WO2018230333A1 - 波長変換部材及び発光デバイス - Google Patents

波長変換部材及び発光デバイス Download PDF

Info

Publication number
WO2018230333A1
WO2018230333A1 PCT/JP2018/020590 JP2018020590W WO2018230333A1 WO 2018230333 A1 WO2018230333 A1 WO 2018230333A1 JP 2018020590 W JP2018020590 W JP 2018020590W WO 2018230333 A1 WO2018230333 A1 WO 2018230333A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion member
phosphor layer
bonding material
heat dissipation
Prior art date
Application number
PCT/JP2018/020590
Other languages
English (en)
French (fr)
Inventor
忠仁 古山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2019525286A priority Critical patent/JP7094496B2/ja
Priority to US16/609,792 priority patent/US10930821B2/en
Publication of WO2018230333A1 publication Critical patent/WO2018230333A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a wavelength conversion member such as a fluorescent wheel for a projector and a light emitting device using the same.
  • Patent Document 1 discloses a projector using a light emitting device that includes a light source that emits ultraviolet light and a phosphor layer that converts ultraviolet light from the light source into visible light.
  • a fluorescent wheel produced by providing a ring-shaped phosphor layer on a ring-shaped rotatable transparent substrate is used.
  • An object of the present invention is to provide a wavelength conversion member capable of suppressing excessive heating of a phosphor layer and a light emitting device using the same.
  • the wavelength conversion member of the present invention includes a heat dissipation substrate, a phosphor layer provided on the heat dissipation substrate, and a bonding material layer provided between the heat dissipation substrate and the phosphor layer, and the bonding material layer is thermally conductive.
  • the heat-conductive porous material is impregnated with the bonding material. According to this configuration, a heat conduction path is formed in a three-dimensional manner by the heat conductive porous body in the bonding material layer, and heat generated in the phosphor layer is efficiently conducted to the heat dissipation substrate, and further from the heat dissipation substrate to the outside. Therefore, the phosphor layer can be prevented from being heated excessively.
  • the volume ratio of the heat conductive porous body in the bonding material layer is preferably 20 to 90%. In this way, heat generated in the phosphor layer can be efficiently conducted to the heat dissipation substrate while maintaining the bonding property between the heat dissipation substrate and the phosphor layer.
  • the heat conductive porous body is preferably made of a sintered body of inorganic particles.
  • the inorganic particles are at least one ceramic particle selected from boron nitride, aluminum nitride, aluminum oxide, magnesium oxide, titanium oxide, niobium oxide, zirconium oxide, zinc oxide, and silicon oxide; glass Or at least one metal particle selected from aluminum and silver.
  • the bonding material is preferably a silicone resin, an epoxy resin, or an acrylic resin.
  • the phosphor layer preferably contains a glass matrix and a phosphor dispersed in the glass matrix.
  • the heat dissipation substrate is preferably a metal substrate.
  • the metal substrate is preferably an aluminum alloy substrate.
  • a reflective film may be provided on the surface of the phosphor layer facing the heat dissipation substrate.
  • the reflective film is preferably a metal reflective film or a dielectric multilayer film.
  • the heat dissipation substrate and / or the phosphor layer is in contact with the thermally conductive porous body. If it does in this way, it will become easy to conduct the heat which generate
  • the heat dissipation substrate is preferably ring-shaped.
  • the wavelength conversion member of the present invention is suitable for a projector.
  • the light-emitting device of the present invention is characterized by comprising the above-described wavelength conversion member and a light source that irradiates the phosphor layer of the wavelength conversion member with excitation light.
  • the present invention it is possible to provide a wavelength conversion member capable of suppressing excessive heating of the phosphor layer and a light emitting device using the same.
  • FIG. 2 is a cross-sectional view taken along line AA shown in FIG. It is a fragmentary sectional view which expands and shows the vicinity of the fluorescent substance layer in the fluorescent wheel for projectors concerning the 1st Embodiment of this invention. It is sectional drawing which shows the fluorescent wheel for projectors concerning the 2nd Embodiment of this invention. It is a side view which shows the fluorescent device for projectors using the light emission wheel for projectors concerning the 1st Embodiment of this invention. It is a perspective view which shows the fluorescent wheel for projectors concerning the 3rd Embodiment of this invention.
  • FIG. 1 is a perspective view showing a fluorescent wheel for a projector according to a wavelength conversion member of a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view (in the vertical direction) taken along the line AA shown in FIG.
  • the fluorescent wheel (wavelength conversion member) 10 has a ring shape.
  • the fluorescent wheel 10 is provided between a heat dissipation substrate 11, a ring-shaped heat dissipation substrate 11, a ring-shaped phosphor layer 12 provided on the heat dissipation substrate 11, and the heat dissipation substrate 11 and the phosphor layer 12.
  • a bonding material layer 13 for bonding the body layer 12 is provided.
  • FIG. 3 is an enlarged partial cross-sectional view showing the vicinity of the phosphor layer 12 in the fluorescent wheel 10 of FIG.
  • the bonding material layer 13 includes a heat conductive porous body 14 and a bonding material 15 impregnated in the heat conductive porous body 14.
  • the heat conductive porous body 14 is composed of a sintered body of inorganic particles 16.
  • the heat conductive porous body 14 is preferably in contact with the heat dissipation substrate 11 on the main surface 13 a of the bonding material layer 13, and the heat conductive porous material 14 is in contact with the phosphor layer 12 on the main surface 13 b of the bonding material layer 13. It is preferable. In this way, the heat generated in the phosphor layer 12 is easily conducted to the heat radiating substrate 11 side through the heat conductive porous body 14.
  • the heat conductive porous body 14 does not necessarily need to be in contact with the heat dissipation substrate 11 and the phosphor layer 12 on both the main surface 13a and the main surface 13b of the bonding material layer 13, respectively.
  • the thermal conductive porous body 14 may be in contact with the heat dissipation substrate 11 or the phosphor layer 12 on only one of the main surface 13 a and the main surface 13 b of the bonding material layer 13. On both main surfaces, the heat conductive porous body 14 may not be in contact with the heat dissipation substrate 11 or the phosphor layer 12. Even when the thermally conductive porous body 14 is in contact with the heat dissipation substrate 11 or the phosphor layer 12, the bonding material 15 is exposed to the outside on a part of the main surface 13 a and the main surface 13 b of the bonding material layer 13. It is exposed and is in contact with the heat dissipation substrate 11 and the phosphor layer 12. Thereby, the bondability of the heat dissipation substrate 11 and the phosphor layer 12 is secured.
  • the heat conductive porous body 14 can also function as a reflective layer by appropriately selecting the material of the inorganic particles 16 constituting the heat conductive porous body 14.
  • the reflective layer in this case uses irregular reflection by the inorganic particles 16. If a substrate having a light reflection function, such as a metal substrate, which will be described later, is used as the heat radiating substrate 11, good reflection characteristics can be obtained by a combination of irregular reflection by the inorganic particles 16 and reflection by the heat radiating substrate 11. Become.
  • the heat dissipation substrate 11 examples include a metal substrate, a carbon substrate, a ceramic substrate, and a substrate made of a composite of ceramic and metal.
  • a metal substrate is used as the heat dissipation substrate 11 and plays a role of not only heat dissipation but also light reflection.
  • the metal substrate reflects excitation light incident on the phosphor layer 12 and fluorescence emitted from the phosphor upon incidence of the excitation light.
  • the metal substrate may be formed from a metal or an alloy and subjected to a surface treatment.
  • a metal substrate a thing with a high reflectance is preferable, for example, the aluminum substrate by which the reflective reflection film which consists of metal oxide etc. was formed in the surface is mentioned.
  • Examples of such a metal substrate include Miro (registered trademark) and Miro-Silver (registered trademark) manufactured by Alanod.
  • the phosphor layer 12 is composed of a glass matrix and phosphors dispersed therein.
  • inorganic phosphor particles are used as the phosphor.
  • the glass matrix is not particularly limited as long as it can be used as a phosphor dispersion medium.
  • borosilicate glass or phosphate glass can be used.
  • the softening point of the glass matrix is preferably 250 to 1000 ° C., more preferably 300 to 850 ° C. If the softening point of the glass matrix is too low, the mechanical strength and chemical durability of the phosphor layer 12 may decrease. In addition, since the heat resistance of the glass matrix itself is lowered, it may be softened and deformed by heat generated from the phosphor. On the other hand, if the softening point of the glass matrix is too high, the phosphor may be deteriorated by the firing process during production, and the emission intensity of the phosphor layer 12 may be reduced.
  • the phosphor is not particularly limited as long as it emits fluorescence when incident excitation light is incident.
  • Specific examples of the phosphor include, for example, an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a chloride phosphor, an acid chloride phosphor, a sulfide phosphor, an oxysulfide phosphor, and a halide. Examples thereof include one or more selected from phosphors, chalcogenide phosphors, aluminate phosphors, halophosphate phosphors, and garnet compound phosphors.
  • blue light is used as the excitation light, for example, a phosphor that emits green light or yellow light as fluorescence can be used.
  • the average particle diameter of the phosphor is preferably 1 to 50 ⁇ m, and more preferably 5 to 25 ⁇ m. If the average particle size of the phosphor is too small, the emission intensity may be reduced. On the other hand, if the average particle size of the phosphor is too large, the emission color may be non-uniform.
  • the phosphor content in the phosphor layer 12 is preferably in the range of 5 to 80% by volume, more preferably in the range of 10 to 75% by volume, and in the range of 20 to 70% by volume. More preferably, it is within. When there is too little content of fluorescent substance, it will become difficult to obtain the fluorescence which has desired light emission intensity. On the other hand, if the content of the phosphor is too large, the mechanical strength of the phosphor layer 12 tends to decrease.
  • the thickness of the phosphor layer 12 is preferably thinner as long as the excitation light is surely absorbed by the phosphor. This is because if the phosphor layer 12 is too thick, light scattering and absorption in the phosphor layer 12 become too large, and the emission efficiency of fluorescence may be lowered.
  • the thickness of the phosphor layer 12 is preferably 1 mm or less, more preferably 0.5 mm or less, and even more preferably 0.3 mm or less.
  • the lower limit of the thickness of the phosphor layer 12 is usually about 0.03 mm.
  • the phosphor layer 12 may be made of a ceramic phosphor other than those described above.
  • the thermally conductive porous body 14 is made of a material having a higher thermal conductivity than the phosphor layer 12 (particularly the glass matrix constituting the phosphor layer 12).
  • the inorganic particles 16 constituting the thermally conductive porous body 14 include ceramic particles such as boron nitride, aluminum nitride, aluminum oxide, magnesium oxide, titanium oxide, niobium oxide, zirconium oxide, zinc oxide and silicon oxide; Examples thereof include glass particles such as physical glass; and sintered bodies of metal particles such as aluminum and silver. Of these, aluminum oxide and magnesium oxide are preferable because of their excellent thermal conductivity and sinterability.
  • the heat conductive porous body 14 when making the heat conductive porous body 14 function as a reflection layer, there exists an advantage that an aluminum oxide and a titanium oxide are excellent in a reflection characteristic.
  • titanium oxide having excellent reflection characteristics may be mixed with aluminum oxide or magnesium oxide having excellent thermal conductivity.
  • the average particle diameter (D 50 ) of the inorganic particles 16 is preferably in the range of 0.01 to 50 ⁇ m, and more preferably in the range of 0.05 to 10 ⁇ m. If the average particle size of the inorganic particles 16 is too small, the pore size becomes small and it becomes difficult to impregnate the bonding material 15. On the other hand, if the average particle diameter of the inorganic particles 16 is too large, the sinterability becomes insufficient, and the mechanical strength of the thermally conductive porous body 14 tends to decrease.
  • the volume ratio of the heat conductive porous body 14 in the bonding material layer 13 is preferably in the range of 20 to 90%, more preferably in the range of 30 to 80%, and still more preferably in the range of 40 to 70%. If the volume ratio of the heat conductive porous body 14 is too small, a heat conduction path in the bonding material layer 13 cannot be sufficiently secured, and thus it is difficult to sufficiently conduct the heat generated in the phosphor layer 12 to the heat dissipation substrate 11. On the other hand, when the volume ratio of the heat conductive porous body 14 is too large, the ratio of the bonding material 15 in the bonding material layer 13 decreases, and the bonding force between the heat dissipation substrate 11 and the phosphor layer 12 may be reduced.
  • the “volume ratio of the thermally conductive porous body” means the volume ratio occupied by the material (for example, inorganic particles) constituting the thermally conductive porous body, and pores and bonding contained in the thermally conductive porous body.
  • the volume ratio of the material is not included.
  • the porosity of the heat conductive porous body 14 is preferably in the range of 10 to 80%, more preferably in the range of 20 to 70%, and still more preferably in the range of 30 to 60%.
  • the porosity of the heat conductive porous body 14 is too small, the ratio of the bonding material 15 in the bonding material layer 13 decreases, and the bonding force between the heat dissipation substrate 11 and the phosphor layer 12 may be reduced.
  • the porosity of the heat conductive porous body 14 is too large, a sufficient heat conduction path in the bonding material layer 13 cannot be secured, so that it is difficult to sufficiently conduct the heat generated in the phosphor layer 12 to the heat dissipation substrate 11. .
  • the bonding material 15 is preferably transparent. As a result, it is possible to efficiently transmit fluorescence and excitation light and improve the light emission efficiency. Specific examples of such a transparent bonding material 15 include silicone resin, acrylic resin, and epoxy resin. However, the bonding material 15 is not limited to a transparent material, and a non-transparent material can also be used.
  • the acrylic resin and epoxy resin can be used as the acrylic resin and epoxy resin.
  • a two-component type room temperature curing resin is preferable to use.
  • the viscosity is preferably 1500 cP or less, 1000 cP or less, particularly 500 cP or less in order to facilitate the impregnation of the thermally conductive porous body 14.
  • the silicone resin a silicone resin having a general siloxane bond can be used, and in particular, silsesquioxane having high heat resistance can be preferably used.
  • Silsesquioxane is a siloxane-based compound whose main chain skeleton is a Si—O—Si bond, and is obtained by hydrolyzing trifunctional silane (RSiO 1.5 ) n network type polymer Or a polyhedral cluster.
  • the thickness of the bonding material layer 13 is preferably 20 to 500 ⁇ m, and more preferably 50 to 300 ⁇ m. If the thickness of the bonding material layer 13 is too small, the bonding strength between the heat dissipation substrate 11 and the phosphor layer 12 may be inferior. On the other hand, if the thickness of the bonding material layer 13 is too large, the heat generated in the phosphor layer 12 may be difficult to dissipate to the heat dissipation substrate 11.
  • FIG. 4 is a sectional view showing a fluorescent wheel for a projector according to a second embodiment of the present invention.
  • the reflective film 16 is provided on the surface of the phosphor layer 12 facing the heat dissipation substrate 11 (that is, between the phosphor layer 12 and the bonding material layer 13).
  • Examples of the reflective film 16 include a metal reflective film made of silver, aluminum, platinum or the like, a dielectric multilayer film, or the like.
  • the dielectric multilayer film is a film composed of a laminated body of a high refractive index film and a low refractive index film, and can selectively reflect light having a specific wavelength.
  • Dielectric multilayer films include high refractive index films composed of niobium oxide, titanium oxide, lanthanum oxide, tantalum oxide, yttrium oxide, gadolinium oxide, tungsten oxide, hafnium oxide, aluminum oxide, silicon nitride, etc., silicon oxide, etc.
  • membrane comprised by these is mentioned.
  • Examples of the method for forming the reflective film 16 include a plating method, a vacuum vapor deposition method that is a physical vapor deposition method, an ion plating method, a sputtering method, and the like.
  • the thickness of the reflective film 16 is preferably 0.01 to 100 ⁇ m, and more preferably 0.03 to 10 ⁇ m. If the thickness of the reflective film 16 is too small, sufficient reflection characteristics may not be obtained. On the other hand, if the thickness of the reflective film 16 is too large, the reflective film 16 may be damaged due to a difference in thermal expansion coefficient between the reflective film 16 and the phosphor layer 12.
  • a transparent material layer (not shown) may be provided between the phosphor layer 12 and the reflective film 16.
  • the transparent material layer By providing the transparent material layer, the main surface 12b of the phosphor layer 12 becomes smooth, and the smoothness of the reflective film 16 can be improved. Thereby, the reflection characteristic of the reflective film 16 can be improved.
  • the transparent material layer include a glass layer and a resin layer.
  • the thickness of the transparent material layer is preferably 1 to 100 ⁇ m, and more preferably 10 to 50 ⁇ m. If the thickness of the transparent material layer is too small, it will be difficult to smooth the main surface 12b of the phosphor layer 12, and the reflective film 16 will not be smooth. On the other hand, if the thickness of the transparent material layer is too large, light may propagate through the transparent material layer and light may leak from the end of the transparent material layer, resulting in a decrease in light emission intensity.
  • the reflective film 16 plays a role of reflecting excitation light and fluorescence. Therefore, the heat dissipation substrate 11 does not necessarily have light reflection characteristics. Further, the heat conductive porous body 14 and the bonding material 15 are not necessarily required to be transparent.
  • the phosphor layer 12 is produced, for example, by the following method.
  • a slurry containing glass particles to be a glass matrix, a phosphor, and an organic component such as a binder resin or a solvent is applied onto a resin film such as polyethylene terephthalate by a doctor blade method or the like, and heated and dried to phosphor.
  • a green sheet for forming the layer 12 is prepared.
  • the phosphor layer 12 is obtained by firing the green sheet in the vicinity of the softening point of the glass particles (for example, softening point ⁇ 100 ° C.).
  • the heat conductive porous body 14 is produced by the following method. Apply a slurry containing fumed titania (Aeroxide manufactured by Evonic), alumina oxide and organic components such as binder resin and solvent as ceramic particles on a resin film such as polyethylene terephthalate by the doctor blade method, etc. Thus, a green sheet for forming the heat conductive porous body 14 is produced. By baking the green sheet (for example, 1000 to 1500 ° C.), the heat conductive porous body 14 is obtained.
  • a bonding material layer member obtained by impregnating the heat conductive porous body 14 with the bonding material 15 is obtained.
  • the heat conductive porous body 14 is impregnated with the bonding material 15, and the surface of the heat conductive porous body 14 is coated with the bonding material 15.
  • the heat dissipation substrate 11 and the phosphor layer 12 are bonded by curing the bonding material 15 with the bonding material layer member sandwiched between the heat dissipation substrate 11 and the phosphor layer 12 obtained above. Can do. In this way, the fluorescent wheel 10 in which the heat dissipation substrate 11 and the phosphor layer 12 are joined by the joining material layer 13 can be produced.
  • FIG. 5 is a schematic side view showing a light emitting device for a projector using the light emitting wheel for a projector according to the first embodiment of the present invention.
  • the projector light emitting device 30 according to the present embodiment includes a fluorescent wheel 10, a light source 20, and a motor 21 for rotating the fluorescent wheel 10.
  • the ring-shaped fluorescent wheel 10 is attached to the rotating shaft 22 of the motor 21 so as to rotate in the circumferential direction about the central axis C of the rotating shaft 22.
  • the excitation light 1 emitted from the light source 20 is incident on the phosphor layer 12 of the fluorescent wheel 10.
  • the excitation light 1 incident on the phosphor layer 12 excites the phosphor, and the fluorescence 2 is emitted from the phosphor.
  • the fluorescence 2 emitted to the heat dissipation substrate 11 side is reflected by the surface of the heat dissipation substrate 11 and emitted to the phosphor layer 12 side.
  • Specific examples of the light source 20 include an LED light source and a laser light source.
  • a light source that emits blue light as excitation light for example, a phosphor that is excited by blue light and emits yellow light or green light can be used as the phosphor of the phosphor layer 12.
  • a phosphor that is excited by blue light and emits yellow light or green light can be used as the phosphor of the phosphor layer 12.
  • the light emitted from the phosphor layer 12 only light having a desired wavelength can be extracted by a filter as necessary.
  • a ring-shaped filter may be attached to the rotating shaft 22 and rotated in synchronization with the fluorescent wheel 10 to filter the emitted light.
  • the fluorescent wheel 10 rotates in the circumferential direction. As described above, the heat conducted from the phosphor to the heat dissipation substrate 11 is released from the heat dissipation substrate 11 to the outside. Since the fluorescent wheel 10 rotates in the circumferential direction, heat release from the heat dissipation substrate 11 to the outside is further promoted.
  • the same type of phosphor is contained over the entire surface of the phosphor layer 12.
  • the present invention is not limited to such an embodiment.
  • the phosphor layer 12 may be divided into a plurality of regions along the circumferential direction, and different types of phosphors may be included in each region.
  • FIG. 6 is a perspective view showing a fluorescent wheel for a projector according to a third embodiment of the present invention.
  • the fluorescent wheel 10 shown in FIG. 6 has two sets of a first region 12a, a second region 12b, and a third region 12c. These regions are divided and provided in the circumferential direction as shown in FIG. For example, these regions correspond to regions that emit red, green, or blue light as fluorescence, and the fluorescent wheel 10 can be used as a color wheel. Even in this case, the bonding material layer 13 having the heat conductive porous body 14 can suppress the phosphor layer 12 from being heated excessively. Note that any one of the first region 12a, the second region 12b, and the third region 12c may be a region in which the phosphor layer 12 (and the bonding material layer 13) is not provided.
  • the wavelength conversion member of this invention is not limited to this.
  • a wavelength conversion member using a heat dissipation substrate such as a rectangle or a circle other than the ring shape may be used. Even in this case, the effects of the present invention as described above can be enjoyed.
  • Example 1 Production of phosphor layer
  • the raw material for borosilicate glass was melted at 1300 ° C. and formed into a film by a roll press.
  • the film-like glass is dry-pulverized with a ball mill using ⁇ 30 mm zirconia spheres and then wet-pulverized with a ball mill using ⁇ 5 mm zirconia spheres to obtain a glass powder having an average particle diameter (D 50 ) of 2 ⁇ m ( Softening point 780 ° C.).
  • the obtained glass powder was kneaded for 24 hours by adding organic components such as YAG phosphor, binder resin and solvent to obtain a slurry.
  • the slurry was applied on a PET (polyethylene terephthalate) film by a doctor blade method and dried to prepare a green sheet for forming a phosphor layer.
  • the obtained green sheet was extracted in a ring shape with a mold and fired at 840 ° C. to obtain a phosphor layer having a thickness of 0.13 mm.
  • a slurry was prepared by adding organic components such as a binder resin and a solvent to inorganic particles (MgO having an average particle diameter of 8 ⁇ m) and kneading for 24 hours.
  • the obtained slurry was applied onto a PET film by a doctor blade method and dried to prepare a green sheet for forming a heat conductive porous body.
  • the obtained green sheet was fired at 1300 ° C. to obtain a heat conductive porous body having a thickness of 160 ⁇ m.
  • a wavelength conversion member was manufactured by bonding a heat dissipation substrate and a phosphor layer with a bonding material.
  • the thickness of the bonding material layer was 10 ⁇ m.
  • a wavelength conversion member was manufactured by bonding a heat dissipation substrate and a phosphor layer with a bonding material.
  • the thickness of the bonding material layer was 160 ⁇ m.
  • Each wavelength conversion member obtained above was fixed to the rotating shaft of the motor.
  • an excitation light source a light source capable of condensing to a size of ⁇ 1 mm with a condensing lens from a laser unit in which 30 1W class laser elements were arranged was prepared. The light output of this light source was 30 W and the wavelength was 440 nm.
  • the wavelength conversion member was irradiated with excitation light while rotating at 7000 RPM, and the obtained fluorescence was received by a small spectroscope (USB-4000, manufactured by Ocean Optics) through an optical fiber to obtain an emission spectrum. The fluorescence intensity was determined from the emission spectrum. The results are shown in Table 1. The fluorescence intensity is shown as a relative value when the fluorescence intensity of Comparative Example 1 is 100.
  • the wavelength conversion member of the example has higher fluorescence intensity than the wavelength conversion member of the comparative example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Laminated Bodies (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)

Abstract

蛍光体層が過剰に加熱されるのを抑制することができる波長変換部材及びそれを用いた発光デバイスを提供する。 放熱基板11と、 放熱基板11の上に設けられた蛍光体層12と、 放熱基板11と蛍光体層12の間に設けられた接合材層13とを備え、 接合材層13は熱伝導性多孔体14と接合材15とを有し、熱伝導性多孔体14中に接合材15が含浸されていることを特徴とする波長変換部材10。

Description

波長変換部材及び発光デバイス
 本発明は、プロジェクター用蛍光ホイール等の波長変換部材及びそれを用いた発光デバイスに関するものである。
 近年、プロジェクター等の照明を小型化するため、LED(Light Emitting Diode)と蛍光体とを用いた発光デバイスが提案されている。例えば、特許文献1には、紫外光を発光する光源と、光源からの紫外光を可視光に変換する蛍光体層とを備える発光デバイスを用いたプロジェクターが開示されている。特許文献1においては、リング状の回転可能な透明基板の上に、リング状の蛍光体層を設けることにより作製した蛍光ホイールが用いられている。
特開2004-341105号公報
 ところで、高出力の光源を用いる場合、励起光の照射により蛍光体より発生する熱が大きくなり、蛍光体層が過剰に加熱される。蛍光体層が過剰に加熱されると、蛍光強度が著しく低下したり、場合によっては蛍光体層が基板から剥離するという問題が生じ得る。
 本発明の目的は、蛍光体層が過剰に加熱されるのを抑制することができる波長変換部材及びそれを用いた発光デバイスを提供することにある。
 本発明の波長変換部材は、放熱基板と、放熱基板の上に設けられた蛍光体層と、放熱基板と蛍光体層の間に設けられた接合材層とを備え、接合材層は熱伝導性多孔体と接合材とを有し、熱伝導性多孔体中に接合材が含浸されていることを特徴とする。当該構成によれば、接合材層中に熱伝導性多孔体による三次元的に熱伝導パスが形成され、蛍光体層で発生した熱が効率よく放熱基板に伝導し、さらには放熱基板から外部に放出されるため、蛍光体層が過剰に加熱されるのを抑制することができる。従って、蛍光体層が過剰に加熱されることにより生じる蛍光強度の著しい低下や、蛍光体層の基板からの剥離等の問題を抑制することができる。なお、熱伝導性多孔体内部に存在する気孔(空気)は熱伝導性を低下させる原因となる。本発明の波長変換部材では、熱伝導性多孔体に接合材が含浸されていることにより、熱伝導性多孔体内部に存在する気孔を極力少なくし、熱伝導性を高めている。また、熱伝導性多孔体に接合材が含浸されていることにより、熱伝導性多孔体に接合材が含浸されていない場合と比較して、接合力を高めることができる。
 本発明の波長変換部材は、接合材層における熱伝導性多孔体の体積率が20~90%であることが好ましい。このようにすれば、放熱基板と蛍光体層の接合性を維持しつつ、蛍光体層で発生した熱を効率よく放熱基板に伝導させることができる。
 本発明の波長変換部材は、熱伝導性多孔体が無機粒子の焼結体からなることが好ましい。
 本発明の波長変換部材は、無機粒子が、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化ニオビウム、酸化ジルコニウム、酸化亜鉛及び酸化ケイ素から選択される少なくとも1種のセラミックス粒子;ガラス粒子;またはアルミニウム及び銀から選択される少なくとも1種の金属粒子であることが好ましい。
 本発明の波長変換部材は、接合材がシリコーン樹脂、エポキシ樹脂またはアクリル樹脂であることが好ましい。
 本発明の波長変換部材は、蛍光体層は、ガラスマトリクスと、ガラスマトリクス中に分散した蛍光体とを含有することが好ましい。
 本発明の波長変換部材は、放熱基板が金属基板であることが好ましい。
 本発明の波長変換部材は、金属基板が、アルミニウム合金基板であることが好ましい。
 本発明の波長変換部材は、蛍光体層の、放熱基板に対向した表面の上に反射膜が設けられていてもよい。
 本発明の波長変換部材は、反射膜が金属反射膜または誘電体多層膜であることが好ましい。
 本発明の波長変換部材は、放熱基板及び/または蛍光体層が、熱伝導性多孔体と接触していることが好ましい。このようにすれば、蛍光体層で発生した熱が熱伝導性多孔体を通じて効率よく放熱基板に伝導しやすくなる。
 本発明の波長変換部材は、放熱基板がリング状であることが好ましい。
 本発明の波長変換部材は、プロジェクター用として好適である。
 本発明の発光デバイスは、上記の波長変換部材と、波長変換部材の蛍光体層に励起光を照射する光源とを備えることを特徴とする。
 本発明によれば、蛍光体層が過剰に加熱されるのを抑制することができる波長変換部材及びそれを用いた発光デバイスを提供することができる。
本発明の第1の実施形態に係るプロジェクター用蛍光ホイールを示す斜視図である。 図1に示すA-A線に沿う断面図である。 本発明の第1の実施形態に係るプロジェクター用蛍光ホイールにおける蛍光体層の近傍を拡大して示す部分断面図である。 本発明の第2の実施形態に係るプロジェクター用蛍光ホイールを示す断面図である。 本発明の第1の実施形態に係るプロジェクター用発光ホイールを用いたプロジェクター用蛍光デバイスを示す側面図である。 本発明の第3の実施形態に係るプロジェクター用蛍光ホイールを示す斜視図である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
 図1は、本発明の第1の実施形態の波長変換部材に係るプロジェクター用蛍光ホイールを示す斜視図である。図2は、図1に示すA-A線に沿う(垂直方向の)断面図である。図1及び図2に示すように、蛍光ホイール(波長変換部材)10は、リング状の形状を有している。蛍光ホイール10は、リング状の放熱基板11と、放熱基板11の上に設けられるリング状の蛍光体層12と、放熱基板11と蛍光体層12との間に設けられ、放熱基板11と蛍光体層12とを接合する接合材層13とを備えている。
 図3は、図2の蛍光ホイール10における蛍光体層12の近傍を拡大して示す部分断面図である。接合材層13は、熱伝導性多孔体14と、熱伝導性多孔体14中に含浸された接合材15とを有する。本実施形態では熱伝導性多孔体14は無機粒子16の焼結体から構成されている。
 接合材層13の主面13aにおいて熱伝導性多孔体14が放熱基板11と接触していることが好ましく、接合材層13の主面13bにおいて熱伝導性多孔体14が蛍光体層12と接触していることが好ましい。このようにすれば、蛍光体層12で発生した熱が熱伝導性多孔体14を通じて放熱基板11側に伝導しやすくなる。ただし、必ずしも接合材層13の主面13a及び主面13bの両方において、熱伝導性多孔体14がそれぞれ放熱基板11及び蛍光体層12に接触している必要はない。例えば、接合材層13の主面13a及び主面13bのいずれか一方のみにおいて、熱伝導性多孔体14が放熱基板11または蛍光体層12と接触していてもよいし、接合材層13の両主面において、熱伝導性多孔体14が放熱基板11または蛍光体層12と接触していなくてもよい。なお、熱伝導性多孔体14が放熱基板11または蛍光体層12に接触している場合であっても、接合材層13の主面13a及び主面13bの一部で接合材15が外部に露出しており、放熱基板11及び蛍光体層12と接触している。これにより、放熱基板11及び蛍光体層12の接合性を担保している。
 熱伝導性多孔体14は、構成する無機粒子16の材質を適宜選択することにより、反射層として機能させることもできる。この場合の反射層は、無機粒子16による乱反射を利用したものである。なお、放熱基板11として後述するような金属基板等の光反射機能を有する基板を使用すれば、無機粒子16による乱反射と放熱基板11による反射の組み合わせにより、良好な反射特性を得ることが可能となる。
 以下、各構成要件ごとに詳細に説明する。
 放熱基板11としては、金属基板、カーボン基板、セラミック基板、またはセラミックと金属の複合体からなる基板等が挙げられる。本実施形態では、放熱基板11として金属基板が用いられており、放熱だけでなく、光反射の役割も担っている。具体的には、金属基板は、蛍光体層12に入射する励起光、及び励起光の入射により蛍光体から出射される蛍光を反射する。金属基板は、金属または合金から形成され、表面処理が施されていてもよい。金属基板としては、反射率の高いものが好ましく、例えば、表面に金属酸化物等からなる増反射膜が形成されたアルミニウム基板が挙げられる。このような金属基板としては、アラノッド(Alanod)社製のMiro(登録商標)及びMiro-Silver(登録商標)等が挙げられる。
 蛍光体層12は、ガラスマトリクスと、その中に分散した蛍光体とから構成されている。本実施形態では、蛍光体として、無機蛍光体の粒子が用いられている。
 ガラスマトリクスは蛍光体の分散媒として用いることができるものであれば特に限定されない。例えば、ホウ珪酸塩系ガラス、リン酸塩系ガラス等を用いることができる。ガラスマトリクスの軟化点は、250~1000℃であることが好ましく、300~850℃であることがより好ましい。ガラスマトリクスの軟化点が低すぎると、蛍光体層12の機械的強度や化学的耐久性が低下する場合がある。また、ガラスマトリクス自体の耐熱性が低くなるため、蛍光体から発生する熱により軟化変形する場合がある。一方、ガラスマトリクスの軟化点が高すぎると、製造時の焼成工程によって、蛍光体が劣化して、蛍光体層12の発光強度が低下する場合がある。
 蛍光体は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、及びガーネット系化合物蛍光体から選ばれた1種以上が挙げられる。励起光として青色光を用いる場合、例えば、緑色光または黄色光を蛍光として出射する蛍光体を用いることができる。
 蛍光体の平均粒子径は、1~50μmであることが好ましく、5~25μmであることがより好ましい。蛍光体の平均粒子径が小さすぎると、発光強度が低下する場合がある。一方、蛍光体の平均粒子径が大きすぎると、発光色が不均一になる場合がある。
 蛍光体層12中での蛍光体の含有量は、5~80体積%の範囲内であることが好ましく、10~75体積%の範囲内であることがより好ましく、20~70体積%の範囲内であることがさらに好ましい。蛍光体の含有量が少なすぎると、所望の発光強度を有する蛍光が得にくくなる。一方、蛍光体の含有量が多すぎると、蛍光体層12の機械的強度が低下しやすくなる。
 蛍光体層12の厚みは、励起光が確実に蛍光体に吸収されるような厚みである範囲において、薄い方が好ましい。蛍光体層12が厚すぎると、蛍光体層12における光の散乱や吸収が大きくなりすぎ、蛍光の出射効率が低くなってしまう場合があるためである。具体的には、蛍光体層12の厚みは1mm以下であることが好ましく、0.5mm以下であることがより好ましく、0.3mm以下であることがさらに好ましい。蛍光体層12の厚みの下限値は、通常、0.03mm程度である。
 蛍光体層12は上記のもの以外にも、セラミック蛍光体からなるものを使用することができる。
 熱伝導性多孔体14は、蛍光体層12(特に蛍光体層12を構成するガラスマトリクス)より熱伝導率の高い材質で構成されている。熱伝導性多孔体14を構成する無機粒子16の具体例としては、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化ニオビウム、酸化ジルコニウム、酸化亜鉛及び酸化ケイ素等のセラミック粒子;酸化物ガラス等のガラス粒子;アルミニウム、銀等の金属粒子の焼結体等が挙げられる。中でも酸化アルミニウムや酸化マグネシウムは熱伝導性や焼結性に優れるため好ましい。また熱伝導性多孔体14を反射層として機能させる場合、酸化アルミニウムや酸化チタンは反射特性に優れるという利点もある。なお、熱伝導性と反射特性を両立させる場合には、熱伝導性に優れる酸化アルミニウムや酸化マグネシウムに対し、反射特性に優れる酸化チタンを混合させてもよい。
 無機粒子16の平均粒子径(D50)は、0.01~50μmの範囲内であることが好ましく、0.05~10μmの範囲内であることがより好ましい。無機粒子16の平均粒子径が小さすぎると、孔径が小さくなり接合材15を含浸させることが困難になる。一方、無機粒子16の平均粒子径が大きすぎると、焼結性が不十分になり熱伝導性多孔体14の機械的強度が低下しやすくなる。
 接合材層13における熱伝導性多孔体14の体積率は20~90%の範囲が好ましく、より好ましくは30~80%の範囲であり、さらに好ましくは40~70%の範囲である。熱伝導性多孔体14の体積率が小さすぎると、接合材層13における熱伝導パスを十分に確保できないため、蛍光体層12で発生した熱を放熱基板11へ十分に伝導させにくくなる。一方、熱伝導性多孔体14の体積率が大きすぎると、接合材層13における接合材15の割合が少なくなり、放熱基板11と蛍光体層12の接合力が低下する場合がある。ここで、「熱伝導性多孔体の体積率」は、熱伝導性多孔体を構成する材料(例えば無機粒子)が占める体積率を意味し、熱伝導性多孔体の内部に含まれる気孔や接合材の体積率は含まない。
 熱伝導性多孔体14の気孔率は10~80%の範囲が好ましく、より好ましくは20~70%の範囲であり、さらに好ましくは30~60%の範囲である。熱伝導性多孔体14の気孔率が小さすぎると、接合材層13における接合材15の割合が少なくなり、放熱基板11と蛍光体層12の接合力が低下する場合がある。一方、熱伝導性多孔体14の気孔率が大きすぎると、接合材層13における熱伝導パスを十分に確保できないため、蛍光体層12で発生した熱を放熱基板11へ十分に伝導させるにくくなる。
 接合材15は、透明であることが好ましい。これにより、蛍光や励起光を効率よく透過させ、発光効率を向上させることが可能となる。このような透明の接合材15の具体例としては、シリコーン樹脂、アクリル樹脂及びエポキシ樹脂等が挙げられる。但し、接合材15は、透明であるものに限定されず、透明でないものも用いることができる。
 アクリル樹脂やエポキシ樹脂としては、市販されているものを用いることができる。硬化時において放熱基板11または蛍光体層12との熱膨張差を低減する目的では、2液タイプの常温硬化型樹脂を使用することが好ましい。粘度は、熱伝導性多孔体14に含浸しやすくするために1500cP以下、1000cP以下、特に500cP以下であることが好ましい。シリコーン樹脂としては、一般的なシロキサン結合を有するシリコーン樹脂を用いることができ、特に、耐熱性の高いシルセスキオキサンを好ましく用いることができる。シルセスキオキサンは、主鎖骨格がSi-O-Si結合からなるシロキサン系の化合物で、3官能性シランを加水分解することで得られる(RSiO1.5の構造を持つネットワーク型ポリマーまたは多面体クラスターである。
 接合材層13の厚みは、20~500μmであることが好ましく、50~300μmであることがより好ましい。接合材層13の厚みが小さすぎると、放熱基板11と蛍光体層12の接合強度に劣る場合がある。一方、接合材層13の厚みが大きすぎると、蛍光体層12で発生した熱が放熱基板11へ放熱されにくくなる場合がある。
 図4は、本発明の第2の実施形態のプロジェクター用蛍光ホイールを示す断面図である。本実施形態では、蛍光体層12の、放熱基板11に対向した表面の上(即ち、蛍光体層12と接合材層13の間)に反射膜16が設けられている。
 反射膜16としては、銀、アルミニウム、白金等からなる金属反射膜や、誘電体多層膜等が挙げられる。誘電体多層膜は、高屈折率膜と低屈折率膜の積層体により構成された膜であり、特定波長の光を選択的に反射させることができる。誘電体多層膜としては、酸化ニオブ、酸化チタン、酸化ランタン、酸化タンタル、酸化イットリウム、酸化ガドリニウム、酸化タングステン、酸化ハフニウム、酸化アルミニウム、窒化ケイ素等により構成される高屈折率膜と、酸化ケイ素等により構成される低屈折率膜とを交互に積層した膜が挙げられる。
 反射膜16の形成方法としては、メッキ法、あるいは、物理気相堆積法である真空蒸着法、イオンプレーティング法、スパッタリング法等が挙げられる。
 反射膜16の厚みは0.01~100μmであることが好ましく、0.03~10μmであることがより好ましい。反射膜16の厚みが小さすぎると、十分な反射特性が得られない場合がある。一方、反射膜16の厚みが大きすぎると、反射膜16と蛍光体層12の熱膨張係数差によって、反射膜16が破損する場合がある。
 なお、蛍光体層12と反射膜16との間に、透明材料層(図示せず)を設けてもよい。透明材料層を設けることにより、蛍光体層12の主面12bが平滑になり、反射膜16の平滑性を高めることができる。これにより、反射膜16の反射特性を向上させることができる。透明材料層としては、ガラス層や樹脂層が挙げられる。
 透明材料層の厚みは1~100μmであることが好ましく、10~50μmであることがより好ましい。透明材料層の厚みが小さすぎると、蛍光体層12の主面12bを平滑にすることが困難になり、反射膜16が平滑になりにくくなる。一方、透明材料層の厚みが大きすぎると、透明材料層の内部を光が伝播して、透明材料層の端部から光が漏出する場合があり、結果として発光強度が低下するおそれがある。
 本実施形態では、反射膜16が励起光や蛍光を反射する役割を担う。従って、放熱基板11は必ずしも光反射特性を有さなくてもよい。また、熱伝導性多孔体14及び接合材15についても、必ずしも透明性は要求されない。
 以下に、蛍光ホイール10の作製方法の一例を説明する。
 まず、蛍光体層12を、例えば、以下の方法で作製する。ガラスマトリクスとなるガラス粒子と、蛍光体と、バインダー樹脂や溶剤等の有機成分とを含むスラリーを、ポリエチレンテレフタレート等の樹脂フィルム上にドクターブレード法等により塗布し、加熱乾燥することにより、蛍光体層12形成用のグリーンシートを作製する。グリーンシートをガラス粒子の軟化点付近(例えば軟化点±100℃)で焼成することにより、蛍光体層12が得られる。
 次に、熱伝導性多孔体14を以下の方法で作製する。セラミック粒子としてフュームドチタニア(Evonic社製Aeroxide)と酸化アルミナとバインダー樹脂や溶剤等の有機成分とを含むスラリーを、ポリエチレンテレフタレート等の樹脂フィルム上にドクターブレード法等により塗布し、加熱乾燥することにより、熱伝導性多孔体14形成用のグリーンシートを作製する。グリーンシートを焼成する(例えば1000~1500℃)ことにより、熱伝導性多孔体14が得られる。
 次に、容器に満たした液体状の接合材15に熱伝導性多孔体14を浸漬することにより、熱伝導性多孔体14に接合材15を含浸させてなる接合材層用部材を得る。当該接合材層用部材は、熱伝導性多孔体14中に接合材15が含浸されているとともに、熱伝導性多孔体14の表面が接合材15によりコーティングされている。当該接合材層用部材を、上記で得られた放熱基板11と蛍光体層12の間に挟持した状態で、接合材15を硬化させることにより、放熱基板11と蛍光体層12を接合することができる。このようにして、放熱基板11と蛍光体層12が接合材層13で接合されてなる蛍光ホイール10を作製することができる。
 図5は、本発明の第1の実施形態のプロジェクター用発光ホイールを用いたプロジェクター用発光デバイスを示す模式的側面図である。本実施形態のプロジェクター用発光デバイス30は、蛍光ホイール10と、光源20と、蛍光ホイール10を回転させるためのモーター21とを備えている。リング状の蛍光ホイール10は、モーター21の回転軸22に、回転軸22の中心軸Cを回転中心として周方向に回転するように取り付けられている。
 光源20から出射された励起光1は、蛍光ホイール10の蛍光体層12に入射する。蛍光体層12に入射した励起光1は、蛍光体を励起し、蛍光体から蛍光2が出射される。放熱基板11側に出射された蛍光2は、放熱基板11の表面で反射され、蛍光体層12側に出射される。光源20の具体例としては、LED光源やレーザー光源等が挙げられる。
 励起光として青色光を発光する光源を、光源20として用いる場合、例えば、蛍光体層12の蛍光体として、青色光で励起され、黄色光または緑色光を発する蛍光体を用いることができる。蛍光体層12から出射された光は、必要に応じて、フィルターによって所望の波長を有する光のみを取り出すことができる。リング状のフィルターを、回転軸22に取り付け、蛍光ホイール10と同期させて回転させ、出射光をフィルタリングしてもよい。
 本実施形態において、蛍光ホイール10は周方向に回転している。上記のように、蛍光体から放熱基板11に伝導された熱は、放熱基板11から外部に放出される。蛍光ホイール10が周方向に回転していることにより、放熱基板11から外部への熱放出がさらに促進される。
 上記実施形態の蛍光ホイール10では、蛍光体層12の全面にわたって、同じ種類の蛍光体が含有されている。しかしながら、本発明は、このような態様に限定されるものではない。以下に説明する実施形態のように、蛍光体層12が、周方向に沿って複数の領域に分割され、各領域に互いに異なる種類の蛍光体が含まれていてもよい。
 図6は、本発明の第3の実施形態のプロジェクター用蛍光ホイールを示す斜視図である。図6に示す蛍光ホイール10は、二組の第1の領域12a、第2の領域12b、及び第3の領域12cを有している。これらの領域は、図6に示すように、周方向に分割して設けられている。これらの領域を、例えば、赤色、緑色、または青色の光を蛍光として発光する領域に対応させ、蛍光ホイール10をカラーホイールとして用いることができる。この場合においても、接合材層13が熱伝導性多孔体14を有することにより、蛍光体層12が過剰に加熱されるのを抑制することができる。なお、第1の領域12a、第2の領域12b、及び第3の領域12cのいずれかを、蛍光体層12(さらには接合材層13)を設けない領域としてもよい。
 以上、波長変換部材としてプロジェクター用蛍光ホイールの例について説明したが、本発明の波長変換部材はこれに限定されるものではない。例えば、リング状以外の矩形や円形等の放熱基板を用いた波長変換部材であっても構わない。この場合でも、上述したような本発明の効果を享受することができる。
 以下、本発明を実施例に基づいて詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例)
 (1)蛍光体層の作製
 ホウケイ酸ガラス用原料を1300℃で溶融し、ロールプレス機にてフィルム状に成形した。フィルム状ガラスを、φ30mmのジルコニア球を用いたボールミルにて乾式粉砕した後、さらにφ5mmのジルコニア球を用いたボールミルにて湿式粉砕することにより、平均粒子径(D50)が2μmのガラス粉末(軟化点780℃)を得た。
 得られたガラス粉末に対し、YAG蛍光体、バインダー樹脂や溶剤等の有機成分を添加して24時間混練することによりスラリーを得た。スラリーをPET(ポリエチレンテレフタレート)フィルム上にドクターブレード法により塗布し、乾燥することにより、蛍光体層形成用のグリーンシートを作製した。得られたグリーンシートを金型でリング状に抜き取り、840℃で焼成することにより、厚み0.13mmの蛍光体層を得た。
 (2)熱伝導性多孔体の作製
 無機粒子(平均粒子径8μmのMgO)にバインダー樹脂や溶剤等の有機成分を添加して24時間混練することによりスラリーを作製した。得られたスラリーをPETフィルム上にドクターブレード法により塗布し、乾燥することにより、熱伝導性多孔体形成用のグリーンシートを作製した。得られたグリーンシートを1300℃で焼成することにより、厚み160μmの熱伝導性多孔体を得た。
 (3)蛍光ホイールの作製
 容器に満たした液体状の接合材(エポキシ樹脂)に熱伝導性多孔体を浸漬することにより、熱伝導性多孔体に接合材15を含浸させてなる接合材層用部材を得た。当該接合材層用部材は、熱伝導性多孔体中に接合材が含浸されているとともに、熱伝導性多孔体の表面が接合材によりコーティングされていた。当該接合材層用部材を、放熱基板(厚み0.5mmのアルミニウム基板)と上記で得られた蛍光体層の間に挟持した状態で、接合材を硬化させることにより、放熱基板と蛍光体層を接合した。このとき、熱伝導性多孔体の表面を覆っていた余分な接合材は、放熱基板と蛍光体層を挟持したときに熱伝導性多孔体の側面から外部に滲出し、その結果、熱伝導性多孔体の一部は放熱基板及び蛍光体と直接接触していた。以上のようにして、放熱基板と蛍光体層が接合材層で接合されてなる波長変換部材を作製した。
 (比較例1)
 実施例において、放熱基板と蛍光体層を接合材で接合することにより波長変換部材を作製した。なお、接合材層の厚みは10μmとした。
 (比較例2)
 実施例において、放熱基板と蛍光体層を接合材で接合することにより波長変換部材を作製した。なお、接合材層の厚みは160μmとした。
 <評価>
 上記で得られた各波長変換部材をモーターの回転軸に固定した。励起光源として、1Wクラスのレーザー素子が30個整列したレーザーユニットから集光レンズでφ1mmのサイズに集光できる光源を準備した。この光源の光出力は30W、波長440nmであった。波長変換部材を7000RPMで回転させながら励起光を照射し、得られた蛍光を光ファイバーを通して小型分光器(USB-4000、オーシャンオプティクス社製)で受光し、発光スペクトルを得た。発光スペクトルから蛍光強度を求めた。結果を表1に示す。なお蛍光強度は、比較例1の蛍光強度を100とした場合の相対値で示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の波長変換部材は比較例の波長変換部材と比較して蛍光強度が高いことがわかる。
1…励起光
2…蛍光
10…蛍光ホイール
11…放熱基板
12…蛍光体層
12a…第1の領域
12b…第2の領域
12c…第3の領域
13…接合材層
14…熱伝導性多孔体
15…接合材
16…反射膜
20…光源
21…モーター
22…回転軸
30…プロジェクター用発光デバイス

Claims (14)

  1.  放熱基板と、
     前記放熱基板の上に設けられた蛍光体層と、
     前記放熱基板と前記蛍光体層の間に設けられた接合材層とを備え、
     前記接合材層は熱伝導性多孔体と接合材とを有し、前記熱伝導性多孔体中に前記接合材が含浸されていることを特徴とする波長変換部材。
  2.  前記接合材層における前記熱伝導性多孔体の体積率が20~90%であることを特徴とする請求項1に記載の波長変換部材。
  3.  前記熱伝導性多孔体が無機粒子の焼結体からなることを特徴とする請求項1または2に記載の波長変換部材。
  4.  前記無機粒子が、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化ニオビウム、酸化ジルコニウム、酸化亜鉛及び酸化ケイ素から選択される少なくとも1種のセラミック粒子;ガラス粒子;またはアルミニウム及び銀から選択される少なくとも1種の金属粒子であることを特徴とする請求項3に記載の波長変換部材。
  5.  前記接合材がシリコーン樹脂、エポキシ樹脂またはアクリル樹脂であることを特徴とする請求項1~4のいずれか一項に記載の波長変換部材。
  6.  前記蛍光体層は、ガラスマトリクスと、前記ガラスマトリクス中に分散した蛍光体とを含有することを特徴とする請求項1~5のいずれか一項に記載の波長変換部材。
  7.  前記放熱基板が金属基板であることを特徴とする請求項1~6のいずれか一項に記載の波長変換部材。
  8.  前記金属基板が、アルミニウム合金基板であることを特徴とする請求項7に記載の波長変換部材。
  9.  前記蛍光体層の、前記放熱基板に対向した表面の上に反射膜が設けられていることを特徴とする請求項1~8のいずれか一項に記載の波長変換部材。
  10.  前記反射膜が金属反射膜または誘電体多層膜であることを特徴とする請求項9に記載の波長変換部材。
  11.  前記放熱基板及び/または前記蛍光体層が、前記熱伝導性多孔体と接触していることを特徴とする請求項1~10のいずれか一項に記載の波長変換部材。
  12.  前記放熱基板がリング状であることを特徴とする請求項1~11のいずれか一項に記載の波長変換部材。
  13.  プロジェクター用であることを特徴とする請求項1~12のいずれか一項に記載の波長変換部材。
  14.  請求項1~13のいずれか一項に記載の波長変換部材と、
     前記波長変換部材の前記蛍光体層に励起光を照射する光源とを備えることを特徴とする発光デバイス。
PCT/JP2018/020590 2017-06-14 2018-05-29 波長変換部材及び発光デバイス WO2018230333A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019525286A JP7094496B2 (ja) 2017-06-14 2018-05-29 波長変換部材及び発光デバイス
US16/609,792 US10930821B2 (en) 2017-06-14 2018-05-29 Wavelength conversion member and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-116477 2017-06-14
JP2017116477 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018230333A1 true WO2018230333A1 (ja) 2018-12-20

Family

ID=64660726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020590 WO2018230333A1 (ja) 2017-06-14 2018-05-29 波長変換部材及び発光デバイス

Country Status (5)

Country Link
US (1) US10930821B2 (ja)
JP (1) JP7094496B2 (ja)
CN (2) CN109087985A (ja)
TW (1) TWI753161B (ja)
WO (1) WO2018230333A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3958057A1 (en) * 2020-08-20 2022-02-23 Delta Electronics, Inc. Wavelength conversion member and light source module
US11287107B2 (en) * 2018-02-14 2022-03-29 Ngk Spark Plug Co., Ltd. Optical wavelength conversion device
WO2022123878A1 (ja) * 2020-12-10 2022-06-16 シャープ株式会社 波長変換部材、光源装置、前照灯具、および投影装置
EP3916439A4 (en) * 2019-01-25 2022-06-22 Panasonic Intellectual Property Management Co., Ltd. COLOR CONVERSION ELEMENT
EP3956724A4 (en) * 2019-04-19 2022-11-30 Materion Precision Optics (Shanghai) Limited HIGH TEMPERATURE RESISTANT REFLECTIVE COATING FOR WAVELENGTH CONVERSION DEVICES

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396701B (zh) 2006-02-27 2013-05-21 Mitsubishi Gas Chemical Co 氫化聚合物之製法
US20080254250A1 (en) * 2007-04-10 2008-10-16 Vladek Kasperchik Image recording media and image layers
US7575844B2 (en) * 2007-04-27 2009-08-18 Hewlett-Packard Development Company, L.P. Color forming composites capable of multi-colored imaging and associated systems and methods
TWI753161B (zh) * 2017-06-14 2022-01-21 日商日本電氣硝子股份有限公司 波長轉換構件及發光裝置
CN111830773A (zh) 2019-04-19 2020-10-27 中强光电股份有限公司 波长转换模块以及投影装置
USD996674S1 (en) 2019-09-10 2023-08-22 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Headlight
TWI725564B (zh) * 2019-09-30 2021-04-21 台達電子工業股份有限公司 波長轉換裝置
CN112578551A (zh) 2019-09-30 2021-03-30 台达电子工业股份有限公司 波长转换装置
CN112578552A (zh) 2019-09-30 2021-03-30 台达电子工业股份有限公司 波长转换装置
TWI740223B (zh) * 2019-09-30 2021-09-21 台達電子工業股份有限公司 波長轉換裝置
TWI718707B (zh) * 2019-10-15 2021-02-11 台達電子工業股份有限公司 波長轉換裝置
CN112666780B (zh) 2019-10-15 2022-06-24 台达电子工业股份有限公司 波长转换装置
JP7472558B2 (ja) * 2020-03-12 2024-04-23 セイコーエプソン株式会社 波長変換素子、光源装置、プロジェクター、および波長変換素子の製造方法
US11320570B2 (en) * 2020-04-08 2022-05-03 Delta Electronics, Inc. Wavelength converting device
JP2021170587A (ja) * 2020-04-15 2021-10-28 日亜化学工業株式会社 樹脂含浸方法、波長変換モジュールの製造方法及び波長変換モジュール
CN114675478B (zh) 2020-12-24 2024-03-15 中强光电股份有限公司 波长转换模块与投影机
CN114815477A (zh) 2021-01-20 2022-07-29 中强光电股份有限公司 波长转换模块以及投影机
CN113603462B (zh) * 2021-07-20 2022-08-26 中国计量大学 一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用
TWI820817B (zh) * 2022-07-25 2023-11-01 國立中山大學 共軛凸輪式減速機
CN115895657A (zh) * 2022-10-11 2023-04-04 中国计量大学 基于金属铝基介孔氧化铝制备的荧光发射层及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015001A (ja) * 2010-07-02 2012-01-19 Stanley Electric Co Ltd 光源装置、色調整方法、照明装置
JP2015094777A (ja) * 2013-11-08 2015-05-18 日本電気硝子株式会社 プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
JP2015118107A (ja) * 2013-11-13 2015-06-25 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2015121586A (ja) * 2013-12-20 2015-07-02 日本電気硝子株式会社 プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
JP2015143824A (ja) * 2013-12-27 2015-08-06 日本電気硝子株式会社 プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
JP2015215583A (ja) * 2013-11-08 2015-12-03 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
WO2016125611A1 (ja) * 2015-02-03 2016-08-11 日本電気硝子株式会社 波長変換部材及びそれを用いた発光デバイス
JP2016535396A (ja) * 2013-10-15 2016-11-10 深▲ちぇん▼市光峰光電技術有限公司Appotronics Corporation Limited 波長変換装置及びその光源システム、投影システム
WO2018042825A1 (ja) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 色変換素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829470B2 (ja) 2003-05-14 2011-12-07 Necディスプレイソリューションズ株式会社 投写型表示装置
CN102234187B (zh) * 2010-04-29 2013-10-30 比亚迪股份有限公司 一种陶瓷复合材料及其制备方法
JP6303735B2 (ja) 2014-04-02 2018-04-04 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
TWI753161B (zh) * 2017-06-14 2022-01-21 日商日本電氣硝子股份有限公司 波長轉換構件及發光裝置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015001A (ja) * 2010-07-02 2012-01-19 Stanley Electric Co Ltd 光源装置、色調整方法、照明装置
JP2016535396A (ja) * 2013-10-15 2016-11-10 深▲ちぇん▼市光峰光電技術有限公司Appotronics Corporation Limited 波長変換装置及びその光源システム、投影システム
JP2015094777A (ja) * 2013-11-08 2015-05-18 日本電気硝子株式会社 プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
JP2015215583A (ja) * 2013-11-08 2015-12-03 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2015118107A (ja) * 2013-11-13 2015-06-25 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2015121586A (ja) * 2013-12-20 2015-07-02 日本電気硝子株式会社 プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
JP2015143824A (ja) * 2013-12-27 2015-08-06 日本電気硝子株式会社 プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
WO2016125611A1 (ja) * 2015-02-03 2016-08-11 日本電気硝子株式会社 波長変換部材及びそれを用いた発光デバイス
WO2018042825A1 (ja) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 色変換素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287107B2 (en) * 2018-02-14 2022-03-29 Ngk Spark Plug Co., Ltd. Optical wavelength conversion device
EP3916439A4 (en) * 2019-01-25 2022-06-22 Panasonic Intellectual Property Management Co., Ltd. COLOR CONVERSION ELEMENT
EP3956724A4 (en) * 2019-04-19 2022-11-30 Materion Precision Optics (Shanghai) Limited HIGH TEMPERATURE RESISTANT REFLECTIVE COATING FOR WAVELENGTH CONVERSION DEVICES
US11762190B2 (en) 2019-04-19 2023-09-19 Materion Precision Optics (Shanghai) Limited High temperature resistant reflective layer for wavelength conversion devices
EP3958057A1 (en) * 2020-08-20 2022-02-23 Delta Electronics, Inc. Wavelength conversion member and light source module
WO2022123878A1 (ja) * 2020-12-10 2022-06-16 シャープ株式会社 波長変換部材、光源装置、前照灯具、および投影装置

Also Published As

Publication number Publication date
JPWO2018230333A1 (ja) 2020-04-16
CN109087985A (zh) 2018-12-25
US10930821B2 (en) 2021-02-23
TW201906195A (zh) 2019-02-01
US20200058830A1 (en) 2020-02-20
TWI753161B (zh) 2022-01-21
CN208767334U (zh) 2019-04-19
JP7094496B2 (ja) 2022-07-04

Similar Documents

Publication Publication Date Title
WO2018230333A1 (ja) 波長変換部材及び発光デバイス
JP6879417B2 (ja) 波長変換部材及びそれを用いた発光デバイス
JP6394144B2 (ja) プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP6314472B2 (ja) プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
WO2018016357A1 (ja) 波長変換部材及びそれを用いた発光デバイス
JP6731651B2 (ja) 波長変換部材
JP2016027613A (ja) 波長変換部材及びそれを用いた発光装置
WO2018083903A1 (ja) 波長変換部材、発光デバイス及び波長変換部材の製造方法
JP6232951B2 (ja) プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
JP6303735B2 (ja) プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP6575923B2 (ja) 波長変換部材及びそれを用いた発光装置
JP2015118107A (ja) プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP6476545B2 (ja) プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2015206940A (ja) プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2018124560A (ja) プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP6500744B2 (ja) 波長変換素子の製造方法
JP6582907B2 (ja) 波長変換素子の製造方法並びに波長変換素子及び発光装置
JP6561777B2 (ja) 波長変換素子の製造方法並びに波長変換素子及び発光装置
JP2016115563A (ja) 発光デバイス
JP2020095162A (ja) 波長変換部材、発光デバイス及び波長変換部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817664

Country of ref document: EP

Kind code of ref document: A1