JP2004147475A - Rectifier - Google Patents

Rectifier Download PDF

Info

Publication number
JP2004147475A
JP2004147475A JP2002312631A JP2002312631A JP2004147475A JP 2004147475 A JP2004147475 A JP 2004147475A JP 2002312631 A JP2002312631 A JP 2002312631A JP 2002312631 A JP2002312631 A JP 2002312631A JP 2004147475 A JP2004147475 A JP 2004147475A
Authority
JP
Japan
Prior art keywords
diode
switching element
transformer
capacitor
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002312631A
Other languages
Japanese (ja)
Other versions
JP4096696B2 (en
Inventor
Kazuaki Mino
三野 和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2002312631A priority Critical patent/JP4096696B2/en
Publication of JP2004147475A publication Critical patent/JP2004147475A/en
Application granted granted Critical
Publication of JP4096696B2 publication Critical patent/JP4096696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, in conventional circuits so constituted that a chopper circuit is connected with the output of a rectifying circuit and a switching element is thereby caused to carry out soft switching, the secondary winding of a transformer used is connected in series with a diode and thereby the charges in a capacity for soft switching are regenerated to the direct-current output, in this case a diode of high breakdown voltage is required, and the price and loss of the equipment are increased. <P>SOLUTION: A rectifier is so constituted that a series circuit of a reactor and a switching element is connected between the direct-current output terminals of an N-phase (N is a natural number not less than 2) diode bridge circuit which is fed with N-phase alternating-current power as input, a series circuit of a diode and a capacitor both the ends of which are direct-current output is connected in parallel with the switching element, and a load is connected in parallel with the capacitor. In this rectifier, a series circuit comprising a capacitor, a diode, the primary winding of a transformer, and a switching element is connected in parallel with the above switching element. Further, a series circuit of a diode and the secondary winding of the transformer is connected between the direct-current output terminals of the rectifier. A voltage clamping means is connected in parallel with the primary winding of the transformer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はスイッチング素子とダイオードを用いて交流電源から直流を作り出す、いわゆるPWM整流回路に関し、特に整流回路に適用するソフトスイッチング回路技術に関する。
【0002】
【従来技術】
図3に従来技術に基づく実施例を示す。ただし、ここでは単相交流電源における実施例を示す。図3に示す従来例は、Power Electronics Specialists Conference 1999“IMPROVING THE OPERATION OF ZVT DC−DC CONVERTERS”Paulo J.M.Menegazらによる著の第293〜297ページに開示されている。“IMPROVING THE OPERATION OF ZVT DC−DC CONVERTERS”Fig.2では、ダイオードDsxとコンデンサCsxとでスナバ回路が構成されているが、本発明の主要動作および効果には関係ないため、図3では省略している。
【0003】
図3(a)に示す回路構成はダイオード2〜5で構成されるダイオードブリッジ回路、リアクトル21、ダイオード6およびスイッチング素子15で構成されるチョッパ回路で整流回路が構成されている。ここで、スイッチング素子15をオンさせることによって、交流電源はダイオードブリッジ回路とリアクトル21を介して短絡され、リアクトル21にはエネルギーが蓄えられるとともに交流入力電流は増加する。
次に、スイッチング素子15をオフすることによって、リアクトル21に蓄えられたエネルギーはダイオード6を通して直流出力となるコンデンサ33と負荷33に供給される。このように、スイッチング素子15のオンオフ制御によって入力電流を制御することができ、入力電流の高調波を低減させるとともに交流電圧を直流電圧に変換することができる。
【0004】
また、コンデンサ31、ダイオード7、10、11、変圧器22およびスイッチング素子17はチョッパ回路のソフトスイッチング回路を構成している。図3(b)は従来技術の動作波形例を示している。ここで、スイッチング素子17をオンさせることによって、期間t1ではリアクトル21→ダイオード6→コンデンサ33→ダイオードブリッジ回路40→交流電源1→リアクトル21の経路で流れていた電流が、変圧器22の漏れインダクタンスの影響により、リアクトル21→ダイオード7→変圧器22の一次巻線22a→スイッチング素子17→ダイオードブリッジ回路40→交流電源1→リアクトル21の経路に徐々に転流する。この時、スイッチング素子17に流れる電流は零から徐々に増加するのでスイッチング素子17のターンオン時のソフトスイッチングが成立する。次に、スイッチング素子17に流れる電流がリアクトル21に流れる電流値と等しくなると期間t2が始まり、ダイオード6がオフする。この時、ダイオード6の電流は徐々に零となるので、逆回復時のサージ電圧や逆回復損失が低減される。
同時に、コンデンサ31(スイッチング素子15の寄生容量でもよい)に蓄えられている電荷がコンデンサ31→ダイオード7→変圧器22の一次巻線22a→スイッチング素子17→コンデンサ31の経路で放電し、コンデンサ31に蓄えられていた電荷は変圧器22の二次巻線22bとダイオード10を介して出力側へ回生される。さらに、期間t3においてスイッチング素子15の電圧が零になった後スイッチング素子15をオンすると、スイッチング素子15には変圧器22の一次巻線22aに流れる電流とリアクトル21に流れる電流の差分の電流が流れるので、スイッチング素子15に流れる電流は寄生ダイオード12が電流を流す零以下の電流値から徐々に上昇する。従って、スイッチング素子15はターンオン時のソフトスイッチングが成立する。
リアクトル21→ダイオード7→変圧器22の一次巻線22a→スイッチング素子17→ダイオードブリッジ回路40→交流電源1→リアクトル21の経路で流れていた電流はリアクトル21→スイッチング素子15→ダイオードブリッジ回路40→交流電源1→リアクトル21の経路に徐々に転流するとともに、変圧器22の漏れインダクタンスに蓄えられているエネルギーは変圧器22の二次巻線22bとダイオード10を介して出力側に供給され、スイッチング素子17に流れる電流は徐々に低下して零になる。スイッチング素子17は電流が零になってからオフするので、ターンオフ時のソフトスイッチングが成立する。
一方、スイッチング素子15がオフする時にはコンデンサ31に電流が流れることによって、徐々にスイッチング素子15の電圧が上昇するので、ターンオフ損失は低減される。このように、スイッチング素子15と17のソフトスイッチングが成立し、損失やノイズを低減させることができる。
【0005】
【発明が解決しようとする課題】
従来技術において、スイッチング素子17がオフすると期間t4において、変圧器22の一次巻線22a→ダイオード11→コンデンサ33→スイッチング素子15の寄生ダイオード12→ダイオード7→変圧器22の一次巻線22aの経路で変圧器22の一次巻線22aは直流出力電圧(コンデンサ33の電圧)でクランプされるリセット電圧が発生する。ここで、コンデンサ31に蓄えられている電荷を全て直流出力側に回生するためには変圧器22の巻数比は2以上である必要がある。
【0006】
従って、変圧器22の二次巻線22bには直流出力電圧の巻数比倍の電圧が発生し、ダイオード10には高電圧が印加されてしまう。ダイオード10を破損させることなく安全に動作させるためには高耐圧のダイオードが必要であり、装置が高価になり、損失も増加してしまう。そこで、本発明では低耐圧のダイオードを使用することができ、装置の低コスト化、低損失化を実現することを目的にしている。
【0007】
【発明を解決するための手段】
上記課題を解決するための第一の手段として、N相(Nは2以上の自然数)の交流電源を入力とするN相のダイオードブリッジ回路の直流出力端子間にリアクトルとスイッチング素子との直列回路を、スイッチング素子と並列にダイオードと両端が直流出力となるコンデンサとの直列回路を、該コンデンサと並列に負荷を、各々接続した整流装置において、前記スイッチング素子と並列に、コンデンサと、ダイオード、変圧器の一次巻線およびスイッチング素子からなる直列回路とを接続し、さらに整流装置の直流出力端子間にダイオードと前記変圧器の二次巻線との直列回路を、前記変圧器一次巻線と並列に電圧クランプ手段を接続する。
【0008】
また、第二の手段として、ダイオードとスイッチング素子との直列回路をN(Nは2以上の自然数)個並列接続し、前記ダイオードとスイッチング素子の直列回路の内部接続点とN相の交流電源との間にリアクトルを、前記ダイオードとスイッチング素子との直列回路の並列接続点間に両端が直流出力となるコンデンサを、該コンデンサと並列に負荷を、各々接続した整流装置において、前記N個のダイオードとコンデンサを並列接続したスイッチング素子との直列回路におけるダイオードとスイッチング素子の内部接続点のそれぞれにダイオードのアノード端子を接続し、前記それぞれのダイオードのカソードを一括接続し、前記ダイオードのカソード端子と直流出力端子の一方との間に変圧器の一次巻線とスイッチング素子との直列回路を、整流装置の直流出力端子間にダイオードと前記変圧器の二次巻線との直列回路を、前記変圧器の一次巻線と並列に電圧クランプ手段を、各々接続する。
【0009】
【実施例】
図1に請求項1に基づく実施例を示す。ただし、ここでは単相交流電源における実施例を示す。図1(a)に示す回路構成は従来技術と同様に、ダイオード2〜5で構成されるダイオードブリッジ回路40と、リアクトル21、ダイオード6およびスイッチング素子15で構成されるチョッパ回路で整流回路が構成され、ダイオード7、9、10、スイッチング素子17、変圧器22、電圧クランプ素子30でソフトスイッチング回路が構成されている。本発明では期間t1〜t3までは従来技術と同様な動作をし、スイッチング素子15、17およびダイオード6のソフトスイッチングが成立する。
期間t4では変圧器22の一次巻線22a→電圧クランプ素子30→ダイオード9→変圧器22の一次巻線22aの経路で変圧器22の一次巻線22aに電圧クランプ素子30によってクランプされる電圧と等しいリセット電圧が発生する。変圧器22の二次巻線22bには一次巻線の巻数比倍の電圧が発生し、ダイオード10には直流出力電圧と変圧器22の二次巻線電圧の和が印加される。ここで、電圧クランプ素子30のクランプ電圧を低く設定することによって、ダイオード10に印加される電圧を低減することができる。
よって、ダイオード10には低耐圧のダイオードを使用することができ、装置の低コスト化、低損失化が可能となる。ただし、電圧クランプ素子30のクランプ電圧を低く設定してもリセット期間は十分長いので、変圧器22は十分リセットすることができ、磁気飽和することはない。
【0010】
図2に請求項2に基づく実施例を示す。ただし、ここでは単相交流電源における実施例を示す。図2(a)に示す回路構成は、リアクトル21、ダイオード2〜5、スイッチング素子15および16で整流回路が構成される。整流回路は、ダイオード2〜5で構成されたダイオードブリッジ回路のダイオード3には並列にスイッチング素子15とコンデンサ31が、ダイオード5には並列にスイッチング素子16とコンデンサ32が、ダイオード2と3との直列接続点とダイオード4と5との直列接続点との間にはリアクトル21を介して交流電源1が、ダイオードブリッジ回路の直流端子間にはコンデンサ33と負荷34が、各々接続された構成である。ここで、ダイオード3はスイッチング素子15の寄生ダイオードで、ダイオオード5はスイッチング素子16の寄生ダイオードで代用することもできる。
【0011】
また、ダイオード7〜10、スイッチング素子17、変圧器22、電圧クランプ素子30でソフトスイッチング回路が構成されている。ソフトスイッチング回路の構成は、ダイオード8のアノードをダイオード2と3の直列接続点に、ダイオード7のアノードをダイオード4と5の直列接続点に、ダイオード7と8のカソードを変圧器22の一次巻線22aの一方の端子に、変圧器の他方の端子をダイオード13を並列接続したスイッチング素子17のドレイン端子に、スイッチング素子17のソース端子を直流出力負極端子に、ダイオード9と電圧クランプ素子30の直列回路を変圧器22の一次巻線22aと並列に、ダイオード10と変圧器22の二次巻線直列回路を直流出力であるコンデンサ33と並列に、各々接続した構成である。ダイオオード13はスイッチング素子17の寄生ダイオードで代用することもできる。
【0012】
以下に動作を説明する。交流電源電圧が正の場合、スイッチング素子15をオンすることにより、交流電源1→リアクトル21→スイッチング素子15→ダイオード5→交流電源1の経路で交流入力電流が増加し、リアクトル21にエネルギーが蓄えられる。次に、スイッチング素子15がオフすると、リアクトル21→ダイオード2→コンデンサ33→ダイオード5→交流電源1→リアクトル21の経路でリアクトル21のエネルギーが直流出力側に供給される。従って、交流電源電圧が正のときにはスイッチング素子15をオンオフ制御することにより、入力電流を高力率に制御しつつ、直流電圧に変換することができる。交流電源電圧が負の場合は同様にスイッチング素子16をオンオフさせることにより、入力電流を高力率に制御しつつ、直流電圧に変換することができる。
【0013】
ここで、請求項2では、請求項1におけるダイオード7の代わりにダイオード7と8が接続され、交流電源電圧が正の時にはダイオード8が、交流電源電圧が負の時にはダイオード7が、請求項1におけるダイオード7の役割を果たす。交流電源電圧が正の時にはスイッチング素子15がオン・オフするので、コンデンサ31に蓄えられる電荷が請求項1と同様な動作で直流出力側に回生される。ただし、交流電源電圧が正の時にはダイオード5に常に電流が流れているので、コンデンサ32には電荷が蓄えられない。
交流電源電圧が負の時には同様にコンデンサ32に蓄えられる電荷が請求項1と同様に負荷側へ回生される。従って、請求項2における整流回路においても請求項1と同様な動作となり、スイッチング素子15、16、17およびダイオード2、4にはソフトスイッチング動作が成立する。
【0014】
さらに、請求項1と同様にダイオード10には直流出力電圧と変圧器22の二次巻線電圧の和が印加されるので、電圧クランプ素子30のクランプ電圧を低く設定することによって、ダイオード10に印加される電圧を低減することができる。ただし、電圧クランプ素子30のクランプ電圧を低く設定してもリセット期間は十分長いので、変圧器22は十分リセットすることができ、磁気飽和することはない。従って、ダイオード10には低耐圧のダイオードを使用することができ、装置の低コスト化、低損失化が可能となる。
【0015】
【発明の効果】
本発明によれば、スイッチング動作によって交流電圧を直流電圧に変換する整流回路において、ソフトスイッチングを成立させるとともにダイオードに印加される電圧を低減することができ、装置の効率化、低コスト化および低ノイズ化が可能である。ここでは、単相交流電源における例を示したが、三相交流電源においても同様の効果があることは言うまでもない。
【図面の簡単な説明】
【図1】請求項1に基づく本発明の実施例を示す。
【図2】請求項2に基づく本発明の実施例を示す。
【図3】従来技術に基づく実施例を示す。
【符号の説明】
1………………………………………交流電源
2〜13…………………………………ダイオード
15〜17……………………………スイッチング素子
21……………………………………リアクトル
22……………………………………変圧器
22a・・・・変圧器一次巻線、 22b・・・・変圧器二次巻線
30……………………………………電圧クランプ素子
31、32……………………………コンデンサまたは寄生容量
33・・・・コンデンサ
34・・・・負荷
40・・・・ダイオードブリッジ回路
t1〜t4………………………………期間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a so-called PWM rectifier circuit that generates a direct current from an AC power supply using a switching element and a diode, and more particularly to a soft switching circuit technology applied to a rectifier circuit.
[0002]
[Prior art]
FIG. 3 shows an embodiment based on the prior art. Here, an embodiment using a single-phase AC power supply will be described. The conventional example shown in FIG. 3 is described in Power Electronics Specialists Conference 1999 "IMPROVING THE OPERATION OF ZVT DC-DC CONVERTERS" Paulo J. et al. M. It is disclosed on pages 293-297 by Menegaz et al. "IMPROVING THE OPERATION OF ZVT DC-DC CONVERTERS" FIG. In No. 2, a snubber circuit is formed by the diode Dsx and the capacitor Csx, but is not shown in FIG. 3 because it has no relation to the main operation and effect of the present invention.
[0003]
The circuit configuration illustrated in FIG. 3A includes a diode bridge circuit including diodes 2 to 5 and a rectifier circuit including a chopper circuit including the reactor 21, the diode 6, and the switching element 15. Here, when the switching element 15 is turned on, the AC power supply is short-circuited through the diode bridge circuit and the reactor 21, and the reactor 21 stores energy and increases the AC input current.
Next, when the switching element 15 is turned off, the energy stored in the reactor 21 is supplied through the diode 6 to the capacitor 33 and the load 33 which become a DC output. As described above, the input current can be controlled by the on / off control of the switching element 15, so that the harmonics of the input current can be reduced and the AC voltage can be converted to the DC voltage.
[0004]
The capacitor 31, the diodes 7, 10, 11, the transformer 22, and the switching element 17 form a soft switching circuit of a chopper circuit. FIG. 3B shows an example of an operation waveform according to the related art. Here, by turning on the switching element 17, the current flowing through the path of the reactor 21 → the diode 6 → the capacitor 33 → the diode bridge circuit 40 → the AC power supply 1 → the reactor 21 in the period t 1 becomes the leakage inductance of the transformer 22. Under the influence of the above, the current is gradually commutated to the path of the reactor 21 → the diode 7 → the primary winding 22a of the transformer 22 → the switching element 17 → the diode bridge circuit 40 → the AC power supply 1 → the reactor 21. At this time, since the current flowing through the switching element 17 gradually increases from zero, soft switching at the time of turning on the switching element 17 is established. Next, when the current flowing through the switching element 17 becomes equal to the value of the current flowing through the reactor 21, the period t2 starts, and the diode 6 is turned off. At this time, since the current of the diode 6 gradually becomes zero, the surge voltage and the reverse recovery loss at the time of the reverse recovery are reduced.
At the same time, the electric charge stored in the capacitor 31 (or the parasitic capacitance of the switching element 15) is discharged through the path of the capacitor 31 → the diode 7 → the primary winding 22a of the transformer 22 → the switching element 17 → the capacitor 31. Is regenerated to the output side through the secondary winding 22b of the transformer 22 and the diode 10. Further, when the switching element 15 is turned on after the voltage of the switching element 15 becomes zero in the period t3, the switching element 15 receives a difference current between the current flowing through the primary winding 22a of the transformer 22 and the current flowing through the reactor 21. Therefore, the current flowing through the switching element 15 gradually increases from a current value of zero or less at which the parasitic diode 12 flows the current. Therefore, the switching element 15 performs soft switching at the time of turn-on.
The reactor 21 → the diode 7 → the primary winding 22a of the transformer 22 → the switching element 17 → the diode bridge circuit 40 → the AC power supply 1 → the current flowing in the route of the reactor 21 is the reactor 21 → the switching element 15 → the diode bridge circuit 40 → While gradually commutating to the path from the AC power supply 1 to the reactor 21, the energy stored in the leakage inductance of the transformer 22 is supplied to the output side via the secondary winding 22b of the transformer 22 and the diode 10, The current flowing through the switching element 17 gradually decreases to zero. Since the switching element 17 is turned off after the current becomes zero, soft switching at the time of turn-off is established.
On the other hand, when the switching element 15 is turned off, a current flows through the capacitor 31, so that the voltage of the switching element 15 gradually increases, so that the turn-off loss is reduced. Thus, soft switching of the switching elements 15 and 17 is established, and loss and noise can be reduced.
[0005]
[Problems to be solved by the invention]
In the related art, when the switching element 17 is turned off, during a period t4, a path of the primary winding 22a of the transformer 22 → the diode 11 → the capacitor 33 → the parasitic diode 12 of the switching element 15 → the diode 7 → the primary winding 22a of the transformer 22. Accordingly, a reset voltage is generated in the primary winding 22a of the transformer 22 which is clamped by the DC output voltage (voltage of the capacitor 33). Here, in order to regenerate all the electric charges stored in the capacitor 31 to the DC output side, the turns ratio of the transformer 22 needs to be 2 or more.
[0006]
Therefore, a voltage that is twice the turns ratio of the DC output voltage is generated in the secondary winding 22b of the transformer 22, and a high voltage is applied to the diode 10. In order to safely operate the diode 10 without damaging it, a diode with a high withstand voltage is required, and the device becomes expensive and the loss increases. In view of the above, an object of the present invention is to use a diode with a low withstand voltage, and to reduce the cost and the loss of the device.
[0007]
[Means for Solving the Invention]
As a first means for solving the above problem, a series circuit of a reactor and a switching element is provided between DC output terminals of an N-phase diode bridge circuit to which an N-phase (N is a natural number of 2 or more) AC power supply is input. In a rectifier in which a series circuit of a diode and a capacitor whose both ends become a DC output in parallel with the switching element, and a load connected in parallel with the capacitor, a capacitor, a diode, and a transformer are connected in parallel with the switching element. A primary circuit of the transformer and a series circuit composed of switching elements are connected to each other, and a series circuit of a diode and a secondary winding of the transformer is connected in parallel with the primary winding of the transformer between the DC output terminals of the rectifier. Is connected to voltage clamp means.
[0008]
As a second means, N (N is a natural number of 2 or more) series circuits of a diode and a switching element are connected in parallel, and an internal connection point of the series circuit of the diode and the switching element is connected to an N-phase AC power supply. A rectifier in which a reactor having a DC output at both ends is connected between parallel connection points of a series circuit of the diode and the switching element, and a load is connected in parallel with the capacitor. The anode terminal of the diode is connected to each of the internal connection points of the diode and the switching element in the series circuit of the switching element and the switching element in which the capacitor is connected in parallel, the cathodes of the respective diodes are connected collectively, and the cathode terminal of the diode and the DC A series circuit of a primary winding of a transformer and a switching element between one of the output terminals The series circuit of the secondary winding of the diode and the transformer between the DC output terminals of the rectifier device, the voltage clamping means in parallel with the primary winding of the transformer, respectively coupled.
[0009]
【Example】
FIG. 1 shows an embodiment according to claim 1. Here, an embodiment using a single-phase AC power supply will be described. In the circuit configuration shown in FIG. 1A, a rectifier circuit is composed of a diode bridge circuit 40 composed of diodes 2 to 5 and a chopper circuit composed of a reactor 21, a diode 6, and a switching element 15, as in the conventional technology. The diodes 7, 9, 10, the switching element 17, the transformer 22, and the voltage clamp element 30 constitute a soft switching circuit. In the present invention, the same operation as in the related art is performed during the periods t1 to t3, and the soft switching of the switching elements 15, 17 and the diode 6 is established.
In a period t4, the voltage clamped by the voltage clamp element 30 to the primary winding 22a of the transformer 22 through the path of the primary winding 22a of the transformer 22 → the voltage clamp element 30 → the diode 9 → the primary winding 22a of the transformer 22 An equal reset voltage is generated. The secondary winding 22b of the transformer 22 generates a voltage that is twice the turns ratio of the primary winding, and the diode 10 receives the sum of the DC output voltage and the secondary winding voltage of the transformer 22. Here, by setting the clamp voltage of the voltage clamp element 30 low, the voltage applied to the diode 10 can be reduced.
Therefore, a diode with a low withstand voltage can be used as the diode 10, and the cost and the loss of the device can be reduced. However, even if the clamp voltage of the voltage clamp element 30 is set low, the reset period is sufficiently long, so that the transformer 22 can be sufficiently reset, and magnetic saturation does not occur.
[0010]
FIG. 2 shows an embodiment according to the second aspect. Here, an embodiment using a single-phase AC power supply will be described. In the circuit configuration shown in FIG. 2A, a rectifier circuit is formed by the reactor 21, the diodes 2 to 5, and the switching elements 15 and 16. The rectifier circuit includes a switching element 15 and a capacitor 31 in parallel with the diode 3 of the diode bridge circuit composed of diodes 2 to 5, a switching element 16 and a capacitor 32 in parallel with the diode 5, and a diode 2 and a diode 3. The AC power supply 1 is connected between the series connection point and the series connection point of the diodes 4 and 5 via the reactor 21, and the capacitor 33 and the load 34 are connected between the DC terminals of the diode bridge circuit. is there. Here, the diode 3 can be replaced with a parasitic diode of the switching element 15, and the diode 5 can be replaced with a parasitic diode of the switching element 16.
[0011]
The diodes 7 to 10, the switching element 17, the transformer 22, and the voltage clamp element 30 constitute a soft switching circuit. The configuration of the soft switching circuit is such that the anode of the diode 8 is connected to the series connection point of the diodes 2 and 3, the anode of the diode 7 is connected to the series connection point of the diodes 4 and 5, and the cathode of the diodes 7 and 8 is connected to the primary winding of the transformer 22. The other terminal of the transformer is connected to one terminal of the line 22a, the drain terminal of the switching element 17 having the diode 13 connected in parallel, the source terminal of the switching element 17 is connected to the negative terminal of the DC output, and the diode 9 and the voltage clamp element 30 are connected. In this configuration, the series circuit is connected in parallel with the primary winding 22a of the transformer 22, and the diode 10 and the secondary winding series circuit of the transformer 22 are connected in parallel with the capacitor 33 which is a DC output. The diode 13 can be replaced by a parasitic diode of the switching element 17.
[0012]
The operation will be described below. When the AC power supply voltage is positive, the switching element 15 is turned on, so that the AC input current increases in the path of AC power supply 1 → reactor 21 → switching element 15 → diode 5 → AC power supply 1, and energy is stored in the reactor 21. Can be Next, when the switching element 15 is turned off, the energy of the reactor 21 is supplied to the DC output side through the route of the reactor 21 → the diode 2 → the capacitor 33 → the diode 5 → the AC power supply 1 → the reactor 21. Therefore, when the AC power supply voltage is positive, the switching element 15 is turned on / off to control the input current to a high power factor and convert the input current to a DC voltage. When the AC power supply voltage is negative, the switching element 16 is turned on and off in the same manner, so that the input current can be converted to a DC voltage while controlling it at a high power factor.
[0013]
Here, in claim 2, diodes 7 and 8 are connected instead of the diode 7 in claim 1, and the diode 8 is connected when the AC power supply voltage is positive, and the diode 7 is connected when the AC power supply voltage is negative. Plays the role of the diode 7. Since the switching element 15 is turned on and off when the AC power supply voltage is positive, the charge stored in the capacitor 31 is regenerated to the DC output side by the same operation as in claim 1. However, since the current always flows through the diode 5 when the AC power supply voltage is positive, no charge is stored in the capacitor 32.
Similarly, when the AC power supply voltage is negative, the electric charge stored in the capacitor 32 is regenerated to the load side as in the first aspect. Therefore, the operation of the rectifier circuit according to the second aspect is the same as that of the first aspect, and the switching elements 15, 16, 17 and the diodes 2, 4 perform the soft switching operation.
[0014]
Further, since the sum of the DC output voltage and the secondary winding voltage of the transformer 22 is applied to the diode 10 as in the first embodiment, the diode 10 is set by setting the clamp voltage of the voltage clamp element 30 low. The applied voltage can be reduced. However, since the reset period is sufficiently long even if the clamp voltage of the voltage clamp element 30 is set low, the transformer 22 can be sufficiently reset, and does not magnetically saturate. Therefore, a diode having a low withstand voltage can be used as the diode 10, and the cost and the loss of the device can be reduced.
[0015]
【The invention's effect】
According to the present invention, in a rectifier circuit that converts an AC voltage into a DC voltage by a switching operation, it is possible to achieve soft switching and reduce the voltage applied to the diode, thereby improving the efficiency, cost, and cost of the device. Noise can be generated. Here, an example in the case of a single-phase AC power supply has been described, but it goes without saying that a similar effect can be obtained in a three-phase AC power supply.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the invention according to claim 1;
FIG. 2 shows an embodiment of the invention according to claim 2;
FIG. 3 shows an embodiment according to the prior art.
[Explanation of symbols]
1 …………………… AC power supplies 2 to 13 ………………… Diodes 15 to 17 …………………… Switching Element 21 …………………………………………………………………………………………………………… Transformer 22a ... Transformer primary winding, 22b ... Transformer secondary winding 30 Voltage clamp elements 31, 32 Capacitor or parasitic capacitance 33 Capacitor 34 ... Load 40 ... Diode bridge circuit t1 to t4 ..................... Period

Claims (2)

N相(Nは2以上の自然数)の交流電源を入力とするN相のダイオードブリッジ回路の直流出力端子間にリアクトルとスイッチング素子との直列回路を、スイッチング素子と並列にダイオードと両端が直流出力となるコンデンサとの直列回路を、該コンデンサと並列に負荷を、各々接続した整流装置において、
前記スイッチング素子と並列に、コンデンサと、ダイオード、変圧器の一次巻線およびスイッチング素子からなる直列回路とを接続し、さらに整流装置の直流出力端子間にダイオードと前記変圧器の二次巻線との直列回路を、前記変圧器一次巻線と並列に電圧クランプ手段を接続したことを特徴とする整流装置。
A series circuit of a reactor and a switching element is connected between the DC output terminals of an N-phase diode bridge circuit that receives an N-phase (N is a natural number of 2 or more) AC power supply. In a rectifier in which a series circuit with a capacitor and a load in parallel with the capacitor are connected,
In parallel with the switching element, a capacitor, a diode, a primary circuit of a transformer and a series circuit including a switching element are connected, and a diode and a secondary winding of the transformer are connected between DC output terminals of a rectifier. A rectifier, wherein a voltage clamp means is connected to the series circuit of the above in parallel with the primary winding of the transformer.
ダイオードとスイッチング素子との直列回路をN(Nは2以上の自然数)個並列接続し、前記ダイオードとスイッチング素子の直列回路の内部接続点とN相の交流電源との間にリアクトルを、前記ダイオードとスイッチング素子との直列回路の並列接続点間に両端が直流出力となるコンデンサを、該コンデンサと並列に負荷を、各々接続した整流装置において、
前記N個のダイオードとコンデンサを並列接続したスイッチング素子との直列回路におけるダイオードとスイッチング素子の内部接続点のそれぞれにダイオードのアノード端子を接続し、前記それぞれのダイオードのカソードを一括接続し、前記ダイオードのカソード端子と直流出力端子の一方との間に変圧器の一次巻線とスイッチング素子との直列回路を、整流装置の直流出力端子間にダイオードと前記変圧器の二次巻線との直列回路を、前記変圧器の一次巻線と並列に電圧クランプ手段を、各々接続したことを特徴とする整流装置。
N (N is a natural number of 2 or more) series circuits of a diode and a switching element are connected in parallel, and a reactor is connected between an internal connection point of the series circuit of the diode and the switching element and an N-phase AC power supply. A capacitor having a DC output at both ends between the parallel connection points of the series circuit with the switching element, a load in parallel with the capacitor, in a rectifier in which each is connected,
An anode terminal of the diode is connected to each of the internal connection points of the diode and the switching element in a series circuit of the switching element in which the N diodes and the capacitor are connected in parallel, and the cathodes of the respective diodes are collectively connected. A series circuit of a primary winding of a transformer and a switching element is provided between the cathode terminal and one of the DC output terminals, and a series circuit of a diode and a secondary winding of the transformer is provided between the DC output terminals of the rectifier. A voltage clamp means connected in parallel with a primary winding of the transformer.
JP2002312631A 2002-10-28 2002-10-28 Rectifier Expired - Lifetime JP4096696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312631A JP4096696B2 (en) 2002-10-28 2002-10-28 Rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312631A JP4096696B2 (en) 2002-10-28 2002-10-28 Rectifier

Publications (2)

Publication Number Publication Date
JP2004147475A true JP2004147475A (en) 2004-05-20
JP4096696B2 JP4096696B2 (en) 2008-06-04

Family

ID=32457473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312631A Expired - Lifetime JP4096696B2 (en) 2002-10-28 2002-10-28 Rectifier

Country Status (1)

Country Link
JP (1) JP4096696B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207292A (en) * 2008-02-28 2009-09-10 Fuji Electric Device Technology Co Ltd Electric power converter
WO2011083503A1 (en) * 2010-01-05 2011-07-14 株式会社日立製作所 Ac-dc converter and method of controlling same
JP2013106453A (en) * 2011-11-15 2013-05-30 Minebea Co Ltd Power-supply device
CN115037128A (en) * 2022-08-15 2022-09-09 艾科微电子(深圳)有限公司 Control circuit, rectifier circuit, power supply and electronic equipment of bridge rectifier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207292A (en) * 2008-02-28 2009-09-10 Fuji Electric Device Technology Co Ltd Electric power converter
WO2011083503A1 (en) * 2010-01-05 2011-07-14 株式会社日立製作所 Ac-dc converter and method of controlling same
CN102696169A (en) * 2010-01-05 2012-09-26 株式会社日立制作所 AC-DC converter and method of controlling same
JP5342021B2 (en) * 2010-01-05 2013-11-13 株式会社日立製作所 AC-DC converter and control method thereof
CN102696169B (en) * 2010-01-05 2015-06-10 株式会社日立制作所 AC-DC converter and method of controlling same
JP2013106453A (en) * 2011-11-15 2013-05-30 Minebea Co Ltd Power-supply device
CN115037128A (en) * 2022-08-15 2022-09-09 艾科微电子(深圳)有限公司 Control circuit, rectifier circuit, power supply and electronic equipment of bridge rectifier

Also Published As

Publication number Publication date
JP4096696B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US8233298B2 (en) Power factor correction rectifier that operates efficiently over a range of input voltage conditions
Papanikolaou et al. Active voltage clamp in flyback converters operating in CCM mode under wide load variation
US7239530B1 (en) Apparatus for isolated switching power supply with coupled output inductors
JP2991181B2 (en) Switching power supply
JP5125607B2 (en) Power converter
US7729139B2 (en) Current source inverter with energy clamp circuit and controlling method thereof having relatively better effectiveness
WO2010067629A1 (en) Dc-dc converter circuit
JP2009261186A (en) Bidirectional dc/dc converter and power conditioner
US20120187879A1 (en) Zero-voltage-transition soft switching converter
US20120044729A1 (en) Bridgeless coupled inductor boost power factor rectifiers
Lin et al. New ZVS DC--DC converter with series-connected transformers to balance the output currents
US9748851B2 (en) Switching power supply apparatus with snubber circuit
US6519164B1 (en) Single power stage AC/DC forward converter with power switch voltage clamping function
US6999325B2 (en) Current/voltage converter arrangement
Lin et al. Analysis, design, and implementation of a parallel ZVS converter
JPWO2007069314A1 (en) Power converter
Lin et al. A new ZVS DC/DC converter with three APWM circuits
JP4096696B2 (en) Rectifier
KR20100055233A (en) Current-fed three phase half-bridge dc-dc converter for power conversion apparatus
JP3562385B2 (en) Forward converter
Li et al. A current fed two-inductor boost converter with lossless snubbing for photovoltaic module integrated converter applications
KR100268563B1 (en) A single-phase/three-phase compatible soft-switched rectifier
JP3539852B2 (en) Switching power supply
JP3993704B2 (en) Active filter device
JP3275856B2 (en) Power converter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5