収部15Qの溝3Mに対応する部分の強度低下が抑制される。第6実施形態の第3変形例は、特に雨等の水がかかる可能性のある場所に配置される場合に有効である。 The first shock absorber 15Q is designed to transmit a predetermined torque (for example, 300 Nm). In the first impact absorbing portion 15Q having the groove 3M, the strength against torque of the portion corresponding to the groove 3M is low. Although the first shock absorber 15Q is designed in consideration of a sufficient safety factor, there is a possibility that the first shock absorber 15Q can not withstand a predetermined torque if rust occurs in the first shock absorber 15Q. is there. On the other hand, in the first impact absorbing portion 15Q, the covering material 5M suppresses the occurrence of rust on the surface facing the groove 3M. The reduction in strength of the portion corresponding to the groove 3M of the first impact absorbing portion 15Q is suppressed. The third modification of the sixth embodiment is particularly effective when disposed at a place where water such as rain may be applied.
 なお、被覆材5Mを上述した第6実施形態の第1変形例(又は第6実施形態の第2変形例)に適用した場合、被覆材5Mは、第1衝撃吸収部15Qの溝3Mよりも外側の表面である主表面150を覆うことが好ましい。第6実施形態の第1変形例で説明したように、中間シャフト85MCに軸方向の所定荷重が加わった場合、第1シャフト1M及び第2シャフト2Mが相対的に移動する。中間シャフト85MCに曲げモーメントも加わっていると、第2シャフト2Mが第1衝撃吸収部15Qに引っ掛かる可能性がある。これに対して、主表面150が被覆材5Mで覆われていることにより、第2シャフト2Mと第1衝撃吸収部15Qとの間の摩擦が低減される。このため、仮に第2シャフト2Mが第1衝撃吸収部15Qに接触した場合でも、第2シャフト2Mが第1衝撃吸収部15Qに引っ掛かりにくい。このため、第2シャフト2Mの移動が滑らかになる。 When the covering material 5M is applied to the first modification of the sixth embodiment (or the second modification of the sixth embodiment) described above, the covering material 5M is closer to the groove 3M of the first impact absorbing portion 15Q. It is preferable to cover the major surface 150 which is the outer surface. As described in the first modification of the sixth embodiment, when a predetermined axial load is applied to the intermediate shaft 85MC, the first shaft 1M and the second shaft 2M move relatively. If a bending moment is also applied to the intermediate shaft 85MC, the second shaft 2M may be caught by the first impact absorbing portion 15Q. On the other hand, the main surface 150 is covered with the covering material 5M, whereby the friction between the second shaft 2M and the first impact absorbing portion 15Q is reduced. Therefore, even if the second shaft 2M contacts the first impact absorbing portion 15Q, the second shaft 2M is less likely to be caught by the first impact absorbing portion 15Q. For this reason, the movement of the second shaft 2M becomes smooth.
(第6実施形態の第4変形例)
 図74は、第6実施形態の第4変形例における第1衝撃吸収部を拡大した断面図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(4th modification of 6th Embodiment)
FIG. 74 is an enlarged cross-sectional view of a first shock absorber in a fourth modification of the sixth embodiment. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 図74に示すように、第6実施形態の第4変形例においては、充填材6Mが溝3Mに設けられる。例えば、充填材6Mは、複数の溝3Mの全てに配置されている。例えば、充填材6Mの深さは溝3Mの深さHM(図62参照)に等しい。充填材6Mは、樹脂又はゴムであることが好ましい。さらに、充填材6Mは独立気泡体であるゴムであることが好ましい。充填材6Mのヤング率は、第1衝撃吸収部15Rのヤング率よりも小さい。第1衝撃吸収部15Rに曲げモーメントが加わった時、充填材6Mは容易に変形する。 As shown in FIG. 74, in the fourth modification of the sixth embodiment, the filler 6M is provided in the groove 3M. For example, the filler 6M is disposed in all of the plurality of grooves 3M. For example, the depth of the filler 6M is equal to the depth HM of the groove 3M (see FIG. 62). The filler 6M is preferably a resin or a rubber. Furthermore, the filler 6M is preferably a rubber which is a closed cell. The Young's modulus of the filler 6M is smaller than the Young's modulus of the first impact absorbing portion 15R. When a bending moment is applied to the first impact absorbing portion 15R, the filler 6M is easily deformed.
 なお、充填材6Mの深さは溝3Mの深さHM(図62参照)よりも小さくてもよい。すなわち、1つの溝3Mに埋められる充填材6Mの体積は、1つの溝3Mの体積よりも小さくてもよい。充填材6Mは、底面35M、第1接続面36M及び第2接続面37Mを覆うことが好ましい。また、溝3Mには充填材6M及び第6実施形態の第3変形例で説明した被覆材5Mの両方が設けられていてもよい。すなわち、被覆材5Mが第1衝撃吸収部15Rを覆い且つ充填材6Mが被覆材5Mを覆っていてもよい。また充填材6Mは、例えばグリースであってもよい。この場合、グリースの粘度は高い方が好ましい。 The depth of the filler 6M may be smaller than the depth HM (see FIG. 62) of the groove 3M. That is, the volume of the filler 6M embedded in one groove 3M may be smaller than the volume of one groove 3M. The filler 6M preferably covers the bottom surface 35M, the first connection surface 36M, and the second connection surface 37M. In addition, both the filler 6M and the covering 5M described in the third modification of the sixth embodiment may be provided in the groove 3M. That is, the covering material 5M may cover the first impact absorbing portion 15R, and the filling material 6M may cover the covering material 5M. The filler 6M may be, for example, grease. In this case, the viscosity of the grease is preferably high.
 上述したように、第6実施形態の第4変形例のステアリング装置80Mは、溝3Mに配置される充填材6Mを備える。 As described above, the steering device 80M of the fourth modified example of the sixth embodiment includes the filler 6M disposed in the groove 3M.
 第6実施形態の第4変形例の第1衝撃吸収部15Rにおいては、充填材6Mにより溝3Mに水が入りにくくなっている。このため、溝3Mに面する第1衝撃吸収部15Rの表面での錆の発生が抑制される。第1衝撃吸収部15Rの溝3Mに対応する部分の強度低下が抑制される。第6実施形態の第4変形例は、特に雨等の水がかかる可能性のある場所に配置される場合に有効である。 In the first impact absorbing portion 15R of the fourth modified example of the sixth embodiment, the filling material 6M makes it difficult for water to enter the groove 3M. For this reason, the generation of rust on the surface of the first impact absorbing portion 15R facing the groove 3M is suppressed. The reduction in strength of the portion of the first impact absorbing portion 15R corresponding to the groove 3M is suppressed. The fourth modification of the sixth embodiment is particularly effective when arranged at a place where water such as rain may be applied.
 また充填材6Mは、樹脂である。これにより、充填材6Mが第1衝撃吸収部15Rの変形を阻害しにくくなる。 The filler 6M is a resin. This makes it difficult for the filler 6M to inhibit the deformation of the first impact absorbing portion 15R.
 また充填材6Mは、ゴムである。これにより、充填材6Mが第1衝撃吸収部15Rの変形を阻害しにくくなる。 The filler 6M is rubber. This makes it difficult for the filler 6M to inhibit the deformation of the first impact absorbing portion 15R.
 また充填材6Mは、独立気泡体である。これにより、第1衝撃吸収部15Rの重量の増加が抑制される。 The filler 6M is a closed cell. Thereby, the increase in the weight of the first impact absorbing portion 15R is suppressed.
 なお、充填材6Mを上述した第6実施形態の第1変形例(又は第6実施形態の第2変形例)に適用した場合、充填材6Mの体積は、溝3Mの体積と同じであることが好ましい。これにより、溝3Mが充填材6Mで埋められるので、第1衝撃吸収部15Rの外周面が滑らかになる。第2シャフト2Mと第1衝撃吸収部15Rとの間の摩擦が低減される。このため、仮に第2シャフト2Mが第1衝撃吸収部15Rに接触した場合でも、第2シャフト2Mが第1衝撃吸収部15Rに引っ掛かりにくい。このため、第2シャフト2Mの移動が滑らかになる。 When the filler 6M is applied to the first modification of the sixth embodiment (or the second modification of the sixth embodiment), the volume of the filler 6M is the same as the volume of the groove 3M. Is preferred. Thereby, since the groove 3M is filled with the filler 6M, the outer peripheral surface of the first impact absorbing portion 15R becomes smooth. The friction between the second shaft 2M and the first impact absorbing portion 15R is reduced. Therefore, even if the second shaft 2M contacts the first impact absorbing portion 15R, the second shaft 2M is unlikely to be caught by the first impact absorbing portion 15R. For this reason, the movement of the second shaft 2M becomes smooth.
1H ロアシャフト
1I、1M 第1シャフト
10H 基部
10M 孔
11、11C、11D、11H、11I、11M 基部
125H、125I 小径部
13H、13I、13M 基部
14I、14M ストッパー
15、15A、15B、15D、15E、15F、15G 衝撃吸収部
15C、15H、15I、15J、15K、15M、15Q、15R 第1衝撃吸収部
150、150I 主表面
16C 基部
16H ストッパー
16M 基部
17C、17M 第2衝撃吸収部
17H ロア嵌合部
170H、170I 凹部
171C、171M 第1接続部
175C、175M 小径部
179C、179M 第2接続部
17aH 雄スプライン(雄セレーション)
17aI セレーション(スプライン)
18aM セレーション(スプライン)
180M 凹部
19、19C、19D、19I、19M 基部
2H アッパーシャフト
2I、2M 第2シャフト
21H アッパー嵌合部
21aH 雌スプライン(雌セレーション)
21aI セレーション(スプライン)
21aM セレーション(スプライン)
23H、23I、23M 大径部
25H、25I、25M 基部
3、3A、3B、3C、3D(3aD、3bD、3cD、3dD、3eD、3fD、3gD、3hD、3iD、3jD、3kD)、3E(3aE、3bE、3cE、3dE、3eE)、3F(3aF、3bF、3cF、3dF、3eF、3fF、)、3G(3aG、3bG、3cG、3dG、3eG、3fG、3gG、3hG、3iG、3jG、3kG)、3H、3I、3M 溝
31、31B、31C、31D、31H、31I、31M 第1側面
33、33B、33C、33D、33H、33I、33M 第2側面
35、35B、35C、35D、35H、35I、35M 底面
36、36B、36C、36D、36aG、36fG、36H、36I、36M 第1接続面
37、37B、37C、37D、37aG、37fG、37H、37I、37M 第2接続面
4、4C、4D、4H、4I、4M 凸部
5I、5M 被覆材
6I、6M 充填材
80、80C、80D、80H、80I、80M ステアリング装置
81 ステアリングホイール
82 ステアリングシャフト
82a 入力軸
82b 出力軸
83 操舵力アシスト機構
85、85C、85D、85E、85F、85G、85H、85I、85L、85M、85MC、85N、85P 中間シャフト
87 ピニオンシャフト
88 ステアリングギヤ
88a ピニオン
88b ラック
89 タイロッド
90 ECU
92 減速装置
93 電動モータ
94 トルクセンサ
95 車速センサ
98 イグニッションスイッチ
99 電源装置
1H lower shaft 1I, 1M first shaft 10H base 10M hole 11, 11C, 11D, 11H, 11M base 125H, 125I small diameter portion 13H, 13I, 13M base 14I, 14M stopper 15, 15A, 15D, 15E, 15E, 15F, 15G shock absorbers 15C, 15H, 15I, 15J, 15K, 15M, 15R first shock absorbers 150, 150I main surface 16C base 16H stopper 16M base 17C, 17M second shock absorber 17H lower fitting portion 170H, 170I recessed portion 171C, 171M first connection portion 175C, 175M small diameter portion 179C, 179M second connection portion 17aH male spline (male serration)
17aI Serration (spline)
18aM serration (spline)
180M recess 19, 19C, 19D, 19I, 19M base 2H upper shaft 2I, 2M second shaft 21H upper fitting portion 21aH female spline (female serration)
21aI Serration (spline)
21aM serration (spline)
23H, 23I, 23M large diameter portions 25H, 25I, 25M base 3, 3A, 3B, 3C, 3D (3aD, 3bD, 3cD, 3dD, 3eD, 3fD, 3hD, 3iD, 3jD, 3kD), 3E (3aE , 3bE, 3cE, 3dE, 3eE), 3F (3aF, 3bF, 3cF, 3dF, 3eF, 3fF), 3G (3aG, 3bG, 3cG, 3dG, 3eG, 3fG, 3gG, 3hG, 3iG, 3jG 3kG) , 3H, 3I, 3M grooves 31, 31B, 31C, 31D, 31I, 31M first side surfaces 33, 33B, 33C, 33D, 33H, 33I, 33M second side surfaces 35, 35B, 35C, 35D, 35H, 35I , 35M bottom surface 36, 36B, 36C, 36D, 36aG, 36fG, 36H, 36I, 36M first connection surface 37, 37B , 37C, 37D, 37aG, 37fG, 37H, 37I, 37M second connection surface 4, 4C, 4D, 4H, 4I, 4M convex portion 5I, 5M coating material 6I, 6M filler 80, 80C, 80H, 80I , 80M steering device 81 steering wheel 82 steering shaft 82a input shaft 82b output shaft 83 steering force assist mechanism 85, 85C, 85D, 85E, 85F, 85G, 85H, 85I, 85L, 85M, 85MC, 85P, intermediate shaft 87 pinion Shaft 88 Steering gear 88a Pinion 88b Rack 89 Tie rod 90 ECU
92 reduction gear 93 electric motor 94 torque sensor 95 vehicle speed sensor 98 ignition switch 99 power supply

Claims (14)

  1.  第1ユニバーサルジョイントと、
     前記第1ユニバーサルジョイントより前方側に配置される第2ユニバーサルジョイントと、
     前記第1ユニバーサルジョイントと前記第2ユニバーサルジョイントとの間に位置する中間シャフトと、
     を備え、
     前記中間シャフトは、外周面に溝を有する第1衝撃吸収部を備える
     ステアリング装置。
    With the first universal joint,
    A second universal joint disposed forward of the first universal joint;
    An intermediate shaft located between the first universal joint and the second universal joint;
    Equipped with
    The intermediate shaft includes a first impact absorbing portion having a groove on an outer peripheral surface thereof.
  2.  前記中間シャフトは、中実部材である
     請求項1に記載のステアリング装置。
    The steering apparatus according to claim 1, wherein the intermediate shaft is a solid member.
  3.  前記中間シャフトは、中実部材である第1シャフトと、前記第1シャフトに離脱可能に連結される筒状の第2シャフトと、を備え、
     前記第1シャフトは、前記第1衝撃吸収部を備える
     請求項1に記載のステアリング装置。
    The intermediate shaft includes a first shaft which is a solid member, and a cylindrical second shaft which is releasably connected to the first shaft,
    The steering apparatus according to claim 1, wherein the first shaft comprises the first shock absorber.
  4.  前記第1シャフトは、外周面にセレーションを有する第1嵌合部を備え、
     前記第2シャフトは、内周面にセレーションを有する第2嵌合部を備え、
     前記第1嵌合部が前記第2嵌合部に嵌まり、
     前記第1衝撃吸収部の最大直径は、前記第1嵌合部の最小直径よりも小さい
     請求項3に記載のステアリング装置。
    The first shaft includes a first fitting portion having serrations on an outer peripheral surface thereof,
    The second shaft includes a second fitting portion having serrations on an inner circumferential surface,
    The first fitting portion is fitted to the second fitting portion;
    The steering apparatus according to claim 3, wherein a maximum diameter of the first impact absorbing portion is smaller than a minimum diameter of the first fitting portion.
  5.  前記中間シャフトは、軸方向の全長に亘って内径が一定である中空部材である第1シャフトを備え、
     前記第1シャフトは、前記第1衝撃吸収部を備える
     請求項1に記載のステアリング装置。
    The intermediate shaft includes a first shaft which is a hollow member whose inner diameter is constant over the entire axial length,
    The steering apparatus according to claim 1, wherein the first shaft comprises the first shock absorber.
  6.  前記第1シャフトは、前記溝の底に対応する位置における前記第1衝撃吸収部の外径よりも小さい外径を有する第2衝撃吸収部を備える
     請求項5に記載のステアリング装置。
    The steering apparatus according to claim 5, wherein the first shaft includes a second impact absorbing portion having an outer diameter smaller than an outer diameter of the first impact absorbing portion at a position corresponding to a bottom of the groove.
  7.  径方向に対して垂直な平面で前記第1シャフトを切った断面において、前記溝に面する前記第1衝撃吸収部の表面の少なくとも一部が第1円弧を描き、前記第2衝撃吸収部の表面の少なくとも一部が第2円弧を描き、
     前記第2円弧の曲率半径は、前記第1円弧の曲率半径よりも大きい
     請求項6に記載のステアリング装置。
    In a cross section obtained by cutting the first shaft in a plane perpendicular to the radial direction, at least a part of the surface of the first shock absorber facing the groove draws a first arc, and the second shock absorber At least a portion of the surface draws a second arc,
    The steering apparatus according to claim 6, wherein a curvature radius of the second arc is larger than a curvature radius of the first arc.
  8.  前記第2衝撃吸収部の最小肉厚は、前記第2衝撃吸収部の外径の10%以上20%以下である請求項6又は7に記載のステアリング装置。 The steering apparatus according to claim 6 or 7, wherein the minimum thickness of the second impact absorbing portion is 10% or more and 20% or less of the outer diameter of the second impact absorbing portion.
  9.  前記中間シャフトは、前記第1シャフトに離脱可能に連結される筒状の第2シャフトを備える
     請求項5から8のいずれか1項に記載のステアリング装置。
    The steering apparatus according to any one of claims 5 to 8, wherein the intermediate shaft includes a cylindrical second shaft which is releasably connected to the first shaft.
  10.  前記第1衝撃吸収部は、複数の前記溝を備え、
     前記溝は、環状である
     請求項1から9のいずれか1項に記載のステアリング装置。
    The first impact absorbing portion includes a plurality of the grooves.
    The steering device according to any one of claims 1 to 9, wherein the groove is annular.
  11.  前記溝は、螺旋状である
     請求項1から9のいずれか1項に記載のステアリング装置。
    The steering apparatus according to any one of claims 1 to 9, wherein the groove is helical.
  12.  前記溝の最大幅は1mm以上3mm以下であり、
     径方向に対して垂直な平面で前記中間シャフトを切った断面において、前記溝に面する前記第1衝撃吸収部の表面の少なくとも一部は、曲率半径が0.2mm以上1.0mm以下である円弧を描く
     請求項1から11のいずれか1項に記載のステアリング装置。
    The maximum width of the groove is 1 mm or more and 3 mm or less,
    In a cross section obtained by cutting the intermediate shaft in a plane perpendicular to the radial direction, at least a portion of the surface of the first impact-absorbing portion facing the groove has a curvature radius of 0.2 mm or more and 1.0 mm or less The steering apparatus according to any one of claims 1 to 11, which draws a circular arc.
  13.  前記溝の幅は、前記溝の底に向かって小さくなっている
     請求項1から12のいずれか1項に記載のステアリング装置。
    The steering apparatus according to any one of claims 1 to 12, wherein a width of the groove decreases toward a bottom of the groove.
  14.  ステアリング装置に用いられる中間シャフトであって、
     外周面に溝を有する第1衝撃吸収部を備える
     中間シャフト。
    An intermediate shaft used in a steering system,
    An intermediate shaft comprising a first impact absorbing portion having a groove in an outer peripheral surface.
PCT/JP2018/023345 2017-06-20 2018-06-19 Steering device and intermediate shaft WO2018235830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890000948.9U CN212332763U (en) 2017-06-20 2018-06-19 Steering device and intermediate shaft

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2017-120449 2017-06-20
JP2017120446A JP6939123B2 (en) 2017-06-20 2017-06-20 Steering device and intermediate shaft
JP2017120448 2017-06-20
JP2017120447A JP6939124B2 (en) 2017-06-20 2017-06-20 Steering device and intermediate shaft
JP2017-120447 2017-06-20
JP2017-120448 2017-06-20
JP2017120449A JP6939125B2 (en) 2017-06-20 2017-06-20 Steering device and intermediate shaft
JP2017-120446 2017-06-20
JP2017-212313 2017-11-02
JP2017212313A JP7024329B2 (en) 2017-11-02 2017-11-02 Steering device
JP2017220275A JP6992427B2 (en) 2017-11-15 2017-11-15 Steering device and intermediate shaft
JP2017220272A JP7052310B2 (en) 2017-06-20 2017-11-15 Steering device and intermediate shaft
JP2017-220272 2017-11-15
JP2017-220275 2017-11-15

Publications (1)

Publication Number Publication Date
WO2018235830A1 true WO2018235830A1 (en) 2018-12-27

Family

ID=64737068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023345 WO2018235830A1 (en) 2017-06-20 2018-06-19 Steering device and intermediate shaft

Country Status (1)

Country Link
WO (1) WO2018235830A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949649A (en) * 1982-09-14 1984-03-22 Matsushita Electric Works Ltd Interruption associated switching circuit for memory bank
JPS6044865U (en) * 1983-08-30 1985-03-29 三菱自動車工業株式会社 car steering shaft
JPH01141634A (en) * 1987-11-30 1989-06-02 Matsushita Electric Ind Co Ltd Cooker
JP2007145061A (en) * 2005-11-24 2007-06-14 Nsk Ltd Steering shaft
JP2009040302A (en) * 2007-08-10 2009-02-26 Nsk Ltd Energy absorption type shaft for steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949649A (en) * 1982-09-14 1984-03-22 Matsushita Electric Works Ltd Interruption associated switching circuit for memory bank
JPS6044865U (en) * 1983-08-30 1985-03-29 三菱自動車工業株式会社 car steering shaft
JPH01141634A (en) * 1987-11-30 1989-06-02 Matsushita Electric Ind Co Ltd Cooker
JP2007145061A (en) * 2005-11-24 2007-06-14 Nsk Ltd Steering shaft
JP2009040302A (en) * 2007-08-10 2009-02-26 Nsk Ltd Energy absorption type shaft for steering device

Similar Documents

Publication Publication Date Title
KR101459959B1 (en) Propeller shaft for vehicle
JP5447694B2 (en) Telescopic shaft for steering device
JP5590149B2 (en) Telescopic shaft
JP6555250B2 (en) Electric power steering apparatus and assembly method thereof
KR102288459B1 (en) Intermediate Shaft of Steering Apparatus for Vehicle
US20070104535A1 (en) Spline interconnect
JP4940798B2 (en) Shock absorption structure
CA1286119C (en) Propeller shaft for motor vehicle
WO2014199959A1 (en) Electrically assisted power steering device
CN212332763U (en) Steering device and intermediate shaft
WO2018235830A1 (en) Steering device and intermediate shaft
KR101428316B1 (en) Propeller shaft for vehicle
CN110226050B (en) Hollow torque transmission member, method for manufacturing same, intermediate shaft, and steering device for automobile
JPS6339473B2 (en)
JP2019084859A (en) Steering device
JP2019084860A (en) Steering device
CN110869631B (en) Universal joint and transmission shaft
JP6926797B2 (en) Telescopic shaft
JP2019089486A (en) Steering device and intermediate shaft
JP2019084858A (en) Steering device
JP2012030644A (en) Telescopic shaft for vehicle steering
JP2021095929A (en) Telescopic shaft and steering device
JP2019006364A (en) Steering device and intermediary shaft
JP7434820B2 (en) Intermediate shaft for steering device and steering device
JP2019093862A (en) Steering device and intermediate shaft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821362

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821362

Country of ref document: EP

Kind code of ref document: A1