WO2018235455A1 - Three-phase ac insulated switching power supply - Google Patents

Three-phase ac insulated switching power supply Download PDF

Info

Publication number
WO2018235455A1
WO2018235455A1 PCT/JP2018/018504 JP2018018504W WO2018235455A1 WO 2018235455 A1 WO2018235455 A1 WO 2018235455A1 JP 2018018504 W JP2018018504 W JP 2018018504W WO 2018235455 A1 WO2018235455 A1 WO 2018235455A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
output end
transformer
input
electrode output
Prior art date
Application number
PCT/JP2018/018504
Other languages
French (fr)
Japanese (ja)
Inventor
羽田 正二
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018235455A1 publication Critical patent/WO2018235455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an isolated switching power supply that converts three-phase alternating current to direct current.
  • an isolated converter is known as a switching power supply for converting alternating current into direct current.
  • DC / DC converters are disposed after AC / DC conversion by rectifying the alternating current voltage with a rectifying circuit and smoothing with a smoothing capacitor, not limited to single phase and three phase.
  • Patent documents 1 to 7 Also known is a two-stage configuration in which a power factor correction device (PFC) and a DC / DC converter are combined to perform power factor correction.
  • Patent Documents 6 and 7 describe an apparatus for boosting and improving the power factor of a three-phase AC output of a wind power alternator.
  • the present invention has an object of efficiently performing power factor improvement and power conversion with a simple configuration in an insulating switching power supply to which a three-phase alternating current is input.
  • the present invention provides the following configuration.
  • symbol in parenthesis is a code
  • One aspect of the switching power supply of the present invention is (A) first, second and third input terminals (R, S, T) to which three-phase alternating current is input; (B) positive electrode output end (P) and negative electrode output end (N), (C) Each has a primary coil (Lr1, Ls1, Lt1) and a secondary coil (Lr2, Ls2, Lt2), and one end of each primary coil has the first, second and third input ends (R, S) , T) respectively connected to the first, second and third transformers (Tr, Ts, Tt), (D) Each current path between the other end of the primary coil (Lr1, Ls1, Lt1) of each of the first, second and third transformers (Tr, Ts, Tt) and the input side reference potential end (E) First, second and third switching elements (Qr, Qs, Qt) which are on / off controlled by one control signal (Vg) to conduct or interrupt (E) One end of the secondary coil (Lr2, Ls2, Lt2) of each of the
  • the configuration in an isolated switching power supply that receives a three-phase alternating current and performs power factor improvement and power conversion, the configuration can be simplified and the efficiency of the transformer can be improved.
  • FIG. 1 is a view schematically showing an example of the circuit configuration of the embodiment of the switching power supply according to the present invention.
  • FIGS. 2 (a) and 2 (b) are diagrams for explaining the power factor improvement action by the input three-phase alternating current and the switching operation.
  • FIG. 3 is a diagram schematically showing the flow of current during the on period in the T mode of the circuit configuration shown in FIG.
  • FIG. 4 is a diagram schematically showing the potential relationship of the on period on the secondary side of the circuit configuration shown in FIG.
  • FIG. 5 is a diagram schematically showing the flow of current during the off period in the T mode of the circuit configuration shown in FIG.
  • FIG. 6 is a diagram schematically showing the potential relationship of the off period on the secondary side of the circuit configuration shown in FIG.
  • FIG. 1 is a view schematically showing an example of a circuit configuration of an embodiment of the isolated switching power supply of the present invention.
  • the switching power supply of the present invention is a power conversion device that receives three-phase AC power output from an AC generator as input and outputs DC power to a load.
  • three-phase AC power is output from a Y-connected three-phase stator coil in the AC generator.
  • the switching power supply of the present invention is not only a power conversion device but also has a function as a power factor correction device.
  • the power factor correction device aims to make the power factor equal to 1 by making the waveform of the input current the same as that of the input voltage and making the phase match.
  • the switching power supply of the present invention is an insulating type that electrically isolates the input side from the output side.
  • three transformers Tr, Ts and Tt corresponding to each phase are provided.
  • Each of the three transformers Tr, Ts, Tt comprises one primary coil and one secondary coil. It is preferable to use three transformers Tr, Ts, and Tt having the same electromagnetic characteristics, and it is preferable to use a three-phase reactor.
  • the symbols Lr1, Ls1 and Lt1 indicate primary coils of the respective transformers, and the symbols Lr2, Ls2 and Lt2 indicate secondary coils of the respective transformers.
  • each coil is shown by a black circle.
  • a coil when referred to as “one end” and “the other end”, it means a combination of “winding start end” and “winding end” and a combination of “winding end” and “winding start”. Shall be included.
  • One end (in this example, the winding start end) of the primary coils Lr1, Ls1 and Lt1 of the transformer on the input side has three terminals to which a three-phase AC voltage is input: a first input end R, a second input end S and a first The three input terminals T are respectively connected.
  • each phase of the three-phase alternating current is referred to as an R phase, an S phase, and a T phase.
  • the symbol E indicates the input side reference potential end.
  • a positive electrode output terminal P and a negative electrode output terminal N which are two terminals to which a DC voltage is output, are provided.
  • the negative output end N is a secondary side reference potential end. An output voltage is applied to a load (not shown) connected between the positive electrode output terminal P and the negative electrode output terminal N, and an output current flows.
  • each of the three switching elements Qr, Qs, Qt is connected to the other end (in this example, the winding end) of the primary coil Lr1, Ls1, Lt1 of each transformer.
  • the other ends of the switching elements Qr, Qs, Qt are connected to the input side reference potential end E.
  • Each switching element Qr, Qs, Qt has a control end, and each control end conducts or cuts off the current path between the other end of the primary coils Lr1, Ls1, Lt1 and the input side reference potential end E. Each is on / off controlled.
  • the control ends of the three switching elements Qr, Qs, Qt are controlled by one common control signal Vg.
  • the control signal Vg is, for example, a PWM signal having a pulse waveform of a predetermined frequency and a duty ratio. That is, the three switching elements Qr, Qs, Qt are controlled to always be turned on and off at the same time.
  • the switching elements Qr, Qs, Qt are n-channel MOSFETs (hereinafter referred to as "FETQr”, “FETQs”, “FETQt”), one end is a drain, the other end is a source, and the control end is a gate. is there.
  • the control signal Vg is a voltage signal.
  • rectifying elements such as diodes serving as current return paths need to be connected in reverse parallel.
  • first, second and third capacitors are disposed between one end (in this example, the winding start end) of the secondary coils Lr2, Ls2 and Lt2 of each transformer and the negative output end N which is the secondary side reference potential end.
  • C1, C2, and C3 (hereinafter referred to as "sub capacitors") are connected to one another.
  • a smoothing capacitor C4 is connected between the positive electrode output terminal P and the negative electrode output terminal N.
  • first, second and third diodes D1 and D2 which are an example of rectifying elements , D3 are connected respectively.
  • the anodes of the diodes D1, D2 and D3 are connected to the other ends of the secondary coils Lr2, Ls2 and Lt2, respectively, and the cathodes are connected to the positive electrode output terminal P.
  • Each diode D1, D2, D3 conducts the current flowing from the other end of the secondary coil Lr2, Ls2, Lt2 of each transformer to the positive output terminal P when forward biased, and shuts off the current when reverse biased Do.
  • the diodes D1, D2 and D3 preferably have small forward voltage drop and operate at high speed.
  • fourth, fifth and sixth diodes D4, D5 and D6, which are an example of a rectifying element, are connected between the other end of the secondary coils Lr2, Ls2 and Lt2 of each transformer and the negative output end N, respectively. It is done.
  • the cathodes of the diodes D4, D5, D6 are connected to the other ends of the secondary coils Lr2, Ls2, Lt2, respectively, and the anodes are connected to the negative output terminal N.
  • Each of the diodes D4, D5, D6 conducts the current flowing from the negative electrode output end N to the other end of the secondary coil Lr2, Ls2, Lt2 of each transformer when forward biased, and blocks the current when reverse biased.
  • a control unit that generates a control signal Vg is included.
  • the magnitudes of the input voltage and the DC output voltage are detected, the duty ratio of the control signal Vg is determined based on the detected input voltage and output voltage, and the control signal Vg is generated based thereon. It is preferable to use PWMIC as a main part of the control unit.
  • the PWMIC controls, for example, a pulse-like control having a constant duty ratio by inputting a DC signal of a constant voltage corresponding to one determined duty ratio and a carrier triangular wave signal having a constant frequency to the comparator.
  • the signal Vg is output.
  • such a control signal Vg is referred to as a "constant duty ratio" control signal.
  • FIG. 2A shows voltage waveforms of R phase, S phase, and T phase of the input three-phase alternating current.
  • the phase having the highest potential and the phase having the lowest potential are sequentially switched at every phase of 120 °.
  • the frequency of the three-phase alternating current is, for example, about several Hz to 100 Hz in the case of an alternator for wind power generation.
  • the switching frequency that is, the frequency of the control signal Vg in FIG. 1 is several kHz to several hundreds kHz, which is sufficiently higher than the frequency of the three-phase alternating current.
  • T mode a period in which the T phase is at the lowest potential
  • R mode the period in which the R phase is at the lowest potential
  • S mode the period in which the S phase is at the lowest potential
  • the R phase has the highest potential in the first half of the period
  • the S phase has the highest potential in the second half.
  • an input current flows due to the voltage between the positive potential phase and the negative potential phase, and no current flows in the off period.
  • an inter-phase voltage between the R phase and the T phase is referred to as an “RT inter-phase voltage” or the like and denoted as “vrt”.
  • the input current flowing by the RT inter-phase voltage vrt is represented as "irt”.
  • FIG. 2B shows, as an example, the waveform of the PWM control signal at point A on the time axis t in FIG. 2A, the voltage between rt phases vrt, and between the first input end R and the third input end T.
  • the on current irt flowing through the is schematically shown. Since the switching frequency is sufficiently high compared to the frequency of the three-phase alternating current, the RT interphase voltage vrt in one on period can be regarded as a pulse-like constant voltage.
  • the value of the start point of the current irt in the on period is determined by the instantaneous value of the RT inter-phase voltage vrt at the start point of the on period. Since the instantaneous value of the RT inter-phase voltage vrt is scattered on the locus of the sine wave, the current irt flowing through the primary coil during the on period also draws the locus of the sine wave. This means that the input current is a sine wave in phase with the input voltage. Thereby, the power factor improvement on the primary side is realized.
  • a current path including an inductance to which a three-phase AC interphase voltage is applied is turned on / off by using a PWM control signal having a constant frequency and a duty ratio, whereby a sine whose phase matches the input voltage The input current of the wave can be obtained.
  • FIG. 3 schematically shows a current flow (dotted line with an arrow) in the on period in T mode in the circuit configuration shown in FIG. ing.
  • An input current irt flows in the following path in the primary coil of the transformer Tr due to the RT phase voltage vrt.
  • ⁇ Input current irt first input end R ⁇ transformer Tr primary coil ⁇ FET Qr ⁇ FET Qt ⁇ transformer Tt primary coil ⁇ third input end T
  • the input current ist flows through the primary coil of the transformer Ts in the following path due to the ST phase voltage vst.
  • the current returning to the input side such as the current flowing from the primary coil of the transformer Tt to the third input terminal T, is hereinafter referred to as “reflux”.
  • the other ends (in this example, the winding ends) of the secondary coils of the transformer Tr, Ts and Tt are respectively a point, b and c points, and the secondary coil of the transformer Tr, Ts and Tt Let one end (in this example, the winding start end) be point d, point e, and point f.
  • the positive electrode output end P is a point h
  • the negative electrode output end N is a point g.
  • the point h is also one end of the smoothing capacitor C4.
  • the point g is also a common end of the sub capacitors C1, C2, C3 and the smoothing capacitor C4, and is a secondary side reference potential end.
  • FIG. 4 is a diagram schematically showing the potential relationship between the point a to h on the transformer secondary side in the on period. The operation of the transformer secondary side in the on period will be described with reference also to FIG.
  • the sub-capacitors C1, C2, C3 and the smoothing capacitor C4 are charged with the voltages Vc1, Vc2, Vc3, VC4 at both ends respectively.
  • a potential relationship diagram of the on period shown in FIG. 4 is referred to.
  • the secondary coil a point of the transformer Tr is at the same potential as the secondary side reference potential end point g because the diode D4 conducts.
  • the electromotive force Vr of the transformer Tr exceeds the voltage VC1 across the sub capacitor C1
  • the current iron of the on period flows in the following path in the direction of charging the sub capacitor C1.
  • the secondary coil b of the transformer Ts has the same potential as the point g on the secondary side reference potential end because the diode D5 conducts.
  • Vs of the transformer Ts exceeds the voltage VC2 across the sub capacitor C2
  • the current ison of the on period flows in the following path in the direction of charging the sub capacitor C2.
  • an electromotive force Vt is generated in the secondary coil when reflux flows in the primary coil.
  • the electromotive force Vt has a low potential at the point f side and a high potential at the point c side, and is in the opposite direction to the transformer Tr and Ts. Since the diode D6 is reverse biased with respect to the electromotive force Vt, no current flows.
  • the current iton is supplied to the load. Therefore, the current iton corresponds to the forward current in the forward system.
  • the supply current to the load is also merged with the discharge current from the smoothing capacitor C4. Since the sub capacitor C3 is discharged by the current iton, the potential at the point f decreases by that amount, and the voltage VC3 across the sub capacitor C3 decreases.
  • the electromotive force Vt of the transformer Tt is determined by the magnitude of the reflux of the primary coil.
  • the potential at the point c does not exceed the potential at the point h (see the potential at the point c '). In this case, the current iton does not flow.
  • FIG. 5 schematically shows the current flow (dotted line with arrow) in the off period in T mode in the circuit configuration of FIG. is there.
  • FIG. 6 is a diagram schematically showing the potential relationship between the point a to h on the transformer secondary side in the off period. The operation on the secondary side of the off period will be described with reference also to FIG.
  • the back electromotive force Vr generated in the secondary coil of the transformer Tr is directed to a low potential on the point d side and a high potential on the a point side. Since the diode D4 is reverse biased with respect to the back electromotive force Vr, no current flows.
  • a potential relationship diagram of the off period shown in FIG. 6 is referred to.
  • the back electromotive force Vr causes the potential at the secondary coil a of the transformer Tr to rise with respect to the potential at the point d.
  • the diode D1 becomes forward biased and the current iroff flows in the following path.
  • ⁇ Current iroff transformer Tr secondary coil point a ⁇ diode D 1 ⁇ point h ⁇ load (or smoothing capacitor C 4) ⁇ point g ⁇ sub capacitor C 1 ⁇ transformer Tr secondary coil point d
  • the back electromotive force Vs generated in the secondary coil of the transformer Ts is directed to a low potential on the point e side and a high potential on the point b side. Since the diode D5 is reverse biased with respect to the back electromotive force Vs, no current flows.
  • a potential relationship diagram of the off period shown in FIG. 6 is referred to.
  • the diode D2 is forward biased
  • the current isoff flows in the following path.
  • ⁇ Current isoff transformer Ts secondary coil point b ⁇ diode D2 ⁇ point h ⁇ load (or smoothing capacitor C4) ⁇ point g ⁇ sub capacitor C2 ⁇ transformer Ts secondary coil point
  • the currents iroff and isoff in the off period flow in the direction of discharging the sub capacitors C1 and C2, respectively.
  • the currents iroff and isoff in the off period correspond to the flyback current in the flyback system.
  • the magnetic energy stored in the transformer is released, but in the case of this circuit, the energy stored in the sub capacitors C1 and C2 is released.
  • the potential at the point a when iroff flows is the sum of the voltage VC1 across the sub capacitor C1 and the back electromotive force Vr to the potential at the point g.
  • the potential at point b when isoff flows is the sum of the potential at point g, the voltage VC2 across the sub capacitor C2 and the back electromotive force Vs.
  • the sub capacitors C1 and C2 are discharged by the currents iroff and isoff respectively, so the potential at the point d and the potential at the point e decrease by that amount, and the voltages VC1 and VC2 decrease.
  • the back electromotive force generated in the secondary coil of the transformer Tr and Ts in the off period is suppressed by the voltages VC1 and VC2 charged in the sub capacitors C1 and C2 in the on period, so there is no sub capacitor C1 or C2 Smaller than the back electromotive force of As a result, the back electromotive force generated on the primary side of the transformer Tr, Ts also decreases, and the withstand voltage required for the FET Qr, FET Qs on the primary side is reduced.
  • the back electromotive force Vt generated in the secondary coil of the transformer Tt is in the direction of high potential at the point f side and low potential at the point c side, and is opposite to the transformer Tr and Ts. Since the diode D3 is reverse biased with respect to the back electromotive force Vt, no current flows.
  • the potential at point f rises relative to the potential at point c due to the back electromotive force Vt and the potential at point f exceeds the voltage VC3 across the sub capacitor C3, the current itoff flows in the following path to charge the sub capacitor C3.
  • Current itoff transformer Tt secondary coil f point ⁇ sub capacitor C3 ⁇ diode D6 ⁇ transformer Tt secondary coil c point
  • the operation of the off period of this circuit is summarized as follows.
  • the back electromotive force generated in the secondary coil in the off period is added to the voltage of the sub capacitor.
  • the added voltage exceeds the voltage of the smoothing capacitor, current flows in the load.
  • the back electromotive force generated in the secondary coil in the off period exceeds the voltage of the sub capacitor, a current flows in the direction of charging the sub capacitor.

Abstract

Provided is an insulated switching power supply to which three-phase AC is input, wherein said insulated switching power supply efficiently improves a power factor with a simple configuration and performs power conversion. The insulated switching power supply has: input ends R, S, T; positive and negative electrode output ends P, N; three transformers Tr, Ts, Tt having respective primary coils connected to the respective input ends; three switching elements Qr, Qs, Qt for bringing the respective current paths between another ends of the respective primary coils of the three transformers and an input side reference voltage level end into a conductive state or a cut-off state; first, second, and third sub-capacitors C1, C2, C3 connected between one ends of the respective secondary coils of the three transformers and the negative electrode output end; first, second, and third rectifying elements D1, D2, D3 respectively connected between the other ends of the respective secondary coils of the three transformers and the positive electrode output end; fouth, fifth, and sixth rectifying elements D4, D5, D6 respectively connected between the other ends of the respective secondary coils of the three transformers and the negative electrode output end; and a smoothing capacitor connected between the positive electrode output end and the negative electrode output end.

Description

三相交流用絶縁型スイッチング電源Three phase AC isolated switching power supply
 本発明は、三相交流を直流に変換する絶縁型スイッチング電源に関する。 The present invention relates to an isolated switching power supply that converts three-phase alternating current to direct current.
 従来、交流を直流に変換するスイッチング電源において、絶縁型コンバータが知られている。様々な方式が提示されているが、単相及び三相に限らず、概ね交流電圧を整流回路により整流し平滑コンデンサにより平滑化することによりAC/DC変換した後にDC/DCコンバータが配置されている(特許文献1~7)。力率改善を行うために、力率改善装置(PFC)とDC/DCコンバータを組み合わせた2段構成も知られている。特許文献6、7には、風力発電の交流発電機の三相交流出力に対して昇圧と力率改善を行う装置が記載されている。 2. Description of the Related Art In the prior art, an isolated converter is known as a switching power supply for converting alternating current into direct current. Various systems have been presented, but DC / DC converters are disposed after AC / DC conversion by rectifying the alternating current voltage with a rectifying circuit and smoothing with a smoothing capacitor, not limited to single phase and three phase. Patent documents 1 to 7). Also known is a two-stage configuration in which a power factor correction device (PFC) and a DC / DC converter are combined to perform power factor correction. Patent Documents 6 and 7 describe an apparatus for boosting and improving the power factor of a three-phase AC output of a wind power alternator.
特開平7-31150号公報Japanese Patent Application Laid-Open No. 7-31150 特開平8-331860号公報JP-A-8-331860 特開2002-10632号公報Japanese Patent Application Laid-Open No. 2002-10632 特開2005-218224号公報JP 2005-218224 A 特開2007-37297号公報JP 2007-37297 A 特開2013-128379号公報JP, 2013-128379, A 特開2014-23286号公報JP, 2014-23286, A
 従来の力率改善機能を備えたスイッチング電源において、2段構成とする場合は回路が複雑になるという問題があった。また、フォワード方式のコンバータでは、通常、トランス以外に外付けのチョークコイルが必要であった。 In the conventional switching power supply having a power factor improvement function, there is a problem that the circuit becomes complicated in the case of the two-stage configuration. In addition, in the forward converter, an external choke coil is usually required in addition to the transformer.
 以上の問題点に鑑み本発明は、三相交流が入力される絶縁型スイッチング電源において、簡易な構成により効率的な力率改善と電力変換を行うことを目的とする。 In view of the above problems, the present invention has an object of efficiently performing power factor improvement and power conversion with a simple configuration in an insulating switching power supply to which a three-phase alternating current is input.
 上記の目的を達成するべく、本発明は、以下の構成を提供する。なお、括弧内の符号は後述する図面中の符号であり、参考のために付するものである。 In order to achieve the above object, the present invention provides the following configuration. In addition, the code | symbol in parenthesis is a code | symbol in drawing mentioned later, and is attached for reference.
・ 本発明のスイッチング電源の一態様は、
 (a)三相交流が入力される第1、第2及び第3入力端(R,S,T)と、
 (b)正極出力端(P)及び負極出力端(N)と、
 (c)各々が一次コイル(Lr1,Ls1,Lt1)と二次コイル(Lr2,Ls2,Lt2)を具備し各々の一次コイルの一端が前記第1、第2及び第3入力端(R,S,T)にそれぞれ接続された第1、第2及び第3トランス(Tr,Ts,Tt)と、
 (d)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と入力側基準電位端(E)の間の各電流路を導通又は遮断するように1つの制御信号(Vg)によりオンオフ制御される第1、第2及び第3スイッチング素子(Qr,Qs,Qt)と、
 (e)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の二次コイル(Lr2,Ls2,Lt2)の一端と前記負極出力端(N)の間にそれぞれ接続された第1、第2及び第3サブコンデンサ(C1,C2,C3)と、
 (f)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の二次コイル(Lr2,Ls2,Lt2)の他端と前記正極出力端(P)の間にそれぞれ接続され、該二次コイルの他端から該正極出力端(P)へ流れる電流をそれぞれ導通させる第1、第2及び第3整流要素(D1,D2,D3)と、
 (g)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の二次コイル(Lr2,Ls2,Lt2)の他端と前記負極出力端(N)の間にそれぞれ接続され、該負極出力端(N)から該二次コイルの他端へ流れる電流をそれぞれ導通させる第4、第5及び第6整流要素(D4,D5,D6)と、
 (h)前記正極出力端(P)と前記負極出力端(N)の間に接続された平滑コンデンサ(C4)と、を有することを特徴とする。
One aspect of the switching power supply of the present invention is
(A) first, second and third input terminals (R, S, T) to which three-phase alternating current is input;
(B) positive electrode output end (P) and negative electrode output end (N),
(C) Each has a primary coil (Lr1, Ls1, Lt1) and a secondary coil (Lr2, Ls2, Lt2), and one end of each primary coil has the first, second and third input ends (R, S) , T) respectively connected to the first, second and third transformers (Tr, Ts, Tt),
(D) Each current path between the other end of the primary coil (Lr1, Ls1, Lt1) of each of the first, second and third transformers (Tr, Ts, Tt) and the input side reference potential end (E) First, second and third switching elements (Qr, Qs, Qt) which are on / off controlled by one control signal (Vg) to conduct or interrupt
(E) One end of the secondary coil (Lr2, Ls2, Lt2) of each of the first, second and third transformers (Tr, Ts, Tt) and the negative output end (N) are connected to each other First, second and third sub capacitors (C1, C2, C3),
(F) connected between the other end of the secondary coil (Lr2, Ls2, Lt2) of each of the first, second and third transformers (Tr, Ts, Tt) and the positive electrode output end (P) First, second and third rectifying elements (D1, D2, D3) for respectively conducting a current flowing from the other end of the secondary coil to the positive electrode output end (P);
(G) connected between the other end of the secondary coil (Lr2, Ls2, Lt2) of each of the first, second and third transformers (Tr, Ts, Tt) and the negative output end (N) Fourth, fifth and sixth rectifying elements (D4, D5, D6) for respectively conducting the current flowing from the negative electrode output end (N) to the other end of the secondary coil;
(H) A smoothing capacitor (C4) connected between the positive electrode output end (P) and the negative electrode output end (N) is characterized.
 本発明により、三相交流を入力され力率改善と電力変換を行う絶縁型スイッチング電源において、簡易な構成とすることができ、トランスの効率を向上させることができる。 According to the present invention, in an isolated switching power supply that receives a three-phase alternating current and performs power factor improvement and power conversion, the configuration can be simplified and the efficiency of the transformer can be improved.
図1は、本発明のスイッチング電源の実施形態の回路構成例を概略的に示した図である。FIG. 1 is a view schematically showing an example of the circuit configuration of the embodiment of the switching power supply according to the present invention. 図2(a)(b)は、入力される三相交流とスイッチング動作による力率改善作用を説明するための図である。FIGS. 2 (a) and 2 (b) are diagrams for explaining the power factor improvement action by the input three-phase alternating current and the switching operation. 図3は、図1に示した回路構成のTモードにおけるオン期間の電流の流れを概略的に示す図である。FIG. 3 is a diagram schematically showing the flow of current during the on period in the T mode of the circuit configuration shown in FIG. 図4は、図1に示した回路構成の二次側におけるオン期間の電位関係を模式的に示した図である。FIG. 4 is a diagram schematically showing the potential relationship of the on period on the secondary side of the circuit configuration shown in FIG. 図5は、図1に示した回路構成のTモードにおけるオフ期間の電流の流れを概略的に示す図である。FIG. 5 is a diagram schematically showing the flow of current during the off period in the T mode of the circuit configuration shown in FIG. 図6は、図1に示した回路構成の二次側におけるオフ期間の電位関係を模式的に示した図である。FIG. 6 is a diagram schematically showing the potential relationship of the off period on the secondary side of the circuit configuration shown in FIG.
 以下、実施例を示した図面を参照しつつ、本発明によるスイッチング電源の実施形態について説明する。 Hereinafter, an embodiment of a switching power supply according to the present invention will be described with reference to the drawings showing the embodiments.
(1)回路構成
 図1は、本発明の絶縁型スイッチング電源の実施形態の回路構成の一例を概略的に示した図である。
(1) Circuit Configuration FIG. 1 is a view schematically showing an example of a circuit configuration of an embodiment of the isolated switching power supply of the present invention.
 本発明のスイッチング電源は、交流発電機により出力される三相交流電力を入力とし、負荷に対して直流電力を出力する電力変換装置である。例えば風力発電では、風車が回転し交流発電機の軸が回転すると、交流発電機においてY結線された三相のステータコイルから三相交流電力が出力される。 The switching power supply of the present invention is a power conversion device that receives three-phase AC power output from an AC generator as input and outputs DC power to a load. For example, in wind power generation, when the wind turbine rotates and the shaft of the AC generator rotates, three-phase AC power is output from a Y-connected three-phase stator coil in the AC generator.
 本発明のスイッチング電源は、電力変換装置であるとともに、力率改善装置としての機能も兼ね備えている。力率改善装置は、入力電流の波形を入力電圧と同じ正弦波の波形としかつ位相を一致させて力率を1とすることを目的とする。 The switching power supply of the present invention is not only a power conversion device but also has a function as a power factor correction device. The power factor correction device aims to make the power factor equal to 1 by making the waveform of the input current the same as that of the input voltage and making the phase match.
 本発明のスイッチング電源は、入力側と出力側を電気的に絶縁する絶縁型である。このために、各相に対応する3つのトランスTr、Ts、Ttを設けている。3つのトランスTr、Ts、Ttはそれぞれ1つの一次コイルと1つの二次コイルを具備する。3つのトランスTr、Ts、Ttは電気磁気特性が等しいものを用いることが好適であり、三相リアクトルを用いることが好適である。符号Lr1、Ls1、Lt1は各トランスの一次コイルを示し、符号Lr2、Ls2、Lt2は各トランスの二次コイルを示す。 The switching power supply of the present invention is an insulating type that electrically isolates the input side from the output side. For this purpose, three transformers Tr, Ts and Tt corresponding to each phase are provided. Each of the three transformers Tr, Ts, Tt comprises one primary coil and one secondary coil. It is preferable to use three transformers Tr, Ts, and Tt having the same electromagnetic characteristics, and it is preferable to use a three-phase reactor. The symbols Lr1, Ls1 and Lt1 indicate primary coils of the respective transformers, and the symbols Lr2, Ls2 and Lt2 indicate secondary coils of the respective transformers.
 各コイルの巻き始端を黒丸で示している。本明細書でコイルについて「一端」と「他端」という場合は、「巻き始端」と「巻き終端」の組合せを意味する場合と、「巻き終端」と「巻き始端」の組合せを意味する場合のいずれも含むものとする。 The winding start end of each coil is shown by a black circle. In the present specification, when a coil is referred to as "one end" and "the other end", it means a combination of "winding start end" and "winding end" and a combination of "winding end" and "winding start". Shall be included.
 入力側であるトランスの一次コイルLr1、Ls1、Lt1の一端(本例では巻き始端)は、三相交流電圧が入力される3つの端子である第1入力端R、第2入力端S及び第3入力端Tにそれぞれ接続されている。本明細書では、三相交流の各相をR相、S相、T相と称する。符号Eは、入力側基準電位端を示す。 One end (in this example, the winding start end) of the primary coils Lr1, Ls1 and Lt1 of the transformer on the input side has three terminals to which a three-phase AC voltage is input: a first input end R, a second input end S and a first The three input terminals T are respectively connected. In the present specification, each phase of the three-phase alternating current is referred to as an R phase, an S phase, and a T phase. The symbol E indicates the input side reference potential end.
 トランスの二次側には、直流電圧が出力される2つの端子である正極出力端Pと負極出力端Nが設けられている。負極出力端Nは、二次側基準電位端である。正極出力端Pと負極出力端Nの間に接続された負荷(図示せず)に出力電圧が印加され、出力電流が流れる。 On the secondary side of the transformer, a positive electrode output terminal P and a negative electrode output terminal N, which are two terminals to which a DC voltage is output, are provided. The negative output end N is a secondary side reference potential end. An output voltage is applied to a load (not shown) connected between the positive electrode output terminal P and the negative electrode output terminal N, and an output current flows.
 各トランスの一次コイルLr1、Ls1、Lt1の他端(本例では巻き終端)には、3つのスイッチング素子Qr、Qs、Qtの各々の一端が接続されている。各スイッチング素子Qr、Qs、Qtの他端は、入力側基準電位端Eに接続されている。各スイッチング素子Qr、Qs、Qtは制御端をそれぞれ具備し、各制御端は、一次コイルLr1、Ls1、Lt1の他端と入力側基準電位端Eの間の電流路を導通又は遮断するようにそれぞれオンオフ制御される。 One end of each of the three switching elements Qr, Qs, Qt is connected to the other end (in this example, the winding end) of the primary coil Lr1, Ls1, Lt1 of each transformer. The other ends of the switching elements Qr, Qs, Qt are connected to the input side reference potential end E. Each switching element Qr, Qs, Qt has a control end, and each control end conducts or cuts off the current path between the other end of the primary coils Lr1, Ls1, Lt1 and the input side reference potential end E. Each is on / off controlled.
 3つのスイッチング素子Qr、Qs、Qtの各制御端は、共通する1つの制御信号Vgにより制御される。制御信号Vgは、例えば所定の周波数及びデューティ比のパルス波形をもつPWM信号である。すなわち、3つのスイッチング素子Qr、Qs、Qtは、常に同時にオンオフするように制御される。図示の例では、スイッチング素子Qr、Qs、Qtがnチャネル形MOSFET(以下「FETQr」、「FETQs」、「FETQt」と称する)であり、一端がドレイン、他端がソース、制御端がゲートである。この場合、制御信号Vgは電圧信号である。 The control ends of the three switching elements Qr, Qs, Qt are controlled by one common control signal Vg. The control signal Vg is, for example, a PWM signal having a pulse waveform of a predetermined frequency and a duty ratio. That is, the three switching elements Qr, Qs, Qt are controlled to always be turned on and off at the same time. In the illustrated example, the switching elements Qr, Qs, Qt are n-channel MOSFETs (hereinafter referred to as "FETQr", "FETQs", "FETQt"), one end is a drain, the other end is a source, and the control end is a gate. is there. In this case, the control signal Vg is a voltage signal.
 なお、FET以外のスイッチング素子Qr、Qs、Qt、例えばIGBTやバイポーラトランジスタの場合は、電流の還流経路となるダイオード等の整流要素をそれぞれ逆並列接続する必要がある。 In the case of switching elements Qr, Qs, Qt other than FETs, for example, in the case of IGBTs or bipolar transistors, rectifying elements such as diodes serving as current return paths need to be connected in reverse parallel.
 さらに、各トランスの二次コイルLr2、Ls2、Lt2の一端(本例では巻き始端)と二次側基準電位端である負極出力端Nの間には、第1、第2及び第3のコンデンサ(以下「サブコンデンサ」と称する)C1、C2、C3がそれぞれ接続されている。また、正極出力端Pと負極出力端Nの間には、平滑コンデンサC4が接続されている。 Furthermore, first, second and third capacitors are disposed between one end (in this example, the winding start end) of the secondary coils Lr2, Ls2 and Lt2 of each transformer and the negative output end N which is the secondary side reference potential end. C1, C2, and C3 (hereinafter referred to as "sub capacitors") are connected to one another. In addition, a smoothing capacitor C4 is connected between the positive electrode output terminal P and the negative electrode output terminal N.
 各トランスの二次コイルLr2、Ls2、Lt2の他端(本例では巻き終端)と正極出力端Pの間には、整流要素の一例である第1、第2及び第3のダイオードD1、D2、D3がそれぞれ接続されている。ダイオードD1、D2、D3の各アノードがそれぞれ二次コイルLr2、Ls2、Lt2の各他端に接続され、各カソードが正極出力端Pに接続される。各ダイオードD1、D2、D3は、順バイアスのときに各トランスの二次コイルLr2、Ls2、Lt2の他端から正極出力端Pへそれぞれ流れる電流を導通させ、逆バイアスのときはそれぞれ電流を遮断する。 Between the other end (in this example, the winding end) of the secondary coils Lr2, Ls2 and Lt2 of each transformer and the positive electrode output end P, first, second and third diodes D1 and D2 which are an example of rectifying elements , D3 are connected respectively. The anodes of the diodes D1, D2 and D3 are connected to the other ends of the secondary coils Lr2, Ls2 and Lt2, respectively, and the cathodes are connected to the positive electrode output terminal P. Each diode D1, D2, D3 conducts the current flowing from the other end of the secondary coil Lr2, Ls2, Lt2 of each transformer to the positive output terminal P when forward biased, and shuts off the current when reverse biased Do.
 ダイオードD1、D2、D3は、順方向電圧降下が小さくかつ高速動作を行うものが好適である。 The diodes D1, D2 and D3 preferably have small forward voltage drop and operate at high speed.
 さらに、各トランスの二次コイルLr2、Ls2、Lt2の他端と負極出力端Nの間には、整流要素の一例である第4、第5及び第6のダイオードD4、D5、D6がそれぞれ接続されている。ダイオードD4、D5、D6の各カソードが二次コイルLr2、Ls2、Lt2の各他端に接続され、各アノードが負極出力端Nに接続される。各ダイオードD4、D5、D6は、順バイアスのときに負極出力端Nから各トランスの二次コイルLr2、Ls2、Lt2の他端へそれぞれ流れる電流を導通させ、逆バイアスのときはそれぞれ遮断する。 Furthermore, fourth, fifth and sixth diodes D4, D5 and D6, which are an example of a rectifying element, are connected between the other end of the secondary coils Lr2, Ls2 and Lt2 of each transformer and the negative output end N, respectively. It is done. The cathodes of the diodes D4, D5, D6 are connected to the other ends of the secondary coils Lr2, Ls2, Lt2, respectively, and the anodes are connected to the negative output terminal N. Each of the diodes D4, D5, D6 conducts the current flowing from the negative electrode output end N to the other end of the secondary coil Lr2, Ls2, Lt2 of each transformer when forward biased, and blocks the current when reverse biased.
 さらに、図示しないが、制御信号Vgを発生する制御部を有する。例えば入力電圧と直流出力電圧の大きさを検出し、検出された入力電圧と出力電圧に基づいて、制御信号Vgのデューティ比を決定し、それに基づいて制御信号Vgを生成する。制御部の主要部として、PWMICを用いることが好適である。 Furthermore, although not shown, a control unit that generates a control signal Vg is included. For example, the magnitudes of the input voltage and the DC output voltage are detected, the duty ratio of the control signal Vg is determined based on the detected input voltage and output voltage, and the control signal Vg is generated based thereon. It is preferable to use PWMIC as a main part of the control unit.
 PWMICは、例えば、決定された1つのデューティ比に対応する一定電圧の直流信号と、一定の周波数をもつ搬送三角波信号とを比較器に入力することにより、一定のデューティ比をもつパルス状の制御信号Vgを出力する。本発明では、このような制御信号Vgを「一定のデューティ比をもつ」制御信号と称している。 The PWMIC controls, for example, a pulse-like control having a constant duty ratio by inputting a DC signal of a constant voltage corresponding to one determined duty ratio and a carrier triangular wave signal having a constant frequency to the comparator. The signal Vg is output. In the present invention, such a control signal Vg is referred to as a "constant duty ratio" control signal.
(2)動作説明
 図2~図6を参照して、図1に示した回路構成の動作を説明する。なお、本回路の始動時及び停止時の過渡的動作は例外とし、本回路が定常状態にある場合の動作について説明する。
(2) Description of Operation The operation of the circuit configuration shown in FIG. 1 will be described with reference to FIGS. The transient operation at the start and stop of the circuit is an exception, and the operation when the circuit is in the steady state will be described.
(2-1)入力三相交流及び力率改善作用
 先ず、図2(a)(b)を参照して入力三相交流に対するスイッチング動作による力率改善作用を説明する。
(2-1) Input Three-Phase AC and Power Factor Improving Function First, the power factor improving action by the switching operation for the input three-phase AC will be described with reference to FIGS. 2 (a) and 2 (b).
 図2(a)は、入力三相交流のR相、S相、T相の電圧波形を示している。最高電位となる相と最低電位となる相は、それぞれ位相120°毎に順次入れ替わっている。三相交流の周波数は、例えば風力発電の交流発電機の場合、数Hz~100Hz程度である。一方、スイッチング周波数すなわち図1における制御信号Vgの周波数は、数kHz~数百kHzであり、三相交流の周波数に比べて十分に高い。 FIG. 2A shows voltage waveforms of R phase, S phase, and T phase of the input three-phase alternating current. The phase having the highest potential and the phase having the lowest potential are sequentially switched at every phase of 120 °. The frequency of the three-phase alternating current is, for example, about several Hz to 100 Hz in the case of an alternator for wind power generation. On the other hand, the switching frequency, that is, the frequency of the control signal Vg in FIG. 1 is several kHz to several hundreds kHz, which is sufficiently higher than the frequency of the three-phase alternating current.
 一例として、T相が最低電位となる期間(「Tモード」と称する)について説明する。なお、R相が最低電位となる期間(「Rモード」と称する)及びS相が最低電位となる期間(「Sモード」と称する)については、同様であるので説明を省略する。 As an example, a period in which the T phase is at the lowest potential (referred to as “T mode”) will be described. The same applies to the period in which the R phase is at the lowest potential (referred to as “R mode”) and the period in which the S phase is at the lowest potential (referred to as “S mode”).
 Tモードでは、その期間の前半にR相が最高電位となり、後半にS相が最高電位となる。図1においてFETQr、Qs、Qtのオン期間には、正電位の相と負電位の相の相間電圧により入力電流が流れ、オフ期間には電流は流れない。 In the T mode, the R phase has the highest potential in the first half of the period, and the S phase has the highest potential in the second half. In FIG. 1, in the on period of the FETs Qr, Qs, and Qt, an input current flows due to the voltage between the positive potential phase and the negative potential phase, and no current flows in the off period.
 以下の動作説明では、例として、オン期間に最高電位のR相又はS相から最低電位のT相へと、RT相間電圧又はST相間電圧により入力電流が流れる場合について説明する(他の場合についても動作は同様であるので説明を省略する)。 In the following description of the operation, as an example, the case where the input current flows due to the RT phase voltage or the ST phase voltage from the R phase or S phase of the highest potential to the T phase of the lowest potential in the on period will be described Since the operation is the same, the description will be omitted).
 ここでは、例えばR相とT相の間の相間電圧を「RT相間電圧」等と称し「vrt」と表す。また、例えばRT相間電圧vrtにより流れる入力電流を「irt」と表す。 Here, for example, an inter-phase voltage between the R phase and the T phase is referred to as an “RT inter-phase voltage” or the like and denoted as “vrt”. Further, for example, the input current flowing by the RT inter-phase voltage vrt is represented as "irt".
 図2(b)を参照して力率改善作用について説明する。図2(b)は、一例として、図2(a)の時間軸t上のA点におけるPWM制御信号の波形と、RT相間電圧vrtと、第1入力端Rと第3入力端Tの間に流れるオン電流irtとを模式的に示している。スイッチング周波数は、三相交流の周波数に比べて十分に高いので、1つのオン期間のRT相間電圧vrtはパルス状の一定電圧と見なすことができる。従って、オン電流irtの始点の値は、RT相間電圧vrtと、第1入力端Rと第3入力端Tの間の電流路上にあるインダクタンスLによって、irt=vrt/Lω(ωはスイッチング周波数)で決まる。電流irtは、オン期間にリニアに上昇する。オフ期間には、電流irtは零となる。 The power factor improvement action will be described with reference to FIG. 2 (b). FIG. 2B shows, as an example, the waveform of the PWM control signal at point A on the time axis t in FIG. 2A, the voltage between rt phases vrt, and between the first input end R and the third input end T. The on current irt flowing through the is schematically shown. Since the switching frequency is sufficiently high compared to the frequency of the three-phase alternating current, the RT interphase voltage vrt in one on period can be regarded as a pulse-like constant voltage. Therefore, the value of the start point of the on current irt is irt = vrt / Lω (ω is a switching frequency) by the RT phase voltage vrt and the inductance L on the current path between the first input end R and the third input end T. It depends on The current irt rises linearly during the on period. In the off period, the current irt is zero.
 電流路上のインダクタンスL及びスイッチング周波数ωは定数であるので、オン期間の電流irtの始点の値は、オン期間の始点におけるRT相間電圧vrtの瞬時値により決まる。RT相間電圧vrtの瞬時値は、正弦波の軌跡上に点在するので、オン期間に一次コイルに流れる電流irtもまた、正弦波の軌跡を描くことになる。このことは、入力電流が入力電圧と同じ位相の正弦波であることを意味する。これにより、一次側における力率改善が実現される。 Since the inductance L on the current path and the switching frequency ω are constants, the value of the start point of the current irt in the on period is determined by the instantaneous value of the RT inter-phase voltage vrt at the start point of the on period. Since the instantaneous value of the RT inter-phase voltage vrt is scattered on the locus of the sine wave, the current irt flowing through the primary coil during the on period also draws the locus of the sine wave. This means that the input current is a sine wave in phase with the input voltage. Thereby, the power factor improvement on the primary side is realized.
 本回路では、三相交流の相間電圧が印加されるインダクタンスを含む電流路を、一定の周波数とデューティ比をもつPWM制御信号を用いて導通・遮断することにより、入力電圧と位相の一致した正弦波の入力電流を得ることができる。 In this circuit, a current path including an inductance to which a three-phase AC interphase voltage is applied is turned on / off by using a PWM control signal having a constant frequency and a duty ratio, whereby a sine whose phase matches the input voltage The input current of the wave can be obtained.
(2-2)オン期間における一次側及び二次側の動作の詳細
 図3は、図1に示した回路構成において、Tモードにおけるオン期間の電流の流れ(矢印付き点線)を概略的に示している。
(2-2) Details of Operation of Primary Side and Secondary Side in On Period FIG. 3 schematically shows a current flow (dotted line with an arrow) in the on period in T mode in the circuit configuration shown in FIG. ing.
[オン期間:一次側]
 トランス一次側では、オン期間に制御信号Vgがオン電圧になると、FETQr、FETQs、FETQtがいずれもオンとなり電流路が導通する。
[On period: Primary side]
On the primary side of the transformer, when the control signal Vg becomes the on voltage during the on period, all of the FETQr, the FETQs, and the FETQt are turned on, and the current path is conducted.
 トランスTrの一次コイルにはRT相間電圧vrtにより、入力電流irtが以下の経路で流れる。
 ・入力電流irt:第1入力端R→トランスTr一次コイル→FETQr→FETQt→トランスTt一次コイル→第3入力端T
An input current irt flows in the following path in the primary coil of the transformer Tr due to the RT phase voltage vrt.
· Input current irt: first input end R → transformer Tr primary coil → FET Qr → FET Qt → transformer Tt primary coil → third input end T
 トランスTsの一次コイルにはST相間電圧vstにより、入力電流istが以下の経路で流れる。
 ・入力電流ist:第2入力端S→トランスTs一次コイル→FETQs→FETQt→トランスTt一次コイル→第3入力端T
The input current ist flows through the primary coil of the transformer Ts in the following path due to the ST phase voltage vst.
· Input current ist: second input end S → transformer Ts primary coil → FET Qs → FET Qt → transformer Tt primary coil → third input end T
 ここで、トランスTtの一次コイルから第3入力端Tへと流れる電流のように、入力側へ戻る電流を、以下「還流」と称する。 Here, the current returning to the input side, such as the current flowing from the primary coil of the transformer Tt to the third input terminal T, is hereinafter referred to as “reflux”.
[オン期間:二次側]
 図3中では、説明の便宜上、トランスTr、Ts、Ttの二次コイル他端(本例では巻き終端)をそれぞれa点、b点、c点とし、トランスTr、Ts、Ttの二次コイル一端(本例では巻き始端)をd点、e点、f点とする。さらに、正極出力端Pをh点とし、負極出力端Nをg点とする。h点は、平滑コンデンサC4の一端でもある。g点は、サブコンデンサC1、C2、C3及び平滑コンデンサC4の共通端でもあり、二次側基準電位端である。
[On period: Secondary side]
In FIG. 3, for convenience of explanation, the other ends (in this example, the winding ends) of the secondary coils of the transformer Tr, Ts and Tt are respectively a point, b and c points, and the secondary coil of the transformer Tr, Ts and Tt Let one end (in this example, the winding start end) be point d, point e, and point f. Furthermore, the positive electrode output end P is a point h, and the negative electrode output end N is a point g. The point h is also one end of the smoothing capacitor C4. The point g is also a common end of the sub capacitors C1, C2, C3 and the smoothing capacitor C4, and is a secondary side reference potential end.
 図4は、オン期間におけるトランス二次側のa点~h点の電位関係を模式的に示した図である。図4も参照しつつ、オン期間のトランス二次側の動作を説明する。 FIG. 4 is a diagram schematically showing the potential relationship between the point a to h on the transformer secondary side in the on period. The operation of the transformer secondary side in the on period will be described with reference also to FIG.
 定常状態では、サブコンデンサC1、C2、C3及び平滑コンデンサC4は、それぞれ所定の両端電圧VC1、VC2、VC3、VC4で充電されている。 In the steady state, the sub-capacitors C1, C2, C3 and the smoothing capacitor C4 are charged with the voltages Vc1, Vc2, Vc3, VC4 at both ends respectively.
 トランスTrの一次コイルに入力電流irtが流れることにより、二次コイルに起電力Vrが生じる。起電力Vrは、d点側が高電位、a点側が低電位の向きである。ダイオードD1は、この起電力Vrに対して逆バイアスとなるため電流は流れない。一方、ダイオードD4は順バイアスとなり導通する。 When the input current irt flows in the primary coil of the transformer Tr, an electromotive force Vr is generated in the secondary coil. In the electromotive force Vr, the d point side is a high potential, and the a point side is a low potential direction. Since the diode D1 is reverse biased with respect to the electromotive force Vr, no current flows. On the other hand, diode D4 becomes forward biased and becomes conductive.
 ここで、図4に示すオン期間の電位関係図を参照する。トランスTrの二次コイルa点は、ダイオードD4が導通するので、二次側基準電位端g点と同電位となる。トランスTrの起電力VrがサブコンデンサC1の両端電圧VC1を超えると、サブコンデンサC1を充電する方向にオン期間の電流ironが以下の経路で流れる。
 ・電流iron:トランスTr二次コイルd点→サブコンデンサC1→ダイオードD4→トランスTr二次コイルa点
Here, a potential relationship diagram of the on period shown in FIG. 4 is referred to. The secondary coil a point of the transformer Tr is at the same potential as the secondary side reference potential end point g because the diode D4 conducts. When the electromotive force Vr of the transformer Tr exceeds the voltage VC1 across the sub capacitor C1, the current iron of the on period flows in the following path in the direction of charging the sub capacitor C1.
Current iron: transformer Tr secondary coil point d sub capacitor C1 diode D4 transformer Tr secondary coil point a
 また、トランスTsの一次コイルに入力電流istが流れることにより、二次コイルに起電力Vsが生じる。起電力Vsは、e点側が高電位、b点側が低電位の向きである。ダイオードD2は、この起電力Vsに対して逆バイアスとなるため電流は流れない。一方、ダイオードD5は順バイアスとなり導通する。 Further, when the input current ist flows through the primary coil of the transformer Ts, an electromotive force Vs is generated in the secondary coil. The electromotive force Vs is directed to a high potential at point e and a low potential at point b. Since the diode D2 is reverse biased with respect to the electromotive force Vs, no current flows. On the other hand, diode D5 is forward biased and turned on.
 ここで、図4に示すオン期間の電位関係図を参照する。トランスTsの二次コイルb点は、ダイオードD5が導通するので、二次側基準電位端g点と同電位となる。トランスTsの起電力VsがサブコンデンサC2の両端電圧VC2を超えると、サブコンデンサC2を充電する方向にオン期間の電流isonが以下の経路で流れる。
 ・電流ison:トランスTs二次コイルe点→サブコンデンサC2→ダイオードD5→トランスTs二次コイルb点
Here, a potential relationship diagram of the on period shown in FIG. 4 is referred to. The secondary coil b of the transformer Ts has the same potential as the point g on the secondary side reference potential end because the diode D5 conducts. When the electromotive force Vs of the transformer Ts exceeds the voltage VC2 across the sub capacitor C2, the current ison of the on period flows in the following path in the direction of charging the sub capacitor C2.
Current ison: transformer Ts secondary coil point e → sub capacitor C 2 → diode D 5 → transformer Ts secondary coil point b
 また、トランスTtは、その一次コイルに還流が流れることにより、二次コイルに起電力Vtが生じる。起電力Vtは、f点側が低電位、c点側が高電位の向きであり、トランスTr及びTsとは逆向きである。ダイオードD6は、この起電力Vtに対して逆バイアスとなるため電流は流れない。 In addition, in the transformer Tt, an electromotive force Vt is generated in the secondary coil when reflux flows in the primary coil. The electromotive force Vt has a low potential at the point f side and a high potential at the point c side, and is in the opposite direction to the transformer Tr and Ts. Since the diode D6 is reverse biased with respect to the electromotive force Vt, no current flows.
 ここで、図4に示すオン期間の電位関係図を参照する。起電力VtによりトランスTtの二次コイルc点電位がf点電位に対して上昇し、平滑コンデンサC4の一端(第1出力端P)であるh点電位を超えると、ダイオードD3が順バイアスとなり、電流itonが以下の経路で流れる。
 ・電流iton:トランスTt二次コイルc点→ダイオードD3→h点→負荷→g点→サブコンデンサC3→トランスTt二次コイルf点
Here, a potential relationship diagram of the on period shown in FIG. 4 is referred to. When the electromotive force Vt causes the secondary coil c potential of the transformer Tt to rise relative to the f potential, and exceeds the h point potential which is one end (first output end P) of the smoothing capacitor C4, the diode D3 becomes forward biased , The current iton flows in the following path.
· Current iton: transformer Tt secondary coil c point → diode D3 → h point → load → g point → sub capacitor C3 → transformer Tt secondary coil f point
 電流itonは、負荷へ供給される。従って電流itonは、フォワード方式におけるフォワード電流に相当する。なお、負荷への供給電流は、平滑コンデンサC4からの放電電流も合流される。電流itonによりサブコンデンサC3は放電するので、f点電位はその分だけ低下し、サブコンデンサC3の両端電圧VC3は小さくなる。 The current iton is supplied to the load. Therefore, the current iton corresponds to the forward current in the forward system. The supply current to the load is also merged with the discharge current from the smoothing capacitor C4. Since the sub capacitor C3 is discharged by the current iton, the potential at the point f decreases by that amount, and the voltage VC3 across the sub capacitor C3 decreases.
 図4のオン期間の電位関係から判るように、itonが流れるときのc点(h点)電位は、g点電位に対して、サブコンデンサC3の両端電圧VC3とトランスTtの起電力Vtとを加算したものとなっている。 As can be seen from the potential relationship in the on period in FIG. 4, the potential at point c (point h) when it flows flows the voltage VC3 across the sub capacitor C3 and the electromotive force Vt of the transformer Tt with respect to the potential at point g. It has become an addition.
 なお、トランスTtの起電力Vtは、一次コイルの還流の大きさにより決まる。トランスTtの起電力Vtが小さいときは、c点電位がh点電位を超えない(c’点電位を参照)。この場合は、電流itonは流れない。 The electromotive force Vt of the transformer Tt is determined by the magnitude of the reflux of the primary coil. When the electromotive force Vt of the transformer Tt is small, the potential at the point c does not exceed the potential at the point h (see the potential at the point c '). In this case, the current iton does not flow.
 本回路のオン期間の動作をまとめると、次の通りである。一次コイルに入力電流が流れるトランスにおいては、二次コイルに発生した起電力がサブコンデンサの電圧を超えると、サブコンデンサを充電する方向に電流が流れる。一方、一次コイルに還流が流れるトランスにおいては、二次コイルに発生する起電力がサブコンデンサの電圧に加算される。加算された電圧が平滑コンデンサの電圧を超えると負荷へ電流が流れる。 The operation during the on period of this circuit is summarized as follows. In a transformer in which an input current flows in the primary coil, when the electromotive force generated in the secondary coil exceeds the voltage of the sub capacitor, a current flows in the direction of charging the sub capacitor. On the other hand, in the transformer in which the return flow flows to the primary coil, the electromotive force generated in the secondary coil is added to the voltage of the sub capacitor. When the added voltage exceeds the voltage of the smoothing capacitor, current flows to the load.
 通常のフォワード方式では、オン期間に外付けチョークコイルに磁気エネルギーが蓄積され、通常のフライバック方式では、オン期間にトランスに磁気エネルギーが蓄積される。これに対し、本回路では、オン期間に二次側に流れる電流iron、isonにより、サブコンデンサC1、C2にそれぞれエネルギーが蓄積される。さらに、オン期間に二次側に流れる電流itonにより、エネルギーが負荷へ供給される。この結果、本回路では、外付けチョークコイルが不要である。 In the normal forward system, magnetic energy is stored in the external choke coil in the on period, and in the normal flyback system, the magnetic energy is stored in the transformer in the on period. On the other hand, in the present circuit, energy is stored in the sub capacitors C1 and C2 by the currents iron and is respectively flowing to the secondary side during the on period. Furthermore, energy is supplied to the load by the current iton flowing to the secondary side during the on period. As a result, the circuit does not require an external choke coil.
(2-3)オフ期間における一次側及び二次側の動作の詳細
 図5は、図1の回路構成において、Tモードにおけるオフ期間の電流の流れ(矢印付き点線)を概略的に示す図である。
(2-3) Details of Operation of Primary Side and Secondary Side in Off Period FIG. 5 schematically shows the current flow (dotted line with arrow) in the off period in T mode in the circuit configuration of FIG. is there.
[オフ期間:一次側]
 トランス一次側では、制御信号Vgがオフになると、FETQr、FETQs、FETQtがいずれもオフとなりスイッチが開く。各トランスの一次コイルの各電流路は遮断され、電流が零となる。これによりトランスTr、Ts、Ttの一次コイル及び二次コイルにそれぞれ逆起電力が生じる。
[Off period: Primary side]
On the primary side of the transformer, when the control signal Vg is turned off, the FETQr, the FETQs, and the FETQt are all turned off and the switch is opened. Each current path of the primary coil of each transformer is cut off and the current is zero. Thereby, back electromotive force is generated in the primary coil and the secondary coil of the transformer Tr, Ts, Tt respectively.
[オフ期間:二次側]
 図6は、オフ期間におけるトランス二次側のa点~h点の電位関係を模式的に示した図である。図6も参照しつつ、オフ期間の二次側の動作を説明する。
[Off period: Secondary side]
FIG. 6 is a diagram schematically showing the potential relationship between the point a to h on the transformer secondary side in the off period. The operation on the secondary side of the off period will be described with reference also to FIG.
 トランスTrの二次コイルに生じた逆起電力Vrは、d点側が低電位、a点側が高電位の向きである。ダイオードD4は、この逆起電力Vrに対して逆バイアスとなるため電流は流れない。 The back electromotive force Vr generated in the secondary coil of the transformer Tr is directed to a low potential on the point d side and a high potential on the a point side. Since the diode D4 is reverse biased with respect to the back electromotive force Vr, no current flows.
 ここで、図6に示すオフ期間の電位関係図を参照する。逆起電力VrによりトランスTrの二次コイルa点電位がd点電位に対して上昇する。a点電位が平滑コンデンサC4の一端(第1出力端P)であるh点電位を超えると、ダイオードD1が順バイアスとなり電流iroffが以下の経路で流れる。
 ・電流iroff:トランスTr二次コイルa点→ダイオードD1→h点→負荷(又は平滑コンデンサC4)→g点→サブコンデンサC1→トランスTr二次コイルd点
Here, a potential relationship diagram of the off period shown in FIG. 6 is referred to. The back electromotive force Vr causes the potential at the secondary coil a of the transformer Tr to rise with respect to the potential at the point d. When the potential at the point a exceeds the potential at the point h, which is one end (first output end P) of the smoothing capacitor C4, the diode D1 becomes forward biased and the current iroff flows in the following path.
· Current iroff: transformer Tr secondary coil point a → diode D 1 → point h → load (or smoothing capacitor C 4) → point g → sub capacitor C 1 → transformer Tr secondary coil point d
 また、トランスTsの二次コイルに生じた逆起電力Vsは、e点側が低電位、b点側が高電位の向きである。ダイオードD5は、この逆起電力Vsに対して逆バイアスとなるため電流は流れない。 Further, the back electromotive force Vs generated in the secondary coil of the transformer Ts is directed to a low potential on the point e side and a high potential on the point b side. Since the diode D5 is reverse biased with respect to the back electromotive force Vs, no current flows.
 ここで、図6に示すオフ期間の電位関係図を参照する。逆起電力VsによりトランスTsの二次コイルb点電位がe点電位に対して上昇し、平滑コンデンサC4の一端(第1出力端P)であるh点電位を超えると、ダイオードD2が順バイアスとなり電流isoffが以下の経路で流れる。
 ・電流isoff:トランスTs二次コイルb点→ダイオードD2→h点→負荷(又は平滑コンデンサC4)→g点→サブコンデンサC2→トランスTs二次コイルe点
Here, a potential relationship diagram of the off period shown in FIG. 6 is referred to. When the potential at the secondary coil b of the transformer Ts rises relative to the potential at the point e due to the back electromotive force Vs and exceeds the potential at the point h which is one end (first output end P) of the smoothing capacitor C4, the diode D2 is forward biased The current isoff flows in the following path.
· Current isoff: transformer Ts secondary coil point b → diode D2 → point h → load (or smoothing capacitor C4) → point g → sub capacitor C2 → transformer Ts secondary coil point
 オフ期間の電流iroff、isoffは、サブコンデンサC1、C2をそれぞれ放電する方向に流れる。オフ期間の電流iroff、isoffは、フライバック方式におけるフライバック電流に相当する。通常のフライバック方式では、トランスに蓄積された磁気エネルギーが放出されるが、本回路の場合、サブコンデンサC1、C2に蓄積されたエネルギーが放出される。 The currents iroff and isoff in the off period flow in the direction of discharging the sub capacitors C1 and C2, respectively. The currents iroff and isoff in the off period correspond to the flyback current in the flyback system. In the normal flyback method, the magnetic energy stored in the transformer is released, but in the case of this circuit, the energy stored in the sub capacitors C1 and C2 is released.
 図6のオフ期間の電位関係から判るように、iroffが流れるときのa点電位は、g点電位に対して、サブコンデンサC1の両端電圧VC1と逆起電力Vrとを加算したものとなっている。同様に、isoffが流れるときのb点電位は、g点電位に対して、サブコンデンサC2の両端電圧VC2と逆起電力Vsとを加算したものとなっている。 As can be seen from the potential relationship in the off period in FIG. 6, the potential at the point a when iroff flows is the sum of the voltage VC1 across the sub capacitor C1 and the back electromotive force Vr to the potential at the point g. There is. Similarly, the potential at point b when isoff flows is the sum of the potential at point g, the voltage VC2 across the sub capacitor C2 and the back electromotive force Vs.
 図6には示していないが、電流iroff、isoffによりサブコンデンサC1、C2はそれぞれ放電するので、d点電位、e点電位はその分だけそれぞれ低下し、両端電圧VC1、VC2はそれぞれ小さくなる。 Although not shown in FIG. 6, the sub capacitors C1 and C2 are discharged by the currents iroff and isoff respectively, so the potential at the point d and the potential at the point e decrease by that amount, and the voltages VC1 and VC2 decrease.
 なお、オフ期間にトランスTr、Tsの二次コイルに生じる逆起電力は、オン期間にサブコンデンサC1、C2に充電された電圧VC1、VC2により抑圧されるため、サブコンデンサC1、C2が無い場合の逆起電力に比べて小さくなる。この結果、トランスTr、Tsの一次側に生じる逆起電力も小さくなるため、一次側のFETQr、FETQsに要求される耐圧が軽減される。 The back electromotive force generated in the secondary coil of the transformer Tr and Ts in the off period is suppressed by the voltages VC1 and VC2 charged in the sub capacitors C1 and C2 in the on period, so there is no sub capacitor C1 or C2 Smaller than the back electromotive force of As a result, the back electromotive force generated on the primary side of the transformer Tr, Ts also decreases, and the withstand voltage required for the FET Qr, FET Qs on the primary side is reduced.
 また、トランスTtの二次コイルに生じる逆起電力Vtは、f点側が高電位、c点側が低電位の向きであり、トランスTr、Tsとは逆向きである。ダイオードD3は、この逆起電力Vtに対して逆バイアスとなるため、電流は流れない。逆起電力Vtによりf点電位がc点電位に対して上昇し、f点電位がサブコンデンサC3の両端電圧VC3を超えると、電流itoffが以下の経路で流れ、サブコンデンサC3を充電する。
 ・電流itoff:トランスTt二次コイルf点→サブコンデンサC3→ダイオードD6→トランスTt二次コイルc点
Further, the back electromotive force Vt generated in the secondary coil of the transformer Tt is in the direction of high potential at the point f side and low potential at the point c side, and is opposite to the transformer Tr and Ts. Since the diode D3 is reverse biased with respect to the back electromotive force Vt, no current flows. When the potential at point f rises relative to the potential at point c due to the back electromotive force Vt and the potential at point f exceeds the voltage VC3 across the sub capacitor C3, the current itoff flows in the following path to charge the sub capacitor C3.
Current itoff: transformer Tt secondary coil f point → sub capacitor C3 → diode D6 → transformer Tt secondary coil c point
 本回路のオフ期間の動作をまとめると次の通りである。オン期間に一次コイルに入力電流が流れたトランスにおいては、オフ期間に二次コイルに発生した逆起電力がサブコンデンサの電圧に加算される。加算された電圧が平滑コンデンサの電圧を超えると負荷に電流が流れる。一方、オン期間に一次コイルに還流が流れたトランスにおいては、オフ期間に二次コイルに発生した逆起電力がサブコンデンサの電圧を超えると、サブコンデンサを充電する方向に電流が流れる。 The operation of the off period of this circuit is summarized as follows. In the transformer in which the input current flows to the primary coil in the on period, the back electromotive force generated in the secondary coil in the off period is added to the voltage of the sub capacitor. When the added voltage exceeds the voltage of the smoothing capacitor, current flows in the load. On the other hand, in the transformer in which the return flow flows to the primary coil in the on period, when the back electromotive force generated in the secondary coil in the off period exceeds the voltage of the sub capacitor, a current flows in the direction of charging the sub capacitor.
 上記の通り、本回路では、オン期間もオフ期間も負荷へ電流を供給することが可能である。本回路では、通常のフォワード方式における外付けチョークコイルは不要である。また、通常のフライバック方式に比べてサブコンデンサC1、C2、C3とダイオードD4、D5、D6が追加されるが、これらはコスト的にもスペース的にもチョークコイルより有利である。 As described above, in this circuit, it is possible to supply current to the load during the on period and the off period. In this circuit, the external choke coil in the normal forward system is unnecessary. Also, sub-capacitors C1, C2, C3 and diodes D4, D5, D6 are added as compared to the conventional flyback method, but they are more advantageous than the choke coil in cost and space.
 また、オン期間もオフ期間も3つのトランスに電流が流れるため、トランスの利用効率が向上する。 In addition, since current flows to the three transformers during the on period and the off period, the utilization efficiency of the transformer is improved.
 R、S、T 入力端
 E 入力側基準電位端
 P 正極出力端
 N 負極出力端(出力側基準電位)
 Tr、Ts、Tt トランス
 Lr1、Ls1、Lt1 一次コイル
 Lr2、Ls2、Lt2 二次コイル
 Qr、Qs、Qt スイッチング素子(FET)
 D1、D2、D3 整流要素(出力ダイオード)
 D4、D5、D6 整流要素
 C1、C2、C3 サブコンデンサ
 C4 平滑コンデンサ
R, S, T Input end E Input side reference potential end P Positive output end N Negative output end (Output side reference potential)
Tr, Ts, Tt transformer Lr1, Ls1, Lt1 Primary coil Lr2, Ls2, Lt2 Secondary coil Qr, Qs, Qt Switching element (FET)
D1, D2, D3 Rectifying element (output diode)
D4, D5, D6 Rectifying element C1, C2, C3 Sub capacitor C4 Smoothing capacitor

Claims (1)

  1.  (a)三相交流が入力される第1、第2及び第3入力端(R,S,T)と、
     (b)正極出力端(P)及び負極出力端(N)と、
     (c)各々が一次コイル(Lr1,Ls1,Lt1)と二次コイル(Lr2,Ls2,Lt2)を具備し各々の一次コイルの一端が前記第1、第2及び第3入力端(R,S,T)にそれぞれ接続された第1、第2及び第3トランス(Tr,Ts,Tt)と、
     (d)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の一次コイル(Lr1,Ls1,Lt1)の他端と入力側基準電位端(E)の間の各電流路を導通又は遮断するように1つの制御信号(Vg)によりオンオフ制御される第1、第2及び第3スイッチング素子(Qr,Qs,Qt)と、
     (e)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の二次コイル(Lr2,Ls2,Lt2)の一端と前記負極出力端(N)の間にそれぞれ接続された第1、第2及び第3サブコンデンサ(C1,C2,C3)と、
     (f)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の二次コイル(Lr2,Ls2,Lt2)の他端と前記正極出力端(P)の間にそれぞれ接続され、該二次コイルの他端から該正極出力端(P)へ流れる電流をそれぞれ導通させる第1、第2及び第3整流要素(D1,D2,D3)と、
     (g)前記第1、第2及び第3トランス(Tr,Ts,Tt)の各々の二次コイル(Lr2,Ls2,Lt2)の他端と前記負極出力端(N)の間にそれぞれ接続され、該負極出力端(N)から該二次コイルの他端へ流れる電流をそれぞれ導通させる第4、第5及び第6整流要素(D4,D5,D6)と、
     (h)前記正極出力端(P)と前記負極出力端(N)の間に接続された平滑コンデンサ(C4)と、を有することを特徴とするスイッチング電源。
    (A) first, second and third input terminals (R, S, T) to which three-phase alternating current is input;
    (B) positive electrode output end (P) and negative electrode output end (N),
    (C) Each has a primary coil (Lr1, Ls1, Lt1) and a secondary coil (Lr2, Ls2, Lt2), and one end of each primary coil has the first, second and third input ends (R, S) , T) respectively connected to the first, second and third transformers (Tr, Ts, Tt),
    (D) Each current path between the other end of the primary coil (Lr1, Ls1, Lt1) of each of the first, second and third transformers (Tr, Ts, Tt) and the input side reference potential end (E) First, second and third switching elements (Qr, Qs, Qt) which are on / off controlled by one control signal (Vg) to conduct or interrupt
    (E) One end of the secondary coil (Lr2, Ls2, Lt2) of each of the first, second and third transformers (Tr, Ts, Tt) and the negative output end (N) are connected to each other First, second and third sub capacitors (C1, C2, C3),
    (F) connected between the other end of the secondary coil (Lr2, Ls2, Lt2) of each of the first, second and third transformers (Tr, Ts, Tt) and the positive electrode output end (P) First, second and third rectifying elements (D1, D2, D3) for respectively conducting a current flowing from the other end of the secondary coil to the positive electrode output end (P);
    (G) connected between the other end of the secondary coil (Lr2, Ls2, Lt2) of each of the first, second and third transformers (Tr, Ts, Tt) and the negative output end (N) Fourth, fifth and sixth rectifying elements (D4, D5, D6) for respectively conducting the current flowing from the negative electrode output end (N) to the other end of the secondary coil;
    (H) A switching power supply comprising: a smoothing capacitor (C4) connected between the positive electrode output end (P) and the negative electrode output end (N).
PCT/JP2018/018504 2017-06-23 2018-05-14 Three-phase ac insulated switching power supply WO2018235455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017123156A JP6800098B2 (en) 2017-06-23 2017-06-23 Insulated switching power supply for three-phase AC
JP2017-123156 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018235455A1 true WO2018235455A1 (en) 2018-12-27

Family

ID=64735691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018504 WO2018235455A1 (en) 2017-06-23 2018-05-14 Three-phase ac insulated switching power supply

Country Status (3)

Country Link
JP (1) JP6800098B2 (en)
KR (1) KR102472259B1 (en)
WO (1) WO2018235455A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6817894B2 (en) * 2017-05-19 2021-01-20 Ntn株式会社 Insulated switching power supply for three-phase AC

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250471A (en) * 1994-03-09 1995-09-26 Isao Takahashi Three-phase sine-wave input switching power circuit
JP2002058248A (en) * 2000-08-11 2002-02-22 Interunits Corp Three-phase rectifying device
JP2002199731A (en) * 2000-12-25 2002-07-12 Sanken Electric Co Ltd Three-phase ac-dc converter
JP2005033911A (en) * 2003-07-11 2005-02-03 Sanken Electric Co Ltd Three-phase ac-dc converter
JP2009261163A (en) * 2008-04-18 2009-11-05 Cosel Co Ltd Three-phase power factor correcting circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731150A (en) 1993-07-09 1995-01-31 Shindengen Electric Mfg Co Ltd Switching power supply
JP3261010B2 (en) 1995-05-31 2002-02-25 オークマ株式会社 Power converter
JPH1141938A (en) * 1997-07-23 1999-02-12 Daihen Corp Dc power supply equipment
KR100655022B1 (en) 2000-03-03 2006-12-07 마츠시타 덴끼 산교 가부시키가이샤 Semiconductor device
JP4466089B2 (en) 2004-01-29 2010-05-26 サンケン電気株式会社 Power factor correction circuit
KR20050105945A (en) 2005-09-30 2005-11-08 이경욱 An agricultural and marine product dryer with carbon plate heat emitter
KR101803049B1 (en) 2010-09-01 2017-11-29 구글 엘엘씨 User list generation and identification
US20140142613A1 (en) 2011-06-24 2014-05-22 Toray Industries, Inc. Instrument for capturing free thrombi
WO2017212739A1 (en) * 2016-06-10 2017-12-14 Ntn株式会社 Power factor improvement device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250471A (en) * 1994-03-09 1995-09-26 Isao Takahashi Three-phase sine-wave input switching power circuit
JP2002058248A (en) * 2000-08-11 2002-02-22 Interunits Corp Three-phase rectifying device
JP2002199731A (en) * 2000-12-25 2002-07-12 Sanken Electric Co Ltd Three-phase ac-dc converter
JP2005033911A (en) * 2003-07-11 2005-02-03 Sanken Electric Co Ltd Three-phase ac-dc converter
JP2009261163A (en) * 2008-04-18 2009-11-05 Cosel Co Ltd Three-phase power factor correcting circuit

Also Published As

Publication number Publication date
KR20190000777A (en) 2019-01-03
JP6800098B2 (en) 2020-12-16
KR102472259B1 (en) 2022-11-29
JP2019009890A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
Lee et al. Isolated SEPIC DC–DC converter with ripple-free input current and lossless snubber
JP5898848B2 (en) Insulated power converter
WO2009128373A1 (en) Bidirectional dc/dc converter and power conditioner
US9209698B2 (en) Electric power conversion device
WO2012168983A1 (en) Charging device
US20170126136A1 (en) Switching Power Supply Unit
WO2017212739A1 (en) Power factor improvement device
US11760218B2 (en) Charging circuit for a vehicle-side electrical energy store
CN114944759A (en) DC-DC converter and vehicle
KR20190115364A (en) Single and three phase combined charger
US6297971B1 (en) Phase converter
WO2018235455A1 (en) Three-phase ac insulated switching power supply
JP2017192297A (en) Multilevel power conversion device and method for controlling multilevel power conversion device
WO2018211892A1 (en) Isolated switching power source for three-phase ac
Muhammad et al. Non-isolated, high gain, boost converter for power electronic applications
JP6270753B2 (en) Power converter
WO2018211893A1 (en) Isolated switching power source for three-phase ac
Lee et al. A high-power DC-DC converter for electric vehicle battery charger
KR20100055233A (en) Current-fed three phase half-bridge dc-dc converter for power conversion apparatus
US11936297B2 (en) DC-DC converter including first and second coils magnetically coupled such that current flows through second coil in forward direction of diode by mutual induction as current flowing through first coil from intermediate terminal to output terminal increases and vehicle
EP4318906A1 (en) Soft start circuit and converter
JP2004147475A (en) Rectifier
JP3714233B2 (en) Bidirectional DC-DC converter
JP2017139909A (en) Electric power conversion system
CN111033998A (en) AC-DC conversion circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820815

Country of ref document: EP

Kind code of ref document: A1