WO2018232575A1 - 一种光子探测系统 - Google Patents

一种光子探测系统 Download PDF

Info

Publication number
WO2018232575A1
WO2018232575A1 PCT/CN2017/089042 CN2017089042W WO2018232575A1 WO 2018232575 A1 WO2018232575 A1 WO 2018232575A1 CN 2017089042 W CN2017089042 W CN 2017089042W WO 2018232575 A1 WO2018232575 A1 WO 2018232575A1
Authority
WO
WIPO (PCT)
Prior art keywords
photon
module
port
path
signal
Prior art date
Application number
PCT/CN2017/089042
Other languages
English (en)
French (fr)
Inventor
贺佳坤
张臣雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/089042 priority Critical patent/WO2018232575A1/zh
Priority to CN201780002936.XA priority patent/CN109429508B/zh
Publication of WO2018232575A1 publication Critical patent/WO2018232575A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector

Definitions

  • the present application relates to the field of quantum optics, and in particular to a photon detection system.
  • the application based on quantum optical system can include the following three parts: 1. Single photon light source. 2. Single photon signal processing. 3. Single photon detection. When detecting a single photon, it is usually necessary to simultaneously detect two or more photons to determine the temporal correlation information between the photons, thereby analyzing other properties carried by the photons.
  • a Photon Pair Source can generate a pair of photons of different wavelengths (ie, associated photon pairs), including photons 1 and photons 2.
  • Photon 1 and photon 2 can be separated into two different optical paths by Wavelength Division Multiplexing (WDM), and then transmitted to two different SPDs respectively.
  • WDM Wavelength Division Multiplexing
  • the time difference information ⁇ t of photon 1 and photon 2 is equal to photon 1 The time difference between the photon 2 and the photon 2 detected by the two SPDs.
  • the embodiment of the present application provides a photon detection system, which can solve the problem of high cost caused by using multiple SPDs in single photon detection.
  • the embodiment of the present application provides a photon detection system, including: a first switch module, including a first port and a second port, where the first switch module is configured to set the first port to communicate with the detection module, and set the second port and The detecting module is not connected; the detecting module is configured to: if the first photon is detected when the first port is connected to the detecting module, send a first signal to the control module, where the first signal is used to indicate that the first photon is detected; the control module, And configured to send a second signal to the first switch module when the first signal is received, where the second signal is used to indicate that the first switch module sets the second port to communicate with the detecting module; and the first switch module is configured to receive the second When the signal is set, the second port is connected to the detecting module, so that the detecting module detects the second photon.
  • the detecting module can detect the first photon and the second photon respectively.
  • multiple SPDs are required to detect the first photon and the second photon respectively.
  • Photon detection can solve the problem of high cost caused by using multiple SPDs in single photon detection.
  • the first path between the first port and the first separating module is shorter than the second path between the second port and the first separating module; the first separating module is configured to separate the generated by the light source module Associated photon pairs, the associated photon pair includes a first photon and a second photon, or the associated photon pair includes a first photon and a second photon state.
  • the first photon can be transmitted through the first path, and the second photon can be transmitted through the second path.
  • the first photon and the second photon can reach the first switch module at different times, further ensuring the first photon and The second photons can be detected by the detection module, respectively.
  • the system further includes: a second switch module including a third port, a fourth port, and a fifth port, the fifth port being connected to the second port of the first switch module, the third port and the third port
  • the fourth port is connected to the first separation module through the second separation module; the third path between the third port and the first separation module is shorter than the fourth path between the fourth port and the first separation module; the second path includes a third path, a second path between the second switch module and the first switch module, a second separation module for separating the second photon state, and a third photon state including the third photon and the fourth photon
  • the photon is transmitted through the third path, and the fourth photon is transmitted through the fourth path;
  • the second switch module is configured to set the third port to communicate with the second port, and the fourth port is disconnected from the second port.
  • the second separation module can separate the second photon state into the third photon and the fourth photon, and the third photon can be transmitted through the third path.
  • Four photons are transmitted through the fourth path.
  • the system further includes: a detecting module, configured to: if the third photon is received when the third port is connected to the second port, send a third signal to the control module; wherein the third signal And a control module, configured to send a fourth signal to the second switch module when the third signal is received, where the fourth signal is used to instruct the second switch module to set the fourth port and the second port
  • the second switch module is further configured to: when the fourth signal is received, set the fourth port to communicate with the second port, so that the fourth photon is transmitted to the detecting module through the second switch module, the fifth path, and the first switch module.
  • the detecting module can detect the first photon, the third photon, and the fourth photon respectively, and the first photon, the second photon, and the fourth photon are separately detected by the SPD.
  • Multiple photons can be detected by one detection module, which can solve the problem of high cost caused by using multiple SPDs in single photon detection.
  • the first end of the detection module is connected to the first switch module, and the second end is connected to the control module.
  • the detecting module detects the photon transmitted by the first switching module, it can send a signal to the control module.
  • the first signal may be sent to the control module, and when the detecting module detects the third photon transmitted by the first switching module, the detecting module may send the first photon to the control module.
  • the third signal when the detecting module detects the first photon transmitted by the first switching module, the first signal may be sent to the control module, and when the detecting module detects the third photon transmitted by the first switching module, the detecting module may send the first photon to the control module. The third signal.
  • the first end of the control module is connected to the detecting module, and the second end is connected to the first switching module.
  • the control module receives the signal sent by the detection module, it can send a signal to the first switch module.
  • the control module receives the first signal sent by the detecting module
  • the second signal may be sent to the first switch module.
  • the control module may send the fourth signal to the first switch module. signal.
  • the first port and the second port of the first switch module are coupled to the first split module.
  • the first separation module separates the associated photon pair into the first photon and the second photon
  • the first photon can be transmitted through the first path between the first port of the first switch module and the first separation module
  • the two photons may be transmitted through a second path between the second port of the first switch module and the first split module.
  • the system further includes a detecting module, configured to acquire a time difference between the first photon and the second photon; wherein, a time difference between the first photon and the second photon is a first time difference minus a second time difference
  • the first time difference is used to indicate a time difference between the first photon and the second photon respectively reaching the detecting module
  • the second time difference is used to indicate that the first photon is transmitted between the first path and the second photon is transmitted in the second path.
  • the time difference can use the first photon and the second photon to reach the detection module respectively. Poor, subtracting the time difference between the first photon and the second photon respectively transmitted between the first path and the second path to obtain a time difference between the first photon and the second photon.
  • the embodiment of the present application provides a photon detection system, including: a control module, configured to control a fraction ratio of the first switch module; and a first switch module, configured to use the first photon state according to a fraction ratio controlled by the control module Separating into multiple photons; detecting module for detecting multiple photons separately.
  • the detecting module can detect a plurality of photons respectively.
  • multiple SPDs are required to detect multiple photons respectively.
  • the embodiment of the present application can solve the high cost caused by using multiple SPDs in single photon detection. problem.
  • the first switch module includes a first port, a second port, a third port, and a fourth port, the first port is connected to the light source module, the second port is connected to the third port, and the fourth port is Connected to the detecting module;
  • the light source module is configured to generate a first photon state, wherein the first photon state is transmitted through the first path between the light source module and the first port of the first switch module; wherein the first photon state comprises the first photon And a second photon;
  • the control module is configured to send a first signal to the first switch module according to the preset time interval, where the first signal is used to set a fraction ratio of the first switch module, so that the first photon or the second photon is from the third The probability of the port output being greater than the probability that the first photon or the second photon is output from the fourth port; wherein the preset time interval is the time when the first photon or the second photon is transmitted from the third port to the second port; the detecting module is used For detecting the
  • the detecting module can detect the first photon and the second photon at the first time and the second time respectively.
  • at least two SPDs are required to detect two photons respectively, and the embodiment of the present application can solve the single photon.
  • the cost of using multiple SPDs during probing is high.
  • the first end of the detection module is connected to the first switch module, and the second end is connected to the control module.
  • the detecting module can detect photons (eg, first photons and second photons) transmitted through the first switching module.
  • the first end of the control module is connected to the detecting module, and the second end is connected to the first switching module.
  • the control module can send a signal to the first switch module.
  • the control module may send a first signal to the first switch module, where the first signal is used to set a fraction ratio of the first switch module, so that the probability that the first photon or the second photon is output from the third port is greater than the first photon or the first The probability that two photons will be output from the fourth port.
  • the system further includes a detecting module, configured to acquire a time difference between the first photon and the second photon; wherein, the time difference between the first photon and the second photon is a first time difference minus a second time difference, A time difference is used to indicate a time difference between the first photon and the second photon respectively reaching the detection module, and the second time difference is used to indicate a time difference between a time when the first photon is transmitted on the second path and a time when the second photon is transmitted on the second path.
  • the second path is a path between the third port and the second port.
  • the detecting module can use the time difference between the first photon and the second photon respectively to reach the detecting module, and subtract the time difference between the first photon and the second photon respectively transmitted in the second path to obtain a relationship between the first photon and the second photon. Time difference.
  • the embodiment of the present application provides a photon detection system, including: a first switch, including a first port and a second port, where the first switch is configured to set the first port to communicate with the SPD, and the second port and the SPD are not set.
  • SPD if the first photon is detected when the first port is connected to the SPD, sends a first signal to a Field-Programmable Gate Array (FPGA), the first signal is used to indicate the detection a first photon; an FPGA, configured to send a second signal to the first switch when the first signal is received, the second signal is used to indicate that the first switch sets the second port to communicate with the SPD; and the first switch is configured to receive The second port is set to communicate with the SPD when the second signal is received, so that the SPD detects the second photon. In this way, the SPD can detect the first photon and the second photon respectively.
  • multiple SPDs are required to detect the first photon and the second photon respectively.
  • multiple photons can be performed by one SPD. Detection can solve the problem of high cost caused by using multiple SPDs in single photon detection.
  • the first path between the first port and the first WDM is shorter than the second path between the second port and the first WDM; the first WDM is used to separate the association of the associated photon to the light source
  • the photon pair, the associated photon pair includes a first photon and a second photon, or the associated photon pair includes a first photon and a second photon state.
  • the first photon can be transmitted through the first path, and the second photon can be transmitted through the second path.
  • the first photon and the second photon can reach the first switch at different times, further ensuring that the first photon and the second photon can be They were detected by SPD respectively.
  • the system further includes: a second switch including a third port, a fourth port, and a fifth port, the fifth port being connected to the second port of the first switch, the third port and the fourth port All are connected to the first WDM through the second WDM; the third path between the third port and the first WDM is shorter than the fourth path between the fourth port and the first WDM; the second path includes the third path, the second path a fifth path between the switch and the first switch; a second WDM for separating the second photon state, and if the second photon state includes the third photon and the fourth photon, the third photon is transmitted through the third path, fourth The photon is transmitted through the fourth path; the second switch is configured to connect the third port to the second port, and the fourth port is disconnected from the second port.
  • a second switch including a third port, a fourth port, and a fifth port, the fifth port being connected to the second port of the first switch, the third port and the fourth port All are connected to the first WDM through the second WDM; the third path
  • the second WDM can separate the second photon state into a third photon and a fourth photon, and the third photon can be transmitted through the third path, fourth The photons are transmitted through the fourth path.
  • the SPD is further configured to: if the third photon is received when the third port is connected to the second port, send a third signal to the FPGA; wherein the third signal is used to indicate that the third photon is detected
  • the FPGA is further configured to send a fourth signal to the second switch when the third signal is received, the fourth signal is used to instruct the second switch to set the fourth port to communicate with the second port
  • the second switch is further configured to receive The fourth port is connected to the second port when the fourth signal is sent, so that the fourth photon is transmitted to the SPD through the second switch, the fifth path and the first switch.
  • the SPD can detect the first photon, the third photon, and the fourth photon, respectively.
  • multiple SPDs are required to detect the first photon, the second photon, and the fourth photon, respectively. The detection of multiple photons by one SPD can solve the problem of high cost caused by using multiple SPDs in single photon detection.
  • the first end of the SPD is coupled to the first switch and the second end is coupled to the FPGA.
  • the SPD detects the photons transmitted through the first switch, it can send a signal to the FPGA.
  • the first signal may be sent to the FPGA, and when the SPD detects the third photon transmitted through the first switch, the third signal may be sent to the FPGA.
  • the first end of the FPGA is coupled to the SPD and the second end is coupled to the first switch.
  • the FPGA receives the signal sent by the SPD, it can send a signal to the first switch.
  • the FPGA receives the first signal sent by the SPD
  • the second signal may be sent to the first switch
  • the FPGA receives the third signal sent by the SPD the fourth signal may be sent to the first switch.
  • the first port and the second port of the first switch are coupled to the first WDM. This In the first step, when the first WDM separates the associated photon pair into the first photon and the second photon, the first photon can be transmitted through the first path between the first port of the first switch and the first WDM, and the second photon can be The second path between the second port of the first switch and the first WDM is transmitted.
  • the system further includes a TIA for acquiring a time difference between the first photon and the second photon; wherein the time difference between the first photon and the second photon is a first time difference minus a second time difference,
  • the first time difference is used to indicate a time difference between the first photon and the second photon respectively reaching the SPD
  • the second time difference is used to indicate a time difference between the time when the first photon is transmitted in the first path and the time when the second photon is transmitted in the second path.
  • the TIA can use the time difference between the first photon and the second photon to reach the SPD, respectively, and subtract the time difference between the first photon and the second photon respectively transmitted in the first path and the second path to obtain the first photon and the second photon.
  • the time difference between photons can be used to use the time difference between the first photon and the second photon to reach the SPD, respectively, and subtract the time difference between the first photon and the second photon respectively transmitted in the first path and the second path to obtain the first photon and the second photon.
  • the embodiment of the present application provides a photon detection system, including: an FPGA, configured to control a fraction ratio of the first switch; and a first switch, configured to separate the first photon state into multiples according to a fractional ratio controlled by the FPGA Photon; SPD, used to detect multiple photons separately.
  • the SPD can detect multiple photons separately.
  • multiple SPDs are required to detect multiple photons respectively.
  • the embodiment of the present application can solve the problem of high cost caused by using multiple SPDs in single photon detection. .
  • the first switch includes a first port, a second port, a third port, and a fourth port, the first port is connected to the associated photon to the light source, the second port is connected to the third port, and the fourth port is connected.
  • the port is connected to the SPD;
  • the associated photon pair source is configured to generate a first photon state, and the first photon state is transmitted through the first path between the associated photon pair and the first port of the first switch; wherein the first photon state comprises a first photon and a second photon;
  • an FPGA configured to send a first signal to the first switch according to a preset time interval, where the first signal is used to set a fraction ratio of the first switch, so that the first photon or the second photon is from the third The probability of the port output being greater than the probability that the first photon or the second photon is output from the fourth port; wherein the preset time interval is the time when the first photon or the second photon is transmitted from the third port to the second port; SPD, for The first
  • the first photon reaches the SPD at the first moment through the fourth port, and the second photon reaches the SPD at the second moment through the fourth port, and the first moment is not equal to the second moment.
  • the SPD can detect the first photon and the second photon at the first time and the second time respectively.
  • at least two SPDs are required to detect two photons respectively.
  • the embodiment of the present application can solve the single photon detection. The cost of using multiple SPDs is high.
  • the first end of the SPD is coupled to the first switch and the second end is coupled to the FPGA. In this way, the SPD can detect photons transmitted through the first switch.
  • the first end of the FPGA is coupled to the SPD and the second end is coupled to the first switch.
  • the FPGA can send a signal to the first switch.
  • the FPGA may send a first signal to the first switch, the first signal is used to set a fraction ratio of the first switch, so that the probability that the first photon or the second photon is output from the third port is greater than the first photon or the second photon The probability of the fourth port output.
  • the system further includes a TIA for acquiring a time difference between the first photon and the second photon; wherein, the time difference between the first photon and the second photon is a first time difference minus a second time difference, first The time difference is used to indicate a time difference between the first photon and the second photon respectively reaching the SPD, and the second time difference is used to indicate a time difference between a time when the first photon is transmitted in the second path and a time when the second photon is transmitted in the second path,
  • the second path is a path between the third port and the second port.
  • the TIA can use the time difference between the first photon and the second photon to reach the SPD, respectively, and subtract the time when the first photon and the second photon are respectively transmitted in the second path. Poor, the time difference between the first photon and the second photon is obtained.
  • an embodiment of the present application provides a computer storage medium for storing computer software instructions for use in the photon detection system described above, including a program designed to perform the above aspects.
  • An embodiment of the present application provides a photon detection system, which may include a first switch module, a detection module, and a control module.
  • the control module may control the first switch module, so that the detection module can detect the first photon and the second photon, respectively.
  • the first photon, the third photon, and the fourth photon are respectively detected.
  • multiple SPDs are required to detect multiple photons respectively.
  • multiple photons can be detected by one detection module, which can solve The problem of high cost caused by the use of multiple SPDs in single photon detection.
  • FIG. 1 is a photon detection system according to an embodiment of the present application
  • FIG. 3 is a photon detection system according to an embodiment of the present application.
  • FIG. 5 is a photon detection system according to an embodiment of the present application.
  • FIG. 6 is a photon detection system according to an embodiment of the present application.
  • Embodiments of the present application provide a photon detection system that can be applied to a quantum optical system. For example, it is applied to the detection of photons, including the detection of time dependence, quantity and energy of photons.
  • the photon detection system provided by the present application can also be applied to a quantum key distribution device, a quantum computing device, a scientific experimental instrument, and the like that require multiple SPDs in quantum communication.
  • the photon detection system may include a first switch module 021, a detection module 022, a control module 023, a first separation module 024, a detection module 025, and a light source module 026.
  • the first separation module 024 can separate the associated photon pair into a first photon and a second photon.
  • the first photon is transmitted on the first path
  • the second photon is transmitted on the second path, the first path being shorter than the second path (the second path length and the first path are indicated by a circle in FIG. 2).
  • the first switch module 021 sets the first port of the first switch module 021 to communicate with the detection module 022 so that the first photon can be transmitted to the detection module 022 through the first port. After detecting the first photon, the detecting module 022 sends a first signal to the control module 023. After receiving the first signal, the control module 023 sends a second signal to the first switch module 021. The first switch module 021 sets the second port to communicate with the detection module 022 when receiving the second signal, so that the detection module 022 detects the second photon.
  • the light source module 026 can be used to generate associated photon pairs, which can include first photons and second photons.
  • the light source module 026 is connected to the a terminal of the first separation module 024.
  • the first separation module 024 can be used to separate associated photon pairs.
  • the first separation module 024 can separate the associated photon pairs into a first photon and a second photon.
  • the first switch module 021 includes a first port and a second port, and the first switch module 021 is configured to set the first port to communicate with the e end of the detecting module 022 (ie, the first end of the detecting module), and set the second port and The e-end of the detection module 022 is not connected.
  • the first path between the first port and the first separation module 024 may be shorter than the second path between the second port and the first separation module 024.
  • the first photon can be transmitted on the first path.
  • the second photon can be transmitted on the second path.
  • the first port and the second port of the first switch module 021 are respectively connected to the b end and the c end of the first separating module 024.
  • the first switch module 021 may further include a d end, and the d end is connected to the e end of the detecting module 022.
  • the first photon can be transmitted from the first switch module 021 to the detection module 022, thereby being detected by the detection module 022.
  • the second port is not connected to the detecting module 022, the photons reaching the first opening module 021 via the second port cannot be transmitted from the first switching module 021 to the detecting module 022.
  • the first switch module 021 can be a low-latency high-speed optical switch.
  • the first switch module 021 can be an optical switch with a minimum loss of less than 1 dB.
  • the first path and the second path may employ a low loss optical solder delay line, for example, a " ⁇ 10m" stage fiber delay line may be used.
  • the detecting module 022 can be configured to: if the first photon is detected when the first port of the first switch module 021 is connected to the detecting module 022, send a first signal to the control module 023, where the first signal is used to indicate that the first photo is detected. Photon.
  • the detection module 022 can be an avalanche diode detector or a superconducting nanowire detector.
  • the control module 023 is configured to send a second signal to the first switch module 021 when the first signal is received, where the second signal is used to instruct the first switch module 021 to set the second port of the first switch module 021 and the detection module 022
  • the e-end is connected.
  • the g end of the control module 023 (ie, the first end of the control module) is connected to the f end of the detecting module 022 (ie, the second end of the detecting module), and the h end (ie, the second end of the control module) and the first switch module 021
  • the m end is connected.
  • the control module 023 can use a high-speed control logic gate array such as an FPGA.
  • the first switch module 021 can be configured to set the second port of the first switch module 021 to communicate with the e end of the detecting module 022 when the second signal is received, so that the detecting module 022 detects the second photon.
  • the detecting module 025 can be configured to acquire a time difference or other time-related information of the first photon and the second photon.
  • the detection module 025 is connected to the i terminal of the control module 023.
  • the time difference between the first photon and the second photon may be a first time difference minus a second time difference, the first time difference is used to indicate a time difference between the first photon and the second photon respectively reaching the detecting module, and the second time difference is used to indicate the first time difference.
  • the time difference between the time the photon is transmitted on the first path and the time the second photon is transmitted on the second path.
  • the time difference If the time when the first photon reaches the detection module is 0s and the time of the detection module of the second photon is 1st, the time difference ⁇ ttotal of the detection module of the first photon and the second photon is 1s.
  • the length of the path 1 where the first photon is located is 0.5 m
  • the length of the path 2 where the second photon is located is 10 m
  • the time required for the photon to transmit 1 m on the path is 0.1 s
  • the first photon and the second photon are transmitted.
  • the first switch module 021 can be a switch (Switch, SW).
  • the detection module 022 can be an SPD
  • the control module 023 can be an FPGA
  • the first separation module 024 can be a WDM1
  • the detection module 025 can be a TIA
  • the light source module 026 can be an associated photon-pair source.
  • the photon detection system includes SW (Switch) 1, SPD, FPGA, WDM1, TIA, and associated photon pair light sources.
  • control module 023 can control the first switch module 021, so that the detection module 022 can detect the first photon and the second photon respectively.
  • multiple SPDs are required to separately detect multiple photons.
  • multiple photons can be detected by one detection module, which can solve the problem of high cost caused by using multiple SPDs in single photon detection.
  • a further embodiment of the present application provides a photon detection system, as shown in FIG. 4, including a first switch module 041, a detection module 042, a control module 043, a first separation module 044, a detection module 045, a light source module 046, and a The second switch module 047 and the second separation module 048.
  • the connection and design of the first switch module 041, the detection module 042, the control module 043, the first separation module 044, the detection module 045, and the light source module 046 can refer to the first switch module 021, the detection module 022, and the control module in FIG. 023. Connection and design of the first separation module 024, the detection module 025, and the light source module 026.
  • the light source module 046 can be used to generate associated photon pairs, the associated photon pair can include a first photon and a second photon state, and the second photon state can include more than one photon.
  • the first separation module 044 can be used to separate the associated photon pairs into a first photon and a second photon state.
  • the first photon may be transmitted from the first path and the second photon state may be transmitted from the c-end of the first separation module 044 to the second separation module 048.
  • the first switch module 041 is configured to set the first port to communicate with the detecting module 042 while setting the second port to be disconnected from the detecting module 042.
  • the first photon can be transmitted from the first switch module 041 to the detection module 042 to be detected by the detection module 042.
  • the second switch module 047 includes a third port, a fourth port, and a fifth port.
  • the fifth port is connected to the second port of the first switch module 041, and the third port and the fourth port are both passed through the second separation module 048 and the second port.
  • a separation module 044 is connected; a third path between the third port and the first separation module 044 is shorter than a fourth path between the fourth port and the first separation module 044.
  • the second path includes a third path, a second switch module, and a fifth path between the first switch modules.
  • the second switch module 047 is configured to set the third port to communicate with the second port of the first switch module 041 while setting the fourth port to be disconnected from the second port of the first switch module 041.
  • the second separation module 048 is configured to separate the second photon state. If the second photon state includes the third photon and the fourth photon, the third photon is transmitted through the third path, and the fourth photon is transmitted through the fourth path.
  • the j end of the second separating module 048 is connected to the fourth port of the second switching module 047, the k end is connected to the third port of the second switching module 047, and the l end is connected to the c end of the first separating module 044.
  • the detecting module 042 is configured to: if the first photon is detected when the first port of the first switch module 041 is connected to the detecting module 042, send a first signal to the control module 043, where the first signal is used to indicate that the first photon is detected. .
  • the control module 043 is configured to send a second signal to the first switch module 041 when receiving the first signal, where the second signal is used to instruct the first switch module 041 to set the second port to communicate with the detecting module 042.
  • the first switch module 041 is configured to set the second port to communicate with the detecting module 042 when receiving the second signal.
  • the detecting module 041 is further configured to: when receiving the third photon, send a third signal to the control module 043, where the third signal is used to indicate that the third photon is detected.
  • the control module 043 is further configured to send a fourth signal to the second switch module 047 when the third signal is received, where the fourth signal is used to instruct the second switch module 047 to set the fourth port and the second port of the first switch module 041 Connected.
  • the second switch module 047 is further configured to: when the fourth signal is received, set the fourth port to communicate with the second port of the first switch module 041, so that the fourth photon passes through the second switch module, the fifth path, and the first switch module. Transfer to the probe module.
  • the detecting module 045 can be configured to acquire time difference information of the first photon, the third photon, and the fourth photon.
  • control module 043 can control the first switch module 041, so that the detection module 042 can detect the first photon, the third photon, and the fourth photon, respectively.
  • multiple SPDs are required to detect multiple
  • multiple photons can be detected by one detection module, which can solve the problem of high cost caused by using multiple SPDs in single photon detection.
  • a photon detection system including a first switch module 051, a detection module 052, a control module 053, a detection module 054, and a light source module 055. among them:
  • the first switch module 051 includes a first port, a second port, a third port, and a fourth port.
  • the first port is connected to the light source module 055, the second port is connected to the third port, and the fourth port is connected to the e End connection.
  • the light source module 055 is connected to the first port of the first switch module 051, and the light source module 055 can be used to generate a first photon state, and the first photon state can include a first photon and a second photon. Generally, the first photon and the second photon are simultaneously generated. When the first photon and the second photon arrive at the same detection module at the same time, the detection module can generally only detect whether or not a photon reaches the detection module, but cannot detect the photon. quantity.
  • One method of detecting the number of photons is to simultaneously use a plurality of detection modules, by using a beam splitter to transmit a first photon state to a plurality of detection modules according to a random probability, and the beam splitter can be used to separate the first photon state into Multiple photons, if multiple detectors detect photons, detect the number of photons.
  • the probability of detecting multiple single photons is proportional to the number of detection modules used in the system.
  • the control module 053 is configured to send a first signal to the first switch module 051 according to a preset time interval, where the first signal is used to set a fraction ratio of the first switch module 051.
  • the preset time interval is a time when the first photon or the second photon is transmitted by the second path between the third port and the second port.
  • the g end of the control module is connected to the f end of the detecting module, the h end is connected to the m end of the first switch module 051, and the i end is connected to the detecting module 054.
  • the first switch module 051 is configured to set a fraction ratio of the first switch module 051 according to the first signal, so that the probability that the first photon or the second photon is output from the third port is greater than the output of the first photon or the second photon from the fourth port Probability.
  • the first photon state includes a first photon and a second photon, the first photon and the second photon simultaneously passing through the first port.
  • the fractional ratio of the first switch module is 10%:90%, that is, the probability that the first photon or the second photon is output from the third port is 90%
  • the probability that the first photon or the second photon is output from the fourth port is 10 %
  • the first photon and the second photon are respectively from the first
  • the control module 053 can send the first signal to the first switch module according to the preset time interval to adjust the splitting ratio of the first switch module 051 to make the first The fractional ratio of the switch module 051 is maintained at 10%: 90%.
  • the control module adjusts the fractional ratio of the first switching module again, so that the fractional ratio of the first switching module is maintained at 10%: 90%. In this way, the first photon or the second photon have a greater probability of being outputted from the fourth port at different times and detected by the detecting module.
  • the detecting module can detect each photon of the first photon state, that is, it can be detected that the first photon state emitted from the light source module 055 specifically includes several photons. Thereby, the time division multiplexing of the detection module is realized, and the number of photons in the first photon state can be detected without using multiple detection modules at the same time.
  • the control module can control the first photon, the second photon, and the third photon to be different by controlling the fractional ratio of the first switching module.
  • the time is output from the fourth port and detected by the detection module.
  • the control module can adjust the proportion of the fractional ratio of the first switch module according to requirements, which is not limited in the embodiment of the present application.
  • the detecting module 052 is configured to detect the first photon and the second photon, or to detect the first photon, the second photon, and the third photon.
  • the first photon reaches the detecting module 052 at the first moment through the fourth port, and the second photon reaches the detecting module 052 at the second moment through the fourth port, and the third photon reaches the detecting module 052 at the third moment through the fourth port.
  • the first time, the second time, and the third time are different.
  • the detecting module 054 is configured to acquire a time difference of the first photon and the second photon, or to obtain a time difference of the first photon, the second photon, and the third photon.
  • the time difference between the first photon and the second photon is a first time difference minus a second time difference
  • the first time difference is used to indicate a time difference between the first photon and the second photon respectively reaching the detecting module 052
  • the second time difference is used to indicate the first time difference.
  • the first switch module 051 may be a switch (Switch, SW) 1
  • the detection module 052 may be an SPD
  • the control module 053 may be an FPGA
  • the detection module 054 may be a TIA
  • the light source module 055 may be an associated photon pair source.
  • the photon detection system described above may include SW (Switch) 1, SPD, FPGA, TIA, and associated photon pair sources.
  • control module 053 can control the first switch module 051 to make the detection module
  • the 052 can detect the first photon and the second photon respectively.
  • multiple SPDs are required to detect multiple photons respectively.
  • multiple photons can be detected by one detection module, which can solve single photons. The cost of using multiple SPDs during probing is high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种光子探测系统,涉及量子光学领域,能够解决单光子探测时使用多个SPD所导致的成本高的问题。光子探测系统包括:第一开关模块(021),包括第一端口和第二端口,第一开关模块(021)用于设置第一端口与探测模块(022)连通,设置第二端口与探测模块(022)不连通;探测模块(022),用于若探测到第一光子,则向控制模块(023)发送第一信号;控制模块(023),用于在接收到第一信号时向第一开关模块(021)发送第二信号;第一开关模块(021),用于在接收到第二信号时设置第二端口与探测模块(022)连通,以便探测模块(022)探测到第二光子。本申请实施例可以应用于量子光学系统中对光子的探测。

Description

一种光子探测系统 技术领域
本申请涉及量子光学领域,尤其涉及一种光子探测系统。
背景技术
随着量子光学领域的高速发展,基于量子光学系统的应用将很快投入使用。基于量子光学系统的应用可以包括以下三个部分:1、单光子光源。2、单光子信号处理。3、单光子探测。在对单光子进行探测时,通常需要同时对两个或两个以上的光子进行探测,以确定光子之间的时间相关性信息,从而对光子所携带的其他性质进行分析。
例如,测量多个光子在时间上的关联性时,最直接的方法就是使用多个单光子探测器(Single Photon Detectors,SPD)对光子进行探测,然后使用时间间隔分析仪(Time Interval Analyzer,TIA)对多个SPD探测到的光子进行时间分析。如图1所示,关联光子对光源(Photon Pair Source)可以产生一对不同波长的光子(即关联光子对),包括光子1和光子2。光子1和光子2可以被波分复用模块(Wavelength Division Multiplexing,WDM)分离到两条不同的光路上,之后分别传送到两个不同的SPD,光子1和光子2的时间差信息Δt等于光子1和光子2分别被两个SPD所探测到的时间差。
但是同时使用多个SPD会导致一系列的问题,包括成本,空间,噪音和性能的妥协等。
发明内容
本申请实施例提供一种光子探测系统,能够解决单光子探测时使用多个SPD所导致的成本高的问题。
一方面,本申请实施例提供一种光子探测系统,包括:第一开关模块,包括第一端口和第二端口,第一开关模块用于设置第一端口与探测模块连通,设置第二端口与探测模块不连通;探测模块,用于若在第一端口与探测模块连通时探测到第一光子,则向控制模块发送第一信号,第一信号用于指示探测到第一光子;控制模块,用于在接收到第一信号时向第一开关模块发送第二信号,第二信号用于指示第一开关模块设置第二端口与探测模块连通;第一开关模块,用于在接收到第二信号时设置第二端口与探测模块连通,以便探测模块探测到第二光子。这样一来,探测模块可以分别探测到第一光子和第二光子,相比现有技术,需要多个SPD分别探测第一光子和第二光子,本申请实施例可以通过一个探测模块对多个光子进行探测,能够解决单光子探测时使用多个SPD所导致的成本高的问题。
在一种可能的设计中,第一端口与第一分离模块之间的第一路径短于第二端口与第一分离模块之间的第二路径;第一分离模块用于分离光源模块产生的关联光子对,关联光子对包括第一光子和第二光子,或关联光子对包括第一光子和第二光子态。其中,第一光子可以经过第一路径传输,第二光子可以经过第二路径传输,第一光子和第二光子可以在不同的时刻到达第一开关模块,进一步保证了第一光子和 第二光子可以分别被探测模块探测到。
在一种可能的设计中,该系统还包括:第二开关模块,包括第三端口、第四端口和第五端口,第五端口与第一开关模块的第二端口连接,第三端口和第四端口均经过第二分离模块与第一分离模块连接;第三端口与第一分离模块之间的第三路径短于第四端口与第一分离模块之间的第四路径;第二路径包括第三路径、第二开关模块以及第一开关模块之间的第五路径;第二分离模块,用于分离第二光子态,若第二光子态包括第三光子和第四光子,则第三光子经过第三路径传输,第四光子经过第四路径传输;第二开关模块用于设置第三端口与第二端口连通,以及第四端口与第二端口不连通。这样一来,当关联光子对包括第一光子和第二光子态时,第二分离模块可以将第二光子态分离为第三光子和第四光子,第三光子可以经过第三路径传输,第四光子经过第四路径传输。
在一种可能的设计中,该系统还包括:探测模块,还用于若在第三端口与第二端口连通时接收到第三光子,则向控制模块发送第三信号;其中,第三信号用于指示探测到第三光子;控制模块,还用于在接收到第三信号时向第二开关模块发送第四信号,第四信号用于指示第二开关模块设置第四端口与第二端口连通;第二开关模块,还用于在接收到第四信号时设置第四端口与第二端口连通,以便第四光子经过第二开关模块、第五路径和第一开关模块传输至探测模块。这样一来,探测模块可以分别探测到第一光子、第三光子和第四光子,相比现有技术,需要多个SPD分别探测第一光子、第二光子和第四光子,本申请实施例可以通过一个探测模块对多个光子进行探测,能够解决单光子探测时使用多个SPD所导致的成本高的问题。
在一种可能的设计中,探测模块的第一端与第一开关模块连接,第二端与控制模块连接。这样一来,当探测模块探测到经过第一开关模块传输的光子时,可以向控制模块发送信号。例如,当探测模块探测到经过第一开关模块传输的第一光子时,可以向控制模块发送第一信号,当探测模块探测到经过第一开关模块传输的第三光子时,可以向控制模块发送第三信号。
在一种可能的设计中,控制模块的第一端与探测模块连接,第二端与第一开关模块连接。这样一来,当控制模块接收到探测模块发送的信号时,可以向第一开关模块发送信号。例如,当控制模块接收到探测模块发送的第一信号时,可以向第一开关模块发送第二信号,当控制模块接收到探测模块发送的第三信号时,可以向第一开关模块发送第四信号。
在一种可能的设计中,第一开关模块的第一端口和第二端口与第一分离模块连接。这样一来,第一分离模块将关联光子对分离为第一光子和第二光子时,第一光子可以经过第一开关模块的第一端口与第一分离模块之间的第一路径传输,第二光子可以经过第一开关模块的第二端口与第一分离模块之间的第二路径传输。
在一种可能的设计中,该系统还包括检测模块,用于获取第一光子和第二光子间的时间差;其中,第一光子和第二光子间的时间差为第一时间差减去第二时间差,第一时间差用于指示第一光子和第二光子分别到达探测模块的时间差,第二时间差用于指示第一光子在第一路径传输的时间与第二光子在第二路径传输的时间之间的时间差。这样一来,检测模块可以用第一光子和第二光子分别到达探测模块的时间 差,减去第一光子和第二光子分别在第一路径和第二路径传输的时间差,以得到第一光子和第二光子间的时间差。
另一方面,本申请实施例提供一种光子探测系统,包括:控制模块,用于控制第一开关模块的分数比;第一开关模块,用于根据控制模块控制的分数比将第一光子态分离为多个光子;探测模块,用于分别探测多个光子。这样一来,探测模块可以分别探测到多个光子,相比现有技术,需要多个SPD分别探测多个光子,本申请实施例能够解决单光子探测时使用多个SPD所导致的成本高的问题。
在一种可能的设计中,第一开关模块,包括第一端口、第二端口、第三端口和第四端口,第一端口与光源模块连接,第二端口与第三端口连接,第四端口与探测模块连接;光源模块,用于产生第一光子态,第一光子态经过光源模块与第一开关模块的第一端口之间的第一路径传输;其中,第一光子态包括第一光子和第二光子;控制模块,用于根据预设时间间隔向第一开关模块发送第一信号,第一信号用于设置第一开关模块的分数比,使第一光子或第二光子从第三端口输出的概率大于第一光子或第二光子从第四端口输出的概率;其中,预设时间间隔为第一光子或第二光子从第三端口传输到第二端口的时间;探测模块,用于探测第一光子和第二光子,第一光子经过第四端口在第一时刻到达探测模块,第二光子经过第四端口在第二时刻到达探测模块,第一时刻不等于与第二时刻。这样一来,探测模块可以在第一时刻和第二时刻分别探测第一光子和第二光子,相比现有技术,需要至少两个SPD分别探测两个光子,本申请实施例能够解决单光子探测时使用多个SPD所导致的成本高的问题。
在一种可能的设计中,探测模块的第一端与第一开关模块连接,第二端与控制模块连接。这样一来,探测模块可以探测到经过第一开关模块传输的光子(例如第一光子和第二光子)。
在一种可能的设计中,控制模块的第一端与探测模块连接,第二端与第一开关模块连接。这样一来,控制模块可以向第一开关模块发送信号。例如,控制模块可以向第一开关模块发送第一信号,第一信号用于设置第一开关模块的分数比,使第一光子或第二光子从第三端口输出的概率大于第一光子或第二光子从第四端口输出的概率。
在一种可能的设计中,该系统还包括检测模块,用于获取第一光子和第二光子的时间差;其中,第一光子和第二光子的时间差为第一时间差减去第二时间差,第一时间差用于指示第一光子和第二光子分别到达探测模块的时间差,第二时间差用于指示第一光子在第二路径传输的时间与第二光子在第二路径传输的时间之间的时间差,第二路径为第三端口到第二端口之间的路径。这样一来,检测模块可以用第一光子和第二光子分别到达探测模块的时间差,减去第一光子和第二光子分别在第二路径传输的时间差,得到第一光子和第二光子间的时间差。
再一方面,本申请实施例提供一种光子探测系统,包括:第一开关,包括第一端口和第二端口,第一开关用于设置第一端口与SPD连通,设置第二端口与SPD不连通;SPD,用于若在第一端口与SPD连通时探测到第一光子,则向现场可编程门阵列(Field-Programmable Gate Array,FPGA)发送第一信号,第一信号用于指示探测 到第一光子;FPGA,用于在接收到第一信号时向第一开关发送第二信号,第二信号用于指示第一开关设置第二端口与SPD连通;第一开关,用于在接收到第二信号时设置第二端口与SPD连通,以便SPD探测到第二光子。这样一来,SPD可以分别探测到第一光子和第二光子,相比现有技术,需要多个SPD分别探测第一光子和第二光子,本申请实施例可以通过一个SPD对多个光子进行探测,能够解决单光子探测时使用多个SPD所导致的成本高的问题。
在一种可能的设计中,第一端口与第一WDM之间的第一路径短于第二端口与第一WDM之间的第二路径;第一WDM用于分离关联光子对光源产生的关联光子对,关联光子对包括第一光子和第二光子,或关联光子对包括第一光子和第二光子态。其中,第一光子可以经过第一路径传输,第二光子可以经过第二路径传输,第一光子和第二光子可以在不同的时刻到达第一开关,进一步保证了第一光子和第二光子可以分别被SPD探测到。
在一种可能的设计中,该系统还包括:第二开关,包括第三端口、第四端口和第五端口,第五端口与第一开关的第二端口连接,第三端口和第四端口均经过第二WDM与第一WDM连接;第三端口与第一WDM之间的第三路径短于第四端口与第一WDM之间的第四路径;第二路径包括第三路径、第二开关以及第一开关之间的第五路径;第二WDM,用于分离第二光子态,若第二光子态包括第三光子和第四光子,则第三光子经过第三路径传输,第四光子经过第四路径传输;第二开关用于设置第三端口与第二端口连通,以及第四端口与第二端口不连通。这样一来,当关联光子对包括第一光子和第二光子态时,第二WDM可以将第二光子态分离为第三光子和第四光子,第三光子可以经过第三路径传输,第四光子经过第四路径传输。
在一种可能的设计中,SPD还用于若在第三端口与第二端口连通时接收到第三光子,则向FPGA发送第三信号;其中,第三信号用于指示探测到第三光子;FPGA,还用于在接收到第三信号时向第二开关发送第四信号,第四信号用于指示第二开关设置第四端口与第二端口连通;第二开关,还用于在接收到第四信号时设置第四端口与第二端口连通,以便第四光子经过第二开关、第五路径和第一开关传输至SPD。这样一来,SPD可以分别探测到第一光子、第三光子和第四光子,相比现有技术,需要多个SPD分别探测第一光子、第二光子和第四光子,本申请实施例可以通过一个SPD对多个光子进行探测,能够解决单光子探测时使用多个SPD所导致的成本高的问题。
在一种可能的设计中,SPD的第一端与第一开关连接,第二端与FPGA连接。这样一来,当SPD探测到经过第一开关传输的光子时,可以向FPGA发送信号。例如,当SPD探测到经过第一开关传输的第一光子时,可以向FPGA发送第一信号,当SPD探测到经过第一开关传输的第三光子时,可以向FPGA发送第三信号。
在一种可能的设计中,FPGA的第一端与SPD连接,第二端与第一开关连接。这样一来,当FPGA接收到SPD发送的信号时,可以向第一开关发送信号。例如,当FPGA接收到SPD发送的第一信号时,可以向第一开关发送第二信号,当FPGA接收到SPD发送的第三信号时,可以向第一开关发送第四信号。
在一种可能的设计中,第一开关的第一端口和第二端口与第一WDM连接。这 样一来,第一WDM将关联光子对分离为第一光子和第二光子时,第一光子可以经过第一开关的第一端口与第一WDM之间的第一路径传输,第二光子可以经过第一开关的第二端口与第一WDM之间的第二路径传输。
在一种可能的设计中,该系统还包括TIA,用于获取第一光子和第二光子间的时间差;其中,第一光子和第二光子间的时间差为第一时间差减去第二时间差,第一时间差用于指示第一光子和第二光子分别到达SPD的时间差,第二时间差用于指示第一光子在第一路径传输的时间与第二光子在第二路径传输的时间之间的时间差。这样一来,TIA可以用第一光子和第二光子分别到达SPD的时间差,减去第一光子和第二光子分别在第一路径和第二路径传输的时间差,以得到第一光子和第二光子间的时间差。
再一方面,本申请实施例提供一种光子探测系统,包括:FPGA,用于控制第一开关的分数比;第一开关,用于根据FPGA控制的分数比将第一光子态分离为多个光子;SPD,用于分别探测多个光子。这样一来,SPD可以分别探测到多个光子,相比现有技术,需要多个SPD分别探测多个光子,本申请实施例能够解决单光子探测时使用多个SPD所导致的成本高的问题。
在一种可能的设计中,第一开关,包括第一端口、第二端口、第三端口和第四端口,第一端口与关联光子对光源连接,第二端口与第三端口连接,第四端口与SPD连接;关联光子对光源,用于产生第一光子态,第一光子态经过关联光子对光源与第一开关的第一端口之间的第一路径传输;其中,第一光子态包括第一光子和第二光子;FPGA,用于根据预设时间间隔向第一开关发送第一信号,第一信号用于设置第一开关的分数比,使第一光子或第二光子从第三端口输出的概率大于第一光子或第二光子从第四端口输出的概率;其中,预设时间间隔为第一光子或第二光子从第三端口传输到第二端口的时间;SPD,用于探测第一光子和第二光子,第一光子经过第四端口在第一时刻到达SPD,第二光子经过第四端口在第二时刻到达SPD,第一时刻不等于与第二时刻。这样一来,SPD可以在第一时刻和第二时刻分别探测第一光子和第二光子,相比现有技术,需要至少两个SPD分别探测两个光子,本申请实施例能够解决单光子探测时使用多个SPD所导致的成本高的问题。
在一种可能的设计中,SPD的第一端与第一开关连接,第二端与FPGA连接。这样一来,SPD可以探测到经过第一开关传输的光子。
在一种可能的设计中,FPGA的第一端与SPD连接,第二端与第一开关连接。这样一来,FPGA可以向第一开关发送信号。例如,FPGA可以向第一开关发送第一信号,第一信号用于设置第一开关的分数比,使第一光子或第二光子从第三端口输出的概率大于第一光子或第二光子从第四端口输出的概率。
在一种可能的设计中,该系统还包括TIA,用于获取第一光子和第二光子的时间差;其中,第一光子和第二光子的时间差为第一时间差减去第二时间差,第一时间差用于指示第一光子和第二光子分别到达SPD的时间差,第二时间差用于指示第一光子在第二路径传输的时间与第二光子在第二路径传输的时间之间的时间差,第二路径为第三端口到第二端口之间的路径。这样一来,TIA可以用第一光子和第二光子分别到达SPD的时间差,减去第一光子和第二光子分别在第二路径传输的时间 差,得到第一光子和第二光子间的时间差。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述光子探测系统所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本申请实施例提供一种光子探测系统,可以包括第一开关模块、探测模块和控制模块,控制模块可以通过控制第一开关模块,从而使得探测模块可以分别探测到第一光子和第二光子或分别探测到第一光子、第三光子和第四光子,相比现有技术,需要多个SPD分别探测多个光子,本申请实施例可以通过一个探测模块分别对多个光子进行探测,能够解决单光子探测时使用多个SPD所导致的成本高的问题。
附图说明
图1为本申请实施例提供的一种光子探测系统;
图2为本申请实施例提供的一种光子探测系统;
图3为本申请实施例提供的一种光子探测系统;
图4为本申请实施例提供的一种光子探测系统;
图5为本申请实施例提供的一种光子探测系统;
图6为本申请实施例提供的一种光子探测系统。
具体实施方式
本申请实施例提供一种光子探测系统,可以应用于量子光学系统中。例如应用于对光子的探测,包括对光子的时间相关性、数量以及能量等方面的探测。本申请提供的光子探测系统也可以应用于量子通信中的量子秘钥分发设备,量子计算设备,科学实验仪器等需要用到多个SPD的设备。
本申请实施例提供一种光子探测系统,如图2所示,光子探测系统可以包括第一开关模块021、探测模块022、控制模块023、第一分离模块024、检测模块025和光源模块026。假设光源模块026可以产生关联光子对,第一分离模块024可以将该关联光子对分离为第一光子和第二光子。第一光子在第一路径传输,第二光子在第二路径传输,第一路径短于第二路径(图2中以圆圈标示第二路径长与第一路径)。第一开关模块021设置第一开关模块021的第一端口与探测模块022连通,以便第一光子可以通过第一端口传输至探测模块022。探测模块022探测到第一光子后,向控制模块023发送第一信号。控制模块023接收到第一信号后向第一开关模块021发送第二信号。第一开关模块021在接收到第二信号时设置第二端口与探测模块022连通,以便探测模块022探测到第二光子。
具体地,光源模块026可以用于产生关联光子对,关联光子对可以包括第一光子和第二光子。光源模块026和第一分离模块024的a端连接。
第一分离模块024可以用于分离关联光子对。例如,第一分离模块024可以将关联光子对分离为第一光子和第二光子。
第一开关模块021,包括第一端口和第二端口,第一开关模块021用于设置第一端口与探测模块022的e端(即探测模块的第一端)连通,同时设置第二端口与探测模块022的e端不连通。第一端口与第一分离模块024之间的第一路径可以短于第二端口与第一分离模块024之间的第二路径。第一光子可以在第一路径上传输, 第二光子可以在第二路径上传输。第一开关模块021的第一端口和第二端口分别与第一分离模块024的b端和c端连接。第一开关模块021还可以包括d端,d端与探测模块022的e端连接。
当第一端口与探测模块022连通时,第一光子可以从第一开关模块021传输至探测模块022,从而被探测模块022探测到。当第二端口与探测模块022不连通时,经由第二端口到达第一开光模块021的光子不能从第一开关模块021传输至探测模块022。
其中,第一开关模块021可以为低延迟高速光开关,例如,第一开关模块021可以为最低损耗小于1dB的光开关。第一路径和第二路径可以采用低损耗光钎延时线,例如可以采用“ˉ10m”级的光纤延时线。
探测模块022,可以用于若在第一开关模块021的第一端口与探测模块022连通时探测到第一光子,则向控制模块023发送第一信号,第一信号用于指示探测到第一光子。
探测模块022可以是雪崩二级管式探测器或超导纳米线探测器。
控制模块023,可以用于在接收到第一信号时向第一开关模块021发送第二信号,第二信号用于指示第一开关模块021设置第一开关模块021的第二端口与探测模块022的e端连通。
控制模块023的g端(即控制模块的第一端)与探测模块022的f端(即探测模块的第二端)连接,h端(即控制模块的第二端)与第一开关模块021的m端连接。其中,控制模块023可以采用FPGA等高速控制逻辑门阵列。
第一开关模块021,可以用于在接收到第二信号时设置第一开关模块021的第二端口与探测模块022的e端连通,以便探测模块022探测到第二光子。
检测模块025,可以用于获取第一光子和第二光子的时间差或其他时间相关信息。
检测模块025与控制模块023的i端连接。
其中,第一光子和第二光子的时间差可以为第一时间差减去第二时间差,第一时间差用于指示第一光子和第二光子分别到达探测模块的时间差,第二时间差用于指示第一光子在第一路径传输的时间与第二光子在第二路径传输的时间之间的时间差。
示例性地,假设两个光子间的时间差Δt=Δttotal-Δtdifference,其中,Δttotal为探测模块022分别探测到第一光子和第二光子的时间差,Δtdifference为第一光子和第二光子在不同路径传输的时间差。若第一光子到达探测模块的时间为第0s,第二光子到的探测模块的时间为第1s,则第一光子和第二光子到的探测模块的时间差Δttotal为1s。若第一光子所在的路径1的长度为0.5m,第二光子所在的路径2的长度为10m,光子在路径上传输1m所需的时间为0.1s,则第一光子和第二光子在传输路径的时间差Δtdifference为0.95s。因此Δt=1-0.95=0.05s。另外,Δtdifference可以是提前表征的。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如上述第一开关模块021可以为开关(Switch,SW) 1,探测模块022可以为SPD,控制模块023可以为FPGA、第一分离模块024可以为WDM1、检测模块025可以为TIA,光源模块026可以为关联光子对光源。如图3所示,上述光子探测系统包括SW(Switch)1、SPD、FPGA、WDM1、TIA和关联光子对光源。
这样一来,控制模块023可以通过控制第一开关模块021,使得探测模块022可以分别探测到第一光子和第二光子,相比现有技术,需要多个SPD分别探测多个光子,本申请实施例可以通过一个探测模块分别对多个光子进行探测,能够解决单光子探测时使用多个SPD所导致的成本高的问题。
本申请的又一实施例提供一种光子探测系统,如图4所示,包括第一开关模块041、探测模块042、控制模块043、第一分离模块044、检测模块045、光源模块046、第二开关模块047和第二分离模块048。其中,第一开关模块041、探测模块042、控制模块043、第一分离模块044、检测模块045和光源模块046的连接和设计可以参考图2中第一开关模块021、探测模块022、控制模块023、第一分离模块024、检测模块025和光源模块026的连接和设计。
光源模块046可以用于产生关联光子对,关联光子对可以包括第一光子和第二光子态,第二光子态可以包括一个以上的光子。
第一分离模块044可以用于将关联光子对分离为第一光子和第二光子态。第一光子可以从第一路径传输,第二光子态可以从第一分离模块044的c端传输至第二分离模块048。
第一开关模块041用于设置第一端口与探测模块042连通,同时设置第二端口与探测模块042不连通。第一光子可以从第一开关模块041传输至探测模块042,从而被探测模块042探测到。
第二开关模块047,包括第三端口、第四端口和第五端口,第五端口与第一开关模块041的第二端口连接,第三端口和第四端口均经过第二分离模块048与第一分离模块044连接;第三端口与第一分离模块044之间的第三路径短于第四端口与第一分离模块044之间的第四路径。第二路径包括第三路径、第二开关模块以及第一开关模块之间的第五路径。第二开关模块047用于设置第三端口与第一开关模块041的第二端口连通,同时设置第四端口与第一开关模块041的第二端口不连通。
第二分离模块048,用于分离第二光子态。若第二光子态包括第三光子和第四光子,则第三光子经过第三路径传输,第四光子经过第四路径传输。第二分离模块048的j端与第二开关模块047的第四端口连接,k端与第二开关模块047的第三端口连接,l端与第一分离模块044的c端连接。
探测模块042,用于若在第一开关模块041的第一端口与探测模块042连通时探测到第一光子,则向控制模块043发送第一信号,第一信号用于指示探测到第一光子。
控制模块043,用于在接收到第一信号时向第一开关模块041发送第二信号,第二信号用于指示第一开关模块041设置第二端口与探测模块042连通。
第一开关模块041,用于在接收到第二信号时设置第二端口与探测模块042连通。
探测模块041,还用于在接收到第三光子时,向控制模块043发送第三信号,第三信号用于指示探测到第三光子。
控制模块043,还用于在接收到第三信号时向第二开关模块047发送第四信号,第四信号用于指示第二开关模块047设置第四端口与第一开关模块041的第二端口连通。
第二开关模块047,还用于在接收到第四信号时设置第四端口与第一开关模块041的第二端口连通,以便第四光子经过第二开关模块、第五路径和第一开关模块传输至探测模块。
检测模块045,可以用于获取第一光子、第三光子和第四光子的时间差信息。
这样一来,控制模块043可以通过控制第一开关模块041,使得探测模块042可以分别探测到第一光子、第三光子和第四光子,相比现有技术,需要多个SPD分别探测多个光子,本申请实施例可以通过一个探测模块分别对多个光子进行探测,能够解决单光子探测时使用多个SPD所导致的成本高的问题。
在本申请的又一实施例中,提供一种光子探测系统,包括第一开关模块051、探测模块052、控制模块053、检测模块054和光源模块055。其中:
第一开关模块051,包括第一端口、第二端口、第三端口和第四端口,第一端口与光源模块055连接,第二端口与第三端口连接,第四端口与探测模块052的e端连接。
光源模块055与第一开关模块051的第一端口连接,光源模块055可以用于产生第一光子态,第一光子态可以包括第一光子和第二光子。通常,第一光子和第二光子是同时产生的,当第一光子和第二光子同时到达同一个探测模块时,该探测模块一般只可以探测到是否有光子到达探测模块,而不能探测出光子的数量。一种探测光子数量的方法是同时使用多个探测模块,通过使用分束器将第一光子态按照随机的概率发射到多个探测模块上,分束器可以用于将第一光子态分离为多个光子,若有多个探测器探测到光子,则实现了对光子数量的探测。其中,探测到多个单光子的概率和系统中使用的探测模块的数量成正比。
控制模块053,用于根据预设时间间隔向第一开关模块051发送第一信号,第一信号用于设置第一开关模块051的分数比。其中,当第一光子态包括第一光子和第二光子时,预设时间间隔即第一光子或第二光子在第三端口和第二端口之间的第二路径传输的时间。控制模块的g端与探测模块的f端连接,h端与第一开关模块051的m端连接,i端与检测模块054连接。
第一开关模块051用于根据第一信号设置第一开关模块051的分数比,使第一光子或第二光子从第三端口输出的概率大于第一光子或第二光子从第四端口输出的概率。
举例来说,假设第一光子态包括第一光子和第二光子,第一光子和第二光子同时通过第一端口。若第一开关模块的分数比为10%:90%,即第一光子或第二光子从第三端口输出的概率为90%,第一光子或第二光子从第四端口输出的概率为10%,则第一光子和第二光子同时从第三端口输出的概率为90%*90%=81%,第一光子和第二光子同时从第四端口输出的概率为10%*10%=1%,第一光子和第二光子分别从第 三端口和第四端口输出的概率为2*90%*10%=18%。由于第一光子和第二光子同时从第四端口输出的概率为10%*10%=1%,因此可以假设当第一光子和第二光子第一次从第一端口输入时,都是从第三端口输出的。而后第一光子和第二光子再次从第二端口输入时,控制模块053可以根据预设时间间隔向第一开关模块发送第一信号,以调整第一开关模块051的分束比,使第一开关模块051的分数比维持为10%:90%。因此当第一光子和第二光子第二次进入第一开关模块,依然有很大可能性都从第三端口输出,也可能第一光子和第二光子中的任一个可以从第四端口输出。若第一光子和第二光子第二次都从第三端口输出,则控制模块再次调整第一开关模块的分数比,使第一开关模块的分数比维持为10%:90%。如此一来,第一光子或第二光子有较大的概率在不同的时间分别从第四端口输出,并被探测模块探测到。从而探测模块可以探测到第一光子态的各个光子,即可以探测到从光源模块055发出的第一光子态具体包括几个光子。从而实现了探测模块的时分复用,无需同时使用多个探测模块即可探测到第一光子态的的光子数量。
类似地,若第一光子态包括第一光子、第二光子和第三光子,控制模块可以通过控制第一开关模块的分数比,使第一光子、第二光子和第三光子可以在不同的时间分别从第四端口输出,并被探测模块探测到。另外,控制模块可以根据需求调整第一开关模块的分数比的比例大小,本申请实施例不做限定。
探测模块052,用于探测第一光子和第二光子,或用于探测第一光子、第二光子和第三光子。第一光子经过第四端口在第一时刻到达探测模块052,第二光子经过第四端口在第二时刻到达探测模块052,第三光子经过第四端口在第三时刻到达探测模块052。其中,第一时刻、第二时刻与第三时刻不相同。
检测模块054,用于获取第一光子和第二光子的时间差,或用于获取第一光子、第二光子和第三光子的时间差。
其中,第一光子和第二光子的时间差为第一时间差减去第二时间差,第一时间差用于指示第一光子和第二光子分别到达探测模块052的时间差,第二时间差用于指示第一光子在第三端口到第二端口之间的第二路径传输的时间与第二光子在第二路径传输的时间之间的时间差。
示例性地,假设第一光子和第二光子共同在第二路径上传输了两圈,而后第一光子从第四端口输出,被探测模块052先检测到。第二光子继续在第二路径上传输了一圈后,从第四端口输出,被探测模块052后探测到。则第一光子和第二光子的时间差Δt=Δttotal-Δtdifference,其中,Δttotal为探测模块052先后探测到第一光子和第二光子的时间差,Δtdifference为第一光子在第二路径传输两圈的时间与第二光子在第二路径传输三圈的时间的时间差。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如上述第一开关模块051可以为开关(Switch,SW)1,探测模块052可以为SPD,控制模块053可以为FPGA、检测模块054可以为TIA,光源模块055可以为关联光子对光源。如图6所示,上述光子探测系统可以包括SW(Switch)1、SPD、FPGA、TIA和关联光子对光源。
这样一来,控制模块053可以通过控制第一开关模块051,从而使得探测模块 052可以分别探测到第一光子和第二光子,相比现有技术,需要多个SPD分别探测多个光子,本申请实施例可以通过一个探测模块分别对多个光子进行探测,能够解决单光子探测时使用多个SPD所导致的成本高的问题。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (13)

  1. 一种光子探测系统,其特征在于,包括:
    第一开关模块,包括第一端口和第二端口,所述第一开关模块用于设置所述第一端口与探测模块连通,设置所述第二端口与所述探测模块不连通;
    所述探测模块,用于若在所述第一端口与所述探测模块连通时探测到第一光子,则向控制模块发送第一信号,所述第一信号用于指示探测到所述第一光子;
    所述控制模块,用于在接收到所述第一信号时向所述第一开关模块发送第二信号,所述第二信号用于指示所述第一开关模块设置所述第二端口与所述探测模块连通;
    所述第一开关模块,用于在接收到所述第二信号时设置所述第二端口与所述探测模块连通,以便所述探测模块探测到第二光子。
  2. 根据权利要求1所述的光子探测系统,其特征在于,所述第一端口与第一分离模块之间的第一路径短于所述第二端口与所述第一分离模块之间的第二路径;所述第一分离模块用于分离光源模块产生的关联光子对,所述关联光子对包括所述第一光子和所述第二光子,或所述关联光子对包括所述第一光子和第二光子态。
  3. 根据权利要求2所述的光子探测系统,其特征在于,还包括:
    第二开关模块,包括第三端口、第四端口和第五端口,所述第五端口与所述第一开关模块的第二端口连接,所述第三端口和所述第四端口均经过第二分离模块与所述第一分离模块连接;所述第三端口与所述第一分离模块之间的第三路径短于所述第四端口与所述第一分离模块之间的第四路径;所述第二路径包括所述第三路径、所述第二开关模块以及所述第一开关模块之间的第五路径;
    所述第二分离模块,用于分离所述第二光子态,若所述第二光子态包括第三光子和第四光子,则所述第三光子经过所述第三路径传输,所述第四光子经过所述第四路径传输;
    所述第二开关模块用于设置所述第三端口与所述第二端口连通,以及所述第四端口与所述第二端口不连通。
  4. 根据权利要求3所述的光子探测系统,其特征在于,还包括:
    所述探测模块,还用于若在所述第三端口与所述第二端口连通时接收到所述第三光子,则向所述控制模块发送第三信号;其中,所述第三信号用于指示探测到所述第三光子;
    所述控制模块,还用于在接收到所述第三信号时向所述第二开关模块发送第四信号,所述第四信号用于指示所述第二开关模块设置所述第四端口与所述第二端口连通;
    所述第二开关模块,还用于在接收到所述第四信号时设置所述第四端口与所述第二端口连通,以便所述第四光子经过所述第二开关模块、所述第五路径和所述第一开关模块传输至所述探测模块。
  5. 根据权利要求1-4任一项所述的光子探测系统,其特征在于,所述探测模块的第一端与所述第一开关模块连接,第二端与所述控制模块连接。
  6. 根据权利要求1-5任一项所述的光子探测系统,其特征在于,所述控制模块的第一端与所述探测模块连接,第二端与所述第一开关模块连接。
  7. 根据权利要求1-6任一项所述的光子探测系统,其特征在于,所述第一开关模 块的第一端口和第二端口与所述第一分离模块连接。
  8. 根据权利要求1-7任一项所述的光子探测系统,其特征在于,还包括检测模块,用于获取所述第一光子和所述第二光子间的时间差;其中,所述第一光子和所述第二光子间的时间差为第一时间差减去第二时间差,所述第一时间差用于指示所述第一光子和所述第二光子分别到达所述探测模块的时间差,所述第二时间差用于指示所述第一光子在所述第一路径传输的时间与所述第二光子在所述第二路径传输的时间之间的时间差。
  9. 一种光子探测系统,其特征在于,包括:
    控制模块,用于控制第一开关模块的分数比;
    所述第一开关模块,用于根据所述控制模块控制的分数比将第一光子态分离为多个光子;
    探测模块,用于分别探测所述多个光子。
  10. 根据权利要求9所述的光子探测系统,其特征在于,所述第一开关模块,包括第一端口、第二端口、第三端口和第四端口,所述第一端口与光源模块连接,所述第二端口与所述第三端口连接,所述第四端口与所述探测模块连接;
    所述光源模块,用于产生所述第一光子态,所述第一光子态经过所述光源模块与所述第一开关模块的第一端口之间的第一路径传输;其中,所述第一光子态包括第一光子和第二光子;
    控制模块,用于根据预设时间间隔向所述第一开关模块发送第一信号,所述第一信号用于设置所述第一开关模块的所述分数比,使所述第一光子或所述第二光子从所述第三端口输出的概率大于所述第一光子或所述第二光子从所述第四端口输出的概率;其中,所述预设时间间隔为所述第一光子或所述第二光子从所述第三端口传输到所述第二端口的时间;
    探测模块,用于探测所述第一光子和所述第二光子,所述第一光子经过所述第四端口在第一时刻到达所述探测模块,所述第二光子经过所述第四端口在第二时刻到达所述探测模块,所述第一时刻不等于与所述第二时刻。
  11. 根据权利要求10所述的光子探测系统,其特征在于,所述探测模块的第一端与所述第一开关模块连接,第二端与所述控制模块连接。
  12. 根据权利要求10或11所述的光子探测系统,其特征在于,所述控制模块的第一端与所述探测模块连接,第二端与所述第一开关模块连接。
  13. 根据权利要求10-12任一项所述的光子探测系统,其特征在于,还包括检测模块,用于获取所述第一光子和所述第二光子的时间差;
    其中,所述第一光子和所述第二光子的时间差为第一时间差减去第二时间差,所述第一时间差用于指示所述第一光子和所述第二光子分别到达所述探测模块的时间差,所述第二时间差用于指示所述第一光子在第二路径传输的时间与所述第二光子在所述第二路径传输的时间之间的时间差,所述第二路径为所述第三端口到所述第二端口之间的路径。
PCT/CN2017/089042 2017-06-19 2017-06-19 一种光子探测系统 WO2018232575A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/089042 WO2018232575A1 (zh) 2017-06-19 2017-06-19 一种光子探测系统
CN201780002936.XA CN109429508B (zh) 2017-06-19 2017-06-19 一种光子探测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/089042 WO2018232575A1 (zh) 2017-06-19 2017-06-19 一种光子探测系统

Publications (1)

Publication Number Publication Date
WO2018232575A1 true WO2018232575A1 (zh) 2018-12-27

Family

ID=64736207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089042 WO2018232575A1 (zh) 2017-06-19 2017-06-19 一种光子探测系统

Country Status (2)

Country Link
CN (1) CN109429508B (zh)
WO (1) WO2018232575A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887574A (zh) * 2019-10-06 2020-03-17 桂林电子科技大学 一种多参数可配置的单光子计数系统
WO2021031667A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 单光子探测装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105289A2 (en) * 2003-05-14 2004-12-02 Science Research Laboratory, Inc. Methods and systems for high-data-rate quantum cryptography
CN101149597A (zh) * 2007-11-08 2008-03-26 华东师范大学 一种apd单光子探测的控制模块
CN103546280A (zh) * 2013-10-28 2014-01-29 中国科学技术大学 用于量子密码通信的编码器和解码器
CN203813797U (zh) * 2014-02-20 2014-09-03 安徽问天量子科技股份有限公司 量子密钥分配系统的全光纤通信系统
CN105337730A (zh) * 2015-11-19 2016-02-17 山西大学 基于相位编码qkd系统的单光子偏振控制方法及装置
CN105868131A (zh) * 2016-04-20 2016-08-17 京东方科技集团股份有限公司 延时控制设备、延时控制方法及电子装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606371B2 (en) * 2003-12-22 2009-10-20 Magiq Technologies, Inc. Two-way QKD system with active compensation
US20080175385A1 (en) * 2007-01-18 2008-07-24 Magiq Technologies, Inc. QKD system with link redundancy
CN101394269B (zh) * 2008-08-07 2011-05-11 清华大学 用量子态注入增强与量子直接安全通信的远距离通信方法
EP2273706B1 (en) * 2009-06-30 2012-05-30 Alcatel Lucent Synchronization packet-delay-variation dampening (SPD)
CN102004003B (zh) * 2010-09-27 2012-02-08 南通墨禾量子科技发展有限公司 光脉冲同步的高时间分辨率低噪声单光子探测器
CN105162584B (zh) * 2015-07-28 2018-11-27 中国科学技术大学 一种量子密钥分发系统及方法
CN106130722A (zh) * 2016-06-13 2016-11-16 上海理工大学 一种适用于超高速量子保密通信系统的雪崩光电二极管探测阵列
CN106375089B (zh) * 2016-10-20 2023-04-11 浙江神州量子网络科技有限公司 一种量子密钥分发系统的接收端以及量子密钥分发系统
CN106533676B (zh) * 2016-12-22 2019-08-27 浙江神州量子网络科技有限公司 一种基于参考系无关协议的量子密钥分发系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105289A2 (en) * 2003-05-14 2004-12-02 Science Research Laboratory, Inc. Methods and systems for high-data-rate quantum cryptography
CN101149597A (zh) * 2007-11-08 2008-03-26 华东师范大学 一种apd单光子探测的控制模块
CN103546280A (zh) * 2013-10-28 2014-01-29 中国科学技术大学 用于量子密码通信的编码器和解码器
CN203813797U (zh) * 2014-02-20 2014-09-03 安徽问天量子科技股份有限公司 量子密钥分配系统的全光纤通信系统
CN105337730A (zh) * 2015-11-19 2016-02-17 山西大学 基于相位编码qkd系统的单光子偏振控制方法及装置
CN105868131A (zh) * 2016-04-20 2016-08-17 京东方科技集团股份有限公司 延时控制设备、延时控制方法及电子装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031667A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 单光子探测装置和方法
US11686616B2 (en) 2019-08-16 2023-06-27 Huawei Technologies Co., Ltd. Single-photon detection apparatus and method comprising a phase-reversed reflection branch and a phase-unreversed reflection branch
CN110887574A (zh) * 2019-10-06 2020-03-17 桂林电子科技大学 一种多参数可配置的单光子计数系统

Also Published As

Publication number Publication date
CN109429508A (zh) 2019-03-05
CN109429508B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
US8331797B2 (en) Polarization-controlled encoding method, encoder, and quantum key distribution system
CN103502859B (zh) 多通道光发射器件及其制造和使用方法
US11860058B2 (en) Fiber-optic testing source and fiber-optic testing receiver for multi-fiber cable testing
Jogenfors et al. Hacking the bell test using classical light in energy-time entanglement–based quantum key distribution
US10187173B2 (en) Wavelength selective switch and optical signal transmission system
WO2016095715A1 (zh) 一种光收发模块及实现方法
WO2018232575A1 (zh) 一种光子探测系统
JP3715429B2 (ja) パラレル光送信/光受信モジュール
WO2020135849A1 (zh) 一种光交换装置、系统及功率计算方法
WO2022000951A1 (zh) 一种探测器的安全监测装置、方法及量子密钥分发接收机
US9906311B1 (en) Transceivers and receivers for quantum key distribution and methods pertaining thereto
WO2017177558A1 (zh) 一种光路诊断方法和装置
WO2021253878A1 (zh) 端口识别的方法, 装置和系统
JP2008268029A (ja) 量子効率測定方法および装置
CN105122690A (zh) Wdm-pon中调整激光器发射参数的方法、装置及系统
KR20210049233A (ko) 광자 검출 장치
CN111811551B (zh) 一种低损耗的偏振干涉型特高压直流控制保护系统otdr装置
EP3738227A1 (en) Transmitter and receiver for quantum key distribution
WO2019169525A1 (zh) 一种光性能监测装置及方法
JP5970412B2 (ja) 二重化光線路の光路遅延測定方法とその測定装置
JP6672918B2 (ja) 光受信装置および光受信方法
CN203705144U (zh) 光纤普查仪
CN116647338B (zh) 一种基于芯片的测量设备无关的量子秘钥分发系统及方法
WO2023070378A1 (zh) 光波长的测量装置和方法、光波长的控制设备及发光系统
WO2022088839A1 (zh) 端口识别的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915131

Country of ref document: EP

Kind code of ref document: A1