WO2018230031A1 - 太陽光発電パネル及びその製造方法 - Google Patents

太陽光発電パネル及びその製造方法 Download PDF

Info

Publication number
WO2018230031A1
WO2018230031A1 PCT/JP2018/004147 JP2018004147W WO2018230031A1 WO 2018230031 A1 WO2018230031 A1 WO 2018230031A1 JP 2018004147 W JP2018004147 W JP 2018004147W WO 2018230031 A1 WO2018230031 A1 WO 2018230031A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin material
thermoelectric conversion
power generation
generation panel
photovoltaic power
Prior art date
Application number
PCT/JP2018/004147
Other languages
English (en)
French (fr)
Inventor
一史 関根
雅大 宮下
壮平 鮫島
奈緒子 小山
輝彦 熊田
彰 山下
孝之 森岡
時岡 秀忠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018538909A priority Critical patent/JPWO2018230031A1/ja
Publication of WO2018230031A1 publication Critical patent/WO2018230031A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a photovoltaic power generation panel provided with a thermoelectric conversion element and a manufacturing method thereof.
  • thermoelectric conversion element can obtain electric power by giving a temperature difference between the temperature of the element surface and the temperature of the element back surface, and the maximum power is the temperature difference between the element surface on the high temperature side and the element back surface on the low temperature side. It is proportional to the square.
  • Patent Document 1 discloses a technique for generating electric power by embedding a thermoelectric conversion element in a satellite structure and providing the thermoelectric conversion element so as to be in contact with a mounted device serving as a heating element.
  • thermoelectric conversion element in the configuration in which the thermoelectric conversion element is embedded in the satellite structure, heat from the on-board equipment is transmitted not only to the thermoelectric conversion element but also to the entire satellite structure in which the thermoelectric conversion element is embedded, so the amount of heat input to the thermoelectric conversion element is small. In addition to the decrease, there is a problem that a temperature difference is hardly generated between the temperature of the element surface and the temperature of the element back surface, and sufficient power cannot be obtained.
  • the present invention has been made to solve the above-described problems, and is obtained by generating a sufficient temperature difference between the element surface temperature and the element back surface temperature of the thermoelectric conversion element.
  • An object of the present invention is to provide a photovoltaic power generation panel and a method for manufacturing the same.
  • a photovoltaic power generation panel includes a honeycomb core sandwiched between a first skin material and a second skin material, a plurality of solar cells provided on a surface opposite to the honeycomb core of the first skin material, (2) A plurality of thermoelectric conversion elements disposed on the surface opposite to the honeycomb core of the skin material, separated by a gap, and in contact with the surface opposite to the second skin material of the plurality of thermoelectric conversion elements, provided so as to cover the gap A heat radiating plate.
  • the method for manufacturing a photovoltaic power generation panel includes a step of forming a first skin material and a second skin material using a prepreg, and a honeycomb core is provided on the second skin material via an adhesive sheet, The first skin material is provided on the honeycomb core through an adhesive sheet to form a laminate, and the laminate is covered with a bagging film, the air inside the bagging film is discharged, and the decompressed state is maintained.
  • the heat generated in the solar battery cell is transferred to the plurality of thermoelectric conversion elements arranged in a dispersed manner through the honeycomb core and separated from each other by the air gap. Using the temperature difference between the temperature and the temperature of the back surface of the element, a part is converted into electric power and the rest is radiated from the heat sink.
  • the plurality of thermoelectric conversion elements can take in most of the heat generated in the solar cells by being insulated by the air gaps, and further dispersed to arrange the temperature of the element surface and the temperature of the element back surface. A sufficient temperature difference can be produced between the temperature and the power obtained can be increased.
  • a laminated body of a prepreg and a honeycomb core is formed, and a honeycomb sandwich structure is formed by heating and pressing, and one surface of the honeycomb sandwich structure is formed.
  • a solar power generation panel is obtained by a simple process of disposing a plurality of thermoelectric conversion elements separated by air gaps so as to cover the opposite side with a heat sink on the opposite surface. Can do.
  • thermoelectric conversion element of the photovoltaic power generation panel in Embodiment 1 of this invention. It is a related figure of the filling rate of the thermoelectric conversion element of the photovoltaic power generation panel in Embodiment 1 of this invention, and the temperature difference with the electric power which generate
  • FIG. 1 is a perspective view showing a schematic configuration of a photovoltaic power generation panel according to Embodiment 1 for carrying out the present invention.
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of the photovoltaic power generation panel according to the present embodiment.
  • a photovoltaic power generation panel 1 is a honeycomb that is sandwiched between a first skin material 2 and a second skin material 3, and a first skin material 2 and a second skin material 3 and is adhered by an adhesive sheet 4.
  • a honeycomb sandwich structure 6 having a core 5 is provided.
  • a plurality of solar cells 8 are disposed via an adhesive layer 71 on the surface opposite to the surface of the first skin material 2 to which the honeycomb core 5 is bonded.
  • thermoelectric conversion elements 10 are separated and arranged in a space 11 on the surface opposite to the surface of the second skin material 3 to which the honeycomb core 5 is bonded.
  • the heat sink 9 is provided so that the some thermoelectric conversion element 10 and the space
  • the first skin material 2, the second skin material 3, and the heat sink 9 for example, a flat carbon fiber reinforced plastic having a thickness of 0.2 mm can be used.
  • the honeycomb core 5 is an aggregate of hexagonal cells, for example, and an aluminum alloy having a foil thickness of 0.02 mm, a cell width of 3/8 inch, and a height of 25.4 mm can be used.
  • an epoxy adhesive can be used as the adhesive sheet 4 for bonding the first skin material 2 and the second skin material 3 to the honeycomb core 5.
  • the heat sink 9 may be a film, for example, a polyimide film having a thickness of 0.05 mm can be used.
  • thermoelectric conversion element 10 for example, an element made by KELK having a vertical and horizontal width of 7 to 8 mm and a height of 1 mm can be used.
  • adhesive layer 71 and the adhesive layer 72 for adhering the solar battery cell 8 and the thermoelectric conversion element 10 a room temperature curing type silicone adhesive can be used.
  • the thermoelectric conversion element 10 has an element surface 10a and an element back surface 10b opposite to the element surface 10a.
  • the element surface 10 a is bonded to the second skin material 3, which is heated by heat transmitted from the solar battery cell 8, via an adhesive layer 72.
  • the element back surface 10b is bonded to the heat radiating plate 9 which becomes a low temperature by cold air from outer space through an adhesive layer 72.
  • the thermoelectric conversion element 10 can generate power using a temperature difference between the element surface 10a on the high temperature side and the element back surface 10b on the low temperature side.
  • thermoelectric conversion elements 10 are separated and distributed by the gaps 11, and the gaps 11 are thermally insulated in a vacuum.
  • the heat generated in the solar battery cell 8 is transmitted to the second skin material 3 via the honeycomb core 5, and most of the heat transmitted to the second skin material 3 is transmitted through the gap 11 without being transmitted through the gap 11.
  • the heat dissipation plate 9 dissipates heat through the thermoelectric conversion element 10. Therefore, the heat from the solar battery cell 8 can be transmitted to the thermoelectric conversion element 10 without missing and recovered without waste.
  • a sufficient temperature difference can be maintained between the element surface 10a and the element back surface 10b of the thermoelectric conversion elements 10 arranged in a distributed manner, and the electric power generated by the thermoelectric conversion elements 10 can be increased.
  • thermoelectric conversion elements 10 As the number of thermoelectric conversion elements 10 increases, the power can be increased. On the other hand, since the heat of sunlight is substantially constant from 1289 W / m 2 to 1421 W / m 2 , if the contact area of the thermoelectric conversion element 10 with the second skin material 3 is increased, the unit when passing through the thermoelectric conversion element 10 The heat per area is reduced, and a temperature difference is less likely to occur between the temperature of the element surface 10a and the temperature of the element back surface 10b. Therefore, in order to ensure a sufficient temperature difference between the temperature of the element front surface 10a and the temperature of the element back surface 10b, the plurality of thermoelectric conversion elements 10 are appropriate for the second skin material 3 or the heat sink 9. It is necessary to arrange at a filling rate.
  • the filling rate refers to the ratio of the total area of the element surface 10 a or the element back surface 10 b of the plurality of thermoelectric conversion elements 10 to the area of the second skin material 3 or the area of the heat sink 9.
  • thermoelectric conversion elements 10 As verification of an appropriate filling rate, when the ratio B / A of the total area B of the element surfaces 10a of the plurality of thermoelectric conversion elements 10 to the area A of the second skin material 3 is changed using the photovoltaic power generation panel 1
  • the electric power generated by the plurality of thermoelectric conversion elements 10 was measured.
  • the photovoltaic power generation panel 1 is installed in a vacuum vessel that can maintain a vacuum (for example, 0.001 Pa or less) and a low temperature, and a xenon lamp is used as a light source so that light is incident on the solar cell 8.
  • the electric power of the thermoelectric conversion element 10 was measured with a DC voltage / current source monitor manufactured.
  • the temperature difference between the temperature of the element surface 10a and the temperature of the element back surface 10b was measured using a thermocouple.
  • FIG. 3 shows the relationship between the power (power density) generated per unit area when the filling rate of the thermoelectric conversion element 10 is changed, and the temperature difference between the temperature of the element surface 10a and the temperature of the element back surface 10b. From FIG. 3, it was found that when the filling rate was 0.3 or less, the temperature difference increased and the power increased with this. Moreover, when the filling rate was 0.003 or more and 0.03 or less, it turned out that a temperature difference can be increased remarkably and electric power can be increased. Furthermore, it has been found that the power becomes maximum when the filling rate is 0.007 or more and 0.01 or less.
  • the plurality of thermoelectric conversion elements 10 are separated by the air gaps 11 so that the filling rate is in the range of greater than 0 and less than or equal to 0.3.
  • the temperature difference from the temperature of 10b can be increased, and the generated electric power can be increased.
  • the filling rate of the thermoelectric conversion elements 10 is greater than 0.003 and greater than 0.03. The following range is preferable.
  • the photovoltaic power generation panel 1 includes the honeycomb core 5 sandwiched between the first skin material 2 and the second skin material 3, and the opposite surface of the surface of the first skin material 2 on the honeycomb core 5 side.
  • a plurality of solar cells 8 provided on the opposite side of the surface of the second skin material 3 on the honeycomb core 5 side, separated by a gap 11 and dispersed, and a thermoelectric conversion element 10.
  • the heat sink 9 provided so as to cover the gap 11 on the surface opposite to the surface in contact with the second skin material 3 of the conversion element 10, the obtained electric power can be increased. Therefore, the photovoltaic power generation panel 1 can sufficiently supplement the power even when the satellite is equipped with a communication device with large power consumption.
  • thermoelectric conversion element 10 is arranged on the apex where hexagons forming the honeycomb core 5 of the honeycomb sandwich structure 6 overlap each other, that is, on the triple point. Due to the difference in thermal expansion coefficient between the second skin material 3 and the honeycomb core 5, the surface of the second skin material 3 has a periodic structure corresponding to the honeycomb shape on the skin other than on the triple point of the honeycomb core 5. Unevenness (dimple) occurs. When dimples are generated at the location where the thermoelectric conversion element 10 is disposed, bending stress acts on the thermoelectric conversion element 10 and the thermoelectric conversion element 10 is damaged. Therefore, disposing the thermoelectric conversion element 10 in this way can prevent the thermoelectric conversion element 10 from being damaged by dimples.
  • a radiation heat insulating material 18 is provided on the surface opposite to the surface of the second skin material 3 on the honeycomb core 5 side.
  • the radiant heat insulating material 18 is provided, for example, by being attached to a surface of the second skin material 3 opposite to the surface to which the honeycomb core 5 is bonded, on which the thermoelectric conversion element 10 is not disposed.
  • the heat transmitted from the solar cells 8 is prevented from being radiated by radiation on the surface of the second skin material 3 where the thermoelectric conversion element 10 is not provided. be able to. That is, the heat transmitted from the solar battery cell 8 is radiated from the heat radiating plate 9 through the plurality of thermoelectric conversion elements 10 without being transmitted through the gap 11 by radiation, thereby recovering heat from the solar battery cell 8 without waste. can do.
  • the radiation heat insulating material 18 should just be formed with the material whose emissivity is smaller than the heat sink 9, for example, the aluminum foil tape made from 3M company can be used.
  • leather material 3 and the heat sink 9 are still more preferable when the high heat conductive sheet 19 is provided.
  • the high thermal conductive sheet 19 is provided by being attached to a surface of the second skin material 3 on which the thermoelectric conversion element 10 is disposed and a surface opposite to the surface of the radiator plate 9 on which the thermoelectric conversion element 10 is disposed. Thereby, the heat conductivity in the surface of the 2nd skin
  • the high thermal conductive sheet 19 only needs to be formed of a material whose thermal conductivity is larger than that of the second skin material 3 and the heat sink 9, and for example, a graphite sheet manufactured by Panasonic can be used.
  • FIG. 5 is a plan view showing the arrangement of thermoelectric conversion elements on the second skin material 3.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • thermoelectric conversion elements 10 are arbitrarily arranged on the second skin material 3, whereas in the photovoltaic power generation panel 1 in the present embodiment, The second skin material 3 is divided into a plurality of regions 33, and at least one thermoelectric conversion element 10 is disposed in each region 33 separated by a gap 11 and dispersed.
  • the division means that the area 33 is virtually divided without being separated.
  • the sunlight is uniformly incident on the plurality of solar cells 8 spread on the first skin material 2, undergoes photoelectric conversion, and the remaining heat that has not been converted into electric power is converted into the honeycomb core.
  • 5 is uniformly transmitted to the second skin material 3.
  • the second skin material 3 is divided into a plurality of equal areas 33 having an area a, and one thermoelectric conversion element 10 having an element area b is provided at the center position of the divided area 33. 11 are separated and distributed. Thereby, the heat uniformly transmitted to the second skin material 3 can be evenly distributed to the thermoelectric conversion elements 10 and efficiently converted into electric power.
  • the temperature difference between the temperature of the element surface 10 a and the temperature of the element back surface 10 b of the thermoelectric conversion element 10 depends on the filling rate of the thermoelectric conversion element 10, but the region 33 in which the second skin material 3 is divided.
  • the filling factor of the thermoelectric conversion element 10 with respect to the second skin material 3 is 0.02, and the thermoelectric conversion element
  • the electric power generated per 10 unit areas was 15 W / m 2 .
  • thermoelectric conversion element 10 is separated and disposed in the gap 11 for each of the plurality of divided regions 33, thereby further efficiently.
  • the heat from the solar battery cell 8 can be transmitted to the thermoelectric conversion element 10, and the electric power generated by the thermoelectric conversion element 10 can be increased. Therefore, even if the photovoltaic power generation panel 1 is equipped with communication equipment with large power consumption, the power can be sufficiently supplemented.
  • a photovoltaic power generation panel according to Embodiment 3 for carrying out the present invention will be described with reference to FIG.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the photovoltaic power generation panel 1 in the present embodiment has a plurality of heat sinks 9 compared to those using the heat sink 9 in the first embodiment. In the following, description of points that are the same as in the first embodiment will be omitted, and different points will be mainly described.
  • a plurality of solar cells 8 are provided on the first skin material 2 of the honeycomb sandwich structure 6, and a plurality of thermoelectric conversions separated by gaps 11 on the second skin material 3 side.
  • the element 10, a flat plate heat sink 91, and an uneven heat sink 92 are provided.
  • the concavo-convex heat sink 92 is continuously formed in one direction with the cross-section being concavo-convex, and is provided between the second skin material 3 and the flat heat radiating plate 91.
  • the plurality of thermoelectric conversion elements 10 are respectively provided with adhesive layers 72 between the second skin material 3 and the recesses of the uneven heat dissipation plate 92 and between the protrusions of the uneven heat dissipation plate 92 and the flat heat dissipation plate 91. And spaced apart by the gaps 11.
  • thermoelectric conversion element 10 disposed between the second skin material 3 and the concave portion of the concave and convex heat sink 92, and the remaining heat is further converted into the concave and convex shape. It can be reused and converted into electric power by the thermoelectric conversion element 10 disposed between the convex portion of the heat sink 92 and the flat plate heat sink 91. Thereby, the heat from the solar battery cell 8 can be utilized for power generation of the thermoelectric conversion element 10 without waste.
  • the heat radiation area can be increased by using the uneven heat radiation plate 92, a sufficient temperature difference is generated between the temperature of the element surface 10a and the temperature of the element back surface 10b, and the obtained electric power can be increased. it can.
  • thermoelectric conversion elements 10 can be disposed while minimizing the height increment.
  • FIG. 6 shows an example in which the thermoelectric conversion elements 10 are arranged one by one, a plurality of thermoelectric conversion elements 10 may be laminated. Thereby, the number of thermoelectric conversion elements 10 separated by the air gap 11 can be further increased while minimizing the increase in the height of the photovoltaic power generation panel 1, and the power can be increased.
  • thermoelectric conversion elements 10 are separated by the gaps 11 between the second skin material 3 and the uneven heat dissipation plate 92 and between the uneven heat dissipation plate 92 and the flat heat dissipation plate 91, respectively.
  • the heat from the solar battery cell 8 can be used for power generation of the thermoelectric conversion element 10 with less waste, and more thermoelectric conversion elements 10 are arranged with a minimum increase in height.
  • the electric power generated by the photovoltaic power generation panel 1 can be increased.
  • the cross section of the uneven heat dissipation plate 92 is an uneven shape having a bent portion of 90 degrees is shown, but the angle of the bent portion may not be 90 degrees and has a curvature. May be.
  • the method for manufacturing a photovoltaic power generation panel according to Embodiment 4 includes the following steps. First, the first skin material 2 and the second skin material 3 of the photovoltaic power generation panel 1 are produced. A plurality of prepregs, which are semi-cured sheets produced by impregnating carbon fiber with a resin, are stacked, and the first skin material 2 or the second skin material 3 is used as a material for the first skin material 2 or the second skin material 3. 2 A prepreg laminate 30 for skin material is prepared. As shown in FIG. 7, the first skin material prepreg laminate 20 or the second skin material prepreg laminate 30 is placed on the surface plate 12, covered entirely with the bagging film 13, and sealed with the seal material 14. After sealing with the sealing material 14, the internal air covered with the bagging film 13 is discharged by operating a pump (not shown), and the first prepreg laminated body 20 for the skin material or the prepreg laminated body for the second skin material. 30 is decompressed.
  • the first skin material prepreg laminate 20 or the second skin material prepreg laminate 30 is placed in the autoclave, and heated from the outside of the bagging film 13 under pressure. For example, a temperature of 120 ° C. is maintained for 3 hours under 3 atmospheres. Thereby, the 1st skin material 2 and the 2nd skin material 3 can be produced.
  • first skin material prepreg laminate 20 and the second skin material prepreg laminate 30 are heated under pressure under the conditions of the first skin material prepreg laminate 20 and the second skin material prepreg laminate 30. It depends on the type of resin that constitutes.
  • the honeycomb core 5 is disposed on the adhesive sheet 4. Subsequently, the laminate 15 is formed by covering the honeycomb core 5 with the first skin material 2 to which the adhesive sheet 4 is adhered.
  • the laminate 15 is placed on the surface plate 12, covered entirely with the bagging film 13, and sealed with the sealing material 14. After sealing with the sealing material 14, by operating a pump (not shown), the air covered with the bagging film 13 is discharged, and the laminate 15 is brought into a reduced pressure state.
  • the laminate 15 covered with the bagging film 13 is placed in an autoclave, and is heated from the outside of the bagging film 13 while maintaining the reduced pressure state. For example, hold at 120 ° C. for 6 hours. Thereby, a honeycomb sandwich structure 6 in which the honeycomb core 5 is sandwiched between the first skin material 2 and the second skin material 3 through the adhesive sheet 4 can be manufactured.
  • thermoelectric conversion elements 10 thermoelectric conversion elements 10 are distributed and prepared.
  • the heat radiating plate 9 can be produced by stacking a plurality of prepregs, subjecting them to pressure reduction, and then heating under pressure.
  • thermoelectric conversion element 10 For example, as shown in FIG. 10, a frame member 16 in which a plurality of grooves having the same thickness as the thermoelectric conversion element 10 is formed is installed on the heat sink 9, and a room temperature curable type is used as an adhesive layer 72 in the groove of the frame member 16. Apply a silicone adhesive.
  • the plurality of thermoelectric conversion elements 10 are arranged on the adhesive layer 72, and after applying the adhesive layer 72 to the upper surface of the thermoelectric conversion elements 10 in the frame member 16, the frame member 16 is removed.
  • the thermoelectric conversion elements 10 having the adhesive layer 72 applied on both surfaces are dispersedly arranged.
  • the honeycomb sandwich structure 6 is horizontally placed on the heat sink 9 in which the plurality of thermoelectric conversion elements 10 are dispersed and arranged, and the plurality of thermoelectric conversion elements 10 and the honeycomb sandwich structure are interposed via the adhesive layer 72.
  • the second skin material 3 of the body 6 is bonded so as to have a gap 11.
  • a plurality of spacers (not shown) having the same thickness as the thermoelectric conversion element 10 may be attached to the heat radiating plate 9 at a predetermined interval so that the thermoelectric conversion element 10 is separated by the gap 11.
  • thermoelectric conversion elements 10 are dispersed and the photovoltaic power generation panel 1 is obtained.
  • the frame member 16 is installed on the second skin material 3 of the honeycomb sandwich structure 6 to disperse the thermoelectric conversion elements 10 and then the heat radiating plate. 9 and the thermoelectric conversion element 10 may be bonded so as to have a gap 11.
  • a radiation heat insulating material 18 is attached to the surface of the second skin material 3 opposite to the surface on the honeycomb core 5 side where the thermoelectric conversion element 10 is not disposed. It may be provided. Moreover, you may provide the high heat conductive sheet 19 on the surface opposite to the surface where the thermoelectric conversion element 10 of the 2nd skin material 3 is arrange
  • the method for manufacturing the photovoltaic power generation panel 1 includes the steps of forming the laminate 15 by sandwiching the honeycomb core 5 between the first skin material 2 and the second skin material 3 via the adhesive sheet 4, A step of forming a honeycomb sandwich structure 6 by externally pressurizing and heating while maintaining a reduced pressure state, and mounting a plurality of solar cells 8 on the first skin material 2; A step of disposing and disposing a plurality of thermoelectric conversion elements 10 on the second skin material 3 side with a gap 11 therebetween, and a surface opposite to the second skin material 3 of the plurality of thermoelectric conversion elements 10 so as to cover the gap 11
  • the solar power generation panel 1 can be manufactured by a simple process by providing the step of providing the heat sink 9 on the surface. Embodiment 5.
  • Embodiment 5 a method for manufacturing a photovoltaic power generation panel according to Embodiment 5 will be described with reference to FIGS. Since it is the same as that of the manufacturing method of the photovoltaic power generation panel shown in Embodiment 4 except the process of disperse
  • the honeycomb sandwich structure 6 is formed.
  • a concavo-convex radiator plate 92 in which a plurality of thermoelectric conversion elements 10 are dispersed is prepared. As shown in FIG. 11, using a pair of molds 17 having a rectangular shape on one surface, a concavo-convex radiator plate prepreg laminate 90 in which a plurality of prepregs are laminated is sandwiched.
  • the prepreg laminate 90 for the uneven heat sink is entirely covered with the bagging film 13 and sealed with the sealing material 14.
  • the sealing material 14 by operating a pump (not shown), the internal air covered with the bagging film 13 is discharged and the pressure is reduced.
  • corrugated heat sink 92 is obtained by installing in an autoclave, hold
  • thermoelectric conversion elements are disposed between the second skin material 3 and the uneven heat sink 92 and between the uneven heat sink 92 and the flat heat sink 91 via the adhesive layer 72, and FIG.
  • the adhesive layer 72 is applied to both surfaces of the plurality of thermoelectric conversion elements 10, and is distributed and disposed on the flat plate heat radiating plate 91.
  • the uneven heat sink 92 is horizontally placed on the flat heat sink 91, and the upper surface of the thermoelectric conversion element 10 disposed on the flat heat sink 91 via the adhesive layer 72 and the uneven heat sink.
  • the 92 convex portions are bonded so as to have a gap 11.
  • the adhesive layer 72 is applied to the recesses of the concavo-convex heat sink 92, the plurality of thermoelectric conversion elements 10 are dispersed and disposed, and the adhesive layer 72 is applied to the upper surface of the thermoelectric conversion elements 10.
  • the honeycomb sandwich structure 6 is horizontally placed on the uneven heat dissipation plate 92, and the upper surface of the thermoelectric conversion element 10 disposed in the recess of the uneven heat dissipation plate 92 via the adhesive layer 72 and the honeycomb sandwich structure.
  • the second skin material 3 of the body 6 is bonded so as to have a gap 11.
  • a plurality of solar cells 8 are mounted on the first skin material 2 of the honeycomb sandwich structure 6 provided with the flat plate heat sink 91 and the uneven heat sink 92 and the thermoelectric conversion elements 10 are dispersed.
  • the solar power generation panel 1 shown in FIG. 6 can be obtained.
  • a part of the above steps may be performed.
  • the step of bonding so as to have the gap 11 the thermoelectric conversion elements 10 are dispersed and arranged in the concave portions of the uneven heat sink 92, and the second skin material 3 of the honeycomb sandwich structure 6 is bonded so as to have the gap 11.
  • the solar power generation panel 1 can be manufactured by a simple process by the step of mounting and the step of mounting the solar cells 8 on the first skin material 2.
  • the first skin material 2, the second skin material 3, the heat radiating plate 9, the flat plate heat radiating plate 91, and the uneven heat radiating plate 92 are exemplified as carbon fiber reinforced plastics. Any other reinforcing fiber plastic such as glass fiber reinforced plastic may be used as long as it is composed of a combination of reinforcing fiber and resin.
  • the honeycomb core 5 has a hexagonal shape as an example, but may be a polygonal shape and can be designed as appropriate. Further, although an aluminum alloy is exemplified as the material of the honeycomb core 5, any material that is lightweight and strong may be used. For example, carbon fiber reinforced plastic, foamed plastic, or the like can be used.
  • Embodiments 1 to 5 the case where an epoxy adhesive is used as the adhesive sheet 4 has been described.
  • any thermosetting resin may be used, and a liquid adhesive may be used.
  • room temperature curable silicone adhesive is used as the adhesive layers 71 and 72.
  • any thermosetting resin having high thermal conductivity may be used, and a film adhesive may be used. Also good.
  • the present invention may appropriately combine a plurality of constituent elements disclosed in the first to fifth embodiments without departing from the gist thereof.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

太陽電池セルで生じる熱を利用して熱電変換素子で発電を行い、電力を増大させる太陽光発電パネル及びその太陽光発電パネルの製造方法を得る。 第1表皮材2と第2表皮材3に挟まれたハニカムコア5と、第1表皮材2側に搭載された複数の太陽電池セル8と、第2表皮材3側に空隙11で隔てられ分散して配設された複数の熱電変換素子10と、複数の熱電変換素子10及び空隙11を覆うように設けられた放熱板9とを備える。また、第1表皮材2及び第2表皮材3を作製するステップと、ハニカムサンドイッチ構造体6を作製するステップと、ハニカムサンドイッチ構造体6に太陽電池セル8を実装するステップと、ハニカムサンドイッチ構造体6に熱電変換素子10を空隙11で隔て分散して配設するステップと、熱電変換素子10と空隙11を覆うように放熱板9を設けるステップにより製造する。

Description

太陽光発電パネル及びその製造方法
 本発明は、熱電変換素子を備えた太陽光発電パネル及びその製造方法に関する。
 近年、衛星を活用した高速大容量通信の需要がますます高まっており、高機能な通信機器を搭載した通信放送衛星の開発が進められている。このような衛星において、通信速度・容量を増大させるための高機能通信機器は電力消費が大きく、大電力の衛星バスが必要となる。衛星バスには太陽光発電パネルが搭載されており、太陽光エネルギーを変換して電力を得ている。衛星バスを大電力化するためには、太陽電池セルの発電効率の増大や通信機器に搭載されるバッテリの充放電効率の向上が必要であるがこれらには限界がある。そのため太陽電池セルによる太陽光発電と他の発電技術とを組み合わせて大電力化を図ることが重要となる。
 この発電技術の1つとして、熱電変換素子を利用して熱を電力に変換する技術が注目されている。熱電変換素子は、素子表面の温度と素子裏面の温度との間に温度差を与えることによって電力を得ることができ、最大電力は高温側の素子表面と低温側の素子裏面との温度差の2乗に比例する。
 特許文献1には、熱電変換素子を衛星構造体に埋め込み、発熱体となる搭載機器と接するように設けて発電する技術が開示されている。
国際公開第2016/031667号
 しかしながら、熱電変換素子を衛星構造体に埋め込んだ構成では、搭載機器からの熱が熱電変換素子だけでなく、熱電変換素子を埋め込んだ衛星構造体全体に伝わるため、熱電変換素子への入熱量が減少するとともに、素子表面の温度と素子裏面の温度との間で温度差が生じにくくなり、十分な電力が得られないという課題があった。
 本発明は、上述のような課題を解決するためになされたものであり、熱電変換素子の素子表面の温度と素子裏面の温度との間に十分な温度差を発生させることにより、得られる電力を増大させることができる太陽光発電パネル及びその製造方法を提供することを目的とする。
 本発明に係る太陽光発電パネルは、第1表皮材と第2表皮材とに挟まれたハニカムコアと、第1表皮材のハニカムコアと反対面に設けられた複数の太陽電池セルと、第2表皮材のハニカムコアと反対面に空隙で隔てられ分散して配設された複数の熱電変換素子と、複数の熱電変換素子の第2表皮材と反対面で接し、空隙を覆うように設けられた放熱板とを備える。
 また、本発明に係る太陽光発電パネルの製造方法は、プリプレグを用いて第1表皮材及び第2表皮材を成形するステップと、第2表皮材上に接着シートを介してハニカムコアを設け、ハニカムコアの上に接着シートを介して第1表皮材を設けて積層体を形成するステップと、積層体をバギングフィルムで覆い、バギングフィルムで覆った内部の空気を排出し、減圧状態を保持しながら、バギングフィルムの外部から加圧及び加熱して、ハニカムサンドイッチ構造体を形成するステップと、ハニカムサンドイッチ構造体の第1表皮材側に複数の太陽電池セルを実装するステップと、ハニカムサンドイッチ構造体の第2表皮材側に複数の熱電変換素子を空隙で隔て分散して配設するステップと、複数の熱電変換素子の第2表皮材と反対面で接し、空隙を覆うように放熱板を設けるステップとを備える。
 本発明に係る太陽光発電パネルによれば、太陽電池セルで生じた熱は、ハニカムコアを介して空隙で隔てられ分散して配設された複数の熱電変換素子に伝わり、それぞれの素子表面の温度と素子裏面の温度との間の温度差を利用して、一部が電力に変換され、残りが放熱板から放熱される。複数の熱電変換素子は、空隙で断熱されることにより、太陽電池セルで生じた熱の大部分を取り込むことができ、さらに分散して配設されることにより、素子表面の温度と素子裏面の温度との間に十分な温度差を生じさせることができ、得られる電力を増大させることができる。
 また、本発明に係る太陽光発電パネルの製造方法によれば、プリプレグとハニカムコアの積層体を形成し、加熱及び加圧してハニカムサンドイッチ構造体を成形し、このハニカムサンドイッチ構造体の一方の面に太陽電池セルを配設するとともに、その反対面に放熱板で覆うように空隙で隔てられた複数の熱電変換素子を分散して配設するという簡単な工程により、太陽光発電パネルを得ることができる。
本発明の実施の形態1における太陽光発電パネルの概略構成を示す斜視図である。 本発明の実施の形態1における太陽光発電パネルの概略構成を示す断面図である。 本発明の実施の形態1における太陽光発電パネルの熱電変換素子の充填率と、単位面積当たりに発生する電力及び素子表裏面との温度差との関係図である。 本発明の実施の形態1における第2表皮材上の熱電変換素子の配置を示す平面図である。 本発明の実施の形態2における第2表皮材上の熱電変換素子の配置を示す平面図である。 本発明の実施の形態3における太陽光発電パネルの概略構成を示す断面図である。 本発明の実施の形態4における太陽光発電パネルを製造する一工程を示す説明図である。 本発明の実施の形態4における太陽光発電パネルを製造する一工程を示す説明図である。 本発明の実施の形態4における太陽光発電パネルを製造する一工程を示す説明図である。 本発明の実施の形態4における太陽光発電パネルを製造する一工程を示す説明図である。 本発明の実施の形態5における太陽光発電パネルを製造する一工程を示す説明図である。 本発明の実施の形態5における太陽光発電パネルを製造する一工程を示す説明図である。 本発明の実施の形態1における太陽光発電パネルの概略構成を示す断面図である。 本発明の実施の形態1における太陽光発電パネルの概略構成を示す断面図である。
 以下、本発明による太陽光発電パネル及びその製造方法を、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。
実施の形態1.
 図1は、本発明を実施するための実施の形態1における太陽光発電パネルの概略構成を示す斜視図である。図2は、本実施の形態における太陽光発電パネルの概略構成を示す断面図である。図1、図2において太陽光発電パネル1は、第1表皮材2及び第2表皮材3と、第1表皮材2と第2表皮材3とに挟まれて接着シート4で接着されたハニカムコア5とを有するハニカムサンドイッチ構造体6を備えている。ハニカムサンドイッチ構造体6は、第1表皮材2のハニカムコア5が接着された面の反対面に、接着層71を介して複数の太陽電池セル8が配設される。また、第2表皮材3のハニカムコア5が接着された面の反対面には、接着層72を介して複数の熱電変換素子10が空隙11で隔てられ分散して配設される。そして、複数の熱電変換素子10及び空隙11を覆うように放熱板9が設けられる。
 ここで、第1表皮材2、第2表皮材3及び放熱板9として、例えば厚さが0.2mmの平板形状の炭素繊維強化プラスチックを用いることができる。ハニカムコア5は、例えば六角形セルの集合体で、箔厚0.02mm、セル幅3/8インチ、高さ25.4mmのアルミニウム合金を用いることができる。また、第1表皮材2及び第2表皮材3とハニカムコア5をそれぞれ接着する接着シート4として、例えばエポキシ接着剤を用いることができる。また、放熱板9はフィルムでもよく、例えば厚さが0.05mmのポリイミドフィルムを用いることができる。
 熱電変換素子10は、例えば縦横幅7~8mm、高さ1mmのKELK社製の素子を用いることができる。太陽電池セル8及び熱電変換素子10を接着する接着層71及び接着層72は、室温硬化型のシリコーン接着剤を用いることができる。
 熱電変換素子10は、素子表面10aとこれに対向する素子裏面10bとを有している。素子表面10aは、太陽電池セル8から伝わる熱で高温となる第2表皮材3に接着層72を介して接着されている。また素子裏面10bは、宇宙空間からの冷気で低温となる放熱板9に接着層72を介して接着されている。熱電変換素子10は、高温側の素子表面10aと低温側の素子裏面10bとの温度差を利用して発電させることができる。
 ここで、複数の熱電変換素子10は、空隙11で隔てられ分散して配設されており、この空隙11は真空中で断熱される。この構成により、太陽電池セル8で生じた熱は、ハニカムコア5を介して第2表皮材3に伝わり、第2表皮材3に伝わった熱の大部分は、空隙11を伝わることなく、複数の熱電変換素子10を介して放熱板9から放熱される。したがって、太陽電池セル8からの熱を逃すことなく熱電変換素子10に伝え、無駄なく回収することができる。また分散して配設された熱電変換素子10の素子表面10aと素子裏面10bでは、十分な温度差を保つことができ、熱電変換素子10が発生する電力を増大させることができる。
 熱電変換素子10の数は、多いほど電力を増大させることができる。一方、太陽光の熱は1289W/mから1421W/mとほぼ一定であるため、第2表皮材3に対する熱電変換素子10の接触面積を大きくすると、熱電変換素子10を通過するときの単位面積あたりの熱が小さくなり、素子表面10aの温度と素子裏面10bの温度との間で温度差が生じにくくなる。そのため、素子表面10aの温度と素子裏面10bの温度との間に十分な温度差を確保するためには、複数の熱電変換素子10は、第2表皮材3又は放熱板9に対し、適切な充填率で配設される必要がある。ここで充填率とは、第2表皮材3の面積又は放熱板9の面積に対する、複数の熱電変換素子10の素子表面10a又は素子裏面10bの合計面積の比率をいう。
 適切な充填率の検証として、太陽光発電パネル1を用いて、第2表皮材3の面積Aに対する複数の熱電変換素子10の素子表面10aの合計面積Bの比率B/Aを変化させたときの複数の熱電変換素子10が発生する電力を測定した。具体的には、真空(例えば、0.001Pa以下)かつ低温を維持できる真空容器内に、太陽光発電パネル1を設置し、キセノンランプを光源として光を太陽電池セル8に入射させ、アドバンテスト社製直流電圧・電流源モニタにより熱電変換素子10の電力を測定した。また、熱電対を用いて素子表面10aの温度と素子裏面10bの温度との温度差を測定した。
 図3に、熱電変換素子10の充填率を変化させた場合の単位面積当たりに発生する電力(電力密度)と、素子表面10aの温度と素子裏面10bの温度の温度差との関係を示す。図3より、充填率が0.3以下のとき、温度差は増大し、これとともに電力が増大することがわかった。また充填率が、0.003以上0.03以下の場合、さらに著しく温度差を増大させることができ、電力を増大できることがわかった。さらに充填率が0.007以上0.01以下のとき、電力が極大となることがわかった。
 したがって、複数の熱電変換素子10は、充填率が0より大きく0.3以下の範囲となるよう、空隙11で隔てられ、分散して配設されることにより、素子表面10aの温度と素子裏面10bの温度との間の温度差を大きくでき、発生する電力を増大させることができる。ここで、充填率が小さくなると、熱電変換素子10の数が減少するため、温度差が確保できても発生する電力は減少するので熱電変換素子10の充填率は0.003より大きく0.03以下の範囲とするのが好ましい。
 上述のとおり、太陽光発電パネル1は、第1表皮材2と第2表皮材3とに挟まれて設けられたハニカムコア5と、第1表皮材2のハニカムコア5側の面の反対面に設けられた複数の太陽電池セル8と、第2表皮材3のハニカムコア5側の面の反対面で、空隙11で隔てられ分散して配設された複数の熱電変換素子10と、熱電変換素子10の第2表皮材3と接した面の反対面に空隙11を覆うように設けられた放熱板9とを備えることにより、得られる電力を増大させることができる。したがって太陽光発電パネル1は、衛星が消費電力の大きな通信機器を搭載しても十分にその電力を補うことができる。
 なお、図4に示すように熱電変換素子10をハニカムサンドイッチ構造体6のハニカムコア5を形成する六角形同士が重なる頂点、即ち三重点上に配設された構成とするとさらに好ましい。第2表皮材3の表面には、第2表皮材3とハニカムコア5との熱膨張率の差により、ハニカムコア5の三重点上以外の部分で、表皮にハニカム形状に応じた周期的な凹凸(ディンプル)が生じる。熱電変換素子10が配置された箇所でディンプルが生じると、熱電変換素子10に曲げ応力が働き、熱電変換素子10が損傷する。そのため、このように熱電変換素子10を配置することで、ディンプルによって熱電変換素子10が損傷するのを防ぐことができる。
 また、図13に示すように第2表皮材3のハニカムコア5側の面の反対面には、放射断熱材18が設けられるとさらに好ましい。放射断熱材18は、第2表皮材3のハニカムコア5が接着された面の反対面のうち、熱電変換素子10が配設されていない面に、例えば貼り付けられて設けられる。
 第2表皮材3に放射断熱材18が設けられることで、太陽電池セル8から伝わる熱が、第2表皮材3の熱電変換素子10が設けられていない面で放射により放熱されることを防ぐことができる。すなわち、太陽電池セル8から伝わる熱が、放射により空隙11を伝わることなく、複数の熱電変換素子10を介して放熱板9から放熱されることで、太陽電池セル8からの熱を無駄なく回収することができる。放射断熱材18は、放射率が放熱板9より小さい材料で形成されるものであればよく、例えば3M社製のアルミ箔テープを用いることができる。
 また、図14に示すように、第2表皮材3及び放熱板9は、高熱伝導シート19が設けられるとさらに好ましい。高熱伝導シート19は、第2表皮材3の熱電変換素子10が配置される面と、放熱板9の熱電変換素子10が配置される面の反対面とに、それぞれ貼り付けられて設けられる。これにより、第2表皮材3及び放熱板9の面内の熱伝導性を高め、分散して配設された複数の熱電変換素子10に、それぞれ熱を分配することができる。高熱伝導シート19は、熱伝導率が第2表皮材3及び放熱板9より大きい材料で形成されるものであればよく、例えばPanasonic社製グラファイトシートを用いることができる。
実施の形態2.
 本発明を実施するための実施の形態2おける太陽光発電パネルについて、図5を参照して説明する。図5は、第2表皮材3上の熱電変換素子の配置を示す平面図である。図5中、図1と同一符号は同一又は相当部分を示す。
 実施の形態1の太陽光発電パネル1において、複数の熱電変換素子10は、第2表皮材3上に任意に配設されているのに対して、本実施の形態における太陽光発電パネル1では、第2表皮材3が複数の領域33に分割され、この領域33ごとに少なくとも1個の熱電変換素子10が空隙11で隔てられ分散して配設された構成となっている。ここで分割とは、領域33を切り離さずに仮想的に分けることを示す。
 太陽光発電パネル1では、太陽光は第1表皮材2に敷き詰められている複数の太陽電池セル8に一様に入射して光電変換され、電力に変換されなかった残りの熱が、ハニカムコア5を介して第2表皮材3に一様に伝わる。図5の例では、第2表皮材3を面積aとする均等な複数の領域33に分割し、分割した領域33の中心位置にそれぞれ素子面積bとする1個の熱電変換素子10が、空隙11で隔てられ分散して配設される。これにより第2表皮材3に一様に伝わった熱が、熱電変換素子10へ均等に分配され効率よく電力に変換することができる。
 上述のとおり、熱電変換素子10の素子表面10aの温度と素子裏面10bの温度との間の温度差は、熱電変換素子10の充填率に依存するが、第2表皮材3を分割した領域33の面積aを30cm2、熱電変換素子10の1個の素子面積bを0.6cm2としたとき、第2表皮材3に対する熱電変換素子10の充填率は、0.02となり、熱電変換素子10の単位面積当たりに発生する電力は15W/m2となった。
 したがって、本実施の形態における太陽光発電パネル1では、分割された複数の領域33ごとに少なくとも1個の熱電変換素子10が空隙11で隔てられ分散して配設されることにより、さらに効率よく太陽電池セル8からの熱を熱電変換素子10に伝えることができ、熱電変換素子10が発生する電力を増大させることができる。したがって太陽光発電パネル1は、消費電力の大きな通信機器を搭載しても十分にその電力を補うことができる。
実施の形態3. 
 本発明を実施するための実施の形態3における太陽光発電パネルについて、図6を参照して説明する。図6中、図1と同一符号は同一又は相当部分を示す。本実施の形態における太陽光発電パネル1は、実施の形態1で放熱板9を用いたものに対して、放熱板9を複数としたものである。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。
 図6に示す太陽光発電パネル1では、ハニカムサンドイッチ構造体6の第1表皮材2に複数の太陽電池セル8が備えられ、第2表皮材3側に空隙11で隔てられた複数の熱電変換素子10と、平板状放熱板91及び凹凸状放熱板92が設けられている。
 凹凸状放熱板92は、断面を凹凸形状として一方向に連続して形成されており、第2表皮材3と平板状放熱板91との間に設けられている。複数の熱電変換素子10は、第2表皮材3と凹凸状放熱板92の凹部との間と、凹凸状放熱板92の凸部と平板状放熱板91との間にそれぞれ接着層72を介して空隙11で隔てられ分散して配設されている。
 このような構成では、第2表皮材3と凹凸状放熱板92の凹部との間に配設された熱電変換素子10によって一部の熱を電力に変換し、残りの熱を、さらに凹凸状放熱板92の凸部と平板状放熱板91との間に配設された熱電変換素子10で再利用して電力に変換することができる。これによって太陽電池セル8からの熱をより無駄なく熱電変換素子10の発電に利用できる。
 また、凹凸状放熱板92を用いることで、放熱面積を大きくできるため、素子表面10aの温度と素子裏面10bの温度との間により十分な温度差を生じさせ、得られる電力を増大させることができる。
 また、凹凸状放熱板92の凹部と凸部とを利用することにより、高さの増分を最小化しながら、より多くの熱電変換素子10を配設することができる。図6では、熱電変換素子10を1個ずつ配設した例を示したが、複数個積層して配設してもよい。これにより太陽光発電パネル1の高さの増分を最小化しながら空隙11で隔てられた熱電変換素子10の数をさらに増やし、電力を増大させることができる。
 上述のとおり、複数の熱電変換素子10が、第2表皮材3と凹凸状放熱板92との間及び凹凸状放熱板92と平板状放熱板91との間にそれぞれ空隙11で隔てられ、分散して配設されることにより、太陽電池セル8からの熱をより無駄なく熱電変換素子10の発電に利用できるとともに、高さの増分を最小化して、より多くの熱電変換素子10を配設させることができ、太陽光発電パネル1の発生する電力を増大させることができる。
 なお、本実施の形態では、凹凸状放熱板92の断面が90度の屈曲部を有する凹凸形状である例を示したが、屈曲部の角度は90度でなくともよく、曲率を有していてもよい。
 また、本実施の形態では、平板状放熱板91、凹凸状放熱板92の2枚で構成する例を示したが、3枚以上としてもよい。
実施の形態4.
 次に、本発明を実施するための実施の形態4における太陽光発電パネルの製造方法について、図7から図10を参照しながら説明する。図7から図10において、図1と同一符号は同一又は相当部分を示す。
 実施の形態4の太陽光発電パネルの製造方法は、次の工程で構成される。まず、太陽光発電パネル1の第1表皮材2及び第2表皮材3を作製する。炭素繊維に樹脂を含浸して作製された半硬化状態のシートであるプリプレグを複数枚重ね、第1表皮材2又は第2表皮材3の材料として、第1表皮材用プリプレグ積層体20又は第2表皮材用プリプレグ積層体30を用意する。図7に示すように、第1表皮材用プリプレグ積層体20又は第2表皮材用プリプレグ積層体30を定盤12に設置し、バギングフィルム13で全体を覆い、シール材14で密閉する。シール材14で密閉した後、ポンプ(図示せず)を動作させることでバギングフィルム13で覆った内部の空気を排出し、第1表皮材用プリプレグ積層体20又は第2表皮材用プリプレグ積層体30を減圧状態にする。
 続いて、第1表皮材用プリプレグ積層体20又は第2表皮材用プリプレグ積層体30をオートクレーブ内に設置し、バギングフィルム13の外部から加圧して加熱する。例えば3気圧下で120℃の温度を3時間保持する。これにより、第1表皮材2と第2表皮材3とを作製することができる。
 ここで、第1表皮材用プリプレグ積層体20、第2表皮材用プリプレグ積層体30を加圧下で加熱する条件は、第1表皮材用プリプレグ積層体20、第2表皮材用プリプレグ積層体30を構成する樹脂の種類によって異なる。
 次に、図8に示すように、第2表皮材3の上に接着シート4を密着させた後、この接着シート4の上にハニカムコア5を配置する。続いて、接着シート4を密着させた第1表皮材2をハニカムコア5の上に被せることで積層体15を形成する。
 次に、図9に示すように、積層体15を定盤12に設置し、バギングフィルム13で全体を覆い、シール材14で密閉する。シール材14で密閉した後、ポンプ(図示せず)を動作させることで、バギングフィルム13で覆った内部の空気を排出し、積層体15を減圧状態にする。
 その後、このバギングフィルム13で覆われた積層体15をオートクレーブ内に設置し、減圧状態を保持したまま、バギングフィルム13の外部から加圧して加熱する。例えば120℃で6時間保持する。これにより、接着シート4を介してハニカムコア5を第1表皮材2と第2表皮材3とで挟んだハニカムサンドイッチ構造体6を作製することができる。
 次に、複数の熱電変換素子10を分散して配設する放熱板9を作製する。放熱板9は、第1表皮材2及び第2表皮材3と同様に、プリプレグを複数枚重ね、減圧処理した後、加圧下で加熱することにより作製することができる。
 例えば、図10に示すように、熱電変換素子10と同程度の厚みの溝が複数形成された枠部材16を放熱板9上に設置し、枠部材16の溝に接着層72として室温硬化型のシリコーン接着剤を塗布する。接着層72上に複数の熱電変換素子10を配置し、枠部材16内の熱電変換素子10の上面に接着層72を塗布した後、枠部材16を取り除く。放熱板9上には両面に接着層72が塗布された熱電変換素子10が分散して配設される。
 次に、複数の熱電変換素子10が分散して配設された放熱板9上にハニカムサンドイッチ構造体6を水平に載置し、接着層72を介して複数の熱電変換素子10とハニカムサンドイッチ構造体6の第2表皮材3とを空隙11を有するように接着する。このとき、放熱板9に熱電変換素子10と同じ厚みの複数のスペーサー(図示せず)を所定の間隔で取り付け、熱電変換素子10が空隙11で隔てられるようにしてもよい。
 そして、熱電変換素子10が分散して配設された放熱板9を備えたハニカムサンドイッチ構造体6の第1表皮材2上に複数の太陽電池セル8を実装し、太陽光発電パネル1を得ることができる。
 ここで、上述の工程は一部前後してもよく、例えばハニカムサンドイッチ構造体6の第2表皮材3に枠部材16を設置して熱電変換素子10を分散して配設し、その後放熱板9と熱電変換素子10とを空隙11を有するように接着してもよい。
 また、ハニカムサンドイッチ構造体6を成形後、第2表皮材3のハニカムコア5側の面との反対面のうち、熱電変換素子10が配設されていない面に、放射断熱材18を例えば貼り付けて設けてもよい。また、第2表皮材3の熱電変換素子10が配置される面及び放熱板9の熱電変換素子10が配置される面の反対面に、高熱伝導シート19を例えば貼り付けて設けてもよい。
 上述のとおり、太陽光発電パネル1の製造方法は、接着シート4を介して第1表皮材2と第2表皮材3でハニカムコア5を挟み積層体15を形成するステップと、積層体15内の空気を排出し、減圧状態を保持しながら外部から加圧及び加熱して、ハニカムサンドイッチ構造体6を形成するステップと、第1表皮材2に複数の太陽電池セル8を実装するステップと、第2表皮材3側に複数の熱電変換素子10を空隙11で隔て分散して配設するステップと、複数の熱電変換素子10の第2表皮材3と反対面で接し、空隙11を覆うように放熱板9を設けるステップを備えることにより、簡単な工程で太陽光発電パネル1を製造することができる。
実施の形態5.
 次に、実施の形態5における太陽光発電パネルの製造方法について、図11、図12を参照しながら説明する。平板状放熱板91と凹凸状放熱板92とに熱電変換素子10を分散して配設する工程以外は、実施の形態4で示した太陽光発電パネルの製造方法と同様のため省略する。
 まず、接着シート4を介して第1表皮材2及び第2表皮材3でハニカムコア5を挟んだ積層体15内の空気を排出して減圧状態にした後、外部から加圧下で加熱して、ハニカムサンドイッチ構造体6を成形する。
 次に、複数の熱電変換素子10を分散して配設する凹凸状放熱板92を作製する。図11に示すように、一方の面に矩形形状を有する一対の成形型17を用いて、プリプレグを複数枚積層した凹凸状放熱板用プリプレグ積層体90を挟む。
 その後、図12に示すように、凹凸状放熱板用プリプレグ積層体90をバギングフィルム13で全体を覆い、シール材14で密閉する。シール材14で密閉した後、ポンプ(図示せず)を動作させることで、バギングフィルム13で覆った内部の空気を排出して減圧状態にする。そして減圧状態を保持したまま、オートクレーブ内に設置し、バギングフィルム13の外部から加圧して加熱することにより、凹凸状放熱板92が得られる。
 次に、第2表皮材3と凹凸状放熱板92との間、及び凹凸状放熱板92と平板状放熱板91との間に接着層72を介して熱電変換素子を配設し、図6に示す太陽光発電パネル1を製造する。実施の形態4と同じく、枠部材16を用いて、複数の熱電変換素子10の両面に接着層72を塗布し、平板状放熱板91に分散して配設する。続いて、平板状放熱板91上に凹凸状放熱板92を水平に載置し、接着層72を介して平板状放熱板91に配設された熱電変換素子10の上面と、凹凸状放熱板92の凸部とを空隙11を有するように接着する。
 次に、凹凸状放熱板92の凹部に接着層72を塗布し、複数の熱電変換素子10を分散して配設し、さらに熱電変換素子10の上面に接着層72を塗布する。続いて、凹凸状放熱板92上にハニカムサンドイッチ構造体6を水平に載置し、接着層72を介して凹凸状放熱板92の凹部に配設された熱電変換素子10の上面とハニカムサンドイッチ構造体6の第2表皮材3とを空隙11を有するように接着する。
 そして、平板状放熱板91及び凹凸状放熱板92を備え、熱電変換素子10が分散して配設されたハニカムサンドイッチ構造体6の第1表皮材2上に複数の太陽電池セル8を実装し、図6に示す太陽光発電パネル1を得ることができる。ここで、上述の工程は一部前後してもよい。
 上述のとおり、ハニカムサンドイッチ構造体6を形成するステップと、凹凸状放熱板92を作製するステップと、平板状放熱板91に熱電変換素子10を分散して配設し、凹凸状放熱板92と空隙11を有するように接着するステップと、凹凸状放熱板92の凹部に熱電変換素子10を分散して配設し、ハニカムサンドイッチ構造体6の第2表皮材3に空隙11を有するように接着するステップと、第1表皮材2に太陽電池セル8を実装するステップにより、太陽光発電パネル1を簡単な工程で製造することができる。
 なお、実施の形態1から5において、第1表皮材2、第2表皮材3及び放熱板9、平板状放熱板91、凹凸状放熱板92として、炭素繊維強化プラスチックである場合を例示したが、強化繊維と樹脂との組合せから構成されていれば、例えばガラス繊維強化プラスチック等、他の強化繊維プラスチックであってもよい。
 また、実施の形態1から5において、ハニカムコア5の形状は六角形状である場合を例示したが、多角形であればよく、適宜設計することができる。また、ハニカムコア5の材料としてアルミニウム合金を例示したが、軽量かつ、強固な材料であれば良く、例えば、炭素繊維強化プラスチック、発泡プラスチック等を用いることができる。
 また、実施の形態1から5において、接着シート4としてエポキシ接着剤を用いた場合を示したが、熱硬化性樹脂であればよく、液状の接着剤を用いてもよい。
 また、実施の形態1から5において、接着層71、72として室温硬化型のシリコーン接着剤を用いたが、熱伝導率が高い熱硬化性樹脂であればよく、フィルム状の接着剤を用いてもよい。
 また、本発明はその要旨を逸脱しない範囲で、実施の形態1から5に開示されている複数の構成要素の適宜組み合わせてもよい。
1 太陽光発電パネル、2 第1表皮材、3 第2表皮材、4 接着シート、5ハニカムコア、6 ハニカムサンドイッチ構造体、71,72 接着層、8 太陽電池セル、9 放熱板、91 平板状放熱板、92 凹凸状放熱板、10 熱電変換素子、10a 素子表面、10b 素子裏面、11 空隙、12 定盤、13 バギングフィルム、14 シール材、15 積層体、16 枠部材、17 成形型、18 放射断熱材、19 高熱伝導シート、33 領域、 20 第1表皮材用プリプレグ積層体、30 第2表皮材用プリプレグ積層体、90 凹凸状放熱板用プリプレグ積層体

Claims (7)

  1. 第1表皮材と第2表皮材とに挟まれたハニカムコアと、
    前記第1表皮材の前記ハニカムコアと反対面に設けられた複数の太陽電池セルと、
    前記第2表皮材の前記ハニカムコアと反対面に空隙で隔てられ分散して配設された複数の熱電変換素子と、
    前記複数の熱電変換素子の前記第2表皮材と反対面で接し、前記空隙を覆うように設けられた放熱板と
    を備えたことを特徴とする太陽光発電パネル。
  2. 第2表皮材のハニカムコアと反対面のうち、熱電変換素子が配置されていない面に放射断熱材が設けられたことを特徴とする請求項1に記載の太陽光発電パネル。
  3. 熱電変換素子の第2表皮材又は放熱板との接触面積は、前記第2表皮材又は前記放熱板の面積に対して、0より大きく0.3以下の範囲であることを特徴とする請求項1又は2に記載の太陽光発電パネル。
  4. 第2表皮材は、複数の領域に分割され、前記分割された領域ごとに、少なくとも1個の熱電変換素子が、空隙で隔てられ分散して配設されたことを特徴とする請求項1から3のいずれか一項に記載の太陽光発電パネル。
  5. 複数の熱電変換素子は、ハニカムコアの六角形の頂点が重なる三重点上に配設されたことを特徴とする請求項1又は2に記載の太陽光発電パネル。
  6. 放熱板は、断面が凹凸形状で一方向に連続した凹凸状放熱板で構成され、
    前記凹凸状放熱板の凹部に設けられた熱電変換素子と空隙とを有し、
    前記凹凸状放熱板の凸部に設けられた熱電変換素子を介して平板形状の放熱板で覆われていることを特徴とする請求項1に記載の太陽光発電パネル。
  7. プリプレグを用いて第1表皮材及び第2表皮材を成形するステップと、
    前記第2表皮材上に接着シートを介してハニカムコアを設け、前記ハニカムコアの上に接着シートを介して前記第1表皮材を設けて積層体を形成するステップと、
    前記積層体をバギングフィルムで覆い、前記バギングフィルムで覆った内部の空気を排出し、減圧状態を保持しながら、前記バギングフィルムの外部から加圧及び加熱して、ハニカムサンドイッチ構造体を形成するステップと、
    前記ハニカムサンドイッチ構造体の前記第1表皮材側に複数の太陽電池セルを実装するステップと、
    前記ハニカムサンドイッチ構造体の前記第2表皮材側に複数の熱電変換素子を空隙で隔て分散して配設するステップと、
    前記複数の熱電変換素子の前記第2表皮材と反対面で接し、前記空隙を覆うように放熱板を設けるステップと
    を備えたことを特徴とする太陽光発電パネルの製造方法。
PCT/JP2018/004147 2017-06-16 2018-02-07 太陽光発電パネル及びその製造方法 WO2018230031A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018538909A JPWO2018230031A1 (ja) 2017-06-16 2018-02-07 太陽光発電パネル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017118259 2017-06-16
JP2017-118259 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018230031A1 true WO2018230031A1 (ja) 2018-12-20

Family

ID=64659125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004147 WO2018230031A1 (ja) 2017-06-16 2018-02-07 太陽光発電パネル及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2018230031A1 (ja)
WO (1) WO2018230031A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023101292A1 (ko) * 2021-12-03 2023-06-08 한국생산기술연구원 Bipv 적용 가능한 고출력 슁글드 태양광 모듈 및 그 제조 방법
KR20230095013A (ko) * 2021-12-21 2023-06-28 재단법인 포항산업과학연구원 강판 일체형 태양광 발전 모듈
KR20240048221A (ko) * 2022-10-06 2024-04-15 알파시스템창호(주) 건물 일체형 태양전지모듈

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053025U (ja) * 1998-04-07 1998-10-13 大野総一郎 太陽エネルギー電気変換装置
JP2003314011A (ja) * 2002-04-26 2003-11-06 Sumikei-Nikkei Engineering Co Ltd 太陽光発電機能付き建材
EP2246914A1 (en) * 2009-04-28 2010-11-03 Solution e Partners S.r.l. A unit for converting solar energy and/or thermal energy into electric power
US7985919B1 (en) * 2006-08-18 2011-07-26 Nanosolar, Inc. Thermal management for photovoltaic devices
JP2011176131A (ja) * 2010-02-24 2011-09-08 Toshiba Corp 熱電発電装置および熱電発電システム
JP2012508466A (ja) * 2008-11-04 2012-04-05 イートン コーポレーション 住宅用及び工業用建物のための熱電併給システム(chp)
JP2013514471A (ja) * 2009-12-17 2013-04-25 デザイナジー・エスア 実質的に2次元の建築部材
WO2013061739A1 (ja) * 2011-10-25 2013-05-02 株式会社 日立製作所 熱電変換複合材料、それを用いた熱電変換材料ペースト、およびそれを用いた熱電変換モジュール
WO2013065856A1 (ja) * 2011-11-01 2013-05-10 日本電気株式会社 熱電変換素子および熱電変換モジュール
WO2016031667A1 (ja) * 2014-08-29 2016-03-03 三菱電機株式会社 ハニカムサンドイッチ構造体およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353U (ja) * 1989-05-18 1991-01-07
JP2003137199A (ja) * 2001-10-31 2003-05-14 Mitsubishi Heavy Ind Ltd 太陽電池パネル及び太陽電池パネルを有する宇宙機
US7800194B2 (en) * 2002-04-23 2010-09-21 Freedman Philip D Thin film photodetector, method and system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053025U (ja) * 1998-04-07 1998-10-13 大野総一郎 太陽エネルギー電気変換装置
JP2003314011A (ja) * 2002-04-26 2003-11-06 Sumikei-Nikkei Engineering Co Ltd 太陽光発電機能付き建材
US7985919B1 (en) * 2006-08-18 2011-07-26 Nanosolar, Inc. Thermal management for photovoltaic devices
JP2012508466A (ja) * 2008-11-04 2012-04-05 イートン コーポレーション 住宅用及び工業用建物のための熱電併給システム(chp)
EP2246914A1 (en) * 2009-04-28 2010-11-03 Solution e Partners S.r.l. A unit for converting solar energy and/or thermal energy into electric power
JP2013514471A (ja) * 2009-12-17 2013-04-25 デザイナジー・エスア 実質的に2次元の建築部材
JP2011176131A (ja) * 2010-02-24 2011-09-08 Toshiba Corp 熱電発電装置および熱電発電システム
WO2013061739A1 (ja) * 2011-10-25 2013-05-02 株式会社 日立製作所 熱電変換複合材料、それを用いた熱電変換材料ペースト、およびそれを用いた熱電変換モジュール
WO2013065856A1 (ja) * 2011-11-01 2013-05-10 日本電気株式会社 熱電変換素子および熱電変換モジュール
WO2016031667A1 (ja) * 2014-08-29 2016-03-03 三菱電機株式会社 ハニカムサンドイッチ構造体およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023101292A1 (ko) * 2021-12-03 2023-06-08 한국생산기술연구원 Bipv 적용 가능한 고출력 슁글드 태양광 모듈 및 그 제조 방법
KR20230083442A (ko) * 2021-12-03 2023-06-12 한국생산기술연구원 Bipv 적용 가능한 고출력 슁글드 태양광 모듈 및 그 제조 방법
KR102658247B1 (ko) * 2021-12-03 2024-04-18 한국생산기술연구원 Bipv 적용 가능한 고출력 슁글드 태양광 모듈 및 그 제조 방법
KR20230095013A (ko) * 2021-12-21 2023-06-28 재단법인 포항산업과학연구원 강판 일체형 태양광 발전 모듈
KR102681216B1 (ko) 2021-12-21 2024-07-04 재단법인 포항산업과학연구원 강판 일체형 태양광 발전 모듈
KR20240048221A (ko) * 2022-10-06 2024-04-15 알파시스템창호(주) 건물 일체형 태양전지모듈
KR102700575B1 (ko) * 2022-10-06 2024-08-29 알파시스템창호(주) 건물 일체형 태양전지모듈

Also Published As

Publication number Publication date
JPWO2018230031A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2018230031A1 (ja) 太陽光発電パネル及びその製造方法
WO2019230019A1 (ja) 太陽光発電パドル、その製造方法及び宇宙構造物
KR101522044B1 (ko) 태양전지 유니트
JP6234171B2 (ja) バッテリーモジュール
KR101693338B1 (ko) 전지용 복합 엔드플레이트 구조물
JPH09276076A (ja) 温度調節装置
CN113725514A (zh) 柔性显示装置
JPH0690030A (ja) 熱電素子シート
JP2012138315A (ja) リチウムイオン電池モジュール
US20170321020A1 (en) Composite structure comprising a resin loaded with flat graphene sheets having enhanced thermal and electrical conductivity, in particular for a satellite
US10388843B2 (en) Honeycomb sandwich structure and method of manufacturing honeycomb sandwich structure
KR20190051300A (ko) 배터리의 냉각 플레이트 부착 방법 및 이를 통해 제작된 배터리 팩
CN112351662A (zh) 散热复合层及其制备方法、显示面板
CN113437414A (zh) 一种具有导热缓冲结构的电池模组
CN113129761A (zh) 显示模组和显示装置
CN106879230A (zh) 一种三维功率放大器的散热系统
JP2003234491A (ja) 集熱器一体型太陽電池モジュール及びその製造方法
SG183209A1 (en) Micron-gap thermal photovoltaic large scale sub-micron gap method and apparatus
JP6528924B1 (ja) 太陽光発電パドル、その製造方法及び宇宙構造物
KR20210091765A (ko) 라미네이션 장치 및 그 방법
JPS6245080A (ja) 太陽電池モジユ−ル
CN112787027A (zh) 散热底板及电池箱体
JP3055679B2 (ja) 熱電モジュールジャケット、熱電加熱冷却装置、熱電モジュールジャケットの製造方法、及び熱電加熱冷却装置の製造方法
US20190124723A1 (en) Thermistor heater with heat dissipation structure and assembling method thereof
CN208781868U (zh) 一种太阳能组件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538909

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817409

Country of ref document: EP

Kind code of ref document: A1