WO2018233691A1 - 信号发送和接收方法、装置 - Google Patents

信号发送和接收方法、装置 Download PDF

Info

Publication number
WO2018233691A1
WO2018233691A1 PCT/CN2018/092433 CN2018092433W WO2018233691A1 WO 2018233691 A1 WO2018233691 A1 WO 2018233691A1 CN 2018092433 W CN2018092433 W CN 2018092433W WO 2018233691 A1 WO2018233691 A1 WO 2018233691A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
carrier
time unit
uplink
downlink
Prior art date
Application number
PCT/CN2018/092433
Other languages
English (en)
French (fr)
Inventor
郭志恒
万蕾
谢信乾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710672330.9A external-priority patent/CN109120382B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018233691A1 publication Critical patent/WO2018233691A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present application relates to communication technologies, and in particular, to a signal transmission and reception method and apparatus.
  • the 5th Generation (5G) New Radio Interface (NR) system and the Long Term Evolution (LTE) system can be deployed simultaneously in the frequency band below 6 GHz.
  • a typical deployment method is: the NR system is deployed at a frequency of 3.5 GHz, and the LTE system is deployed at a frequency of 1.8 GHz.
  • the terminal device can support dual connectivity (DC) communication, that is, the terminal device can work in both the LTE system and the NR system, wherein the terminal device adopts Time Division Duplex (TDD) at 1.8 GHz.
  • TDD Time Division Duplex
  • the terminal equipment adopts Frequency Division Duplex (FDD).
  • the terminal device when the terminal device sends uplink signals at 3.5 GHz and 1.8 GHz, the intermodulation interference between the 3.5 GHz and 1.8 GHz signals will seriously affect the terminal.
  • the device receives the downlink signal performance of the LTE system at a frequency of 1.8 GHz.
  • the existing standard stipulates that for a terminal device operating in the dual connectivity mode of the LTE system and the NR system, the terminal device only supports transmitting uplink signals only at one frequency point at the same time point, that is, when the terminal device When the uplink signal is transmitted at the 3.5 GHz frequency, the uplink signal is not transmitted at the 1.8 GHz frequency, and vice versa.
  • each uplink subframe/slot requires an acknowledgement (ACK) for the terminal device to feed back the received downlink signal to the network device.
  • ACK acknowledgement
  • NACK None Acknowledge
  • the present application provides a signal transmitting and receiving method and apparatus, which can greatly reduce the delay of feedback information of a downlink signal on a TDD carrier.
  • the first aspect of the present application provides a signal sending and receiving method, including:
  • the terminal device receives a first downlink signal from the network device on a first time unit of the first carrier, where the first carrier is a time division duplex TDD carrier, and the first time unit includes a first time slot or a first subframe ;
  • the second time unit includes a second time slot or a second subframe, where a start time of the radio frame in which the first time unit is located is earlier than a start time of the radio frame in which the second time unit is located, the first time The first time is greater than 0 and less than one subframe length;
  • the terminal device sends the first feedback information to the network device on a penultimate and/or last symbol of the second time unit of the second carrier.
  • the configuration is ok.
  • the period of the uplink and downlink transmission direction of the first carrier is configured to be 2.5 milliseconds
  • the period of the uplink and downlink transmission direction is configured to include five time slots
  • the third of the uplink and downlink transmission directions is configured.
  • the time slots are uplink time slots
  • the remaining time slots are downlink time slots.
  • the corresponding relationship is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the feedback of the downlink signal of the first carrier.
  • the subframe number of the time unit of the second carrier of the information, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier
  • the values of (X, Y, Z) include (0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8 ,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7 , 15), at least one of (16, 8, 17), (18, 9, 19), (19, 9, 19).
  • the period of the uplink and downlink transmission direction of the first carrier is configured to be 5 milliseconds
  • the period of the uplink and downlink transmission direction is configured to include 10 time slots
  • the period of the uplink and downlink transmission direction is configured to be the fifth time.
  • the time slot and the sixth time slot are uplink time slots
  • the remaining time slots are downlink time slots.
  • the corresponding relationship is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the feedback of the downlink signal of the first carrier.
  • the subframe number of the time unit of the second carrier of the information, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier
  • the values of (X, Y, Z) include (0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8 ,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8 , 17), at least one of (17, 8, 7), (18, 9, 19), (19, 9, 19).
  • the method further includes: the terminal device receiving the first indication information sent by the network device, where the first indication information indicates the first time.
  • a time difference between a start time point of the second time unit and a start time point of the first time unit is equal to the first time, or an end time point of the second time unit A time difference between an end time point of the first time unit is equal to the first time.
  • the method further includes: when the second time unit overlaps with a first uplink time slot on the first carrier, and is temporally adjacent to the first uplink time slot.
  • the terminal device determines not to send a signal on the first m symbols of the first uplink time slot, where the length of the m symbols is greater than or equal to the first For a time.
  • the sending, by the terminal device, the first feedback information to the network device on the penultimate and/or last symbol of the second time unit of the second carrier including:
  • the terminal device sends the first feedback information on a penultimate and/or last symbol of the second time unit by using a subcarrier spacing of 30 KHz.
  • the first carrier is a carrier used by the first radio access technology
  • the second carrier is a carrier used by the second radio access technology
  • the terminal device passes the first radio access technology and The second radio access technology performs dual connectivity DC communication.
  • the interval of the subcarriers used by the first radio access technology is greater than the subcarrier spacing used by the second radio access technology.
  • the number of the radio frame where the first time unit is located is the same as the number of the radio frame where the second time unit is located.
  • the first time is greater than or equal to a symbol length of a 15 KHz subcarrier interval, or the first time is greater than or equal to a symbol length of two 30 KHz subcarrier intervals.
  • the first time is equal to a symbol length of an integer number of 15 KHz subcarrier intervals or a symbol length equal to an integer number of 30 KHz subcarrier intervals.
  • the second aspect of the present application provides a terminal device, including:
  • a receiving module configured to receive, by using a network device, a first downlink signal on a first time unit of the first carrier, where the first carrier is a time division duplex TDD carrier, and the first time unit includes a first time slot or a One subframe;
  • a determining module configured to determine a second time unit for transmitting first feedback information of the first downlink signal on a second carrier, where the second carrier is an uplink carrier of a frequency division duplex FDD, where The second time unit includes a second time slot or a second subframe, where a start time of the radio frame in which the first time unit is located is earlier than a start time of the radio frame in which the second time unit is located, The first time is greater than 0 and less than one subframe length;
  • a sending module configured to send the first feedback information to the network device on a penultimate and/or last symbol of the second time unit of the second carrier.
  • the determining module is specifically configured to: perform a correspondence between a time unit that receives the downlink signal of the first carrier and a time unit of the second carrier that sends feedback information of the downlink signal of the first carrier Determining the second time unit, wherein the corresponding relationship is determined according to an uplink and downlink transmission direction configuration of the first carrier.
  • the period of the uplink and downlink transmission direction of the first carrier is configured to be 2.5 milliseconds
  • the period of the uplink and downlink transmission direction is configured to include five time slots
  • the third of the uplink and downlink transmission directions is configured.
  • the time slots are uplink time slots
  • the remaining time slots are downlink time slots.
  • the corresponding relationship is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the feedback of the downlink signal of the first carrier.
  • the subframe number of the time unit of the second carrier of the information, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier
  • the values of (X, Y, Z) include (0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8 ,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7 , 15), at least one of (16, 8, 17), (18, 9, 19), (19, 9, 19).
  • the period of the uplink and downlink transmission direction of the first carrier is configured to be 5 milliseconds
  • the period of the uplink and downlink transmission direction is configured to include 10 time slots
  • the period of the uplink and downlink transmission direction is configured to be the fifth time.
  • the time slot and the sixth time slot are uplink time slots
  • the remaining time slots are downlink time slots.
  • the corresponding relationship is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the feedback of the downlink signal of the first carrier.
  • the subframe number of the time unit of the second carrier of the information, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier
  • the values of (X, Y, Z) include (0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8 ,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8 , 17), at least one of (17, 8, 7), (18, 9, 19), (19, 9, 19).
  • the receiving module is further configured to: receive first indication information sent by the network device, where the first indication information indicates the first time.
  • a time difference between a start time point of the second time unit and a start time point of the first time unit is equal to the first time, or an end time point of the second time unit A time difference between an end time point of the first time unit is equal to the first time.
  • the determining module is further configured to: when the second time unit overlaps with a first uplink time slot on the first carrier, and is temporally related to the first uplink time slot When the previous time slot of the neighbor is the first downlink time slot, it is determined that the signal is not transmitted on the first m symbols of the first uplink time slot, where the length of the m symbols is greater than or equal to the first time .
  • the sending module is specifically configured to: send the first feedback information on a last symbol of the second time unit by using a subcarrier spacing of 15 KHz, or use a subcarrier spacing of 30 KHz in the second
  • the first feedback information is transmitted on the penultimate and/or last symbol of the time unit.
  • the first carrier is a carrier used by the first radio access technology
  • the second carrier is a carrier used by the second radio access technology
  • the terminal device passes the first radio access technology and The second radio access technology performs dual connectivity DC communication.
  • the interval of the subcarriers used by the first radio access technology is greater than the subcarrier spacing used by the second radio access technology.
  • the number of the radio frame where the first time unit is located is the same as the number of the radio frame where the second time unit is located.
  • the first time is greater than or equal to a symbol length of a 15 KHz subcarrier interval, or the first time is greater than or equal to a symbol length of two 30 KHz subcarrier intervals.
  • the first time is equal to a symbol length of an integer number of 15 KHz subcarrier intervals or a symbol length equal to an integer number of 30 KHz subcarrier intervals.
  • a third aspect of the present application provides a terminal device, including: a processor, a memory, a receiver, and a transmitter, where the memory, the receiver, and the transmitter are connected and communicated with the processor through a bus, the memory
  • the processor is configured to execute the computer execution instructions to cause the terminal device to perform the method provided by the first aspect above.
  • a fourth aspect of the present application provides a signal sending and receiving method, including:
  • the network device sends a first downlink signal to the terminal device on the first time unit of the first carrier, where the first carrier is a time division duplex TDD carrier, and the first time unit includes a first time slot or a first subframe ;
  • the network device Receiving, by the network device, first feedback information of the first downlink signal sent by the terminal device on a second and/or last symbol of a second time unit of the second carrier, where the The second carrier is the uplink carrier of the frequency division duplex FDD, the second time unit includes the second time slot or the second subframe, and the start time of the radio frame where the first time unit is located is longer than the second time unit
  • the start time of the radio frame is advanced by a first time, and the first time is greater than 0 and less than one subframe length.
  • the method further includes: the network device sending, to the terminal device, a time unit for receiving a downlink signal of the first carrier and a second carrier for transmitting feedback information of a downlink signal of the first carrier Corresponding relationship between time units, wherein the corresponding relationship is determined according to an uplink and downlink transmission direction configuration of the first carrier.
  • the method further includes: the network device sending the first indication information to the terminal device, where the first indication information indicates the first time.
  • a network device of the fifth aspect of the present application comprising:
  • a sending module configured to send, by using a first time unit of the first carrier, a first downlink signal, where the first carrier is a time division duplex TDD carrier, and the first time unit includes a first time slot or a One subframe;
  • a receiving module configured to receive first feedback information of the first downlink signal sent by the terminal device on a second and/or last symbol of a second time unit of the second carrier, where
  • the second carrier is an uplink carrier of the frequency division duplex FDD
  • the second time unit includes a second time slot or a second subframe, where a start time of the radio frame where the first time unit is located is longer than the second time
  • the start time of the radio frame in which the unit is located is advanced by a first time, and the first time is greater than 0 and less than one subframe length.
  • the sending module is further configured to: send, to the terminal device, a time unit that receives a downlink signal of the first carrier and a time component of a second carrier that sends feedback information of a downlink signal of the first carrier Corresponding relationship, wherein the corresponding relationship is determined according to an uplink and downlink transmission direction configuration of the first carrier.
  • the sending module is further configured to: send, to the terminal device, first indication information, where the first indication information indicates the first time.
  • the period of the uplink and downlink transmission direction configuration of the first carrier is 2.5 milliseconds, and the period of the uplink and downlink transmission direction configuration includes 5 time slots.
  • the third time slot in the period in which the downlink transmission direction is configured is an uplink time slot, and the remaining time slots are downlink time slots;
  • the corresponding relationship is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the feedback information of the downlink signal for transmitting the first carrier.
  • the subframe number of the time unit of the two carriers, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier, and the value of (X, Y, Z) includes (0, 0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4, 9), (9, 4, 9), (10, 5, 11), (11, 5, 11), (13, 6, 13), (14, 7, 15), (15, 7, 15) At least one of (16, 8, 17), (18, 9, 19), (19, 9, 19).
  • the period of the uplink and downlink transmission direction configuration of the first carrier is 5 milliseconds, and the period of the uplink and downlink transmission direction configuration includes 10 time slots.
  • the fifth time slot and the sixth time slot in the period in which the downlink transmission direction is configured are uplink time slots, and the remaining time slots are downlink time slots;
  • the corresponding relationship is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the feedback information of the downlink signal for transmitting the first carrier.
  • the subframe number of the time unit of the two carriers, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier, and the value of (X, Y, Z) includes (0, 0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4, 9), (9, 4, 9), (10, 5, 11), (11, 5, 11), (12, 6, 13), (13, 6, 13), (16, 8, 17) At least one of (17, 8, 7), (18, 9, 19), (19, 9, 19).
  • the first carrier is a carrier used by a first radio access technology
  • the second carrier is a carrier used by a second radio access technology
  • the terminal device performs dual connectivity DC communication by using the first radio access technology and the second radio access technology.
  • the interval of the subcarriers used by the first radio access technology is greater than the subcarrier spacing used by the second radio access technology.
  • the number of the radio frame in which the first time unit is located is the same as the number of the radio frame in which the second time unit is located.
  • the first time is greater than or equal to a symbol length of a 15 kHz subcarrier spacing
  • the first time is greater than or equal to the symbol length of two 30KHz subcarrier spacings.
  • the first time is equal to a symbol length of an integer number of 15 KHz subcarrier intervals or a symbol length equal to an integer number of 30 KHz subcarrier intervals.
  • a sixth aspect of the present application provides a network device, including: a processor, a memory, a receiver, and a transmitter, where the memory, the receiver, and the transmitter are connected and communicated with the processor through a bus, the memory
  • the processor is configured to execute the computer execution instructions to cause the network device to perform the method provided by the second aspect above.
  • the present application provides a communication system including the terminal device and the network device provided by the above aspects.
  • Yet another aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the method and device for transmitting and receiving a signal includes: receiving, by a terminal device, a first downlink signal from a network device on a first time unit of a first carrier, where the first carrier is a TDD carrier, and determining according to the first time unit Transmitting a second time unit of the first feedback information of the first downlink signal on the second carrier, and then transmitting the first time to the network device on the penultimate and/or last symbol of the second time unit of the second carrier a feedback information, wherein the second carrier is an uplink carrier of the FDD, and the start time of the radio frame where the first time unit is located is earlier than the start time of the radio frame where the second time unit is located, and the first time is greater than 0.
  • Figure 1 is a schematic diagram of a DC scene
  • Embodiment 2 is a flowchart of a signal transmitting and receiving method provided in Embodiment 1;
  • FIG. 3 is a schematic diagram of a frame structure of an NR system and an LTE system
  • FIG. 5 is a schematic diagram of a correspondence between a time unit of receiving a downlink signal of a first carrier and a time unit of a second carrier transmitting feedback information of a downlink signal of the first carrier;
  • FIG. 6 is another schematic diagram of a correspondence between a time unit of receiving a downlink signal of a first carrier and a time unit of a second carrier transmitting feedback information of a downlink signal of the first carrier;
  • FIG. 7 is another schematic diagram of a correspondence between a time unit of receiving a downlink signal of a first carrier and a time unit of a second carrier transmitting feedback information of a downlink signal of the first carrier;
  • FIG. 8 is another schematic diagram of a correspondence between a time unit of receiving a downlink signal of a first carrier and a time unit of a second carrier transmitting feedback information of a downlink signal of the first carrier;
  • FIG. 9 is a schematic diagram of a frame structure of a time slot 11 and a time slot 12 of a first carrier
  • FIG. 10 is a schematic diagram of a frame structure of a slot 6 and a slot 7 of a first carrier
  • FIG. 11 is a flowchart of a method for transmitting and receiving signals according to Embodiment 2;
  • FIG. 12 is a schematic structural diagram of a terminal device according to Embodiment 3.
  • FIG. 13 is a schematic structural diagram of a network device according to Embodiment 4.
  • FIG. 14 is a schematic structural diagram of a terminal device according to Embodiment 5.
  • FIG. 15 is a schematic structural diagram of a network device according to Embodiment 6.
  • the present application provides a signal transmitting and receiving method, which can be applied in a Carrier Aggregation (CA) scenario and a Dual Connectivity (DC) scenario.
  • the DC scenario includes that the terminal device accesses two different network devices by using the same radio access technology, and the terminal device uses two different radio access technologies to simultaneously access one network device or two network devices.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • the method can also be applied to other scenarios, which is not limited herein.
  • the terminal device can simultaneously access the New Radio Interface (NR) system and the Long Term Evolution (LTE) system.
  • the NR system is also called the fifth generation mobile communication system (5-Generation). , 5G).
  • the terminal device establishes a connection with the NR system by using the first carrier, and establishes a connection with the LTE system by using the second carrier and the third carrier.
  • the first carrier is a Time Division Duplexing (TDD) carrier, and the frequency of the first carrier is, for example, 3.5 GHz.
  • TDD Time Division Duplexing
  • the second carrier is an uplink carrier of Frequency Division Duplexing (FDD)
  • the third carrier is a downlink carrier of FDD
  • the frequency of the second carrier is, for example, 1.75 GHz
  • the frequency of the third carrier is, for example, 1.85 GHz.
  • the duplex type and carrier frequency of the carrier herein are merely illustrative, and the duplex type and frequency of the first carrier, the second carrier, and the third carrier are not limited thereto.
  • FIG. 1 is a schematic diagram of a DC scenario.
  • the DC scenario includes: a core network, an access network, and a terminal device.
  • the core network element includes: a Mobility Management Entity (MME) and a Serving GateWay (SGW).
  • the access network element includes: a first base station and a second base station, where the first base station is in the LTE system.
  • An evolved base station (Evolved NodeB, eNB), and the second base station is a base station of the NR system.
  • the NR system and the LTE system share a core network.
  • the NR system and the LTE system may each have their own independent core networks.
  • the terminal device accesses the two first base stations and the second base station at the same time, and the data sent by the core network may be offloaded by the first base station or the second base station in a Packet Data Convergence Protocol (PDCP) layer.
  • PDCP Packet Data Convergence Protocol
  • a terminal device communicates with a base station through a primary component carrier (PCC) and at least one secondary component carrier (SCC).
  • the base station may be an eNB in an LTE system or a base station in an NR system.
  • the primary component carrier is also referred to as the primary carrier, and the secondary component carrier is referred to as the secondary carrier.
  • the terminal device referred to in this application may be a wireless terminal, which may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device that is connected to the wireless modem.
  • the wireless terminal can communicate with at least one core network via a Radio Access Network (RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device,
  • the wireless access network exchanges voice and/or data.
  • a wireless terminal may also be called a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile Station, a Remote Station, an Access Point, and a remote terminal.
  • the terminal (Remote Terminal), the access terminal (Access Terminal), the user terminal (User Terminal), the user equipment (User Equipment, UE), or the user agent (User Agent) are not limited herein.
  • FIG. 2 is a flowchart of a method for transmitting and receiving a signal according to Embodiment 1. As shown in FIG. 1, the method provided in this embodiment includes the following steps:
  • Step S101 The terminal device receives the first downlink signal from the network device on the first time unit of the first carrier, where the first carrier is a TDD carrier, and the first time unit includes a first time slot or a first subframe.
  • Step S102 The terminal device determines a second time unit for transmitting first feedback information of the first downlink signal on the second carrier, where the second carrier is an uplink carrier of the FDD, and the second time unit includes the second time slot. Or the second subframe, the start time of the radio frame where the first time unit is located is earlier than the start time of the radio frame where the second time unit is located, and the first time is greater than 0 and less than one subframe length.
  • the DC scenario is taken as an example.
  • the first carrier is a carrier used by the first radio access technology
  • the second carrier is a carrier used by the second radio access technology
  • the first radio access technology is, for example, an NR system.
  • the access technology adopted, the second radio access technology is, for example, a radio access technology adopted by the LTE system.
  • a radio frame (Frame) of an LTE system includes 10 subframes, numbered from 0 to 9, and one subframe includes two subframes. Slot, so a radio frame of the LTE system contains 20 time slots, numbered from 0 to 19.
  • one radio frame is 10 ms
  • one radio frame includes 10 subframes
  • one subframe is 1 ms.
  • the number of slots included in one subframe is related to the value of subcarrier spacing (SCS). When the subcarrier spacing is 15 kHz, one subframe contains one or two time slots, and when the subcarrier spacing is 30 kHz, one subframe contains two or four time slots.
  • SCS subcarrier spacing
  • the spacing of subcarriers in the NR system is not limited to 15 kHz and 30 kHz.
  • the subcarrier spacing is 30 kHz, one subframe includes two slots, and when the subcarrier spacing is 15 kHz, one subframe includes one slot, so in the example of FIG. 3, NR
  • One radio frame contains 20 time slots, and the time slot number is 0-19, where D represents a downlink time slot, U represents an uplink time slot, and S represents a special time slot, which can be understood as different from D and U.
  • a time slot for example, a special time slot can be understood as a time slot that can be used for both uplink transmission and downlink transmission, and is not limited herein.
  • the number of slots included in one radio frame of the NR is not limited to 20, and the type of each slot is not limited to FIG.
  • the feedback information of the downlink signal on the first carrier can only be fed back in the uplink subframe of the first carrier, and the feedback information of the downlink signal on the third carrier can only be fed back on the second carrier.
  • the feedback information of the downlink signal is an ACK message or a NACK message. Since the NR system works in the TDD mode, the uplink time slot discontinuity occurs and the number is smaller than the downlink time slot, so that the feedback delay of the ACK/NACK is large.
  • 4 is a correspondence between downlink signals and feedback information of a TDD carrier. As shown in FIG. 4, 20 time slots include 4 uplink time slots and 16 downlink time slots, and downlink signals on 16 downlink time slots. The feedback information needs to be sent on 4 uplink time slots.
  • the uplink time slot 2 is used for transmitting feedback information of the downlink signal of the downlink time slot 0 and the uplink time slot 7 is used for transmitting the feedback information of the downlink signal of the downlink time slots 1, 3, 4, and 5, and the uplink time slot 12 is used for the uplink time slot 12
  • the feedback information of the downlink signals of the downlink time slots 6, 8, 9, and 10 is transmitted, and the uplink time slot 17 is used for transmitting the feedback information of the downlink signals of the downlink time slots 11, 13, 14, and 15.
  • the delay of the feedback information of the downlink signals on the downlink slots 1, 6, and 11 is 6 slot lengths
  • the delay of the feedback information of the downlink signals on the downlink slots 3, 8, and 13 is 4
  • the length of the time slot, the delay of the feedback information of the downlink signals on the downlink time slots 4, 9, and 14 is 3 time slots
  • the delay time of the feedback information of the downlink signals on the downlink time slots 5, 10, and 15 is 2
  • the delay of the feedback information of the downlink signal on the first carrier is at least 2 slots, and the maximum is 6 slots. The 6 slot feedback delay is unacceptable.
  • the terminal device sends the feedback information of the downlink signal received on the first carrier through the second carrier, and the wireless station where the first time unit is located
  • the start time of the frame is earlier than the start time of the radio frame in which the second time unit is located, that is, the subframes of the NR system and the LTE system are not aligned.
  • the number of the radio frame in which the first time unit is located may be the same as or different from the number of the radio frame in which the second time unit is located.
  • the first time is greater than 0.
  • the first time is greater than or equal to a symbol length of a 15KHz subcarrier spacing, or the first time is greater than or equal to a symbol length of two 30KHz subcarrier spacings.
  • the first time may be equal to the symbol length of an integer number of 15KHz subcarrier intervals, or the symbol length of the first time equal to an integer number of 30KHz subcarrier intervals, or the first time is not the symbol length of an integer number of 15KHz subcarrier intervals.
  • the first time is not the symbol length of an integer 30KHz subcarrier spacing.
  • the terminal device needs to determine the first time.
  • the terminal device receives the first indication information sent by the network device, where the first indication information indicates the first time, so that the terminal device can be configured according to the first indication.
  • the information determines the first time, where the network device can send the first indication information by using the high layer signaling, for example, Radio Resource Control (RRC) layer signaling, or media access control. (Media Access Control, MAC) layer signaling.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the terminal device receives the downlink synchronization signal of the first carrier and the downlink synchronization signal of the third carrier corresponding to the second carrier, where the second carrier and the third carrier belong to the same wireless communication system, and the second The carrier is an FDD uplink carrier, and the third carrier is an FDD downlink carrier paired with the second carrier.
  • the FDD uplink carrier and the FDD downlink carrier are synchronized. Therefore, the terminal device can perform downlink synchronization according to the first carrier.
  • the signal and the downlink synchronization signal of the third carrier determine the first time.
  • the terminal device determines a start time of the frame of the first wireless communication system according to the downlink synchronization signal of the first carrier, and determines a start time of the frame of the second wireless communication system according to the downlink synchronization signal of the third carrier, according to the first
  • the first time is determined by the start time of the frame of the wireless communication system and the start time of the frame of the second wireless communication system.
  • the terminal device may determine, by using the following two manners, a second time unit for transmitting the first feedback information of the first downlink signal on the second carrier:
  • the terminal device determines, according to a correspondence between a time unit for receiving a downlink signal of the first carrier and a time unit of a second carrier for transmitting feedback information of the downlink signal of the first carrier, a second time unit, wherein the correspondence is determined according to an uplink and downlink transmission direction configuration of the first carrier.
  • the uplink and downlink transmission direction configuration may include a transmission direction of one or more radio frames, and may also include one or more subframes, time slots, mini-slots, transmission directions of OFDM or DFT-S-OFDM symbols, of course.
  • the transmission direction of other time lengths may also be included, which is not limited herein.
  • the transmission direction includes uplink, and also includes downlink, and also includes a guard interval, that is, no signal is transmitted or received.
  • the corresponding relationship may be pre-configured in the terminal device, or may be notified to the terminal device by the network device through high layer signaling.
  • the terminal device may also pre-configure a plurality of corresponding relationships, and the network device notifies the terminal device by signaling, and the terminal device determines, according to the signaling, which one of the plurality of corresponding relationships is used.
  • the indication information of the second time unit is carried in the Downlink Control Information (DCI), and is sent by the network device to the terminal by using a Physical-layer Downlink Control Channel (PDCCH). And the device, so that the terminal device determines the second time unit according to the indication information.
  • DCI Downlink Control Information
  • PDCH Physical-layer Downlink Control Channel
  • the period of the uplink and downlink transmission direction configuration of the first carrier may be 2.5 ms, 5 ms, or 10 ms.
  • the 2.5 ms period includes 5 time slots
  • the 5 ms period includes 10 time slots
  • the 10 ms period includes 20 time slots.
  • This embodiment does not limit the uplink and downlink transmission direction configuration of the first carrier.
  • the uplink and downlink transmission direction configuration of 2.5 ms is, for example, "DSUDD" or "DDUDD”
  • the uplink and downlink transmission direction configuration of 5 ms is, for example, "DDDDUUDDDD".
  • the correspondence is obtained according to the uplink and downlink transmission direction of the first carrier, where the first carrier uses a subcarrier spacing of 30 kHz, the second carrier uses a subcarrier spacing of 15 kHz, and the period of the uplink and downlink transmission direction is 2.5 ms.
  • the uplink and downlink transmission direction configuration includes five time slots, and the uplink and downlink transmission direction configurations of the five time slots are, for example, DDUDD, that is, the third time slot in the period in which the uplink and downlink transmission directions are configured is an uplink time slot.
  • the remaining time slots are downlink time slots.
  • FIG. 5 is a schematic diagram of a correspondence between a time unit of receiving a downlink signal of a first carrier and a time unit of a second carrier transmitting feedback information of a downlink signal of a first carrier, as shown in FIG. 5, the first carrier
  • the start time of the upper radio frame is earlier than the start time of the radio frame of the second carrier.
  • the start end of the arrow in FIG. 5 indicates the time unit of receiving the downlink signal of the first carrier, and the pointing end of the arrow is the transmitting end.
  • the time unit of the second carrier of the feedback information of the downlink signal of one carrier specifically, the feedback information is sent by the last two symbols of each subframe of the second carrier, and the last two symbols of each subframe of the second carrier belong to each sub- The last time slot of the frame, therefore, it can also be said that the feedback information is sent through the last two symbols of the second time slot of each subframe, and the symbol for transmitting the feedback information is the black rectangular frame on the second carrier in FIG. The location shown.
  • the correspondence may be represented as (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the feedback information of the downlink signal transmitting the first carrier.
  • the subframe number of the time unit of the second carrier, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier, and the value of (X, Y, Z) includes (0) ,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4 , 9), (9, 4, 9), (10, 5, 11), (11, 5, 11), (13, 6, 13), (14, 7, 15), (15, 7, 15 ), at least one of (16, 8, 17), (18, 9, 19), (19, 9, 19).
  • the first carrier adopts a subcarrier spacing of 30 kHz
  • the second carrier uses a subcarrier spacing of 15 kHz
  • the period of the uplink and downlink transmission direction of the first carrier is 5 milliseconds as an example
  • the period of the uplink and downlink transmission direction configuration includes 10 times.
  • the uplink and downlink transmission direction configuration of the 10 time slots is, for example, DDDDUUDDDD, that is, the fifth time slot and the sixth time slot in the period configured in the uplink and downlink transmission direction are uplink time slots, and the remaining time slots are downlink time slots. .
  • FIG. 6 is another schematic diagram of a correspondence between a time unit of receiving a downlink signal of a first carrier and a time unit of a second carrier transmitting feedback information of a downlink signal of the first carrier, as shown in FIG.
  • the start time of the radio frame on the carrier is earlier than the start time of the radio frame of the second carrier.
  • the start end of the arrow in FIG. 6 represents the time unit of receiving the downlink signal of the first carrier, and the pointing end of the arrow is sent.
  • the time unit of the second carrier of the feedback information of the downlink signal of the first carrier is another schematic diagram of a correspondence between a time unit of receiving a downlink signal of a first carrier and a time unit of a second carrier transmitting feedback information of a downlink signal of the first carrier, as shown in FIG.
  • the start time of the radio frame on the carrier is earlier than the start time of the radio frame of the second carrier.
  • the start end of the arrow in FIG. 6 represents the time unit of receiving the downlink signal of the
  • the feedback information is sent by the last two symbols of each subframe of the second carrier, and the last two symbols of each subframe of the second carrier belong to the next time slot of each subframe, and therefore, it can also be said that each sub- The last two symbols of the second time slot of the frame send feedback information, and the symbol for transmitting the feedback information is the position shown by the black rectangular frame on the second carrier in FIG.
  • the correspondence may be represented as (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the downlink signal of the first carrier.
  • the subframe number of the time unit of the second carrier of the feedback information, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier, and the value of (X, Y, Z) Including (0,0,1), (1,0,1), (2,1,3), (3,1,3), (6,3,7),(7,3,7),( 8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16, 8,17), at least one of (17,8,17), (18,9,19), (19,9,19).
  • the terminal device may determine the second time unit according to the correspondence relationship and the number of the first time unit.
  • the second time unit determined according to the method of this embodiment can ensure that the delay of the feedback information is the smallest, and the delay of the feedback information can be equal to the first time or the time equal to the first time plus one time slot.
  • the delay of the feedback information is equal to the first time
  • the time difference between the start time point of the second time unit and the start time point of the first time unit is equal to the first time, or the end time point of the second time unit
  • the time difference between the end time point of the first time unit is equal to the first time.
  • the time when the first time plus one time slot is recorded as the second time, when the delay of the feedback information is equal to the second time, the start time point of the second time unit and the start time point of the first time unit.
  • the time difference between the two is equal to the second time, or the time difference between the end time point of the second time unit and the end time point of the first time unit is equal to the second time.
  • the delay of the feedback information of the downlink signals on the downlink slots 1, 3, 5, 9, 11, 13, 15, 19 on the first carrier is the first time, on the first carrier.
  • the delay of the feedback information of the downlink signals on the downlink time slots 0, 4, 6, 8, 10, 14, 16, 18 is the time of the first time plus one time slot.
  • the delay of the feedback information of the downlink signals on the downlink slots 1, 3, 7, 9, 11, 13, 17, 19 on the first carrier is the first time, on the first carrier.
  • the delay of the feedback information of the downlink signals on the downlink time slots 0, 2, 6, 8, 10, 12, 16, 18 is the time of the first time plus one time slot.
  • the feedback information of the downlink signal on the subframe X on the first carrier is obtained because the delay of the feedback information of the downlink signal on the first carrier is equal to the first time or the time equal to the first time plus one time slot.
  • the X-frame of the two carriers is transmitted, thereby greatly reducing the feedback delay of the downlink signal on the first carrier.
  • the downlink signal on the subframe X on the first carrier includes the downlink signal of the slot 2X and the downlink signal of the slot 2X+1, since the feedback information is The second time slot of the X subframe of the second carrier, that is, the time slot 2X plus +1, is transmitted, and the feedback information of the downlink signal on the subframe X on the first carrier is transmitted on the X subframe of the second carrier. It is described as: feedback information of the downlink signal of the time slot 2X and the time slot 2X+1 on the first carrier is fed back on the time slot 2X+1 of the second carrier.
  • the corresponding relationship also changes accordingly.
  • the corresponding relationship may also change correspondingly, that is, one or more X corresponding Y and / or the value of Z changes.
  • the terminal device if the terminal device cannot transmit the feedback information of the first carrier in subframe 0 and subframe 5 of the second carrier, the terminal device is in slot 0 and slot 1 of the first carrier.
  • the feedback information of the received downlink signal cannot be transmitted on the subframe 0 of the second carrier, and the feedback information of the downlink signal received by the terminal device in the time slot 10 and the time slot 11 of the first carrier cannot be on the subframe 5 of the second carrier. send.
  • the terminal device may send feedback information in the next available time unit of the subframe 0 and the subframe 5 of the second carrier, that is, the slot 0 and the slot 1 of the first carrier are transmitted on the subframe 1 of the second carrier.
  • the feedback information of the downlink signal transmits the feedback information of the downlink signal of the time slot 10 and the time slot 11 of the first carrier on the subframe 6 of the second carrier, thereby obtaining the correspondence relationship shown in FIG. 7.
  • the values of the corresponding relationship (X, Y, Z) include (0, 1, 3), (1, 1, 3), (3, 1, 3), (4, 2). , 5), (5, 2, 5), (6, 3, 7), (8, 4, 9), (9, 4, 9), (10, 6, 13), (11, 6, 13 ), (13,6,13), (14,7,15), (15,7,15), (16,8,17), (18,9,19), (19,9,19) At least one group.
  • the terminal device if the terminal device cannot transmit the feedback information of the first carrier in the subframe 0, the subframe 2, and the subframe 5 of the second carrier, the terminal device receives the time slot 0 of the first carrier.
  • the feedback information of the downlink signal cannot be transmitted on the subframe 0 and the subframe 2 of the second carrier, and the feedback information of the downlink signal received by the terminal device in the slot 10 and the slot 11 cannot be transmitted on the subframe 5 of the second carrier.
  • the terminal device may send feedback information in units of the next available time of subframe 0, subframe 2, and subframe 5, that is, transmit slot 0 and slot of the first carrier on subframe 1 of the second carrier.
  • the feedback information of 1 transmits the feedback information of the time slot 10 and the time slot 11 of the first carrier on the subframe 6 of the second carrier, thereby obtaining the correspondence relationship shown in FIG. 8.
  • the values of the corresponding relationship (X, Y, Z) include (0, 1, 3), (1, 1, 3), (2, 1, 3), (3, 1, 3). ), (6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,6,13),(11,6,13), (12,6,13), (13,6,13), (16,8,17), (17,8,17), (18,9,19), (19,9,19)
  • the terminal device may obtain multiple different correspondences.
  • the terminal device traverses. For other correspondences, the available correspondences are found, and the time unit for transmitting the feedback information on the second carrier is determined according to the available correspondence.
  • the terminal device only stores one correspondence.
  • the terminal device When a certain subframe or a certain subframe on the second carrier cannot be used for the terminal device to send the feedback information of the downlink signal of the first carrier, the terminal device according to the preset rule and corresponding And determining, by the sending, the time unit for sending the feedback information on the second carrier, where the preset rule is, for example, the next available time of the subframe of the feedback information of the downlink signal that cannot be used by the terminal device to send the first carrier on the second carrier.
  • the unit acts as a unit of time to send feedback information.
  • the reason that the one or more subframes on the second carrier cannot be used for the terminal device to send the downlink information of the downlink signal of the first carrier may be that the terminal device needs to send the sounding reference signal on the one or more subframes.
  • the SRS may be a periodic SRS or an aperiodic SRS.
  • the value of the corresponding relationship (X, Y, Z) is related to the SRS configuration of the terminal device.
  • the SRS configuration of the terminal device changes, the value of the corresponding relationship is adjusted accordingly, that is, one Or the values of Y and/or Z corresponding to a plurality of Xs are changed.
  • the reason that the one or more subframes on the second carrier cannot be used for the terminal device to send the feedback information of the downlink signal of the first carrier may be other reasons, which is not limited herein.
  • Step S103 The terminal device sends the first feedback information to the network device on the penultimate and/or last symbol of the second time unit of the second carrier.
  • the terminal device may send the first feedback information on the last symbol of the second time unit by using a subcarrier spacing of 15 KHz; or, the terminal device adopts a subcarrier spacing of 30 KHz in the second to last of the second time unit and/or Or send the first feedback message on the last symbol.
  • the symbol may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol, or may be a discrete Fourier transform extended OFDM (DFT-S-OFDM) symbol, or may be more than one OFDM symbol. Shorter length of time.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM discrete Fourier transform extended OFDM
  • the subcarrier spacing used on the first carrier is greater than the subcarrier spacing used on the second carrier, where the first carrier is the carrier of the NR system, and the second carrier is the carrier of the LTE system.
  • the subcarrier spacing in the LTE system is 15 kHz, and the interval of the first subcarrier should be 30 kHz.
  • both the LTE system and the NR system can adopt a subcarrier spacing of 15 kHz, and the NR system can also use a subcarrier spacing greater than 30 kHz, such as 60KHz.
  • the second time unit may or may not overlap in time with the first uplink time slot on the first carrier.
  • the terminal device determines The signals are not transmitted on the first m symbols of the first uplink time slot, wherein the length of the m symbols is greater than or equal to the first time.
  • the last two symbols of the subframe 5 of the second carrier overlap with the time slot 12 of the first carrier, and the first time is equal to four symbol lengths of 15 kHz, for example,
  • the frame structure of time slot 11 and time slot 12 of a carrier is as shown in FIG. 9.
  • the first 4 symbols of time slot 12 are discarded, and the symbol is discarded. It should be understood that the signal is not transmitted or received on the symbol, and the time slot 12 is discarded. The first two symbols are used to ensure that the network device can have sufficient time to complete the conversion from downlink transmission to uplink reception. The third and fourth symbols of the time slot 12 are discarded to ensure the corresponding symbol position of the terminal device on the second carrier. Can send ACK/NACK normally. In the example shown in Fig. 6, the frame structure of the slot 13 and the slot 14 of the first carrier is the same as the frame structure shown in Fig. 9.
  • the terminal The device determines that the data is not sent on the first m symbols of the first uplink time slot, or does not send data on the last m symbols of the first downlink time slot, where the value of m includes 1 or 2, of course, there may be Other values.
  • the last m symbols of the first downlink time slot or the first m symbols of the first uplink time slot may be understood as a guard interval (GP).
  • GP guard interval
  • the time slot 7 of the first carrier does not overlap with the subframe 3 of the second carrier, and the first time is equal to four symbol lengths of 15 kHz, for example, the time of the first carrier.
  • the frame structure of slot 11 and slot 12 is as shown in FIG. 10.
  • the last two symbols of slot 6 are discarded, or the first two symbols of slot 7 are discarded, and the symbol is discarded. It should be understood that the symbol is not transmitted on the symbol. Or receiving a signal, discarding the first 2 symbols of slot 7 or discarding the last two symbols of slot 6 is to ensure that the network device has sufficient time to complete the conversion from downlink transmission to uplink reception.
  • the terminal device receives the first downlink signal from the network device on the first time unit of the first carrier, where the first carrier is a TDD carrier, and the first time unit determines to send the first message on the second carrier. And a second time unit of the first feedback information of the downlink signal, and then sending the first feedback information to the network device on the penultimate and/or last symbol of the second time unit of the second carrier, where the second carrier
  • the start time of the radio frame where the first time unit is located is earlier than the start time of the radio frame where the second time unit is located, and the first time is greater than 0 and less than one subframe length.
  • the delay of the feedback information of the downlink signal on the TDD carrier is greatly reduced.
  • the feedback information of the downlink signal of the TDD carrier is sent on the FDD carrier, so that the requirement for the terminal device to send the uplink signal on the TDD carrier is reduced, thereby reducing the situation that the terminal device simultaneously sends the uplink signal on the TDD carrier and the FDD carrier.
  • the performance loss of the LTE system is greatly reduced.
  • FIG. 11 is a flowchart of a method for transmitting and receiving a signal according to the second embodiment. As shown in FIG. 11, the method provided in this embodiment includes:
  • Step S201 The network device sends a first downlink signal to the terminal device on the first time unit of the first carrier, where the first carrier is a TDD carrier, and the first time unit includes a first time slot or a first subframe.
  • the first carrier is a TDD carrier
  • the first time unit includes a first time slot or a first subframe.
  • the correspondence between the time unit that sends the downlink signal of the first carrier to the terminal device and the time unit of the second carrier that sends the feedback information of the downlink signal of the first carrier is determined to be the second.
  • a time unit, wherein the correspondence is determined according to an uplink and downlink transmission direction configuration of the first carrier.
  • the terminal device determines, according to the correspondence, a second time unit used for transmitting the first feedback information of the first downlink signal on the second carrier.
  • the period of the uplink and downlink transmission direction of the first carrier is 2.5 milliseconds, and the period of the uplink and downlink transmission direction includes 5 time slots, and the third time slot of the uplink and downlink transmission direction is uplink. Gap, the remaining time slots are downlink time slots.
  • the correspondence is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the second carrier transmitting the feedback information of the downlink signal of the first carrier.
  • the subframe number of the time unit, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier, and the value of (X, Y, Z) includes (0, 0, 1) , (1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),( 9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16, 8,17), at least one of (18,9,19), (19,9,19).
  • the period of the uplink and downlink transmission direction configuration of the first carrier is 5 milliseconds, and the period configured in the uplink and downlink transmission direction includes 10 time slots, and the fifth time slot and the sixth time in the period configured by the uplink and downlink transmission directions are configured.
  • the time slots are uplink time slots, and the remaining time slots are downlink time slots.
  • the correspondence is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the second carrier transmitting the feedback information of the downlink signal of the first carrier.
  • the subframe number of the time unit, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier, and the value of (X, Y, Z) includes (0, 0, 1) , (1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),( 9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17, 8,7), at least one of (18,9,19), (19,9,19).
  • the network device sends the first indication information to the terminal device, where the first indication information indicates the first time, and the terminal device determines the first time according to the first indication information indication. If the network device does not send the first indication information to the terminal device, the terminal device may further determine the first time according to the downlink synchronization signal of the first carrier and the downlink synchronization signal of the third carrier corresponding to the second carrier, where the specific determining method is used. The related description of the first embodiment will not be repeated here.
  • the number of the radio frame where the first time unit is located is the same as the number of the radio frame where the second time unit is located.
  • the first time is greater than or equal to a symbol length of a 15 kHz subcarrier spacing; or the first time is greater than or equal to a symbol length of two 30 kHz subcarrier spacings.
  • the first time is equal to a symbol length of an integer number of 15 KHz subcarrier intervals or a symbol length equal to an integer number of 30 KHz subcarrier intervals.
  • Step S202 The network device receives first feedback information of the first downlink signal sent by the terminal device on the second and/or last symbol of the second time unit of the second carrier, where the second carrier is FDD An uplink carrier, where the second time unit includes a second time slot or a second subframe, where a start time of the radio frame in which the first time unit is located is earlier than a start time of the radio frame in which the second time unit is located, the first time, first The time is greater than 0 and less than one subframe length.
  • the first carrier is a carrier used by the first radio access technology
  • the second carrier is a carrier used by the second radio access technology
  • the terminal device passes the first radio access technology and The second radio access technology performs dual connectivity DC communication.
  • the interval of the subcarriers used by the first radio access technology is greater than the subcarrier spacing used by the second radio access technology.
  • the network device sends the first downlink signal to the terminal device on the first time unit of the first carrier, where the first carrier is a TDD carrier, and the second and second of the second time unit of the second carrier And receiving the first feedback information of the first downlink signal sent by the terminal device, where the second carrier is the uplink carrier of the FDD, and the second time unit includes the second time slot or the second subframe, the first The start time of the radio frame in which the time unit is located is earlier than the start time of the radio frame in which the second time unit is located, and the first time is greater than 0 and less than one subframe length.
  • FIG. 12 is a schematic structural diagram of a terminal device according to Embodiment 3. As shown in FIG. 12, the terminal device provided in this embodiment includes: a receiving module 11, a determining module 12, and a sending module 13.
  • the receiving module 11 is configured to receive, by using a network device, a first downlink signal on a first time unit of the first carrier, where the first carrier is a time division duplex TDD carrier, and the first time unit includes a first time slot or First subframe;
  • a determining unit 12 configured to determine a second time unit for transmitting first feedback information of the first downlink signal on a second carrier, where the second carrier is an uplink carrier of a frequency division duplex FDD,
  • the second time unit includes a second time slot or a second subframe, and a start time of the radio frame where the first time unit is located is earlier than a start time of the radio frame where the second time unit is located.
  • the first time is greater than 0 and less than one subframe length;
  • the sending module 13 is configured to send the first feedback information to the network device on a penultimate and/or last symbol of the second time unit of the second carrier.
  • the determining module 12 is specifically configured to: respond to a time unit according to a time unit that receives the downlink signal of the first carrier, and a time unit of a second carrier that sends feedback information of the downlink signal of the first carrier.
  • the relationship determines the second time unit, wherein the corresponding relationship is determined according to an uplink and downlink transmission direction configuration of the first carrier.
  • the period of the uplink and downlink transmission direction of the first carrier is configured to be 2.5 milliseconds
  • the period of the uplink and downlink transmission direction is configured to include five time slots
  • the third of the uplink and downlink transmission directions is configured.
  • the time slots are uplink time slots
  • the remaining time slots are downlink time slots.
  • the corresponding relationship is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the feedback of the downlink signal of the first carrier.
  • the subframe number of the time unit of the second carrier of the information, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier
  • the values of (X, Y, Z) include (0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8 ,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7 , 15), at least one of (16, 8, 17), (18, 9, 19), (19, 9, 19).
  • the period of the uplink and downlink transmission direction of the first carrier is configured to be 5 milliseconds
  • the period of the uplink and downlink transmission direction is configured to include 10 time slots
  • the period of the uplink and downlink transmission direction is configured to be the fifth time.
  • the time slot and the sixth time slot are uplink time slots
  • the remaining time slots are downlink time slots.
  • the corresponding relationship is (X, Y, Z), where X is the slot number of the time unit of the downlink signal receiving the first carrier, and Y is the feedback of the downlink signal of the first carrier.
  • the subframe number of the time unit of the second carrier of the information, Z is the slot number of the time unit of the second carrier transmitting the feedback information of the downlink signal of the first carrier
  • the values of (X, Y, Z) include (0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8 ,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8 , 17), at least one of (17, 8, 7), (18, 9, 19), (19, 9, 19).
  • the receiving module 11 is further configured to: receive first indication information sent by the network device, where the first indication information indicates the first time.
  • a time difference between a start time point of the second time unit and a start time point of the first time unit is equal to the first time, or an end time point of the second time unit A time difference between an end time point of the first time unit is equal to the first time.
  • the determining module 12 is further configured to: when the second time unit overlaps with a first uplink time slot on the first carrier, and in time with the first uplink time slot When the adjacent previous time slot is the first downlink time slot, determining that the signal is not transmitted on the first m symbols of the first uplink time slot, wherein the length of the m symbols is greater than or equal to the first time time.
  • the sending module 13 is specifically configured to: send the first feedback information on a last symbol of the second time unit by using a subcarrier spacing of 15 KHz; or use a subcarrier spacing of 30 KHz in the The first feedback information is sent on the penultimate and/or last symbol of the second time unit.
  • the first carrier is a carrier used by the first radio access technology
  • the second carrier is a carrier used by the second radio access technology
  • the terminal device passes the first radio access technology and The second radio access technology performs dual connectivity DC communication.
  • the interval of the subcarriers used by the first radio access technology is greater than the subcarrier spacing used by the second radio access technology.
  • the number of the radio frame where the first time unit is located is the same as the number of the radio frame where the second time unit is located.
  • the first time is greater than or equal to a symbol length of a 15 kHz subcarrier spacing; or the first time is greater than or equal to a symbol length of two 30 kHz subcarrier spacings.
  • the first time is equal to a symbol length of an integer number of 15 KHz subcarrier intervals or a symbol length equal to an integer number of 30 KHz subcarrier intervals.
  • FIG. 13 is a schematic structural diagram of a network device according to Embodiment 4, as shown in FIG. 13, the network device provided in this embodiment includes:
  • the sending module 21 is configured to send, by using a first time unit of the first carrier, a first downlink signal, where the first carrier is a time division duplex TDD carrier, and the first time unit includes a first time slot or First subframe;
  • the receiving module 22 is configured to receive first feedback information of the first downlink signal sent by the terminal device on a second and/or last symbol of a second time unit of the second carrier, where
  • the second carrier is an uplink carrier of a frequency division duplex FDD
  • the second time unit includes a second time slot or a second subframe, where a start time of the radio frame in which the first time unit is located is greater than the second time
  • the start time of the radio frame in which the time unit is located is advanced by a first time, the first time being greater than 0 and less than one subframe length.
  • the sending module 21 is further configured to: send, to the terminal device, a time unit of receiving a downlink signal of the first carrier and a time of transmitting a second carrier of feedback information of a downlink signal of the first carrier Corresponding relationship between the units, wherein the corresponding relationship is determined according to an uplink and downlink transmission direction configuration of the first carrier.
  • the sending module 21 is further configured to: send, to the terminal device, first indication information, where the first indication information indicates the first time.
  • the period of the uplink and downlink transmission direction of the first carrier is configured to be 2.5 milliseconds, the period of the uplink and downlink transmission direction is configured to include five time slots, and the third of the uplink and downlink transmission directions is configured.
  • the time slots are uplink time slots, and the remaining time slots are downlink time slots; the corresponding relationship is (X, Y, Z), where X is the time slot number of the time unit of the downlink signal receiving the first carrier, Y is a subframe number of a time unit of a second carrier that transmits feedback information of a downlink signal of the first carrier, and Z is a time slot of a time unit of a second carrier that transmits feedback information of a downlink signal of the first carrier.
  • the values of (X, Y, Z) include (0, 0, 1), (1, 0, 1), (3, 1, 3), (4, 2, 5), (5, 2, 5), (6, 3, 7), (8, 4, 9), (9, 4, 9), (10, 5, 11), (11, 5, 11), (13, 6, 13)
  • the period of the uplink and downlink transmission direction of the first carrier is configured to be 5 milliseconds, the period of the uplink and downlink transmission direction is configured to include 10 time slots, and the period of the uplink and downlink transmission direction is configured to be the fifth time.
  • the time slot and the sixth time slot are uplink time slots, and the remaining time slots are downlink time slots; the corresponding relationship is (X, Y, Z), where X is the time of receiving the downlink signal of the first carrier a slot number of the unit, Y is a subframe number of a time unit of a second carrier that transmits feedback information of a downlink signal of the first carrier, and Z is a second carrier that transmits feedback information of a downlink signal of the first carrier
  • the time slot number of the time unit, the values of (X, Y, Z) include (0, 0, 1), (1, 0, 1), (2, 1, 3), (3, 1, 3) , (6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),( At least one of 12,6,13), (13,6,13), (16,8,17), (17,8,7), (18,9,19), (19,9,19) group.
  • the first carrier is a carrier used by the first radio access technology
  • the second carrier is a carrier used by the second radio access technology
  • the terminal device passes the first radio access technology and The second radio access technology performs dual connectivity DC communication.
  • the interval of the subcarriers used by the first radio access technology is greater than the subcarrier spacing used by the second radio access technology.
  • the number of the radio frame where the first time unit is located is the same as the number of the radio frame where the second time unit is located.
  • the first time is greater than or equal to a symbol length of a 15 kHz subcarrier spacing; or the first time is greater than or equal to a symbol length of two 30 kHz subcarrier spacings.
  • the first time is equal to a symbol length of an integer number of 15 KHz subcarrier intervals or a symbol length equal to an integer number of 30 KHz subcarrier intervals.
  • FIG. 14 is a schematic structural diagram of a terminal device according to Embodiment 5, as shown in FIG. 14, the terminal device 300 provided in this embodiment includes: a processor 31, a memory 32, a receiver 33, and a transmitter 34.
  • the receiver 33 and the transmitter 34 are connected and communicated with the processor 31 via a bus
  • the memory 32 is for storing computer execution instructions
  • the processor 31 is configured to execute the computer to execute instructions to enable the terminal device.
  • FIG. 15 is a schematic structural diagram of a network device according to Embodiment 6.
  • the terminal device 400 provided in this embodiment includes: a processor 41, a memory 42, a receiver 43, and a transmitter 44.
  • the receiver 43 and the transmitter 44 are connected and communicated to the processor 31 via a bus
  • the memory 42 is for storing computer execution instructions
  • the processor 41 is configured to execute the computer to execute instructions to cause the network device.
  • the processor used by the network device and the terminal device in the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array (FPGA). Or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the bus described in this application may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the bus in the drawings of the present application is not limited to only one bus or one type of bus.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to perform the embodiments of the present application. Part of the steps of the method.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English: Read-Only Memory, abbreviated as: ROM), a random access memory (English: Random Access Memory, abbreviated as: RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信号发送和接收方法、装置,包括:终端设备在第一载波的第一时间单元上从网络设备接收第一下行信号,第一载波为TDD载波,确定用于在第二载波上发送第一下行信号的第一反馈信息的第二时间单元,在该第二时间单元的倒数第二个和/或最后一个符号上发送第一反馈信息,第二载波为FDD的上行载波,第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,第一时间大于0且小于一个子帧。通过将TDD载波上的下行信号的反馈信息在FDD载波上发送,并将第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,大幅度降低TDD载波上的下行信号的反馈信息的时延。

Description

信号发送和接收方法、装置
本申请要求于2017年6月22日提交中国专利局、申请号为201710482359.0、申请名称为“信号发送和接收方法、装置”的中国专利申请的优先权,以及于2017年8月8日提交中国专利局、申请号为201710672330.9、申请名称为“信号发送和接收方法、装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种信号发送和接收方法、装置。
背景技术
在无线通信系统的发展演进过程中,在6GHz以下的频带上可以同时部署第五代(5-Generation,5G)新空口(New radio interface,NR)系统和长期演进(Long term evolution,LTE)系统。一种典型的部署方式是:NR系统部署在3.5GHz频点上,LTE系统部署在1.8GHz频点上。终端设备可以支持双连接(Dual Connectivity,DC)通信,即终端设备可以同时工作在LTE系统和NR系统中,其中,3.5GHz频点上终端设备采用时分双工(Time Division Duplex,TDD),1.8GHz频点上终端设备采用频分双工(Frequency Division Duplex,FDD)。
在上述部署场景下,当终端设备同时在3.5GHz频点和1.8GHz频点上发送上行信号时,由于3.5GHz频点和1.8GHz频点的信号之间存在交调干扰问题,会严重影响终端设备在1.8GHz频点上接收LTE系统的下行信号的性能。为了避免该问题,现有标准中规定:针对工作在LTE系统和NR系统的双连接模式下的终端设备,终端设备只支持同一时间点上仅在一个频点上发送上行信号,即当终端设备在3.5GHz频点上发送上行信号时,不在1.8GHz频点上发送上行信号,反之亦然。
考虑到在3.5GHz频点上,NR系统工作在TDD模式下,这使得每个上行子帧/时隙都需要用于终端设备向网络设备反馈接收到的下行信号的肯定应答(Acknowledge,ACK)/否定应答(None Acknowledge,NACK)。在TDD模式下,上行时隙间断的出现且数量少于下行时隙,从而使得ACK/NACK的反馈时延较大。
发明内容
本申请提供一种信号发送和接收方法、装置,能够大幅度降低TDD载波上的下行信号的反馈信息的时延。
本申请第一方面提供一种信号发送和接收方法,包括:
终端设备在第一载波的第一时间单元上从网络设备接收第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
所述终端设备确定用于在第二载波上发送所述第一下行信号的第一反馈信息的第二时间单元,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包 括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度;
所述终端设备在所述第二载波的所述第二时间单元的倒数第二个和/或最后一个符号上向所述网络设备发送所述第一反馈信息。
可选的,所述终端设备确定用于在第二载波上发送所述下行信号的反馈信息的第二时间单元,包括:所述终端设备根据接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系确定所述第二时间单元,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
可选的,所述第一载波的上下行传输方向配置的周期为2.5毫秒,所述上下行传输方向配置的周期内包括5个时隙,所述上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙。相应的,所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
可选的,所述第一载波的上下行传输方向配置的周期为5毫秒,所述上下行传输方向配置的周期内包括10个时隙,所述上下行传输方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙。相应的,所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,7),(18,9,19),(19,9,19)中的至少一组。
可选的,所述方法还包括:所述终端设备接收网络设备发送的第一指示信息,所述第一指示信息指示所述第一时间。
可选的,所述第二时间单元的起始时间点与所述第一时间单元的起始时间点之间的时间差等于所述第一时间,或者,所述第二时间单元的结束时间点与所述第一时间单元的结束时间点之间的时间差等于所述第一时间。
可选的,所述方法还包括:当所述第二时间单元与所述第一载波上的第一上行时隙在时间上重叠,且与所述第一上行时隙在时间上相邻的前一个时隙为第一下行时隙时,所述终端设备确定不在所述第一上行时隙的前m个符号上发送信号,其中,所述m个符号的长度大于或等于所述第一时间。
可选的,所述终端设备在所述第二载波的所述第二时间单元的倒数第二个和/或最后一个符号上向所述网络设备发送所述第一反馈信息,包括:
所述终端设备采用15KHz的子载波间隔在所述第二时间单元的最后一个符号上发送所述第一反馈信息;或者,
所述终端设备采用30KHz的子载波间隔在所述第二时间单元的倒数第二个和/或最后一个符号上发送所述第一反馈信息。
可选的,所述第一载波为第一无线接入技术采用的载波,所述第二载波为第二无线接入技术采用的载波,所述终端设备通过所述第一无线接入技术和所述第二无线接入技术进行双连接DC通信。
可选的,所述第一无线接入技术使用的子载波的间隔大于所述第二无线接入技术采用的子载波间隔。
可选的,所述第一时间单元所在的无线帧的编号与所述第二时间单元所在的无线帧的编号相同。
可选的,所述第一时间大于或等于一个15KHz子载波间隔的符号长度,或者所述第一时间大于或等于两个30KHz子载波间隔的符号长度。
可选的,所述第一时间等于整数个15KHz子载波间隔的符号长度或等于整数个30KHz子载波间隔的符号长度。
本申请第二方面提供一种终端设备,包括:
接收模块,用于在第一载波的第一时间单元上从网络设备接收第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
确定模块,用于确定用于在第二载波上发送所述第一下行信号的第一反馈信息的第二时间单元,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度;
发送模块,用于在所述第二载波的所述第二时间单元的倒数第二个和/或最后一个符号上向所述网络设备发送所述第一反馈信息。
可选的,所述确定模块具体用于:根据接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系确定所述第二时间单元,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
可选的,所述第一载波的上下行传输方向配置的周期为2.5毫秒,所述上下行传输方向配置的周期内包括5个时隙,所述上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙。相应的,所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7, 15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
可选的,所述第一载波的上下行传输方向配置的周期为5毫秒,所述上下行传输方向配置的周期内包括10个时隙,所述上下行传输方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙。相应的,所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,7),(18,9,19),(19,9,19)中的至少一组。
可选的,所述接收模块还用于:接收网络设备发送的第一指示信息,所述第一指示信息指示所述第一时间。
可选的,所述第二时间单元的起始时间点与所述第一时间单元的起始时间点之间的时间差等于所述第一时间,或者,所述第二时间单元的结束时间点与所述第一时间单元的结束时间点之间的时间差等于所述第一时间。
可选的,所述确定模块还用于:当所述第二时间单元与所述第一载波上的第一上行时隙在时间上重叠,且与所述第一上行时隙在时间上相邻的前一个时隙为第一下行时隙时,确定不在所述第一上行时隙的前m个符号上发送信号,其中,所述m个符号的长度大于或等于所述第一时间。
可选的,所述发送模块具体用于:采用15KHz的子载波间隔在所述第二时间单元的最后一个符号上发送所述第一反馈信息,或者采用30KHz的子载波间隔在所述第二时间单元的倒数第二个和/或最后一个符号上发送所述第一反馈信息。
可选的,所述第一载波为第一无线接入技术采用的载波,所述第二载波为第二无线接入技术采用的载波,所述终端设备通过所述第一无线接入技术和所述第二无线接入技术进行双连接DC通信。
可选的,所述第一无线接入技术使用的子载波的间隔大于所述第二无线接入技术采用的子载波间隔。
可选的,所述第一时间单元所在的无线帧的编号与所述第二时间单元所在的无线帧的编号相同。
可选的,所述第一时间大于或等于一个15KHz子载波间隔的符号长度,或者所述第一时间大于或等于两个30KHz子载波间隔的符号长度。
可选的,所述第一时间等于整数个15KHz子载波间隔的符号长度或等于整数个30KHz子载波间隔的符号长度。
本申请第三方面提供一种终端设备,该终端设备包括:处理器、存储器、接收器和发送器,所述存储器、接收器和发送器通过总线与所述处理器连接并通信,所述存储器用于存储计算机执行指令,所述处理器用于执行所述计算机执行指令,以使所述终端设备执行上述第一方面提供的方法。
本申请第四方面提供一种信号发送和接收方法,包括:
网络设备在第一载波的第一时间单元上向终端设备发送第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
所述网络设备在第二载波的第二时间单元的倒数第二个和/或最后一个符号上接收所述终端设备发送的所述第一下行信号的第一反馈信息,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度。
可选的,所述方法还包括:所述网络设备向所述终端设备发送接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
可选的,所述方法还包括:所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一时间。
本申请第五方面一种网络设备,包括:
发送模块,用于在第一载波的第一时间单元上向终端设备发送第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
接收模块,用于在第二载波的第二时间单元的倒数第二个和/或最后一个符号上接收所述终端设备发送的所述第一下行信号的第一反馈信息,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度。
可选的,所述发送模块还用于:向所述终端设备发送接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
可选的,所述发送模块还用于:向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一时间。
在本申请第四方面和第五方面中,可选的,所述第一载波的上下行传输方向配置的周期为2.5毫秒,所述上下行传输方向配置的周期内包括5个时隙,所述上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙;
所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
在本申请第四方面和第五方面中,可选的,所述第一载波的上下行传输方向配置的周期为5毫秒,所述上下行传输方向配置的周期内包括10个时隙,所述上下行传输 方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙;
所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,7),(18,9,19),(19,9,19)中的至少一组。
在本申请第四方面和第五方面中,可选的,所述第一载波为第一无线接入技术采用的载波,所述第二载波为第二无线接入技术采用的载波,所述终端设备通过所述第一无线接入技术和所述第二无线接入技术进行双连接DC通信。
在本申请第四方面和第五方面中,可选的,所述第一无线接入技术使用的子载波的间隔大于所述第二无线接入技术采用的子载波间隔。
在本申请第四方面和第五方面中,可选的,所述第一时间单元所在的无线帧的编号与所述第二时间单元所在的无线帧的编号相同。
在本申请第四方面和第五方面中,可选的,所述第一时间大于或等于一个15KHz子载波间隔的符号长度;或者;
所述第一时间大于或等于两个30KHz子载波间隔的符号长度。
在本申请第四方面和第五方面中,可选的,所述第一时间等于整数个15KHz子载波间隔的符号长度或等于整数个30KHz子载波间隔的符号长度。
本申请第六方面提供一种网络设备,该终端设备包括:处理器、存储器、接收器和发送器,所述存储器、接收器和发送器通过总线与所述处理器连接并通信,所述存储器用于存储计算机执行指令,所述处理器用于执行所述计算机执行指令,以使所述网络设备执行上述第二方面提供的方法。
又一方面,本申请提供了一种通信系统,该系统包括上述方面提供的终端设备和网络设备。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请提供的信号发送和接收方法、装置,包括:终端设备在第一载波的第一时间单元上从网络设备接收第一下行信号,第一载波为TDD载波,根据第一时间单元确定用于在第二载波上发送第一下行信号的第一反馈信息的第二时间单元,然后在第二载波的第二时间单元的倒数第二个和/或最后一个符号上向网络设备发送第一反馈信息,其中,第二载波为FDD的上行载波,第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,第一时间大于0且小于一个子帧长度。通过将TDD载波上的下行信号的反馈信息在FDD载波上发送,并且将第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,能够大幅度降低TDD载波上的下行信号的反馈信息的时延。
附图说明
图1为DC场景的一种示意图;
图2为实施例一提供的信号发送和接收方法的流程图;
图3为NR系统和LTE系统的帧结构的示意图;
图4为一种TDD载波的下行信号与反馈信息的对应关系;
图5为接收第一载波的下行信号的时间单元与发送第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系的一种示意图;
图6为接收第一载波的下行信号的时间单元与发送第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系的另一种示意图;
图7为接收第一载波的下行信号的时间单元与发送第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系的又一种示意图;
图8为接收第一载波的下行信号的时间单元与发送第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系的再一种示意图;
图9为第一载波的时隙11和时隙12的帧结构的一种示意图;
图10为第一载波的时隙6和时隙7的帧结构的一种示意图;
图11为实施例二提供的信号发送和接收方法的流程图;
图12为实施例三提供的终端设备的结构示意图;
图13为实施例四提供的网络设备的结构示意图;
图14为实施例五提供的终端设备的结构示意图;
图15为实施例六提供的网络设备的结构示意图。
具体实施方式
本申请提供一种信号发送和接收方法,该信号发送和接收方法可以应用在载波聚合(Carrier Aggregation,CA)场景和双连接(Dual Connectivity,DC)场景中。其中,DC场景既包括终端设备采用同一种无线接入技术接入到两个不同的网络设备,也包括终端设备采用两种不同的无线接入技术同时接入一个网络设备或者两个网络设备。当然,本方法也可以应用在其他场景,此处不做限定。
作为一个典型的DC场景,终端设备可以同时接入新空口(New radio interface,NR)系统和长期演进(Long term evolution,LTE)系统,NR系统也称为第五代移动通信系统(5-Generation,5G)。其中,终端设备通过第一载波与NR系统建立连接,同时通过第二载波和第三载波与LTE系统建立连接。第一载波为时分双工(Time Division Duplexing,简称TDD)载波,第一载波的频点例如为3.5GHZ。第二载波为频分双工(Frequency Division Duplexing,简称FDD)的上行载波,第三载波为FDD的下行载波,第二载波的频点例如为1.75GHz,第三载波的频点例如为1.85GHz。这里的载波的双工类型和载波频点都只是举例说明,第一载波、第二载波和第三载波的双工类型和频点并不限于此。
图1为DC场景的一种示意图,如图1所示,该DC场景包括:核心网、接入网和终端设备。核心网网元包括:移动性管理实体(Mobility Management Entity,MME) 和服务网关(Serving GateWay,SGW),接入网网元包括:第一基站和第二基站,第一基站为LTE系统中的演进型基站(Evolved NodeB,eNB),第二基站为NR系统的基站。图1所示场景中,NR系统和LTE系统共用一个核心网,当然,在其他场景中,NR系统和LTE系统也可以分别拥有各自独立的核心网。DC场景中,终端设备同时接入两个第一基站和第二基站,可以由第一基站或第二基站在分组数据汇集协议(Packet Data Convergence Protocol,PDCP)层对核心网发送的数据进行分流。
CA场景中,终端设备通过一个主分量载波(Primary Component Carrier,PCC)和至少一个辅分量载波(Secondary Component Carrier,SCC)与一个基站进行通信。该基站可以是LTE系统中eNB的,也可以NR系统中的基站。主分量载波也称为主载波,辅分量载波称为辅载波。
本申请中提到的终端设备可以是无线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其它处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与至少一个核心网进行通信。无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和带有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。无线终端也可以称为用户单元(Subscriber Unit)、用户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile Station)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户设备(User Equipment,UE)、或用户代理(User Agent),在此不作限定。
图2为实施例一提供的信号发送和接收方法的流程图,如图1所示,本实施例提供的方法包括以下步骤:
步骤S101、终端设备在第一载波的第一时间单元上从网络设备接收第一下行信号,第一载波为TDD载波,第一时间单元包括第一时隙或第一子帧。
步骤S102、终端设备确定用于在第二载波上发送第一下行信号的第一反馈信息的第二时间单元,其中,第二载波为FDD的上行载波,第二时间单元包括第二时隙或第二子帧,第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,该第一时间大于0且小于一个子帧长度。
本实施例以DC场景为例进行说明,第一载波为第一无线接入技术采用的载波,第二载波为第二无线接入技术采用的载波,该第一无线接入技术例如是NR系统采用的接入技术,该第二无线接入技术例如是LTE系统采用的无线接入技术。
图3为NR系统和LTE系统的帧结构的示意图,如图3所示,LTE系统一个无线帧(Frame)包含10个子帧(Subframe),编号从0到9,同时,一个子帧包含两个时隙(Slot),故LTE系统一个无线帧包含20个时隙,编号从0到19。而对于NR系统,1个无线帧为10ms,一个无线帧包含10个子帧,1个子帧为1ms,一个子帧包含的时隙数与子载波间隔(Subcarrier spacing,SCS)的取值相关,当子载波间隔为15KHZ时,一个子帧包含1个或两个时隙,当子载波间隔为30KHZ时,一个子帧包含两个或四个时隙。当然,NR系统中子载波的间隔并不限于15KHZ和30KHZ。针对图3的示例,应理解,当子载波间隔为30KHZ时,一个子帧包括两个时隙,当子载波间隔为 15KHZ时,一个子帧包括一个时隙,故图3的示例中,NR的一个无线帧包含20个时隙,时隙编号为0-19,其中,D表示下行时隙,U表示上行时隙,S表示特殊时隙,该特殊时隙可以理解为与D和U不同的时隙,例如,特殊时隙可理解为既能用于上行传输也能用于下行传输的时隙,此处并不限定。当然,NR的一个无线帧包含的时隙数并不限于20,同时每个时隙的类型并不限于图3。
现有技术中,第一载波上的下行信号的反馈信息只能在第一载波的上行子帧上反馈,第三载波上的下行信号的反馈信息只能在第二载波上反馈。下行信号的反馈信息为ACK消息或NACK消息。由于NR系统工作在TDD模式,上行时隙间断的出现且数量少于下行时隙,从而使得ACK/NACK的反馈时延较大。图4为一种TDD载波的下行信号与反馈信息的对应关系,如图4所示,20个时隙中包括4个上行时隙和16个下行时隙,16个下行时隙上的下行信号的反馈信息都需要在4个上行时隙上发送。具体的,上行时隙2用于发送下行时隙0的下行信号的反馈信息,上行时隙7用于发送下行时隙1、3、4、5的下行信号的反馈信息,上行时隙12用于发送下行时隙6、8、9、10的下行信号的反馈信息,上行时隙17用于发送下行时隙11、13、14、15的下行信号的反馈信息。通过图4可知,下行时隙1、6、11上的下行信号的反馈信息的时延为6个时隙长度,下行时隙3、8、13上的下行信号的反馈信息的时延为4个时隙长度,下行时隙4、9、14上的下行信号的反馈信息的时延为3个时隙长度,下行时隙5、10、15上的下行信号的反馈信息的时延为2个时隙长度。图4所示例子中,第一载波上的下行信号的反馈信息的时延最小为2个时隙,最大为6个时隙,6个时隙反馈时延是不能接受的。
为了降低TDD载波上的下行信号的反馈信息的时延,本实施例中,终端设备将第一载波上接收到的下行信号的反馈信息通过第二载波发送,并且将第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,即NR系统和LTE系统的子帧非对齐。
第一时间单元所在的无线帧的编号与第二时间单元所在的无线帧的编号可以相同也可以不同。第一时间大于0,可选的,第一时间大于或等于一个15KHz子载波间隔的符号长度,或者,第一时间大于或等于两个30KHz子载波间隔的符号长度。具体的,第一时间可以等于整数个15KHz子载波间隔的符号长度,或者,第一时间的等于整数个30KHz子载波间隔的符号长度,或者,第一时间不是整数个15KHz子载波间隔的符号长度,或者,第一时间不是整数个30KHz的子载波间隔的符号长度。
终端设备需要确定该第一时间,在一种可能的实现方式中,终端设备接收网络设备发送的第一指示信息,该第一指示信息指示第一时间,从而该终端设备可以根据该第一指示信息确定该第一时间,其中,网络设备可以通过高层信令发送该第一指示信息,该高层信令例如是无线资源控制(Radio Resource Control,RRC)层信令,也可以是媒体接入控制(Media Access Control,MAC)层信令。在另一种可能的实现方式中,终端设备接收第一载波的下行同步信号以及第二载波对应的第三载波的下行同步信号,第二载波和第三载波属于同一个无线通信系统,第二载波为FDD上行载波,第三载波为与该第二载波配对的FDD下行载波,在同一个无线通信系统中,FDD上行载波和FDD下行载波同步,因此,终端设备可以根据第一载波的下行同步信号和第三 载波的下行同步信号,确定第一时间。具体的,终端设备根据第一载波的下行同步信号确定第一无线通信系统的帧的起始时间,根据第三载波的下行同步信号确定第二无线通信系统的帧的起始时间,根据第一无线通信系统的帧的起始时间和第二无线通信系统的帧的起始时间确定该第一时间。
终端设备可以通过如下两种方式确定用于在第二载波上发送第一下行信号的第一反馈信息的第二时间单元:
一种实现方式中,终端设备根据用于接收第一载波的下行信号的时间单元与用于发送该第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系确定该第二时间单元,其中,该对应关系是根据第一载波的上下行传输方向配置确定的。应理解,该上下行传输方向配置可以包括一个或多个无线帧的传输方向,也可以包括一个或多个子帧、时隙、微时隙、OFDM或DFT-S-OFDM符号的传输方向,当然也可以包括其他时间长度的传输方向,此处不做限定。该传输方向包括上行,也包括下行,也包括保护间隔,即不发送也不接收信号。该对应关系可以预先配置在终端设备中,也可以由网络设备通过高层信令通知给终端设备。终端设备中也可以预先配置多种对应关系,由网络设备通过信令通知终端设备,终端设备根据该信令确定使用多种对应关系中的哪一种对应关系。
另一种实现方式中,该第二时间单元的指示信息携带在下行控制信息(Downlink Control Information,DCI)中,由网络设备通过物理下行控制信道(Physical-layer Downlink Control Channel,PDCCH)发送给终端设备,从而终端设备根据该指示信息确定该第二时间单元。
第一载波的上下行传输方向配置的周期可以是2.5ms、5ms或10ms。2.5ms的周期内包括5个时隙,5ms的周期内包括10个时隙,10ms的周期内包括20个时隙。本实施例并不对第一载波的上下行传输方向配置进行限定,2.5ms的上下行传输方向配置例如为“DSUDD”或“DDUDD”,5ms的上下行传输方向配置例如为“DDDDUUDDDD”。
该对应关系是根据第一载波的上下行传输方向配置得到的,以第一载波采用30KHz的子载波间隔,第二载波采用15KHz的子载波间隔,上下行传输方向配置的周期为2.5ms为例,上下行传输方向配置的周期内包括5个时隙,该5个时隙的上下行传输方向配置例如为DDUDD,即上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙。图5为接收第一载波的下行信号的时间单元与发送第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系的一种示意图,如图5所示,第一载波上的无线帧的起始时间比第二载波的无线帧的起始时间提前第一时间,图5中箭头的起始端表示接收第一载波的下行信号的时间单元,箭头的指向端为发送第一载波的下行信号的反馈信息的第二载波的时间单元,具体是通过第二载波的每个子帧的最后两个符号发送反馈信息,第二载波的每个子帧的最后两个符号属于每个子帧的后一个时隙,因此,也可以说是通过每个子帧的第二个时隙的最后两个符号发送反馈信息,发送反馈信息的符号为图5中第二载波上的黑色矩形框所示的位置。
参照图5,该对应关系可以表示为(X,Y,Z),其中,X为接收第一载波的下行信号的时间单元的时隙编号,Y为发送该第一载波的下行信号的反馈信息的第二载 波的时间单元的子帧编号,Z为发送该第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
以第一载波采用30KHz的子载波间隔,第二载波采用15KHz的子载波间隔,第一载波的上下行传输方向配置的周期为5毫秒为例,上下行传输方向配置的周期内包括10个时隙,该10个时隙的上下行传输方向配置例如为DDDDUUDDDD,即上下行传输方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙。图6为接收第一载波的下行信号的时间单元与发送第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系的另一种示意图,如图6所示,第一载波上的无线帧的起始时间比第二载波的无线帧的起始时间提前第一时间,图6中箭头的起始端表示接收第一载波的下行信号的时间单元,箭头的指向端为发送第一载波的下行信号的反馈信息的第二载波的时间单元。具体是通过第二载波的每个子帧的最后两个符号发送反馈信息,第二载波的每个子帧的最后两个符号属于每个子帧的后一个时隙,因此,也可以说是通过每个子帧的第二个时隙的最后两个符号发送反馈信息,发送反馈信息的符号为图6中第二载波上的黑色矩形框所示的位置。
参照图6所示,则该对应关系可以表示为(X,Y,Z),其中,X为接收第一载波的下行信号的时间单元的时隙编号,Y为发送该第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送该第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,17),(18,9,19),(19,9,19)中的至少一组。
终端设备根据上述的对应关系以及第一时间单元的编号,可以确定第二时间单元。根据本实施例的方法确定的第二时间单元可以保证反馈信息的时延最小,反馈信息的时延可以等于第一时间或者等于第一时间加上一个时隙的时间。当反馈信息的时延等于第一时间时,第二时间单元的起始时间点与第一时间单元的起始时间点之间的时间差等于第一时间,或者,第二时间单元的结束时间点与第一时间单元的结束时间点之间的时间差等于第一时间。将第一时间加上一个时隙的时间记为第二时间,则当反馈信息的时延等于第二时间时,第二时间单元的起始时间点与第一时间单元的起始时间点之间的时间差等于第二时间,或者,第二时间单元的结束时间点与第一时间单元的结束时间点之间的时间差等于第二时间。图5所示例子中,第一载波上的下行时隙1、3、5、9、11、13、15、19上的下行信号的反馈信息的时延为第一时间,第一载波上的下行时隙0、4、6、8、10、14、16、18上的下行信号的反馈信息的时延为第一时间加上一个时隙的时间。图6所示例子中,第一载波上的下行时隙1、3、7、9、11、13、17、19上的下行信号的反馈信息的时延为第一时间,第一载波上的下行时隙0、2、6、8、10、12、16、18上的下行信号的反馈信息的时延为第一时间加上一个时隙的时间。
由于第一载波上的下行信号的反馈信息的时延等于第一时间或者等于第一时间加 上一个时隙的时间,可得到第一载波上的子帧X上的下行信号的反馈信息在第二载波的X子帧上传输,从而大幅度的降低了第一载波上的下行信号的反馈时延。当第一载波上的每个子帧包括两个时隙时,第一载波上的子帧X上的下行信号包括时隙2X的下行信号和时隙2X+1的下行信号,由于反馈信息都是在第二载波的X子帧的第二个时隙即时隙2X加+1上传输,第一载波上的子帧X上的下行信号的反馈信息在第二载波的X子帧上传输也可以描述为:第一载波上的时隙2X和时隙2X+1的下行信号的反馈信息在第二载波的时隙2X+1上反馈。
需要说明的是,上述两种对应关系只是举例说明,当上下行传输方向配置变化时,上述对应关系也会相应的发生变化。或者,当第二载波上的一个或多个子帧无法用于终端设备发送第一载波的下行信号的反馈信息时,上述对应关系也会相应的发生变化,即一个或多个X对应的Y和/或Z的取值发生改变。
示例性的,图5所示例子中,如果终端设备无法在第二载波的子帧0和子帧5中发送第一载波的反馈信息,则终端设备在第一载波的时隙0和时隙1接收的下行信号的反馈信息无法在第二载波的子帧0上发送,终端设备在第一载波的时隙10和时隙11接收的下行信号的反馈信息无法在第二载波的子帧5上发送。优选的,终端设备可以在第二载波的子帧0和子帧5的下一个可用时间单元发送反馈信息,即在第二载波的子帧1上发送第一载波的时隙0和时隙1的下行信号的反馈信息,在第二载波的子帧6上发送第一载波的时隙10和时隙11的下行信号的反馈信息,从而得到图7所示的对应关系。图7所示,此时,该对应关系(X,Y,Z)的取值包括(0,1,3),(1,1,3),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,6,13),(11,6,13),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
又如,图6所示例子中,如果终端设备无法在第二载波的子帧0、子帧2和子帧5中发送第一载波的反馈信息,则终端设备在第一载波的时隙0接收的下行信号的反馈信息无法在第二载波的子帧0和子帧2上发送,终端设备在时隙10和时隙11接收的下行信号的反馈信息无法在第二载波的子帧5上发送。优选的,终端设备可以在子帧0、子帧2和子帧5的下一可用的时间的单元发送反馈信息,即在第二载波的子帧1上发送第一载波的时隙0和时隙1的反馈信息,在第二载波的子帧6上发送第一载波的时隙10和时隙11的反馈信息,从而得到图8所示的对应关系。如图8所示,该对应关系(X,Y,Z)的取值包括(0,1,3),(1,1,3),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,6,13),(11,6,13),(12,6,13),(13,6,13),(16,8,17),(17,8,17),(18,9,19),(19,9,19)中的至少一组。
可选的,终端设备可能获取了多个不同的对应关系,当第二载波上的某个子帧或某几个子帧无法用于终端设备发送第一载波的下行信号的反馈信息时,终端设备遍历其他对应关系,找到可用的对应关系,根据可用的对应关系确定发送第二载波上发送反馈信息的时间单元。或者,终端设备只存储一个对应关系,当第二载波上的某个子帧或某几个子帧无法用于终端设备发送第一载波的下行信号的反馈信息时,终端设备根据预设的规则和对应关系,确定发送第二载波上发送反馈信息的时间单元,该预设 的规则例如是将第二载波上无法用于终端设备发送第一载波的下行信号的反馈信息的子帧的下一个可用时间单元作为发送反馈信息的时间单元。
需要说明的是,第二载波上的一个或多个子帧无法用于终端设备发送第一载波的下行信号的反馈信息的原因可以是:终端设备需要在该一个或多个子帧上发送探测参考信号(Sounding Reference Signal,SRS),该SRS可以是周期的SRS,也可以是非周期的SRS。此时,该对应关系(X,Y,Z)的取值与该终端设备的SRS配置相关,当该终端设备的SRS配置发生改变时,该对应关系的取值也会相应的调整,即一个或多个X对应的Y和/或Z的取值发生改变。当然,第二载波上的一个或多个子帧无法用于终端设备发送第一载波的下行信号的反馈信息的原因也可以是其他原因,此处不做限定。
步骤S103、终端设备在第二载波的第二时间单元的倒数第二个和/或最后一个符号上向网络设备发送第一反馈信息。
具体的,终端设备可以采用15KHz的子载波间隔在第二时间单元的最后一个符号上发送第一反馈信息;或者,终端设备采用30KHz的子载波间隔在第二时间单元的倒数第二个和/或最后一个符号上发送第一反馈信息。该符号可以是一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的符号,也可以是一个离散傅里叶变换扩展OFDM(DFT-S-OFDM)符号,当然也可以是比一个OFDM符号更短的时间长度。
可选的,本实施例中,第一载波上使用的子载波间隔大于第二载波上使用的子载波间隔,以第一载波为NR系统的载波,第二载波为LTE系统的载波为例,LTE系统中的子载波间隔为15KHz,则第一子载波的间隔应该为30KHz,当然,LTE系统和NR系统都可以采用15KHz的子载波间隔,NR系统也可以采用大于30KHz的子载波间隔,如60KHz。
本实施例中,第二时间单元与第一载波上的第一上行时隙在时间上可能重叠也可能不重叠。当第二时间单元与第一载波上的第一上行时隙在时间上重叠,且与第一上行时隙在时间上相邻的前一个时隙为第一下行时隙时,终端设备确定不在第一上行时隙的前m个符号上发送信号,其中,m个符号的长度大于或等于第一时间。例如,图5所示例子中,第二载波的子帧5的最后两个符号与第一载波的时隙12在时间上重叠,以第一时间等于4个15KHz的符号长度为例,则第一载波的时隙11和时隙12的帧结构如图9所示,时隙12的前4个符号被丢弃,符号被丢弃应理解为不在该符号上发送或接收信号,丢弃时隙12的前2个符号为了确保网络设备能够有充足的时间完成从下行发送到上行接收的转换,丢弃时隙12的第3个和第4个符号是为了确保终端设备在第二载波上的对应符号位置能够正常发送ACK/NACK。图6所示例子中,第一载波的时隙13和时隙14的帧结构与图9所示的帧结构相同。
当第二时间单元与第一载波上的第一上行时隙在时间上不重叠,且与该第一上行时隙在时间上相邻的前一个时隙为第一下行时隙时,终端设备确定不在该第一上行时隙的前m个符号上发送数据,或者,不在该第一下行时隙的后m个符号上发送数据,m的取值包括1或2,当然也可以有其他取值。该第一下行时隙的后m个符号或该第一上行时隙的前m个符号可以理解为保护间隔(Guard Period,GP)。例如,图5所 示例子中,第一载波的时隙7与第二载波的子帧3在时间上不重叠,以第一时间等于4个15KHz的符号长度为例,则第一载波的时隙11和时隙12的帧结构如图10所示,时隙6的最后两个符号被丢弃,或者,时隙7的最前两个符号被丢弃,符号被丢弃应理解为不在该符号上发送或接收信号,丢弃时隙7的前2个符号或者丢弃时隙6的最后两个符号都是为了确保网络设备能够有充足的时间完成从下行发送到上行接收的转换。
本实施例中,终端设备在第一载波的第一时间单元上从网络设备接收第一下行信号,第一载波为TDD载波,根据第一时间单元确定用于在第二载波上发送第一下行信号的第一反馈信息的第二时间单元,然后在第二载波的第二时间单元的倒数第二个和/或最后一个符号上向网络设备发送第一反馈信息,其中,第二载波为FDD的上行载波,第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,第一时间大于0且小于一个子帧长度。通过将TDD载波上的下行信号的反馈信息在FDD载波上发送,并且将第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,能够大幅度降低TDD载波上的下行信号的反馈信息的时延。并且将TDD载波的下行信号的反馈信息在FDD载波上发送,使得终端设备在TDD载波上发送上行信号的需求降低了,从而能够降低终端设备同时在TDD载波和FDD载波发送上行信号的情况,在终端设备与NR系统和LTE系统进行DC通信的场景下,大幅度的降低了LTE系统的性能损失。
图11为实施例二提供的信号发送和接收方法的流程图,如图11所示,本实施例提供的方法包括:
步骤S201、网络设备在第一载波的第一时间单元上向终端设备发送第一下行信号,所述第一载波为TDD载波,第一时间单元包括第一时隙或第一子帧。
可选的,步骤S201之前,网络设备向终端设备发送接收第一载波的下行信号的时间单元与发送第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系确定第二时间单元,其中,对应关系是根据第一载波的上下行传输方向配置确定的。终端设备根据该对应关系确定在第二载波上发送第一下行信号的第一反馈信息使用的第二时间单元。
可选的,第一载波的上下行传输方向配置的周期为2.5毫秒,上下行传输方向配置的周期内包括5个时隙,上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙。相应的,该对应关系为(X,Y,Z),其中,X为接收第一载波的下行信号的时间单元的时隙编号,Y为发送第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
可选的,第一载波的上下行传输方向配置的周期为5毫秒,上下行传输方向配置的周期内包括10个时隙,上下行传输方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙。相应的,该对应关系为(X,Y,Z),其中,X为 接收第一载波的下行信号的时间单元的时隙编号,Y为发送第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,7),(18,9,19),(19,9,19)中的至少一组。
可选的,步骤S201之前,网络设备向终端设备发送第一指示信息,该第一指示信息指示该第一时间,终端设备根据该第一指示信息指示确定该第一时间。如果网络设备不向终端设备发送第一指示信息,则终端设备还可以根据第一载波的下行同步信号和第二载波对应的第三载波的下行同步信号,确定该第一时间,具体确定方法参照实施例一的相关描述,这里不再赘述。
可选的,所述第一时间单元所在的无线帧的编号与所述第二时间单元所在的无线帧的编号相同。
可选的,所述第一时间大于或等于一个15KHz子载波间隔的符号长度;或者;所述第一时间大于或等于两个30KHz子载波间隔的符号长度。可选的,所述第一时间等于整数个15KHz子载波间隔的符号长度或等于整数个30KHz子载波间隔的符号长度。
步骤S202、网络设备在第二载波的第二时间单元的倒数第二个和/或最后一个符号上接收终端设备发送的第一下行信号的第一反馈信息,其中,第二载波为FDD的上行载波,第二时间单元包括第二时隙或第二子帧,第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,第一时间大于0且小于一个子帧长度。
可选的,所述第一载波为第一无线接入技术采用的载波,所述第二载波为第二无线接入技术采用的载波,所述终端设备通过所述第一无线接入技术和所述第二无线接入技术进行双连接DC通信。
可选的,所述第一无线接入技术使用的子载波的间隔大于所述第二无线接入技术采用的子载波间隔。
本实施例中,网络设备在第一载波的第一时间单元上向终端设备发送第一下行信号,第一载波为TDD载波,并在第二载波的第二时间单元的倒数第二个和/或最后一个符号上接收终端设备发送的第一下行信号的第一反馈信息,其中,第二载波为FDD的上行载波,第二时间单元包括第二时隙或第二子帧,第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,第一时间大于0且小于一个子帧长度。通过将TDD载波上的下行信号的反馈信息在FDD载波上发送,并且将第一时间单元所在的无线帧的起始时间比第二时间单元所在的无线帧的起始时间提前第一时间,能够大幅度降低TDD载波上的下行信号的反馈信息的时延。
图12为实施例三提供的终端设备的结构示意图,如图12所示,本实施例提供的终端设备包括:接收模块11、确定模块12和发送模块13。
接收模块11,用于在第一载波的第一时间单元上从网络设备接收第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
确定模块12,用于确定用于在第二载波上发送所述第一下行信号的第一反馈信息 的第二时间单元,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度;
发送模块13,用于在所述第二载波的所述第二时间单元的倒数第二个和/或最后一个符号上向所述网络设备发送所述第一反馈信息。
可选的,所述确定模块12具体用于:根据接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系确定所述第二时间单元,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
可选的,所述第一载波的上下行传输方向配置的周期为2.5毫秒,所述上下行传输方向配置的周期内包括5个时隙,所述上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙。相应的,所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
可选的,所述第一载波的上下行传输方向配置的周期为5毫秒,所述上下行传输方向配置的周期内包括10个时隙,所述上下行传输方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙。相应的,所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,7),(18,9,19),(19,9,19)中的至少一组。
可选的,所述接收模块11还用于:接收网络设备发送的第一指示信息,所述第一指示信息指示所述第一时间。
可选的,所述第二时间单元的起始时间点与所述第一时间单元的起始时间点之间的时间差等于所述第一时间,或者,所述第二时间单元的结束时间点与所述第一时间单元的结束时间点之间的时间差等于所述第一时间。
可选的,所述确定模块12还用于:当所述第二时间单元与所述第一载波上的第一上行时隙在时间上重叠,且与所述第一上行时隙在时间上相邻的前一个时隙为第一下行时隙时,确定不在所述第一上行时隙的前m个符号上发送信号,其中,所述m个符号的长度大于或等于所述第一时间。
可选的,所述发送模块13具体用于:采用15KHz的子载波间隔在所述第二时间单元的最后一个符号上发送所述第一反馈信息;或者,采用30KHz的子载波间隔在所述第二时间单元的倒数第二个和/或最后一个符号上发送所述第一反馈信息。
可选的,所述第一载波为第一无线接入技术采用的载波,所述第二载波为第二无线接入技术采用的载波,所述终端设备通过所述第一无线接入技术和所述第二无线接入技术进行双连接DC通信。
可选的,所述第一无线接入技术使用的子载波的间隔大于所述第二无线接入技术采用的子载波间隔。
可选的,所述第一时间单元所在的无线帧的编号与所述第二时间单元所在的无线帧的编号相同。
可选的,所述第一时间大于或等于一个15KHz子载波间隔的符号长度;或者;所述第一时间大于或等于两个30KHz子载波间隔的符号长度。
可选的,所述第一时间等于整数个15KHz子载波间隔的符号长度或等于整数个30KHz子载波间隔的符号长度。
图13为实施例四提供的网络设备的结构示意图,如图13所示,本实施例提供的网络设备包括:
发送模块21,用于在第一载波的第一时间单元上向终端设备发送第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
接收模块22,用于在第二载波的第二时间单元的倒数第二个和/或最后一个符号上接收所述终端设备发送的所述第一下行信号的第一反馈信息,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度。
可选的,所述发送模块21还用于:向所述终端设备发送接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
可选的,所述发送模块21还用于:向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一时间。
可选的,所述第一载波的上下行传输方向配置的周期为2.5毫秒,所述上下行传输方向配置的周期内包括5个时隙,所述上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙;所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
可选的,所述第一载波的上下行传输方向配置的周期为5毫秒,所述上下行传输 方向配置的周期内包括10个时隙,所述上下行传输方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙;所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,7),(18,9,19),(19,9,19)中的至少一组。
可选的,所述第一载波为第一无线接入技术采用的载波,所述第二载波为第二无线接入技术采用的载波,所述终端设备通过所述第一无线接入技术和所述第二无线接入技术进行双连接DC通信。
可选的,所述第一无线接入技术使用的子载波的间隔大于所述第二无线接入技术采用的子载波间隔。
可选的,所述第一时间单元所在的无线帧的编号与所述第二时间单元所在的无线帧的编号相同。
可选的,所述第一时间大于或等于一个15KHz子载波间隔的符号长度;或者;所述第一时间大于或等于两个30KHz子载波间隔的符号长度。
可选的,所述第一时间等于整数个15KHz子载波间隔的符号长度或等于整数个30KHz子载波间隔的符号长度。
图14为实施例五提供的终端设备的结构示意图,如图14所示,本实施例提供的终端设备300包括:处理器31、存储器32、接收器33和发送器34,所述存储器32、接收器33和发送器34通过总线与所述处理器31连接并通信,所述存储器32用于存储计算机执行指令,所述处理器31用于执行所述计算机执行指令,以使所述终端设备300执行上述实施例一的方法,具体实现方式和技术效果类似这里不再赘述。
图15为实施例六提供的网络设备的结构示意图,如图15所示,本实施例提供的终端设备400包括:处理器41、存储器42、接收器43和发送器44,所述存储器42、接收器43和发送器44通过总线与所述处理器31连接并通信,所述存储器42用于存储计算机执行指令,所述处理器41用于执行所述计算机执行指令,以使所述网络设备400执行上述实施例一的方法,具体实现方式和技术效果类似这里不再赘述。
可以理解,本申请中网络设备和终端设备使用的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
本申请所述的总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或 一种类型的总线。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (39)

  1. 一种信号发送和接收方法,其特征在于,包括:
    终端设备在第一载波的第一时间单元上从网络设备接收第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
    所述终端设备确定用于在第二载波上发送所述第一下行信号的第一反馈信息的第二时间单元,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度;
    所述终端设备在所述第二载波的所述第二时间单元的倒数第二个和/或最后一个符号上向所述网络设备发送所述第一反馈信息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定用于在第二载波上发送所述下行信号的反馈信息的第二时间单元,包括:
    所述终端设备根据接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系确定所述第二时间单元,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
  3. 根据权利要求2所述的方法,其特征在于,所述第一载波的上下行传输方向配置的周期为2.5毫秒,所述上下行传输方向配置的周期内包括5个时隙,所述上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙;
    所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
  4. 根据权利要求2所述的方法,其特征在于,所述第一载波的上下行传输方向配置的周期为5毫秒,所述上下行传输方向配置的周期内包括10个时隙,所述上下行传输方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙;
    所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,7),(18,9,19),(19,9,19)中的至少一组。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,还包括:
    所述终端设备接收网络设备发送的第一指示信息,所述第一指示信息指示所述第 一时间。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第二时间单元的起始时间点与所述第一时间单元的起始时间点之间的时间差等于所述第一时间,或者,所述第二时间单元的结束时间点与所述第一时间单元的结束时间点之间的时间差等于所述第一时间。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,还包括:
    当所述第二时间单元与所述第一载波上的第一上行时隙在时间上重叠,且与所述第一上行时隙在时间上相邻的前一个时隙为第一下行时隙时,所述终端设备确定不在所述第一上行时隙的前m个符号上发送信号,其中,所述m个符号的长度大于或等于所述第一时间。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述终端设备在所述第二载波的所述第二时间单元的倒数第二个和/或最后一个符号上向所述网络设备发送所述第一反馈信息,包括:
    所述终端设备采用15KHz的子载波间隔在所述第二时间单元的最后一个符号上发送所述第一反馈信息;或者,
    所述终端设备采用30KHz的子载波间隔在所述第二时间单元的倒数第二个和/或最后一个符号上发送所述第一反馈信息。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一载波为第一无线接入技术采用的载波,所述第二载波为第二无线接入技术采用的载波,所述终端设备通过所述第一无线接入技术和所述第二无线接入技术进行双连接DC通信。
  10. 根据权利要求9所述的方法,其特征在于,所述第一无线接入技术使用的子载波的间隔大于所述第二无线接入技术采用的子载波间隔。
  11. 根据权利要求1所述的方法,其特征在于,所述第一时间单元所在的无线帧的编号与所述第二时间单元所在的无线帧的编号相同。
  12. 根据权利要求1所述的方法,其特征在于,所述第一时间大于或等于一个15KHz子载波间隔的符号长度;或者;
    所述第一时间大于或等于两个30KHz子载波间隔的符号长度。
  13. 根据权利要求12所述的方法,其特征在于,所述第一时间等于整数个15KHz子载波间隔的符号长度或等于整数个30KHz子载波间隔的符号长度。
  14. 一种终端设备,其特征在于,包括:
    接收模块,用于在第一载波的第一时间单元上从网络设备接收第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
    确定模块,用于确定用于在第二载波上发送所述第一下行信号的第一反馈信息的第二时间单元,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度;
    发送模块,用于在所述第二载波的所述第二时间单元的倒数第二个和/或最后一个符号上向所述网络设备发送所述第一反馈信息。
  15. 根据权利要求14所述的终端设备,其特征在于,所述确定模块具体用于:
    根据接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系确定所述第二时间单元,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
  16. 根据权利要求15所述的终端设备,其特征在于,所述第一载波的上下行传输方向配置的周期为2.5毫秒,所述上下行传输方向配置的周期内包括5个时隙,所述上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙;
    所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
  17. 根据权利要求15所述的终端设备,其特征在于,所述第一载波的上下行传输方向配置的周期为5毫秒,所述上下行传输方向配置的周期内包括10个时隙,所述上下行传输方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙;
    所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,7),(18,9,19),(19,9,19)中的至少一组。
  18. 根据权利要求14-17任一项所述的终端设备,其特征在于,所述接收模块还用于:
    接收网络设备发送的第一指示信息,所述第一指示信息指示所述第一时间。
  19. 根据权利要求14-18任一项所述的终端设备,其特征在于,所述第二时间单元的起始时间点与所述第一时间单元的起始时间点之间的时间差等于所述第一时间,或者,所述第二时间单元的结束时间点与所述第一时间单元的结束时间点之间的时间差等于所述第一时间。
  20. 根据权利要求14-19任一项所述的终端设备,其特征在于,所述确定模块还用于:
    当所述第二时间单元与所述第一载波上的第一上行时隙在时间上重叠,且与所述第一上行时隙在时间上相邻的前一个时隙为第一下行时隙时,确定不在所述第一上行时隙的前m个符号上发送信号,其中,所述m个符号的长度大于或等于所述第一时间。
  21. 根据权利要求14-20任一项所述的终端设备,其特征在于,所述发送模块具体用于:
    采用15KHz的子载波间隔在所述第二时间单元的最后一个符号上发送所述第一反馈信息;或者,
    采用30KHz的子载波间隔在所述第二时间单元的倒数第二个和/或最后一个符号上发送所述第一反馈信息。
  22. 根据权利要求14-21任一项所述的终端设备,其特征在于,所述第一载波为第一无线接入技术采用的载波,所述第二载波为第二无线接入技术采用的载波,所述终端设备通过所述第一无线接入技术和所述第二无线接入技术进行双连接DC通信。
  23. 根据权利要求22所述的终端设备,其特征在于,所述第一无线接入技术使用的子载波的间隔大于所述第二无线接入技术采用的子载波间隔。
  24. 根据权利要求14所述的终端设备,其特征在于,所述第一时间单元所在的无线帧的编号与所述第二时间单元所在的无线帧的编号相同。
  25. 根据权利要求14所述的终端设备,其特征在于,所述第一时间大于或等于一个15KHz子载波间隔的符号长度;或者;
    所述第一时间大于或等于两个30KHz子载波间隔的符号长度。
  26. 根据权利要求25所述的终端设备,其特征在于,所述第一时间等于整数个15KHz子载波间隔的符号长度或等于整数个30KHz子载波间隔的符号长度。
  27. 一种信号发送和接收方法,其特征在于,包括:
    网络设备在第一载波的第一时间单元上向终端设备发送第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
    所述网络设备在第二载波的第二时间单元的倒数第二个和/或最后一个符号上接收所述终端设备发送的所述第一下行信号的第一反馈信息,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度。
  28. 根据权利要求27所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
  29. 根据权利要求27或28所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一时间。
  30. 一种网络设备,其特征在于,包括:
    发送模块,用于在第一载波的第一时间单元上向终端设备发送第一下行信号,所述第一载波为时分双工TDD载波,所述第一时间单元包括第一时隙或第一子帧;
    接收模块,用于在第二载波的第二时间单元的倒数第二个和/或最后一个符号上接收所述终端设备发送的所述第一下行信号的第一反馈信息,其中,所述第二载波为频分双工FDD的上行载波,所述第二时间单元包括第二时隙或第二子帧,所述第一时间单元所在的无线帧的起始时间比所述第二时间单元所在的无线帧的起始时间提前第一时间,所述第一时间大于0且小于一个子帧长度。
  31. 根据权利要求30所述的网络设备,其特征在于,所述发送模块还用于:
    向所述终端设备发送接收所述第一载波的下行信号的时间单元与发送所述第一载波的下行信号的反馈信息的第二载波的时间单元之间的对应关系,其中,所述对应关系是根据所述第一载波的上下行传输方向配置确定的。
  32. 根据权利要求30或31所述的网络设备,其特征在于,所述发送模块还用于:
    向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一时间。
  33. 根据权利要求28所述的方法或31所述的网络设备,其特征在于,所述第一载波的上下行传输方向配置的周期为2.5毫秒,所述上下行传输方向配置的周期内包括5个时隙,所述上下行传输方向配置的周期内的第三个时隙为上行时隙,其余时隙为下行时隙;
    所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(3,1,3),(4,2,5),(5,2,5),(6,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(13,6,13),(14,7,15),(15,7,15),(16,8,17),(18,9,19),(19,9,19)中的至少一组。
  34. 根据权利要求28所述的方法或31所述的网络设备,其特征在于,所述第一载波的上下行传输方向配置的周期为5毫秒,所述上下行传输方向配置的周期内包括10个时隙,所述上下行传输方向配置的周期内的第五个时隙和第六个时隙为上行时隙,其余时隙为下行时隙;
    所述对应关系为(X,Y,Z),其中,X为接收所述第一载波的下行信号的时间单元的时隙编号,Y为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的子帧编号,Z为发送所述第一载波的下行信号的反馈信息的第二载波的时间单元的时隙编号,(X,Y,Z)的取值包括(0,0,1),(1,0,1),(2,1,3),(3,1,3),(6,3,7),(7,3,7),(8,4,9),(9,4,9),(10,5,11),(11,5,11),(12,6,13),(13,6,13),(16,8,17),(17,8,7),(18,9,19),(19,9,19)中的至少一组。
  35. 根据权利要求27-34任一项所述的方法或网络设备,其特征在于,所述第一载波为第一无线接入技术采用的载波,所述第二载波为第二无线接入技术采用的载波,所述终端设备通过所述第一无线接入技术和所述第二无线接入技术进行双连接DC通信。
  36. 根据权利要求35所述的方法或网络设备,其特征在于,所述第一无线接入技术使用的子载波的间隔大于所述第二无线接入技术采用的子载波间隔。
  37. 根据权利要求27-36任一项所述的方法或网络设备,其特征在于,所述第一时间单元所在的无线帧的编号与所述第二时间单元所在的无线帧的编号相同。
  38. 根据权利要求27-36任一项所述的方法或网络设备,其特征在于,所述第一时间大于或等于一个15KHz子载波间隔的符号长度;或者;
    所述第一时间大于或等于两个30KHz子载波间隔的符号长度。
  39. 根据权利要求38所述的方法或网络设备,其特征在于,所述第一时间等于整数个15KHz子载波间隔的符号长度或等于整数个30KHz子载波间隔的符号长度。
PCT/CN2018/092433 2017-06-22 2018-06-22 信号发送和接收方法、装置 WO2018233691A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710482359.0 2017-06-22
CN201710482359 2017-06-22
CN201710672330.9A CN109120382B (zh) 2017-06-22 2017-08-08 信号发送和接收方法、装置
CN201710672330.9 2017-08-08

Publications (1)

Publication Number Publication Date
WO2018233691A1 true WO2018233691A1 (zh) 2018-12-27

Family

ID=64735505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092433 WO2018233691A1 (zh) 2017-06-22 2018-06-22 信号发送和接收方法、装置

Country Status (1)

Country Link
WO (1) WO2018233691A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326806A (zh) * 2012-03-19 2013-09-25 电信科学技术研究院 一种下行控制信令的传输方法及装置
WO2013159734A1 (zh) * 2012-04-28 2013-10-31 电信科学技术研究院 一种数据传输方法和装置
CN103618589A (zh) * 2013-11-22 2014-03-05 北京北方烽火科技有限公司 一种确认信息传输方法及系统
CN103905165A (zh) * 2012-12-28 2014-07-02 电信科学技术研究院 应答反馈信息的发送和接收方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326806A (zh) * 2012-03-19 2013-09-25 电信科学技术研究院 一种下行控制信令的传输方法及装置
WO2013159734A1 (zh) * 2012-04-28 2013-10-31 电信科学技术研究院 一种数据传输方法和装置
CN103905165A (zh) * 2012-12-28 2014-07-02 电信科学技术研究院 应答反馈信息的发送和接收方法及设备
CN103618589A (zh) * 2013-11-22 2014-03-05 北京北方烽火科技有限公司 一种确认信息传输方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "On Unified Design for Duplexing Flexibility", 3GPP TSG RAN WG1 NR AD-HOC MEETING R1-1700081, 20 January 2016 (2016-01-20), XP051207623 *

Similar Documents

Publication Publication Date Title
US20230180268A1 (en) Method for integrated access backhaul resource multiplexing
CN107889261B (zh) 通信方法、基站和终端设备
EP2797355B1 (en) Wireless communication method and apparatus
US10616835B2 (en) Method for controlling uplink transmission power in wireless communication system, and apparatus therefor
EP3641454B1 (en) Communication methods, network device, terminal device, computer readable storage medium and computer program product
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
CN110771107B (zh) 用于交叉数字基本配置调度的方法和设备
EP3269176A1 (en) Resource partitioning between wireless backhaul and access communications in millimeter wave networks
US11706005B2 (en) Uplink reference signal sending method, uplink reference signal receiving method, and apparatus
JP2020535713A (ja) 無線通信システムにおけるprbグリッドを構成する方法及び装置
CN109120382B (zh) 信号发送和接收方法、装置
CN112399585B (zh) 一种资源复用方法及装置
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
US11469852B2 (en) Signal sending and receiving method, and apparatus
US20170135101A1 (en) Method and Apparatus for Determining Data Transmission
JP2021510950A (ja) 媒体アクセス制御層の制御要素の確認方法、装置及び通信システム
US9491725B2 (en) User equipment and methods for device-to-device communication over an LTE air interface
WO2018095199A1 (zh) 一种无线通信中的方法和装置
KR102057139B1 (ko) Nr과 lte 기지국간 연동 인터페이스를 이용한 데이터 전송 제어 방법 및 그 장치
KR102362708B1 (ko) 무선 통신 시스템에서 초저지연 고신뢰성 통신을 위한 주파수 호핑을 이용한 반복 전송 방법 및 이를 위한 장치
WO2018028678A1 (zh) 一种同步信号发送方法及装置
EP3288334B1 (en) Data transmission method and apparatus
WO2018233691A1 (zh) 信号发送和接收方法、装置
WO2018233694A1 (zh) 信号发送和接收方法、装置
WO2020030290A1 (en) Apparatus, method and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820879

Country of ref document: EP

Kind code of ref document: A1