WO2018233339A1 - 一种有机微孔聚合物电极材料的制备方法 - Google Patents

一种有机微孔聚合物电极材料的制备方法 Download PDF

Info

Publication number
WO2018233339A1
WO2018233339A1 PCT/CN2018/081100 CN2018081100W WO2018233339A1 WO 2018233339 A1 WO2018233339 A1 WO 2018233339A1 CN 2018081100 W CN2018081100 W CN 2018081100W WO 2018233339 A1 WO2018233339 A1 WO 2018233339A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous polymer
electrode material
ion battery
polymer electrode
preparing
Prior art date
Application number
PCT/CN2018/081100
Other languages
English (en)
French (fr)
Inventor
黄程
叶飞
黄维
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2018233339A1 publication Critical patent/WO2018233339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium ion battery electrode materials, and in particular relates to a preparation method of an organic microporous polymer electrode material.
  • sodium ion secondary batteries have gradually become an emerging energy storage research direction, which has much lower cost and better safety than lithium ion batteries, but because sodium ions have larger ionic radii than lithium ions.
  • the known electrode materials are not suitable for sodium ion batteries, and some of the inorganic metal oxide sodium salt cathode materials reported in some studies are difficult to increase in specific capacity due to crystal structure problems, so the study of flexible structures can be designed organically. Cathode materials are of great practical significance for solving global energy and environmental problems.
  • Organic electrode materials due to their good electrochemical performance, sustainability, environmentally friendly, structural diversity, low potential cost and flexibility, have attracted extensive attention and become one of the research directions of cathode materials for sodium secondary batteries.
  • the types of organic electrode materials mainly include conductive polymers, organic polysulfides, polythioethers, nitroxyl radical polymers, and conjugated carbonyl compounds.
  • conductive polymers organic polysulfides, polythioethers, nitroxyl radical polymers, and conjugated carbonyl compounds.
  • conjugated carbonyl compounds Currently, studies on organic electrodes have focused on conjugated carbonyl compounds. Small molecule conjugated carbonyl compounds have the advantages of high theoretical capacity, fast reaction kinetics and diversified structure. They are currently the most promising materials in organic electrode materials, but due to the small molecule conjugated carbonyl compounds during charge and discharge.
  • organic conjugated porous polymers are a new type of porous materials with large specific surface area and a large number of pore structures. When used as an electrode material, the larger specific surface has a larger specific surface. Conducive to the contact between the electrode and the electrolyte, and a large number of pore structures facilitate the ingress and egress of sodium ions.
  • the present invention effectively fills in the gaps in organic conjugated porous polymers for energy storage.
  • the technical problem to be solved by the present invention is to provide a method for preparing an organic conjugated microporous polymer electrode material having better cycle and rate performance.
  • the present invention adopts the following technical solutions:
  • the invention provides a preparation method of an organic microporous polymer electrode material, comprising the following steps:
  • the hydrazine in the step (2) is preferably hydrazine or pentabenzoquinone.
  • the raw material in the step (2) may also be a partial acetonide and a bepic anhydride.
  • the partial acetonide is preferably hydrazine or pentacene.
  • the starting material in the step (2) may also be a partial azine and a limestone anhydride.
  • the partial azine is preferably phenazine.
  • the preparation method adopted by the invention is simple in process, green and environmentally friendly, and can be applied to large-scale production, and the obtained positive electrode of the sodium ion battery has good cycle and rate performance in the half-cell test, and the mass specific capacity can reach 212 mAh g -1 .
  • the commercial lithium ion battery positive electrode, and the raw materials used in the invention are common raw materials, the source is wide, the equipment is simple, the synthesis temperature is low, the energy is saved, the manufacturing cost is cheap, the process is simple, and the environmental requirements are met, and the obtained product has a unique structure. It has good electrochemical activity at high conductive agent content and therefore has good electrochemical properties.
  • Example 1 is a schematic structural view of a positive electrode product of a sodium ion battery obtained by adjusting a molecular chain arm chain enthalpy density in Example 1 of the present invention
  • Example 2 is an XRD test chart of a positive electrode product of a sodium ion battery obtained in Example 1 of the present invention
  • Example 3 is an SEM image of a positive electrode product of a sodium ion battery obtained in Example 1 of the present invention.
  • FIG. 4 is a cycle diagram of a positive discharge of a positive electrode active material of a sodium ion battery in a first embodiment of the present invention
  • FIG. 5 is a schematic view showing the structure of a positive electrode product of a sodium ion battery obtained by adjusting a conjugated length of a benzene ring of a molecular skeleton in an embodiment 2;
  • FIG. 6 is a cycle diagram of a discharge of a positive electrode active material positive electrode of a sodium ion battery in a second embodiment of the present invention.
  • Example 7 is a schematic structural view of a sodium ion battery positive electrode product obtained by adjusting a molecular skeleton arm chain heterocyclic hetero atom in Example 3 of the present invention.
  • Fig. 8 is a cycle diagram of discharge of a positive electrode active material positive electrode of a sodium ion battery in the third embodiment of the present invention.
  • the preparation method of an organic microporous polymer electrode material in the present example comprises the following steps:
  • Figures 1 and 2 The positive electrode product of sodium ion battery was observed by SEM.
  • Figure 3 is an SEM image of the active material in the positive electrode product of the sodium ion battery of the present example. It can be seen that the active material has a sheet-like structure; the prepared positive electrode is made of metal sodium
  • the electrolyte was assembled into an analog battery using 1 M NaClO 4 in an argon-protected glove box. The charge and discharge cycle performance was examined on a high-precision battery tester. The first charge-discharge curve measured at a current density of 100 mA g -1 is shown in Fig. 4. After 300 cycles, the specific capacity of 100 ( ⁇ ) / 150 (pentabenzoquinone) mAh g -1 can be obtained.
  • the method for preparing an organic microporous polymer electrode material in the present example is different from the above embodiment 1 in that the raw material in the step (2) is a partial aceton (such as ruthenium, pentacene, etc.) and The limestone anhydride, the remaining steps and formulations were the same as in Example 1.
  • a partial aceton such as ruthenium, pentacene, etc.
  • the structure diagram of the positive electrode product of sodium ion battery in this example is shown in Fig. 5.
  • the experimental and test conditions and methods are the same as those in the first embodiment.
  • the first charge and discharge curve measured at a current density of 100 mA g -1 is shown in Fig. 6. After that, it can have a specific capacity of 78 ( ⁇ ) / 115 (pentacene) mAh g -1 .
  • the method for preparing an organic microporous polymer electrode material in the present example is different from the above-mentioned Embodiment 1, in that the raw material in the step (2) is a partial azine such as phenazine or the like, and a methic anhydride.
  • the remaining steps and recipes were the same as in Example 1.
  • the structure diagram of the positive electrode product of sodium ion battery in this example is shown in Fig. 7.
  • the experimental and test conditions and methods are the same as those in the first embodiment.
  • the first charge and discharge curve measured at a current density of 100 mA g -1 is shown in Fig. 8. After that, it can have a specific capacity of 212 mAh g -1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种有机微孔聚合物电极材料的制备方法,属于钠离子电池电极材料技术领域,通过傅克反应本体熔融或熔盐或溶液缩聚,构筑并制备超支化分子结构PAQR类共轭有机骨架多孔材料,孔径尺寸可控,包括步骤:(1)无水氯化铝和氯化钠按质量比配料加热搅拌成熔盐相;(2)蜜石酸酐为支化点,调节分子骨架臂链醌类密度、苯环共轭长度及杂环原子,摩尔比配料混合均匀;(3)将(2)配料加入(1)熔盐相中,控温焙烧;(4)焙烧产物用溶剂回流洗涤提纯制得正极活性材料。本发明制备方法工艺简单,绿色环保,可用于大规模生产,较大半径钠离子电池正极半电池测试具有较好循环和倍率性能,质量比容量优于目前商业锂离子电池正极。

Description

一种有机微孔聚合物电极材料的制备方法 技术领域
本发明属于钠离子电池电极材料技术领域,尤其涉及一种有机微孔聚合物电极材料的制备方法。
背景技术
钠离子二次电池在过去几年里逐渐成为一种新兴的储能研究方向,其具有远低于锂离子电池的成本及更好的安全性,但由于钠离子离子半径较锂离子更大,因为,大多数已知的电极材料均不适合钠离子电池,而部分研究报导的无机金属氧化物钠盐正极材料由于晶体结构的问题使得其比容量难以提升,因此研究柔性的结构可设计的有机正极材料对解决全球能源及环境问题具有十分重要的现实意义。
有机电极材料,由于其良好的电化学性能、可持续性、环境友好型、结构多样性、潜在成本低以及柔性等特性等优点,引起广泛关注并成为钠二次电池正极材料的研究方向之一。有机电极材料的类型主要有导电聚合物、有机多硫化物、聚硫醚、硝酰自由基聚合物以及共轭羰基化合物,目前对于有机电极的研究多集中于共轭羰基化合物。小分子共轭羰基化合物具有理论容量高,反应动力学快以及结构多样化等优点,就目前来说是有机电极材料中最有前景的材料,但由于在充放电过程中小分子共轭羰基化合物易溶于电解液,因此其循环性能不佳,阻碍了小分子共轭羰基化合物电极的实际应用;为了解决这一问题,高分子共轭羰基化合物逐渐为研究者所研究。区别于大多直链式高分子共轭羰基聚合物,有机共轭多孔聚合物是一类具有较大比表面积和大量孔结构的新型 多孔材料,当作为电极材料时,较大的比表面极有利于电极和电解液间的接触,而大量孔结构有利于钠离子的进出。
本发明有效地填补了用于储能方面的有机共轭多孔聚合物的空白。
发明内容
本发明要解决的技术问题是提供一种具有较好的循环和倍率性能的有机共轭微孔聚合物电极材料的制备方法。
为解决上述问题,本发明采用如下技术方案:
本发明提供了一种有机微孔聚合物电极材料的制备方法,包括如下步骤:
(1)取无水氯化铝和氯化钠为原料,按质量比4.6:1进行配料并在110~200℃下搅拌10~40min形成熔盐相,并且只有在4.6:1的比例条件下易形成熔盐相,氯化铝为反应催化剂;
(2)取醌类及蜜石酸酐为原料,按摩尔比1.5:1进行配料并混合均匀;
(3)将步骤(2)配好的料加入(1)中熔盐相中,在220~280℃下焙烧12~48小时;
(4)将焙烧后的产物用不同溶液回流洗涤提纯后制得电池正极活性材料,回流时间12~24h;
作为对本发明的进一步的优选方案,所述步骤(2)中醌类优选为蒽醌或五并苯醌。
作为对本发明的进一步的优选方案,所述步骤(2)中原料还可以为部分并苯类和蜜石酸酐。
作为对本发明的进一步的优选方案,所述部分并苯类优选为蒽或并五苯。
作为对本发明的进一步优选方案,所述步骤(2)中原料还可以为部分嗪类 和蜜石酸酐。
作为对本发明的进一步优选方案,所述部分嗪类优选为吩嗪。
与现有技术相比,本发明的有益效果在于:
本发明采用的制备方法工艺简单,绿色环保,可应用于大规模生产,得到的钠离子电池正极在半电池测试中具有较好的循环和倍率性能,质量比容量能达到212mAh g -1优于目前商业锂离子电池正极,且本发明所用原料均为普通原料,来源广泛,设备简单,合成温度低,节约能源,制造成本廉价,且流程工艺简便,符合环境要求,所得产物由于其独特的结构在高导电剂含量下具有良好的电化学活性,因此具有良好的电化学性能。
附图说明
如图1为本发明实施例1中调节分子骨架臂链醌类密度所得钠离子电池正极产物的结构示意图;
如图2为本发明实施例1中所得钠离子电池正极产物的XRD测试图;
如图3为本发明实施例1中所得钠离子电池正极产物的SEM图;
如图4为本发明实施例1中钠离子电池正极活性材料正极放电300次的循环图;
如图5为本发明实施例2中调节分子骨架臂链苯环共轭长度所得钠离子电池正极产物的结构示意图;
如图6为本发明实施例2中钠离子电池正极活性材料正极放电80次的循环图;
如图7为本发明实施例3中调节分子骨架臂链杂环杂原子所得钠离子电池正极产物的结构示意图;
如图8为本发明实施例3中钠离子电池正极活性材料正极放电80次的循环 图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实例中一种有机微孔聚合物电极材料的制备方法,包括以下步骤:
(1)取无水氯化铝和氯化钠为原料,按质量比4.6:1进行配料并在110-200℃下搅拌10-40min形成熔盐相;
(2)取醌类(如蒽醌、五并苯醌等)及蜜石酸酐为原料,按摩尔比1.5:1进行配料并混合均匀;
(2)将配好的料加入(1)中熔盐相中,在220~280℃下反应12-48小时;
(3)将焙烧后的产物用不同溶液回流洗涤提纯后制得电池正极活性材料,回流时间12~24h;
实验与测试,如图1及图2所示。使用SEM对钠离子电池正极产物进行观察,如图3为本实例钠离子电池正极产物中活性材料的SEM图,可以看出,活性材料具有片状结构;将制得的正极,以金属钠片为对电极,电解液使用1M NaClO 4,在氩气保护的手套箱中,组装成模拟电池。在高精度电池测试仪上考察充放电循环性能。测得电流密度100mA g -1下首次充放电曲线如图4所示,循环300次后能拥有100(蒽醌)/150(五并苯醌)mAh g -1的比容量。
实施例2
本实例中一种有机微孔聚合物电极材料的制备方法,与上述实施例1中不同之处在于,所述步骤(2)中原料为部分并苯类(如蒽、并五苯等)和蜜石酸酐,其余步骤与配方均与实施例1相同。
本实例中钠离子电池正极产物的结构示意图如图5所示,实验与测试条件、方法与实施例1相同,测得电流密度100mA g -1下首次充放电曲线如图6所示,循环80次后能拥有78(蒽)/115(并五苯)mAh g -1的比容量。
实施例3
本实例中一种有机微孔聚合物电极材料的制备方法,与上述实施例1中不同之处在于,所述步骤(2)中原料为部分嗪类(如吩嗪等)和蜜石酸酐,其余步骤与配方均与实施例1相同。
本实例中钠离子电池正极产物的结构示意图如图7所示,实验与测试条件、方法与实施例1相同,测得电流密度100mA g -1下首次充放电曲线如图8所示,循环50次后能拥有212mAh g -1的比容量。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

  1. 一种有机微孔聚合物电极材料的制备方法,其特征在于,包括如下步骤:
    (1)取无水氯化铝和氯化钠为原料,按质量比4.6:1进行配料并在110~200℃下搅拌10~40min形成熔盐相;
    (2)取醌类及蜜石酸酐为原料,按摩尔比1.5:1进行配料并混合均匀;
    (3)将步骤(2)配好的料加入(1)中熔盐相中,在220~280℃下焙烧12~48小时;
    (4)将焙烧后的产物用稀盐酸、水、乙醇、甲苯回流洗涤提纯后制得电池正极活性材料,回流时间12~24h。
  2. 根据权利要求1所述的一种有机微孔聚合物电极材料的制备方法,其特征在于,所述步骤(2)中醌类为蒽醌或五并苯醌。
  3. 根据权利要求1所述的一种有机微孔聚合物电极材料的制备方法,其特征在于,所述步骤(2)中原料还可以为部分并苯类和蜜石酸酐。
  4. 根据权利要求3所述的一种有机微孔聚合物电极材料的制备方法,其特征在于,所述部分并苯类为蒽或并五苯。
  5. 根据权利要求1所述的一种有机微孔聚合物电极材料的制备方法,其特征在于,所述步骤(2)中原料还可以为部分嗪类和蜜石酸酐。
  6. 根据权利要求5所述的一种有机微孔聚合物电极材料的制备方法,其特征在于,所述部分嗪类为吩嗪。
PCT/CN2018/081100 2017-06-23 2018-03-29 一种有机微孔聚合物电极材料的制备方法 WO2018233339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710487259.7A CN107317032A (zh) 2017-06-23 2017-06-23 一种有机微孔聚合物电极材料的制备方法
CN201710487259.7 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018233339A1 true WO2018233339A1 (zh) 2018-12-27

Family

ID=60180179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081100 WO2018233339A1 (zh) 2017-06-23 2018-03-29 一种有机微孔聚合物电极材料的制备方法

Country Status (2)

Country Link
CN (1) CN107317032A (zh)
WO (1) WO2018233339A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317032A (zh) * 2017-06-23 2017-11-03 南京工业大学 一种有机微孔聚合物电极材料的制备方法
CN111540620B (zh) * 2020-01-08 2022-03-18 中南民族大学 共价有机框架复合膜超级电容器及制备方法
JP2022140101A (ja) * 2021-03-12 2022-09-26 ソフトバンク株式会社 二次電池用活物質、二次電池用電極、二次電池及び飛行体
CN113278134B (zh) * 2021-05-20 2022-07-05 常州大学 一种微孔聚合物有机电极材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557978A (en) * 1983-12-12 1985-12-10 Primary Energy Research Corporation Electroactive polymeric thin films
CN106981661A (zh) * 2017-06-05 2017-07-25 南京工业大学 一种锂离子电池电极材料的制备方法
CN107317032A (zh) * 2017-06-23 2017-11-03 南京工业大学 一种有机微孔聚合物电极材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531810B (zh) * 2013-11-05 2016-01-13 南京工业大学 一类芳香杂环酮类化合物的锂离子二次电池正极材料及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557978A (en) * 1983-12-12 1985-12-10 Primary Energy Research Corporation Electroactive polymeric thin films
CN106981661A (zh) * 2017-06-05 2017-07-25 南京工业大学 一种锂离子电池电极材料的制备方法
CN107317032A (zh) * 2017-06-23 2017-11-03 南京工业大学 一种有机微孔聚合物电极材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WANG, YUNLONG ET AL.: "Synthesis of polyacene quinone radical polymers with the new method of molten salt", EXPERIMENT SCIENCE AND TECHNOLOGY, vol. 9, no. 5, 28 October 2011 (2011-10-28), pages 10 *
ZHAO, BO: "Research on synthesis and performance os polyacene quinine radical polymer (non-official translation)", CHINA MASTER'S THESES FULL-TEXT DATABASE (SCIENCE-ENGINEERING A), no. 04, 15 April 2011 (2011-04-15), pages B014-102 *
ZHENG, HUAJING ET AL.: "Study on the structure and character of polyacene quinine radical polymer", JOURNAL OF FUNCTIONAL MATERIALS, vol. 42, no. 10, 20 October 2011 (2011-10-20), pages 1855 - 1860 *

Also Published As

Publication number Publication date
CN107317032A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
Wan et al. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries
Ma et al. Mo2N quantum dots decorated N‐doped graphene nanosheets as dual‐functional interlayer for dendrite‐free and shuttle‐free lithium‐sulfur batteries
Chen et al. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan
Zhang et al. Surface engineering induced core-shell Prussian blue@ polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode
Zhou et al. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries
Ren et al. Core− shell Li3V2 (PO4) 3@ C composites as cathode materials for lithium-ion batteries
Zhang et al. Graphene–encapsulated selenium/polyaniline core–shell nanowires with enhanced electrochemical performance for Li–Se batteries
WO2018233339A1 (zh) 一种有机微孔聚合物电极材料的制备方法
Xie et al. Supercapacitance performance of polypyrrole/titanium nitride/polyaniline coaxial nanotube hybrid
Yang et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries
Lee et al. Electrodeposition of mesoporous V2O5 with enhanced lithium-ion intercalation property
Tang et al. VPO4@ C/graphene microsphere as a potential anode material for lithium-ion batteries
CN104817085B (zh) 一种二维纳米硅片的制备方法及其用途
Chen et al. Hexagonal WO3/3D porous graphene as a novel zinc intercalation anode for aqueous zinc-ion batteries
Wu et al. In situ synthesis of LiFePO4/carbon fiber composite by chemical vapor deposition with improved electrochemical performance
Xue et al. Silver terephthalate (Ag2C8H4O4) offering in-situ formed metal/organic nanocomposite as the highly efficient organic anode in Li-ion and Na-ion batteries
Han et al. Donut-shaped Co3O4 nanoflakes grown on nickel foam with enhanced supercapacitive performances
CN106876154B (zh) 聚苯胺—磺化石墨烯复合电极材料的制备方法
CN112701268B (zh) 柔性一体化碳包覆氧化钨/碳纳米管薄膜复合电极及其制备方法
Pang et al. Conjugated porous polyimide poly (2, 6-diaminoanthraquinone) benzamide with good stability and high-performance as a cathode for sodium ion batteries
Chen et al. High sulfur-doped hard carbon anode from polystyrene with enhanced capacity and stability for potassium-ion storage
CN105406042A (zh) 一种碳包覆的超长二氧化钛纳米管锂离子电池负极材料的制备方法
JP2017528401A (ja) タングステン含有材料の用途
Liu et al. Phenothiazine-based copolymer with redox functional backbones for organic battery cathode materials
Hu et al. Electro-spraying/spinning: A novel battery manufacturing technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821630

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 13.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18821630

Country of ref document: EP

Kind code of ref document: A1