WO2018233336A1 - 玻璃幕墙三维变形现场检测方法和装置 - Google Patents
玻璃幕墙三维变形现场检测方法和装置 Download PDFInfo
- Publication number
- WO2018233336A1 WO2018233336A1 PCT/CN2018/080654 CN2018080654W WO2018233336A1 WO 2018233336 A1 WO2018233336 A1 WO 2018233336A1 CN 2018080654 W CN2018080654 W CN 2018080654W WO 2018233336 A1 WO2018233336 A1 WO 2018233336A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- curtain wall
- main
- bolts
- speed reducer
- glass curtain
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
Definitions
- the invention relates to a method and a device for detecting a glass curtain wall, in particular to a method and a device for detecting a three-dimensional deformation of a glass curtain wall.
- the object of the present invention is to provide a method for detecting a three-dimensional deformation of a glass curtain wall, which can be used for the quality inspection of a new curtain wall construction, and can also be used for the safety inspection and identification of existing curtain walls.
- Another object of the present invention is to provide a three-dimensional deformation field detecting device for a glass curtain wall.
- the technical scheme adopted by the invention is: a three-dimensional deformation on-site detecting device for a glass curtain wall, comprising a main I-beam, an up-and-down moving motor, an upper and lower speed reducer, a left and right moving motor, a left and right speed reducer, a plane internal and external moving motor, and a plane internal and external speed reducer.
- electrical control cabinet wireless receiver, L-shaped connector, I-beam support, curtain wall column and laptop;
- the two ends of the main I-beam are respectively equipped with left and right moving motors, left and right speed reducers, up and down moving motors and upper and lower speed reducers, and plane inner and outer moving motors and plane internal and external speed reducers are installed in the middle of the main I-beam;
- All of the above motors and reducers are connected to a wireless receiver in the electrical control cabinet, and the wireless receiver is connected to the laptop via a network;
- the two ends and the middle of the main I-beam are respectively connected by bolts and three I-beam supports, and the I-beam supports are connected to the ground by bolts;
- the two ends of the main I-beam are connected to the three I-beam support by four M18 bolts, and the I-beam support is connected to the concrete ground by four M20 bolts;
- the main I-beam is connected to the lower end of the detected curtain wall column through an L-shaped connecting piece and two M12 bolts.
- a method for detecting a three-dimensional deformation of a glass curtain wall using the above device comprises the following steps:
- the first step selecting a plate as a test unit on the glass curtain wall site, including three curtain wall columns, and installing the device outside the glass curtain wall;
- the second step corresponding to the three curtain wall columns at a distance of 500 mm, the I-beam support is installed, and each of the I-beam supports is connected with the ground by bolts;
- the third step the left and right moving motor, the left and right speed reducer, the up and down moving motor and the upper and lower speed reducer are respectively installed at the two ends of the main I-beam, and the plane internal and external moving motor and the plane internal and external speed reducer are installed in the middle of the main I-beam;
- the third step installing the main I-beam, each of the steel beam supports fixing the main I-beam by bolts;
- the fourth step the three curtain wall columns are connected to the main I-beam by an L-shaped connecting member, and one end of the L-shaped connecting member is connected with the curtain wall column by bolts, and the other end is connected with the main I-beam by bolts;
- the fifth step the notebook computer commands the motor and the speed reducer through the wireless receiver to perform three-dimensional displacement work, and draws conclusions on the spot;
- the inter-layer displacement angle is taken as 50% of the engineering design index; for the grading detection, the inter-layer displacement angle is taken as L/800, L is the interlayer height, when the L-shaped adapter and the main I-beam 1 are produced.
- L is the interlayer height, when the L-shaped adapter and the main I-beam 1 are produced.
- the main I-beam is moved in each direction of the left and right direction, the up and down direction, and the in-plane direction, and each detection direction is repeatedly moved for three cycles, each period is 3s-10s.
- each detection direction is repeatedly moved for three cycles, each period is 3s-10s.
- the present invention can simulate the deformation performance between the layers of the curtain wall by the on-site detection method and device for the three-dimensional deformation of the glass curtain wall.
- the end of the test can only perform the three-dimensional deformation test of the curtain wall in the laboratory, and the device can be directly tested on the site to avoid
- the laboratory inspection materials and installation practices are different from the site, and the representative and authentic on-site inspection conclusions are obtained. It is mainly used for the safety appraisal of existing glass curtain wall structures, and can also be used for the quality inspection of glass curtain wall construction under construction.
- FIG. 1 is a use state diagram of a three-dimensional deformation field detecting device for a glass curtain wall of the present invention
- FIG. 2 is an enlarged view of the node 1 of FIG. 1.
- a three-dimensional deformation on-site inspection device for glass curtain wall including main I-beam, upper and lower moving motor 2, upper and lower speed reducer 3, left and right moving motor 4, left and right speed reducer 5, in-plane moving motor 6.
- Two ends of the main I-beam 1 are respectively mounted with a left and right moving motor 4, a left and right speed reducer 5, an up and down moving motor 2, and an up and down speed reducer 3.
- the inner I-beam 1 is mounted with a plane inner and outer moving motor 6 and a plane.
- All of the above motors and reducers are connected to the wireless receiver 8 in the electrical control cabinet 8, and the wireless receiver 8 is connected to the notebook via a network;
- the two ends and the middle of the main I-beam 1 are respectively connected with three I-beam support 12 through four M18 bolts 13 , and the I-beam support 12 is connected to the ground by four M20 bolts 13;
- a method for detecting a three-dimensional deformation of a glass curtain wall using the above device comprises the following steps:
- the first step selecting a plate as a test unit on the glass curtain wall, including three curtain wall columns 10, and installing the device outside the glass curtain wall;
- the second step corresponding to the three curtain wall columns 10 at a distance of 500 mm, the I-beam support 12 is installed, and each of the I-beam supports 12 is connected with the ground by four M20 bolts;
- the third step the left and right moving motor 4, the left and right speed reducer 5, the up and down moving motor 2 and the up and down speed reducer 3 are respectively installed at the two ends of the main I-beam 1 , and the plane inner and outer moving motor 6 is installed in the middle of the main I-beam 1 And in-plane reducer 7;
- the third step installing the main I-beam 1 , each I-beam support 12 fixing the main I-beam 1 by 4 M18 bolts;
- the fourth step connecting the three curtain wall columns 10 to the main I-beam 1 by the L-shaped connecting member 11, the L-shaped connecting member 11 is connected with the curtain wall column 10 by two M12 bolts at one end, and the two M12 bolts are used at the other end. Connected to the main I-beam 1;
- the fifth step the notebook computer instructs the motor and the speed reducer to perform three-dimensional displacement work through the wireless receiver 8, and draws conclusions on the spot;
- the inter-layer displacement angle is taken as 50% of the engineering design index; for the grading detection, the inter-layer displacement angle is taken as L/800, L is the interlayer height, when the L-shaped adapter and the main I-beam 1 are produced.
- L is the interlayer height, when the L-shaped adapter and the main I-beam 1 are produced.
- the main I-beam 1 is repeatedly moved in each direction of the left and right direction, the up and down direction, and the in-plane direction, and each detection direction is repeated for three cycles. Each cycle should be 3s-10s.
- the junction speed at each level After detecting the junction speed at each level, Check the condition of the test piece and stop the test when there is damage or dysfunction at the joint of the curtain wall test piece.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
一种玻璃幕墙三维变形现场检测方法和装置,包括主工字钢梁(1)、上下移动电动机(2)、上下减速机(3)、左右移动电动机(4)、左右减速机(5)、平面内外移动电动机(6)、平面内外减速机(7)、电气控制柜(8)、无线接收器(9)、L形连接件(11)、工字钢梁支座(12)、幕墙立柱(10)和笔记本电脑;主工字钢梁(1)的两端分别安装有左右移动电动机(4)、左右减速机(5)、上下移动电动机(2)和上下减速机(3),主工字钢梁(1)中间安装有平面内外移动电动机(6)和平面内外减速机(7);所有电动机和减速机均与电气控制柜(8)中的无线接收器(9)相连接,无线接收器(9)通过网络与笔记本电脑连接。既可以用于既有玻璃幕墙三维变形现场结构安全性鉴定,又可以用于在建玻璃幕墙施工质量检验。
Description
本发明涉及一种玻璃幕墙的检测方法及装置,具体涉及一种玻璃幕墙三维变形现场检测方法及装置。
随着我国经济建设和城市化的日益发展,城市的高层和超高层建筑犹如雨后春笋。从上世纪80年代开始起步,90年代中期形成高潮,到目前,20多年呈现了大规模,高速发展的姿态。从东部的沿海城市到西部的边远小镇,几乎都可以看到使用玻璃幕墙的建筑,特别是城市中的高层建筑上,玻璃幕墙占据了绝对的优势。伴随着玻璃幕墙大量建设,幕墙四性检测均在实验室内检测,一些施工单位在在现场施工以次充好,但送检时却用合格材料,不能真实反映施工质量情况,故施工或维护不当造成的人生伤亡安全质量事故。
玻璃幕墙按类型划分主要为隐框玻幕墙、半隐框幕墙、明框幕墙。为加强有建筑幕墙的施工现场安全检测,有效预防城市灾害,保护人民生命财产安全,开展建筑幕墙安全性鉴定尤为重要。
发明内容
本发明的目的是提供一种玻璃幕墙三维变形现场检测方法,该方法既可以用于新建幕墙施工质量验收,又可以用于既有幕墙安全检测鉴定。
本发明的另一个目的是提供一种玻璃幕墙三维变形现场检测装置。
本发明采用的技术方案为:一种玻璃幕墙三维变形现场检测装置,包括主工字钢梁、上下移动电动机、上下减速机、左右移动电动机、左右减速机、平面内外移动电动机、平面内外减速机、电气控制柜、无线接收器、L形连接件、工字钢梁支座、幕墙立柱和笔记本电脑;
所述主工字钢梁的两端分别安装有左右移动电动机、左右减速机、上下移动电动机和上下减速机,主工字钢梁中间安装有平面内外移动电动机和平面内外减速机;
上述所有电动机和减速机均与电气控制柜中的无线接收器相连接,无线接收器通过网络与笔记本电脑连接;
所述主工字钢梁的两端和中间分别通过螺栓与三个工字钢梁支座连接,工字钢梁支座通过螺栓与砼地面连接;
所述主工字钢梁通过L形连接件、螺栓与所检测的幕墙立柱下端连接。
作为优选,所述主工字钢梁的两端和中间分别通过4根M18螺栓与三个工字钢梁支座连接,工字钢梁支座通过4根M20螺栓与砼地面连接;所述主工字钢梁通过L形连接件、2根M12螺栓与所检测的幕墙立柱下端连接。
一种使用上述装置的玻璃幕墙三维变形现场检测方法,包括以下步骤:
第一步骤:玻璃幕墙现场选一个板块做为试验单元,包括三根幕墙立柱,在玻璃幕墙外侧,即室外安装本装置;
第二步骤:对应三根幕墙立柱距离其500mm处,安装工字钢梁支座,每个工字钢梁支座采用螺栓与砼地面连接;
第三步骤:主工字钢梁的两端分别安装有左右移动电动机、左右减速机、上下移动电动机和上下减速机,主工字钢梁中间安装有平面内外移动电动机和平面内外减速机;
第三步骤:安装主工字钢梁,每个工字钢梁支座通过螺栓将主工字钢梁固定;
第四步骤:采用L形连接件把三个幕墙立柱连接在主工字钢梁上,L形连接件一端采用螺栓与幕墙立柱连接,另一端采用螺栓与主工字钢梁连接;
第五步骤:笔记本电脑通过无线接收器指令电动机和减速机进行三维位移工作,并现场得出结论;
对于工程检测,层间位移角取工程设计指标的50%;对于定级检测,层间位移角取L/800,L为层间高度,当L型转接件与主工字钢梁1产生相对位移时,应调整并紧固后重复加载;
每次检测,使主工字钢梁沿每左右方向、上下方向、平面内外方向,每个检测方向反复移动三个周期,每个周期为3s-10s,在各级检测结速后,检查记录试件状态,当幕墙试件连接部位出现损坏或功能障碍时应停止试验。
有益效果:本发明通过玻璃幕墙三维变形现场检测方法和装置,能现场模拟幕墙层间变形性能分级,结束该试验只能在实验室进行幕墙三维变形试验,该装置可直接在现场进行检测,避免实验室送检材料和安装做法与现场不一,得出具有代表性和真实性的现场检测结论,主要用于既有玻璃幕墙结构安全性鉴定,也可以用于在建玻璃幕墙施工质量检验。
图1为本发明玻璃幕墙三维变形现场检测装置的使用状态图;
图2为图1中节点1的放大图。
下面结合附图对本发明的具体实施方式进行详细的说明。
如图1和2所示:一种玻璃幕墙三维变形现场检测装置,包括主工字钢梁1、上下移动电动机2、上下减速机3、左右移动电动机4、左右减速机5、平面内外移动电动机6、平面内外减速机7、电气控制柜8、无线接收器9、L形连接件11、工字钢梁支座12、幕墙立柱10和笔记本电脑;
所述主工字钢梁1的两端分别安装有左右移动电动机4、左右减速机5、上下移动电动机2和上下减速机3,主工字钢梁1中间安装有平面内外移动电动机6和平面内外减速机7;
上述所有电动机和减速机均与电气控制柜8中的无线接收器8相连接,无线接收器8通过网络与笔记本电脑连接;
所述主工字钢梁1的两端和中间分别通过4根M18螺栓13与三个工字钢梁支座12连接,工字钢梁支座12通过4根M20螺栓13与砼地面连接;
所述主工字钢梁1通过L形连接件11、2根M12螺栓与所检测的幕墙立柱10下端连接。
一种使用上述装置的玻璃幕墙三维变形现场检测方法,包括以下步骤:
第一步骤:玻璃幕墙现场选一个板块做为试验单元,包括三根幕墙立柱10,在玻璃幕墙外侧,即室外安装本装置;
第二步骤:对应三根幕墙立柱10距离其500mm处,安装工字钢梁支座12,每个工字钢梁支座12采用4根M20螺栓与砼地面连接;
第三步骤:主工字钢梁1的两端分别安装有左右移动电动机4、左右减速机5、上下移动电动机2和上下减速机3,主工字钢梁1中间安装有平面内外移动电动机6和平面内外减速机7;
第三步骤:安装主工字钢梁1,每个工字钢梁支座12通过4根M18螺栓将主工字钢梁1固定;
第四步骤:采用L形连接件11把三个幕墙立柱10连接在主工字钢梁1上,L形连接件11一端采用2根M12螺栓与幕墙立柱10连接,另一端采用2根M12螺栓与主工字钢梁1连接;
第五步骤:笔记本电脑通过无线接收器8指令电动机和减速机进行三维位移工作,并现场得出结论;
对于工程检测,层间位移角取工程设计指标的50%;对于定级检测,层间位移角取L/800,L为层间高度,当L型转接件与主工字钢梁1产生相对位移时,应调整并紧固后 重复加载。
每次检测,使主工字钢梁1沿每左右方向、上下方向、平面内外方向,每个检测方向反复移动三个周期,每个周期宜为3s-10s,在各级检测结速后,检查记录试件状态,当幕墙试件连接部位出现损坏或功能障碍时应停止试验。
以上结合附图对本发明的实施方式做出详细说明,但本发明不局限于所描述的实施方式。对本领域的普通技术人员而言,在本发明的原理和技术思想的范围内,对这些实施方式进行多种变化、修改、替换和变形仍落入本发明的保护范围内。
Claims (3)
- 一种玻璃幕墙三维变形现场检测装置,其特征在于:包括主工字钢梁、上下移动电动机、上下减速机、左右移动电动机、左右减速机、平面内外移动电动机、平面内外减速机、电气控制柜、无线接收器、L形连接件、工字钢梁支座、幕墙立柱和笔记本电脑;所述主工字钢梁的两端分别安装有左右移动电动机、左右减速机、上下移动电动机和上下减速机,主工字钢梁中间安装有平面内外移动电动机和平面内外减速机;上述所有电动机和减速机均与电气控制柜中的无线接收器相连接,无线接收器通过网络与笔记本电脑连接;所述主工字钢梁的两端和中间分别通过螺栓与三个工字钢梁支座连接,工字钢梁支座通过螺栓与砼地面连接;所述主工字钢梁通过L形连接件、螺栓与所检测的幕墙立柱下端连接。
- 根据权利要求1所述的玻璃幕墙三维变形现场检测装置,其特征在于:所述主工字钢梁的两端和中间分别通过4根M18螺栓与三个工字钢梁支座连接,工字钢梁支座通过4根M20螺栓与砼地面连接;所述主工字钢梁通过L形连接件、2根M12螺栓与所检测的幕墙立柱下端连接。
- 一种使用权利要求1或2所述装置的玻璃幕墙三维变形现场检测方法,包括以下步骤:第一步骤:玻璃幕墙现场选一个板块做为试验单元,包括三根幕墙立柱,在玻璃幕墙外侧,即室外安装本装置;第二步骤:对应三根幕墙立柱距离其500mm处,安装工字钢梁支座,每个工字钢梁支座采用螺栓与砼地面连接;第三步骤:主工字钢梁的两端分别安装有左右移动电动机、左右减速机、上下移动电动机和上下减速机,主工字钢梁中间安装有平面内外移动电动机和平面内外减速机;第三步骤:安装主工字钢梁,每个工字钢梁支座通过螺栓将主工字钢梁固定;第四步骤:采用L形连接件把三个幕墙立柱连接在主工字钢梁上,L形连接件一端采用螺栓与幕墙立柱连接,另一端采用螺栓与主工字钢梁连接;第五步骤:笔记本电脑通过无线接收器指令电动机和减速机进行三维位移工作,并现场得出结论;对于工程检测,层间位移角取工程设计指标的50%;对于定级检测,层间位移角取L/800,L为层间高度,当L型转接件与主工字钢梁1产生相对位移时,应调整并紧固后 重复加载;每次检测,使主工字钢梁沿每左右方向、上下方向、平面内外方向,每个检测方向反复移动三个周期,每个周期为3s-10s,在各级检测结速后,检查记录试件状态,当幕墙试件连接部位出现损坏或功能障碍时应停止试验。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2019101474A AU2019101474A4 (en) | 2017-06-20 | 2019-11-28 | On-site detection method and device for three-dimensional deformation of glass curtain wall |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710470734.X | 2017-06-20 | ||
CN201710470734.XA CN107036886A (zh) | 2017-06-20 | 2017-06-20 | 玻璃幕墙三维变形现场检测方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2019101474A Division AU2019101474A4 (en) | 2017-06-20 | 2019-11-28 | On-site detection method and device for three-dimensional deformation of glass curtain wall |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018233336A1 true WO2018233336A1 (zh) | 2018-12-27 |
Family
ID=59541172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/080654 WO2018233336A1 (zh) | 2017-06-20 | 2018-03-27 | 玻璃幕墙三维变形现场检测方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107036886A (zh) |
WO (1) | WO2018233336A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113281189A (zh) * | 2021-05-18 | 2021-08-20 | 浙江众城检测技术有限公司 | 一种幕墙面板抗拉强度的检测装置 |
CN113324750A (zh) * | 2021-07-01 | 2021-08-31 | 安徽翔誉千秋建设集团有限公司 | 玻璃幕墙防坠落的检测装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107449830B (zh) * | 2017-09-19 | 2023-10-20 | 湖北建鄂勘察设计审查咨询有限公司 | 一种建设工程验收辅助工具 |
CN107560881A (zh) * | 2017-10-12 | 2018-01-09 | 江苏科永和工程建设质量检测鉴定中心有限公司 | 一种三维变形机构 |
CN109579755A (zh) * | 2018-11-09 | 2019-04-05 | 通标标准技术服务有限公司 | 玻璃幕墙地震位移模拟检测装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7069792B2 (en) * | 2001-08-08 | 2006-07-04 | Casad Donald F | Joint sealant adhesion indicator |
CN103852375A (zh) * | 2012-12-03 | 2014-06-11 | 中国建筑科学研究院 | 一种既有玻璃幕墙结构胶力学性能现场检测系统 |
CN204422342U (zh) * | 2015-02-02 | 2015-06-24 | 湖北省建筑工程质量监督检验测试中心 | Z型幕墙检测系统 |
CN105445094A (zh) * | 2015-12-31 | 2016-03-30 | 北京中科天昊科技有限公司 | 载荷加载装置及建筑幕墙层间变位性能检测系统 |
CN205898554U (zh) * | 2016-08-03 | 2017-01-18 | 安徽众锐质量检测有限公司 | 一种幕墙平面内变形性能测试装置 |
CN207351793U (zh) * | 2017-06-20 | 2018-05-11 | 南京工大建设工程技术有限公司 | 玻璃幕墙三维变形现场检测装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2581969Y (zh) * | 2002-08-09 | 2003-10-22 | 中国建筑材料科学研究院 | 脆性材料力学性能无损测试装置 |
-
2017
- 2017-06-20 CN CN201710470734.XA patent/CN107036886A/zh active Pending
-
2018
- 2018-03-27 WO PCT/CN2018/080654 patent/WO2018233336A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7069792B2 (en) * | 2001-08-08 | 2006-07-04 | Casad Donald F | Joint sealant adhesion indicator |
CN103852375A (zh) * | 2012-12-03 | 2014-06-11 | 中国建筑科学研究院 | 一种既有玻璃幕墙结构胶力学性能现场检测系统 |
CN204422342U (zh) * | 2015-02-02 | 2015-06-24 | 湖北省建筑工程质量监督检验测试中心 | Z型幕墙检测系统 |
CN105445094A (zh) * | 2015-12-31 | 2016-03-30 | 北京中科天昊科技有限公司 | 载荷加载装置及建筑幕墙层间变位性能检测系统 |
CN205898554U (zh) * | 2016-08-03 | 2017-01-18 | 安徽众锐质量检测有限公司 | 一种幕墙平面内变形性能测试装置 |
CN207351793U (zh) * | 2017-06-20 | 2018-05-11 | 南京工大建设工程技术有限公司 | 玻璃幕墙三维变形现场检测装置 |
Non-Patent Citations (2)
Title |
---|
CAO, YUAN ET AL.: "Research on Testing Technology of Deformation Performance between Layers of Curtain Wall", CONSTRUCTION QUALITY, vol. 32, no. 2, 10 February 2014 (2014-02-10), pages 13 - 17 * |
CHEN, JUN: "Transformation of Water Tightness and Plane Deformation Performance Test Device of Building Curtain Walls", GUANGDONG BUILDING MATERIALS, 15 June 2015 (2015-06-15), pages 70 - 72 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113281189A (zh) * | 2021-05-18 | 2021-08-20 | 浙江众城检测技术有限公司 | 一种幕墙面板抗拉强度的检测装置 |
CN113324750A (zh) * | 2021-07-01 | 2021-08-31 | 安徽翔誉千秋建设集团有限公司 | 玻璃幕墙防坠落的检测装置 |
CN113324750B (zh) * | 2021-07-01 | 2024-06-04 | 安徽翔誉千秋建设集团有限公司 | 玻璃幕墙防坠落的检测装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107036886A (zh) | 2017-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018233336A1 (zh) | 玻璃幕墙三维变形现场检测方法和装置 | |
Henry et al. | Behaviour of tilt‐up precast concrete buildings during the 2010/2011 Christchurch earthquakes | |
CN109457965B (zh) | 预制混凝土墙板的高效安装方法及其装置 | |
CN106437178A (zh) | 一种多层钢结构连廊整体提升施工方法及装置 | |
CN103953052B (zh) | 一种洞桩法钢管柱施工方法 | |
Casapulla et al. | Structural assessment of santa maria maddalena church in ischia island (Italy) by experimental modal analysis under operational conditions | |
CN206339352U (zh) | 一种机电设备抗震检测装置 | |
CN206428974U (zh) | 一种多层钢结构连廊整体提升施工装置 | |
CN103091171A (zh) | 玻璃幕墙立柱预埋件节点拉力性能现场检测方法和装置 | |
CN208333833U (zh) | 一种栏杆推力模拟装置 | |
CN112096090B (zh) | 大跨度空间管桁架单点支撑对接逐级卸载装置及施工工法 | |
CN103470036A (zh) | 一种外挑结构的施工方法 | |
CN106586767B (zh) | 一种可用于无井道建筑的电梯安装装置组件及电梯安装方法 | |
CN202023298U (zh) | 适用于交叉式塔吊吊装的整榀分段式屋面钢梁结构 | |
CN102926554A (zh) | 钢挂座模板支撑及其施工方法 | |
CN207351793U (zh) | 玻璃幕墙三维变形现场检测装置 | |
JP2017161482A (ja) | 建築物の健全度を診断する建築物の診断システム | |
CN216081453U (zh) | 一种平面水平度测量装置 | |
CN206346116U (zh) | 一种拱座预埋锚杆定位系统 | |
AU2019101474A4 (en) | On-site detection method and device for three-dimensional deformation of glass curtain wall | |
Clifton | Lessons learned for steel seismic design from the 2010/2011 Canterbury Earthquake Series | |
CN206114275U (zh) | 一种平面节点受力性能测试装置 | |
CN205785770U (zh) | 栏杆水平推力试验系统 | |
CN205719806U (zh) | 脚手架可调托座及可调底座抗压强度试验装置 | |
CN204422342U (zh) | Z型幕墙检测系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18820109 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18820109 Country of ref document: EP Kind code of ref document: A1 |