WO2018229959A1 - ユーザ装置及びランダムアクセス制御方法 - Google Patents

ユーザ装置及びランダムアクセス制御方法 Download PDF

Info

Publication number
WO2018229959A1
WO2018229959A1 PCT/JP2017/022234 JP2017022234W WO2018229959A1 WO 2018229959 A1 WO2018229959 A1 WO 2018229959A1 JP 2017022234 W JP2017022234 W JP 2017022234W WO 2018229959 A1 WO2018229959 A1 WO 2018229959A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble
transmission power
transmission
user apparatus
random access
Prior art date
Application number
PCT/JP2017/022234
Other languages
English (en)
French (fr)
Inventor
知也 小原
浩樹 原田
良介 大澤
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/022234 priority Critical patent/WO2018229959A1/ja
Priority to US16/621,558 priority patent/US20210153244A1/en
Priority to CN201780092151.6A priority patent/CN110771059B/zh
Publication of WO2018229959A1 publication Critical patent/WO2018229959A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present invention relates to a user apparatus and a random access control method.
  • LTE Long Term Evolution
  • 5G or NR LTE-Advanced next-generation communication standards
  • UE User Equipment
  • eNB base station
  • eNodeB base station
  • the user apparatus UE transmits a preamble (PRACH preamble) selected from a plurality of preambles prepared in the cell.
  • PRACH preamble PRACH preamble
  • the base station eNB detects the preamble
  • the base station eNB transmits RAR (RACH response) as response information.
  • the user apparatus UE that has received the RAR transmits RRC Connection Request as message3.
  • the base station eNB transmits RRC Connection Setup including cell setting information for establishing a connection as message4 after receiving message3.
  • the user apparatus UE whose own UE ID is included in message 4 completes the random access process and establishes a connection.
  • the user apparatus UE when the user apparatus UE does not receive RAR as response information after transmitting a preamble, the user apparatus UE retransmits the preamble by a retransmission method called power ramping that increases transmission power in a predetermined step.
  • power ramping a retransmission method that increases transmission power in a predetermined step.
  • transmission beamforming is applied to preamble transmission.
  • transmit beamforming it is assumed that in addition to power ramping, a retransmission method called beam switching for transmitting with a transmission beam different from the previous transmission is applied in addition to power ramping.
  • power ramping is applied in principle.
  • power ramping is not performed in principle.
  • Beam switching has advantages such as reduction of power consumption of the user equipment UE and suppression of interference with other user equipment as compared with power ramping.
  • the user equipment retransmits the preamble, if the beam transmission is prioritized over the power ramping and the transmission beam is continuously changed, the transmission power of the user equipment does not increase and the preamble does not reach the base station. Can do. For example, in an environment where the characteristic difference for each transmission beam is not large, the preamble does not reach the base station unless power ramping is used.
  • the change of the transmission beam includes not only changing the direction of the transmission beam, but also includes, for example, the transmission beam being slightly narrowed by digital beam forming, although the general direction of the transmission beam is the same. For this reason, it is assumed that the transmission beam is continuously changed before power ramping depending on the user apparatus, and the number of retransmissions of the preamble increases in an environment where the characteristic difference for each transmission beam is not large. In order to reduce the number of preamble retransmissions, a mechanism for increasing the transmission power when the transmission beam is changed is necessary.
  • the transmission beam when the transmission beam is changed without changing the transmission power in a state where the transmission power of the preamble is increased to some extent (for example, a state where the transmission power of the preamble is the maximum transmission power or a specified transmission power), the transmission beam Depending on the characteristics and the like, it is assumed that interference increases. In order to reduce the interference, a mechanism for reducing the transmission power when the transmission beam is changed is necessary. Alternatively, in order to reduce interference, a mechanism for limiting retransmission of the preamble when beam switching is performed is necessary.
  • Random access using appropriate transmission power by changing the transmission power when changing the transmission beam and retransmitting the preamble, or by limiting the retransmission of the preamble when beam switching is performed. It aims at realizing.
  • a user apparatus is provided.
  • a random access control unit that determines whether or not a condition in which the same transmission power can be used when resending the preamble by changing the transmission beam, and determining the transmission power of the preamble based on the determination;
  • the appropriate transmission power is used by changing the transmission power when changing the transmission beam and retransmitting the preamble, or by limiting the retransmission of the preamble when beam switching is performed. Random access can be realized.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-Advanced LTE-Advanced and other systems unless otherwise specified.
  • the present invention can also be applied to systems other than LTE to which random access is applied.
  • FIG. 1 is a configuration diagram of a wireless communication system 10 according to the present embodiment.
  • radio communication system 10 in the present embodiment includes base station 100 and user apparatus 200.
  • base station 100 and user apparatus 200 are illustrated, but a plurality of base stations 100 may be included, or a plurality of user devices 200 may be included.
  • the base station 100 may be called a BS
  • the user apparatus 200 may be called a UE.
  • the base station 100 can accommodate one or a plurality of (for example, three) cells (also called sectors). When the base station 100 accommodates multiple cells, the entire coverage area of the base station 100 can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station RRH). : Remote Radio Head) can also provide a communication service.
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • the base station 100 may also be referred to by terms such as a fixed station, a NodeB, an eNodeB (eNB), an access point, a femtocell, and a small cell.
  • the user equipment 200 is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, by a person skilled in the art. It may also be called mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • Random access is performed when the user apparatus 200 establishes a connection with the base station 100 or performs resynchronization at the time of transmission or handover.
  • a channel for transmitting a preamble first in random access is called a physical random access channel (PRACH: Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • transmission beamforming is a technique for improving the radio field intensity by sending a transmission beam with high directivity toward a communication partner.
  • the user apparatus 200 After transmitting the preamble, for example, when the user apparatus 200 does not receive the RAR that is the response information within a period called an RAR window, the user apparatus 200 retransmits the preamble.
  • the following two schemes are assumed as preamble retransmission schemes when transmission beamforming is applicable.
  • Power ramping Increases transmission power at the time of retransmission compared to the previous transmission.
  • power ramping is used together with beam switching. Therefore, in power ramping, the same transmission beam is used, and the transmission power is set higher than the transmission power at the time of previous transmission at the time of retransmission. And making the transmission power larger than the transmission power of the previous transmission at the time of retransmission without depending on the transmission beam.
  • the amount of increase in transmission power due to power ramping is called a power ramping step or power ramping step size.
  • Beam switching A transmission beam different from the previous transmission is applied during retransmission.
  • a transmission beam set different from the transmission beam set at the previous transmission at the time of retransmission In the case where a plurality of transmission beams can be used for one transmission, it also includes applying a transmission beam set different from the transmission beam set at the previous transmission at the time of retransmission.
  • the following three counters are defined for convenience.
  • Transmission counter This counter manages the number of times the preamble has been transmitted in the random access procedure, and increases the counter value every time the preamble is transmitted.
  • Power ramping counter A counter that manages the number of times power ramping is performed, and increments the counter value each time power ramping is performed. When power ramping is performed during beam switching, the counter value is increased. However, when power ramping is not performed during beam switching and the transmission power does not change, the counter value does not change. In the present embodiment, as described below, it is assumed that the transmission power is reduced at the time of beam switching, but in this case, the counter value may be reduced.
  • Beam switching counter A counter that manages the number of times beam switching is performed, and increases the counter value every time beam switching is performed. When power ramping is performed, the counter value may or may not be reset.
  • a power ramping counter may be defined as a transmission counter.
  • FIG. 2 is a sequence diagram showing a random access procedure in the radio communication system according to the embodiment of the present invention.
  • the base station 100 generates and transmits setting information to be referred to when the user apparatus 200 retransmits the preamble in random access (S201).
  • the setting information uses the same transmission power when changing the transmission beam and retransmitting the preamble.
  • Conditions that can be included may be included.
  • the setting information may include the maximum number of retransmissions, the amount of increase / decrease in transmission power at the time of retransmission (including a power ramping step), and may include any setting value used in the present embodiment.
  • this condition includes a condition that the number of times the preamble is transmitted using the same transmission power is equal to or less than a specified number, or a condition that the number of times the preamble is transmitted in the random access procedure is equal to or less than the specified number. Is included.
  • this condition is not satisfied, for example, when the number of times that the user apparatus 200 transmits the preamble using the same transmission power exceeds the specified number of times, or the number of times that the preamble is transmitted in the random access procedure is the specified number of times. If exceeded, the user apparatus 200 cannot use the same transmission power when changing the transmission beam and transmitting the preamble, and must use different transmission power.
  • the base station 100 may notify the setting information of a flag indicating whether or not the condition is applied, the number of times of designation used in the condition, a power value for setting a different transmission power, and the like.
  • this condition may include a condition that the preamble transmission power is less than the maximum transmission power, or a condition that the preamble transmission power is less than the specified transmission power.
  • this condition is not satisfied, for example, when the transmission power of the preamble reaches the maximum transmission power or the specified transmission power, the user apparatus 200 uses the same transmission power when changing the transmission beam and transmitting the preamble. Cannot be used, and different transmission powers must be used.
  • the base station 100 may notify, as setting information, a flag indicating whether or not a condition is applied, a power value for setting a different transmission power, and the like.
  • Transmission of setting information from the base station 100 to the user apparatus 200 may be performed by broadcast information, or may be performed by RRC (Radio Resource Control) signaling or the like. Moreover, transmission of the setting information from the base station 100 to the user apparatus 200 may be performed by a combination of broadcast information, RRC signaling, and the like. When these combinations are used, the user apparatus 200 may use the setting information according to a predetermined priority. For example, when the setting information is notified by the RRC signaling after the setting information is notified by the broadcast information, the setting information notified by the broadcast information may be discarded by giving priority to the RRC signaling. This example of priority is merely an example, and any priority may be used.
  • User apparatus 200 receives the setting information from base station 100 and transmits a preamble (S203). When retransmitting the preamble, the user apparatus 200 determines the preamble transmission power according to the setting information, and transmits the preamble (S205). The user apparatus 200 can determine whether to apply power ramping or beam switching when retransmitting the preamble according to a predetermined rule or communication environment. When the user apparatus 200 determines that the beam switching is applied, the user apparatus 200 determines whether or not a condition that can use the same transmission power is satisfied, and determines the transmission power of the preamble based on the determination.
  • the user apparatus 200 when the number of times the user apparatus 200 transmits a preamble using the same transmission power exceeds a specified number of times, or when the number of times the preamble is transmitted in a random access procedure exceeds the specified number of times, the user apparatus 200 Increases the transmission power of the preamble. For example, when the preamble transmission power reaches the maximum transmission power or the designated transmission power, the user apparatus 200 decreases the preamble transmission power.
  • the user apparatus 200 transmits the preamble and the number of times that the preamble is retransmitted using the maximum transmission power exceeds the specified number of times.
  • the transmission of the preamble may be interrupted and notified to the upper layer, but the random access procedure may not be interrupted.
  • the number of times that the user apparatus 200 transmits the preamble using the same transmission power is equal to or less than the specified number of times. It is assumed that the above condition is satisfied.
  • the user apparatus 200 determines whether or not retransmission is possible (S301). For example, the user apparatus 200 can recognize the number of retransmissions of the preamble with reference to the transmission counter. When the number of preamble retransmissions is equal to or less than the maximum number of retransmissions, the user apparatus 200 determines that retransmission is possible. If the number of preamble retransmissions exceeds the maximum number of retransmissions, the user apparatus 200 may determine that retransmission is impossible.
  • the user apparatus 200 may interrupt the random access procedure and notify the upper layer, but the random access procedure does not have to be interrupted (S303). For example, a random access failure (random access problem) may be notified to an upper layer, or a random access procedure may be interrupted or interrupted in the physical layer, MAC (Medium Access Control) layer, RRC layer, etc.
  • the random access procedure may be interrupted by initializing the parameters of the MAC layer or the like by MAC reset.
  • the user apparatus 200 resets the transmission counter, the power ramping counter, and the beam switching counter (S313).
  • the user apparatus 200 can resume the random access procedure by returning to the transmission power at the time of the initial transmission by determining the upper layer, the physical layer, the MAC layer, the RRC layer, and the like.
  • the user apparatus 200 determines whether or not to change the transmission beam according to a predetermined rule or communication environment (S305). When the transmission beam is not changed (S305: NO), the user apparatus 200 increases the transmission power by power ramping (S307). However, since the transmission power cannot be increased after reaching the maximum transmission power, the user apparatus 200 may not change the transmission power and may decrease the transmission power. Then, the user apparatus 200 increases the transmission counter and the power ramping counter (S313). When the transmission power is not changed, the power ramping counter is not changed, and when the transmission power is reduced, the power ramping counter is decreased. The user apparatus 200 may or may not reset the beam switching counter.
  • the user apparatus 200 determines whether or not the same transmission power can be used (S309). For example, the user apparatus 200 can recognize the number of times of transmitting the preamble using the same transmission power with reference to the beam switching counter. When the number of times the preamble is transmitted using the same transmission power is equal to or less than the designated number (S309: YES), the user apparatus 200 does not need to change the transmission power when changing the transmission beam (S311). The user apparatus 200 increases the transmission counter and the beam switching counter (S313).
  • the user apparatus 200 When the number of times of transmitting the preamble using the same transmission power exceeds the specified number of times (S309: NO), the user apparatus 200 increases the transmission power of the preamble (S307). Then, the user apparatus 200 increases the transmission counter and the power ramping counter (S313). The user apparatus 200 may or may not reset the beam switching counter.
  • the user apparatus 200 when the designated number of times that the preamble can be transmitted using the same transmission power is 2, as shown in FIG. 4, the user apparatus 200 applies the beam switching until the second transmission, and the same. The preamble can be transmitted using the transmission power. However, at the time of the third transmission, the user apparatus 200 increases transmission power even if beam switching is applied.
  • the condition that the number of preamble transmissions using the same transmission power is less than or equal to the specified number of times can be read as the condition that the number of retransmissions of the preamble using the same transmission power is less than or equal to the specified number of retransmissions. .
  • the designated number of retransmissions in which the preamble can be retransmitted using the same transmission power is one, as shown in FIG. 4, the user apparatus 200 does not repeat until the first retransmission (second transmission).
  • the preamble can be transmitted using the same transmission power by applying beam switching. However, at the time of second retransmission (third transmission), the user apparatus 200 increases transmission power even if beam switching is applied.
  • the same value as the power ramping step may be used for the transmission power amount to be increased when the specified number of times is exceeded, or a different value may be used.
  • a value different from the power ramping step may be used, or an increase amount of the power ramping counter may be used.
  • the transmission power amount to be increased when the specified number of times is exceeded may be notified from the base station 100 as setting information, or may be defined in advance by specifications.
  • the number of times the user apparatus 200 transmits the preamble in the random access procedure is equal to or less than the specified number. It is assumed that the above condition is satisfied.
  • steps S301 to S305 are the same as those in the first specific example, the following description will be made on the differences from the first specific example.
  • the user apparatus 200 determines whether or not the same transmission power can be used (S309). For example, the user apparatus 200 can recognize the number of times the preamble has been transmitted from the initial transmission with reference to the transmission counter. When the number of times of transmitting the preamble is equal to or less than the specified number of times (S309: YES), the user apparatus 200 does not need to change the transmission power when changing the transmission beam (S311). The user apparatus 200 increases the transmission counter and the beam switching counter (S313).
  • the user apparatus 200 When the number of times the preamble has been transmitted since the first transmission exceeds the specified number (S309: NO), the user apparatus 200 increases the transmission power of the preamble (S307). Then, the user apparatus 200 increases the transmission counter and the power ramping counter (S313). The user apparatus 200 may or may not reset the beam switching counter.
  • the user apparatus 200 when the designated number of times that the preamble can be transmitted without changing the transmission power is 4, as shown in FIG. 5, the user apparatus 200 performs power ramping or beam switching until the fourth transmission.
  • the preamble can be transmitted by applying. It is not necessary to change the transmission power when beam switching is applied during the fourth transmission. However, at the time of the fifth transmission, the user apparatus 200 increases transmission power even if beam switching is applied. Thus, even if the transmission power is increased up to the designated number of times, the user apparatus 200 increases the transmission power when the designated number of times is exceeded. Even after the sixth transmission, the user apparatus 200 may continue to increase the transmission power even if beam switching is applied.
  • the condition that the number of times the preamble is transmitted in the random access procedure is equal to or less than the specified number of times can be read as the condition that the number of times the preamble is retransmitted in the random access procedure is equal to or less than the specified number.
  • the designated number of retransmissions that can retransmit the preamble without changing the transmission power is 3, as shown in FIG. 5, the user apparatus 200 performs the third retransmission (during the fourth transmission). ) It is not necessary to change the transmission power when applying beam switching. However, at the time of the fourth retransmission (fifth transmission), the user apparatus 200 increases transmission power even if beam switching is applied.
  • the same value as the power ramping step may be used for the transmission power amount to be increased when the specified number of times is exceeded, or a different value may be used.
  • a value different from the power ramping step may be used, or an increase amount of the power ramping counter may be used.
  • the transmission power amount to be increased when the specified number of times is exceeded may be notified from the base station 100 as setting information, or may be defined in advance by specifications.
  • the user apparatus 200 determines whether or not retransmission is possible (S301).
  • the retransmission of the preamble is performed according to the number of retransmissions of the preamble after the specified number of times is exceeded.
  • the user apparatus 200 can recognize the number of retransmissions of the preamble after the specified number of times is exceeded with reference to the increase amount of the transmission counter after the specified number of times is exceeded.
  • the number of times of retransmission of the preamble after exceeding the specified number of times can be recognized with reference to the beam switching counter. it can.
  • the user apparatus 200 can retransmit the preamble until the number of retransmissions of the preamble after exceeding the specified number reaches the specified number of retransmissions.
  • the user apparatus 200 may determine that retransmission is not possible.
  • the user apparatus 200 may interrupt the random access procedure and notify the upper layer, but the random access procedure does not have to be interrupted (S303).
  • the interruption of the random access procedure / notification to the upper layer and the subsequent processing can be realized in the same manner as in the first specific example.
  • the specified number of retransmissions which is the upper limit value of the number of retransmissions that can retransmit the preamble after exceeding the specified number of times, may be notified from the base station 100 as setting information, or may be defined in advance by specifications. Also, as the designated number of retransmissions, the beam switching counter may be increased after exceeding the maximum value of the beam switching counter or the maximum value of the transmission counter or the specified number of times. A maximum value that may be increased may be specified.
  • the maximum value of the beam switching counter may be increased 3 times, or the maximum value of the transmission counter may be increased 6 times or after the specified number of times has been exceeded, or the maximum value may be increased twice or specified.
  • the maximum value that may increase the transmission counter after exceeding the number of times is 2, the user apparatus 200 may determine that the seventh preamble transmission is impossible.
  • the user apparatus 200 determines whether or not retransmission is possible (S301).
  • the retransmission of the preamble is performed by the transmission power of the preamble after the specified number of times is exceeded. Limited.
  • the preamble transmission power is increased by power ramping or the like after the specified number of times is exceeded, the user apparatus 200 can retransmit the preamble until the preamble transmission power exceeds the specified transmission power.
  • the preamble transmission power exceeds the designated transmission power due to power ramping or the like after exceeding the designated number of times, the user apparatus 200 may determine that retransmission is not possible.
  • the designated transmission power may be the maximum transmission power of the user apparatus 200.
  • the user apparatus 200 may interrupt the random access procedure and notify the upper layer, but the random access procedure does not have to be interrupted (S303).
  • the interruption of the random access procedure / notification to the upper layer and the subsequent processing can be realized in the same manner as in the first specific example.
  • the designated transmission power that is the upper limit value of the transmission power that can transmit the preamble after exceeding the designated number of times may be notified from the base station 100 as setting information, or may be defined in advance by specifications.
  • an absolute value of the transmission power may be specified, a relative value with the transmission power at the initial transmission may be specified, and an allowable number of times that power ramping can be applied is specified. May be.
  • the maximum value of the power ramping counter or the maximum value that may increase the power ramping counter after exceeding the designated number of times may be designated.
  • the user apparatus 200 determines that transmission of the preamble is impossible.
  • the user apparatus 200 has a condition that the preamble transmission power is less than the maximum transmission power. Assume that.
  • steps S301 to S305 are the same as those in the first specific example, the following description will be made on the differences from the first specific example.
  • the user apparatus 200 determines whether or not the same transmission power can be used (S309). When the transmission power of the preamble is less than the maximum transmission power (S309: YES), the user apparatus 200 does not need to change the transmission power when changing the transmission beam (S311). The user apparatus 200 increases the transmission counter and the beam switching counter (S313).
  • the user apparatus 200 decreases the transmission power of the preamble (S307).
  • the maximum transmission power can be associated with a power ramping counter. For example, if the power ramping counter reaches the maximum value at the time of retransmission immediately after the user apparatus 200 changes the transmission beam, the power is changed to a value X that is less than the maximum value of the power ramping counter, and the preamble is transmitted with transmission power corresponding to X. May be. Then, the user apparatus 200 increases the transmission counter and decreases the power ramping counter (S313). The user apparatus 200 may or may not reset the beam switching counter.
  • the user apparatus 200 transmits the transmission power even when beam switching is applied during the fourth transmission. Decrease. Note that after the fifth transmission, the user apparatus 200 does not have to change the transmission power, may increase the transmission power by power ramping, or may further decrease the transmission power.
  • the maximum transmission power may be the maximum transmission power that can be transmitted by the terminal, may be notified from the base station 100 as setting information, or may be defined in advance by specifications. Also, as the maximum transmission power, an absolute value of the transmission power may be specified, a relative value with the transmission power at the time of initial transmission may be specified, and an allowable number of times that power ramping can be applied is specified. Also good.
  • the same value as the power ramping step or a different value may be used as the transmission power amount to be reduced after reaching the maximum transmission power.
  • a value different from the power ramping step may be used, or a decrease amount of the power ramping counter may be used.
  • the amount of transmission power to be reduced after reaching the maximum transmission power may be notified from the base station 100 as setting information, or may be defined in advance by specifications.
  • the user apparatus 200 may retransmit the preamble without changing the transmission beam after reaching the maximum transmission power.
  • the user apparatus 200 may retransmit the preamble while maintaining the maximum retransmission power without changing the transmission power, or may decrease the transmission power.
  • the user apparatus 200 increases the transmission counter.
  • the user apparatus 200 increases the transmission counter and decreases the power ramping counter as in step S313. Further, the beam switching counter may be reset or may not be reset.
  • the user apparatus 200 has a condition that the preamble transmission power is less than the specified transmission power.
  • steps S301 to S305 are the same as those in the first specific example, the following description will be made on the differences from the first specific example.
  • the user apparatus 200 determines whether or not the same transmission power can be used (S309). When the transmission power of the preamble is less than the specified transmission power (S309: YES), the user apparatus 200 does not need to change the transmission power when changing the transmission beam (S311). The user apparatus 200 increases the transmission counter and the beam switching counter (S313).
  • the user apparatus 200 decreases the transmission power of the preamble (S307).
  • the designated transmission power can be associated with a power ramping counter. For example, if the power ramping counter is larger than the value X at the time of retransmission immediately after the user apparatus 200 changes the transmission beam, the power ramping counter may be changed to X and the preamble may be transmitted with the transmission power corresponding to X. Then, the user apparatus 200 increases the transmission counter and decreases the power ramping counter (S313). The user apparatus 200 may or may not reset the beam switching counter.
  • the user apparatus 200 transmits the fourth transmission even if beam switching is applied during the fourth transmission. Reduce power. Note that after the fifth transmission, the user apparatus 200 does not have to change the transmission power, may increase the transmission power by power ramping, or may further decrease the transmission power.
  • the designated transmission power may be notified as setting information from the base station 100, or may be defined in advance by specifications. Also, as the specified transmission power, an absolute value of the transmission power may be specified, a relative value with the transmission power at the initial transmission may be specified, and an allowable number of times that power ramping can be applied is specified. May be.
  • the same value as the power ramping step or a different value may be used as the transmission power amount to be reduced after reaching the maximum transmission power.
  • a value different from the power ramping step may be used, or a decrease amount of the power ramping counter may be used.
  • the amount of transmission power to be reduced after reaching the maximum transmission power may be notified from the base station 100 as setting information, or may be defined in advance by specifications.
  • the user apparatus 200 determines whether or not retransmission is possible (S301).
  • the number of times the preamble is retransmitted using the maximum transmission power in the random access procedure This limits the retransmission of the preamble.
  • the designated number of times that the preamble can be retransmitted using the maximum transmission power in the random access procedure may be notified from the base station 100 as setting information, or may be defined in advance by specifications.
  • the designated number of times that the preamble can be retransmitted using the maximum transmission power in the random access procedure may be read as the number of times that the preamble can be transmitted after the power ramping counter reaches the maximum value.
  • the user apparatus 200 determines whether or not the number of retransmissions of the preamble using the maximum transmission power is equal to or less than the specified number. If the number of retransmissions of the preamble using the maximum transmission power is equal to or less than the specified number, the user apparatus 200 determines that retransmission is possible. When the number of retransmissions of the preamble using the maximum transmission power exceeds a specified number, the user apparatus 200 may determine that the retransmission is impossible.
  • the user apparatus 200 reaches the maximum transmission power in the third transmission. May be determined up to the fifth transmission, but not the sixth transmission.
  • the user apparatus 200 may interrupt the random access procedure and notify the upper layer, but the random access procedure does not have to be interrupted (S303).
  • the interruption of the random access procedure / notification to the upper layer and the subsequent processing can be realized in the same manner as in the first specific example.
  • the transmission power can no longer be increased (S309: YES), so the maximum transmission power remains unchanged.
  • a preamble is transmitted (S311).
  • the user apparatus 200 increases the transmission counter and the beam switching counter (S313).
  • the preamble transmission power is the maximum transmission power.
  • the user apparatus 200 decreases the transmission power of the preamble (S307).
  • the user apparatus 200 increases the transmission counter and decreases the power ramping counter (S313).
  • the user apparatus 200 may or may not reset the beam switching counter.
  • FIG. 9 shows an example when specific example 7 is combined with specific example 5.
  • the designated number of times that the preamble can be retransmitted using the maximum transmission power is 3, as shown in FIG. 9, even if the user apparatus 200 reaches the maximum transmission power in the third transmission, Since the transmission power is reduced at the sixth and sixth times, it is determined that the seventh transmission is possible.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the base station 100.
  • the base station 100 includes a transmission unit 110, a reception unit 120, a setting information management unit 130, and a random access control unit 140.
  • the functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the transmission unit 110 is configured to generate a lower layer signal from upper layer information and transmit the signal wirelessly.
  • the receiving unit 120 is configured to wirelessly receive various signals and acquire upper layer information from the received signals.
  • the setting information management unit 130 stores setting information that is set in advance, and setting information that is dynamically and / or semi-statically set for the user apparatus 200 (the same transmission when the transmission beam is changed and the preamble is retransmitted). The conditions under which power can be used, the maximum number of retransmissions, the amount of increase / decrease in transmission power at the time of retransmission, any set value used in this embodiment, and the like are determined and held.
  • the setting information management unit 130 passes setting information to be set for the user apparatus 200 dynamically and / or semi-statically to the transmission unit 110, and causes the transmission unit 110 to transmit the setting information.
  • the random access control unit 140 manages a random access procedure with the user device 200.
  • the RAR is transmitted to the transmission unit 110, and when the RRC Connection Request is received from the user apparatus 200, the transmission unit 110 is caused to transmit the RRC Connection Setup.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the user device 200.
  • the user device 200 includes a transmission unit 210, a reception unit 220, a setting information management unit 230, and a random access control unit 240.
  • the functional configuration shown in FIG. 7 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the transmission unit 210 is configured to generate a lower layer signal from upper layer information and transmit the signal wirelessly. Based on the setting information stored in the setting information management unit 230 described below, the transmission unit 210 transmits the preamble by applying beam switching and / or power ramping when retransmitting the preamble.
  • the receiving unit 220 is configured to wirelessly receive various signals and acquire upper layer information from the received signals.
  • the receiving unit 220 receives setting information from the base station 100 or the like (conditions for using the same transmission power when changing the transmission beam and retransmitting the preamble, the maximum number of retransmissions, the amount of increase or decrease in transmission power during retransmission, Any set value used in the form of (1) is received.
  • the setting information management unit 230 stores setting information that is set in advance, and setting information that is set dynamically and / or semi-statically from the base station 100 or the like (the same transmission when changing the transmission beam and retransmitting the preamble) A condition in which power can be used, a maximum number of retransmissions, an increase / decrease amount of transmission power at the time of retransmission, and any setting value used in the present embodiment).
  • the setting information that can be managed by the setting information management unit 230 includes not only setting information set from the base station 100 and the like, but also setting information defined in advance by specifications.
  • the random access control unit 240 manages a random access procedure with the base station 100.
  • the random access control unit 240 sends the preamble selected at random from the plurality of preambles to the transmission unit 210. Send it.
  • the random access control unit 240 causes the transmission unit 210 to retransmit the preamble when, for example, the response information RAR is not received within a period called an RAR window.
  • the random access control unit 240 determines the preamble transmission power according to the setting information managed by the setting information management unit 230, as described with reference to FIGS.
  • the random access control unit 240 determines whether the preamble can be retransmitted as described with reference to FIGS. 3 to 9 according to the setting information managed by the setting information management unit 230, If necessary, the random access procedure may be interrupted and notified to the upper layer, but the random access procedure may not be interrupted.
  • the random access control unit 240 causes the transmission unit 210 to transmit an RRC Connection Request.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a base station, a user apparatus, etc. in an embodiment of the present invention may function as a computer that performs processing of the random access method of the present invention.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of a radio communication apparatus that is the base station 100 or the user apparatus 200 according to the embodiment of the present invention.
  • the base station 100 and the user apparatus 200 described above may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the base station 100 and the user apparatus 200 may be configured to include one or a plurality of the apparatuses illustrated in the figure, or may be configured not to include some apparatuses.
  • Each function in the base station 100 and the user apparatus 200 is performed by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, and communication by the communication apparatus 1004. Alternatively, it is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the transmission unit 110, the reception unit 120, the setting information management unit 130, the random access control unit 140, the transmission unit 210, the reception unit 220, the setting information management unit 230, and the random access control unit of the user station 200 described above. 240 and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), software module, and / or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the transmission unit 110, the reception unit 120, the setting information management unit 130, the random access control unit 140 of the base station 100, the transmission unit 210, the reception unit 220, the setting information management unit 230, and the random access control unit 240 of the user device 200 are The program may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • processor 1001 may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the random access method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device a network controller, a network card, a communication module, or the like.
  • the transmission unit 110, the reception unit 120, the transmission unit 210, the reception unit 220, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and / or the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the base station 100 and the user apparatus 200 include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). Hardware may be configured, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware. ⁇ Effect of Embodiment of the Present Invention> According to the embodiment of the present invention, it is possible to realize random access using appropriate transmission power by increasing or decreasing the transmission power when changing the transmission beam and retransmitting the preamble.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • interference can be reduced by reducing transmission power when changing the transmission beam and retransmitting the preamble.
  • interference can also be reduced by limiting the number of times the user apparatus can retransmit the preamble using the maximum transmission power.
  • the interference is increased by switching the transmission beam using the maximum transmission power when only the maximum number of retransmissions used in LTE is combined with the beam switching and power ramping.
  • retransmission can be appropriately limited when beam switching and power ramping are combined.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • system and “network” used in this specification are used interchangeably.
  • the specific operation assumed to be performed by the base station in the present specification may be performed by the upper node in some cases.
  • various operations performed for communication with the terminal may be performed by the base station and / or other network nodes other than the base station (e.g., Obviously, this may be done by MME or S-GW, but not limited to these.
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • determining may encompass a wide variety of actions.
  • “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “deciding”.
  • “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
  • notification of predetermined information is not limited to explicit notification, and may be performed implicitly (for example, notification of the predetermined information is not performed). Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明の一形態に係るユーザ装置は、送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件を満たすか否かを判断し、前記判断に基づいて、プリアンブルの送信電力を決定するランダムアクセス制御部と、前記決定された送信電力を用いてプリアンブルを送信する送信部とを有する。

Description

ユーザ装置及びランダムアクセス制御方法
 本発明は、ユーザ装置及びランダムアクセス制御方法に関する。
 3GPP(Third Generation Partnership Project)において、LTE(Long Term Evolution)及びLTE-Advancedの次世代の通信規格(5G又はNR)が議論されている。NRシステムにおいても、LTE等と同様に、ユーザ装置(UE:User Equipment)が基地局(eNB又はeNodeB)と接続を確立する場合又は再接続する場合に、ランダムアクセスを行うことが想定される。
 LTEのランダムアクセスでは、ユーザ装置UEは、セル内に用意された複数のプリアンブルの中から選択したプリアンブル(PRACH preamble)を送信する。基地局eNBはプリアンブルを検出すると、その応答情報であるRAR(RACH response)を送信する。RARを受信したユーザ装置UEは、RRC Connection Requestをmessage3として送信する。基地局eNBは、message3受信後にコネクション確立のためのセル設定情報等を含むRRC Connection Setupをmessage4として送信する。自分のUE IDがmessage4に含まれていたユーザ装置UEは、ランダムアクセス処理を完了し、コネクションを確立する。
 LTEでは、ユーザ装置UEは、プリアンブルを送信した後にその応答情報であるRARを受信しない場合、予め決められたステップで送信電力を増加させるパワーランピング(power ramping)と呼ばれる再送方式によってプリアンブルを再送する(非特許文献1及び2参照)。
3GPP TS36.321 V14.2.1(2017-03) 3GPP TS36.213 V14.2.0(2017-03)
 NRシステムでは、プリアンブルの送信に送信ビームフォーミングが適用されることが想定されている。送信ビームフォーミングの適用に伴い、プリアンブルの再送方式として、パワーランピングに加えて、再送時に前回送信時と異なる送信ビームで送信するビームスイッチング(beam switching)と呼ばれる再送方式が適用されることが想定される。再送時に前回送信時と同様の送信ビームで送信する場合には原則としてはパワーランピングが適用されることが想定される。また、再送時にビームスイッチングが適用される場合には原則としてはパワーランピングを実施しないことが想定される。
 ビームスイッチングは、パワーランピングに比べて、ユーザ装置UEの消費電力を削減することができ、他ユーザ装置への干渉を抑制することができる等の利点がある。しかし、ユーザ装置がプリアンブルを再送するときにパワーランピングよりもビームスイッチングを優先して送信ビームを変更し続けた場合、ユーザ装置の送信電力が増加せず、プリアンブルが基地局に到達しないケースが存在し得る。例えば、送信ビームごとの特性差が大きくない環境では、パワーランピングを用いなければプリアンブルが基地局に到達しない。
 なお、送信ビームの変更とは、送信ビームの方向を変更することだけでなく、例えば、送信ビームの大まかな方向は同じであるが、デジタルビームフォーミングで送信ビームを少し細くすることも含まれる。このため、ユーザ装置によってはパワーランピングを行う前に送信ビームを変更し続けることも想定され、送信ビームごとの特性差が大きくない環境ではプリアンブルの再送回数が増加する。プリアンブルの再送回数を減少させるためには、送信ビームを変更するときに送信電力を増加させる仕組みが必要である。
 また、プリアンブルの送信電力がある程度大きくなった状態(例えば、プリアンブルの送信電力が最大送信電力又は指定の送信電力になった状態)で送信電力を変更せずに送信ビームを変更した場合、送信ビームの特性等によっては干渉が大きくなることが想定される。干渉を低減するためには、送信ビームを変更するときに送信電力を減少させる仕組みが必要である。或いは、干渉を低減するためには、ビームスイッチングが行われるときにプリアンブルの再送を制限する仕組みが必要である。
 本発明は、送信ビームを変更してプリアンブルを再送するときに送信電力を変更することにより、或いはビームスイッチングが行われるときにプリアンブルの再送を制限することにより、適切な送信電力を用いたランダムアクセスを実現することを目的とする。
 本発明の一形態に係るユーザ装置は、
 送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件を満たすか否かを判断し、前記判断に基づいて、プリアンブルの送信電力を決定するランダムアクセス制御部と、
 前記決定された送信電力を用いてプリアンブルを送信する送信部と、
 を有することを特徴とする。
 本発明によれば、送信ビームを変更してプリアンブルを再送するときに送信電力を変更することにより、或いはビームスイッチングが行われるときにプリアンブルの再送を制限することにより、適切な送信電力を用いたランダムアクセスを実現することが可能になる。
本発明の実施の形態における無線通信システムの構成図である。 本発明の実施の形態に係る無線通信システムにおけるランダムアクセス手順を示すシーケンス図である。 本発明の実施の形態に係るユーザ装置におけるランダムアクセス制御方法を示すフローチャートである。 同じ送信電力を用いてプリアンブルを送信した回数が指定の回数を超えた場合、送信ビーム変更時に送信電力を増加させる例を示す図である。 ランダムアクセス手順の中でプリアンブルの再送回数が指定の回数を超えた場合、送信ビーム変更時に送信電力を増加させる例を示す図である。 プリアンブルの送信電力が最大送信電力に到達した場合、送信ビーム変更時に送信電力を減少させる例を示す図である。 プリアンブルの送信電力が指定の送信電力に到達した場合、送信ビーム変更時に送信電力を減少させる例を示す図である。 最大送信電力を用いて送信することができる回数を制限する例を示す図である。 図6に示す例において、最大送信電力を用いて送信することができる回数を制限する例を示す図である。 基地局の機能構成の一例を示すブロック図である。 ユーザ装置の機能構成の一例を示すブロック図である。 本発明の実施の形態に係る無線通信装置のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。
 本実施の形態において、適宜、LTEで規定された用語を用いて説明する。また、無線通信システムが動作するにあたっては、適宜、LTEで規定された既存技術を使用できる。ただし、当該既存技術はLTEに限られない。また本明細書で使用する「LTE」は、特に断らない限り、LTE-Advanced、及びLTE-Advanced以降の方式を含む広い意味で使用する。また、本発明は、ランダムアクセスが適用されるLTE以外の方式にも適用可能である。
 また、本実施の形態では、既存のLTEで使用されているRACH、プリアンブル、ビームフォーミング、パワーランピング、ビームスイッチング等の用語を使用しているが、これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。
 <無線通信システムの概要>
 図1は、本実施の形態における無線通信システム10の構成図である。図1に示すように、本実施の形態における無線通信システム10は、基地局100及びユーザ装置200を含む。図1の例では、1つの基地局100及び1つのユーザ装置200が図示されているが、複数の基地局100を有していてもよいし、複数のユーザ装置200を有していてもよい。なお、基地局100をBSと呼び、ユーザ装置200をUEと呼んでもよい。
 基地局100は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局100が複数のセルを収容する場合、基地局100のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局100は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 ユーザ装置200は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 発信時又はハンドオーバ等により、ユーザ装置200が基地局100と接続を確立する場合又は再同期を行う場合、ランダムアクセスが行われる。ランダムアクセスにおいて最初にプリアンブルを送信するためのチャネルを物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)と呼ぶ。本実施の形態では、ランダムアクセスにおいて、送信ビームフォーミングを適用できることを想定する。送信ビームフォーミングは、通信相手に向けて指向性の高い送信ビームを送り、電波強度を向上させる技術である。
 ユーザ装置200は、プリアンブルを送信した後、例えば、RARウィンドウと呼ばれる期間内にその応答情報であるRARを受信しない場合、プリアンブルを再送する。送信ビームフォーミングが適用可能な場合のプリアンブルの再送方式として、本実施の形態では、以下の2つの方式を想定する。
 (1)パワーランピング:再送時に前回送信時よりも送信電力を大きくする。なお、本実施の形態では、ビームスイッチングと共にパワーランピングを使用することを想定しているため、パワーランピングには、同じ送信ビームを用いて再送時に前回送信した際の送信電力よりも送信電力を大きくすることと、送信ビームに依存せず、再送時に前回送信した際の送信電力よりも送信電力を大きくすることとが含まれる。パワーランピングによる送信電力の増加量のことをパワーランピングステップ又はパワーランピングステップサイズと呼ぶ。
 (2)ビームスイッチング:再送時に前回送信時と異なる送信ビームを適用する。1回の送信に複数の送信ビームを用いることができる場合には、再送時に前回送信時の送信ビームの組と異なる送信ビームの組を適用することも含まれる。
 また、ユーザ装置200において再送回数を管理するために、便宜上、以下の3つのカウンタを定義する。
 (1)送信カウンタ:ランダムアクセス手順においてプリアンブルを送信した回数を管理するカウンタであり、プリアンブルを送信する毎にカウンタ値を増加させる。
 (2)パワーランピングカウンタ:パワーランピングを行った回数を管理するカウンタであり、パワーランピングを行う毎にカウンタ値を増加させる。なお、ビームスイッチングのときにパワーランピングを行った場合、カウンタ値を増加させるが、ビームスイッチングのときにパワーランピングを行わず、送信電力が変わらないときにはカウンタ値は変わらない。本実施の形態では、以下に説明するように、ビームスイッチングのときに送信電力を減少させることが想定されるが、この場合にはカウンタ値を減少させてもよい。
 (3)ビームスイッチングカウンタ:ビームスイッチングを行った回数を管理するカウンタであり、ビームスイッチングを行う毎にカウンタ値を増加させる。パワーランピングを行ったときにカウンタ値はリセットされてもよく、リセットされなくてもよい。
 なお、上記のカウンタの名前は単なる例に過ぎない。上記の回数を管理することができれば、カウンタの名前はどのようなものでもよい。例えば、パワーランピングカウンタが送信カウンタとして定義されてもよい。
 本実施の形態では、送信ビームを変更するときに送信電力を増加又は減少させる仕組みについて説明し、また、ビームスイッチングが行われるときにプリアンブルの再送を制限する仕組みについて説明する。
 <無線通信システムにおけるランダムアクセス手順>
 次に、本実施の形態に係る無線通信システムにおけるランダムアクセス手順及びプリアンブルの送信電力の決定方法について詳細に説明する。図2は、本発明の実施の形態に係る無線通信システムにおけるランダムアクセス手順を示すシーケンス図である。
 基地局100は、ユーザ装置200がランダムアクセスにおいてプリアンブルを再送するときに参照すべき設定情報を生成して送信する(S201)。本実施の形態では、送信ビームを変更するときに送信電力を増加又は減少させる仕組みを実現するために、設定情報は、送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件を含んでもよい。また、設定情報は、最大再送回数、再送時の送信電力の増減量(パワーランピングステップを含む)等を含んでもよく、本実施の形態において用いられるいずれかの設定値を含んでもよい。
 例えば、この条件には、同じ送信電力を用いてプリアンブルを送信した回数が指定の回数以下であるという条件、又はランダムアクセス手順の中でプリアンブルを送信した回数が指定の回数以下であるという条件等が含まれる。この条件が満たされない場合、例えば、ユーザ装置200が同じ送信電力を用いてプリアンブルを送信した回数が指定の回数を超えた場合、又はランダムアクセス手順の中でプリアンブルを送信した回数が指定の回数を超えた場合、ユーザ装置200は、送信ビームを変更してプリアンブルを送信するときに同じ送信電力を用いることはできず、異なる送信電力を用いなければならない。なお、基地局100は、条件を適用するか否かを示すフラグ、条件の中で用いられる指定の回数、異なる送信電力に設定するための電力値等を設定情報として通知してもよい。
 また、例えば、この条件には、プリアンブルの送信電力が最大送信電力未満であるという条件、又はプリアンブルの送信電力が指定の送信電力未満であるという条件等を含んでもよい。この条件が満たされない場合、例えば、プリアンブルの送信電力が最大送信電力又は指定の送信電力に到達した場合、ユーザ装置200は、送信ビームを変更してプリアンブルを送信するときに同じ送信電力を用いることはできず、異なる送信電力を用いなければならない。なお、基地局100は、条件を適用するか否かを示すフラグ、異なる送信電力に設定するための電力値等を設定情報として通知してもよい。
 基地局100からユーザ装置200への設定情報の送信は、ブロードキャスト情報によって行われてもよく、RRC(Radio Resource Control)シグナリング等によって行われてもよい。また、基地局100からユーザ装置200への設定情報の送信は、ブロードキャスト情報、RRCシグナリング等の組み合わせによって行われてもよい。これらの組み合わせが用いられる場合、ユーザ装置200は、予め決められた優先度に従って設定情報を使用してもよい。例えば、ブロードキャスト情報によって設定情報が通知された後に、RRCシグナリングによって設定情報が通知された場合、RRCシグナリングを優先して、ブロードキャスト情報によって通知された設定情報を破棄してもよい。なお、この優先度の例は単なる一例であり、どのような優先度が用いられてもよい。
 なお、上記の設定情報の全て又は一部を仕様によって予め規定することも可能である。設定情報が仕様によって予め規定される場合には、基地局100からユーザ装置200への設定情報の送信(S201)は省略されてもよい。
 ユーザ装置200は、基地局100から設定情報を受信し、プリアンブルを送信する(S203)。ユーザ装置200は、プリアンブルを再送するときに設定情報に従ってプリアンブルの送信電力を決定し、プリアンブルを送信する(S205)。ユーザ装置200は、予め決められた規則又は通信環境等に従って、プリアンブルを再送するときにパワーランピングを適用するか、ビームスイッチングを適用するかを判断することができる。ユーザ装置200がビームスイッチングを適用すると判断した場合、ユーザ装置200は、同じ送信電力を用いることができる条件を満たすか否かを判断し、判断に基づいて、プリアンブルの送信電力を決定する。例えば、ユーザ装置200が同じ送信電力を用いてプリアンブルを送信した回数が指定の回数を超えた場合、又はランダムアクセス手順の中でプリアンブルを送信した回数が指定の回数を超えた場合、ユーザ装置200は、プリアンブルの送信電力を増加させる。例えば、プリアンブルの送信電力が最大送信電力又は指定の送信電力に到達した場合、ユーザ装置200は、プリアンブルの送信電力を減少させる。
 また、ユーザ装置200は、最大送信電力を用いてプリアンブルを再送した回数が指定の回数以下である場合、プリアンブルを送信し、最大送信電力を用いてプリアンブルを再送した回数が指定の回数を超えた場合、プリアンブルの送信を中断してもよく、上位レイヤに通知するがランダムアクセス手順は中断しなくてもよい。
 以下、ステップS205におけるユーザ装置200における処理を具体例1~具体例7において詳細に説明する。
 <具体例1>
 図3及び図4を参照して、ビームスイッチングを適用するときにプリアンブルの送信電力を増加させる具体例について説明する。
 具体例1では、送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件として、ユーザ装置200が同じ送信電力を用いてプリアンブルを送信した回数が指定の回数以下であるという条件を有していることを仮定する。
 まず、プリアンブルの再送に先立ち、ユーザ装置200は再送が可能であるか否かを判断する(S301)。例えば、ユーザ装置200は、送信カウンタを参照してプリアンブルの再送回数を認識することができる。プリアンブルの再送回数が最大再送回数以下である場合、ユーザ装置200は再送が可能であると判断する。プリアンブルの再送回数が最大再送回数を超えた場合、ユーザ装置200は再送が不可能であると判断してもよい。
 再送が不可能である場合(S301:NO)、ユーザ装置200はランダムアクセス手順を中断してもよく、上位レイヤに通知するがランダムアクセス手順は中断しなくてもよい(S303)。例えば、上位レイヤにランダムアクセス障害(random access problem)を通知してもよく、物理レイヤ、MAC(Medium Access Control)レイヤ、RRCレイヤ等においてランダムアクセス手順を中断,もしくは中断することを通知してもよく、MACリセットによるMACレイヤのパラメータ等の初期化等によってランダムアクセス手順を中断してもよい。そして、ユーザ装置200は、送信カウンタ、パワーランピングカウンタ及びビームスイッチングカウンタをリセットする(S313)。ユーザ装置200は、上位レイヤ、物理レイヤ、MACレイヤ、RRCレイヤ等の判断によって初回送信時の送信電力に戻してランダムアクセス手順を再開することができる。
 再送が可能である場合(S301:YES)、ユーザ装置200は、予め決められた規則又は通信環境等に従って、送信ビームを変更するか否かを判断する(S305)。送信ビームを変更しない場合(S305:NO)、ユーザ装置200は、パワーランピングによって送信電力を増加させる(S307)。ただし、最大送信電力に到達した後は送信電力を増加させることができないため、ユーザ装置200は、送信電力を変更しなくてもよく、送信電力を減少させてもよい。そして、ユーザ装置200は、送信カウンタ及びパワーランピングカウンタを増加させる(S313)。なお、送信電力を変更していない場合にはパワーランピングカウンタを変更せず、送信電力を減少させている場合にはパワーランピングカウンタを減少させる。ユーザ装置200は、ビームスイッチングカウンタをリセットしてもよく、リセットしなくてもよい。
 送信ビームを変更する場合(S305:YES)、ユーザ装置200は、同じ送信電力を用いることができるか否かを判断する(S309)。例えば、ユーザ装置200は、ビームスイッチングカウンタを参照して同じ送信電力を用いてプリアンブルを送信した回数を認識することができる。同じ送信電力を用いてプリアンブルを送信した回数が指定の回数以下である場合(S309:YES)、ユーザ装置200は送信ビームを変更するときに送信電力を変更する必要はない(S311)。ユーザ装置200は、送信カウンタ及びビームスイッチングカウンタを増加させる(S313)。
 同じ送信電力を用いてプリアンブルを送信した回数が指定の回数を超えた場合(S309:NO)、ユーザ装置200は、プリアンブルの送信電力を増加させる(S307)。そして、ユーザ装置200は、送信カウンタ及びパワーランピングカウンタを増加させる(S313)。ユーザ装置200は、ビームスイッチングカウンタをリセットしてもよく、リセットしなくてもよい。
 例えば、同じ送信電力を用いてプリアンブルを送信することができる指定の回数が2回である場合、図4に示すように、ユーザ装置200は、2回目の送信まではビームスイッチングを適用して同じ送信電力を用いてプリアンブルを送信することができる。しかし、3回目の送信のときに、ユーザ装置200は、ビームスイッチングを適用したとしても、送信電力を増加させる。
 なお、同じ送信電力を用いてプリアンブルを送信した回数が指定の回数以下であるという条件は、同じ送信電力を用いてプリアンブルを再送した回数が指定の再送回数以下であるという条件と読み替えることができる。例えば、同じ送信電力を用いてプリアンブルを再送することができる指定の再送回数が1回である場合、図4に示すように、ユーザ装置200は、1回目の再送(2回目の送信)まではビームスイッチングを適用して同じ送信電力を用いてプリアンブルを送信することができる。しかし、2回目の再送(3回目の送信)のときに、ユーザ装置200は、ビームスイッチングを適用したとしても、送信電力を増加させる。
 指定の回数を超えたときに増加させる送信電力量は、パワーランピングステップと同じ値が用いられてもよく、異なる値が用いられてもよい。パワーランピングステップと異なる値が用いられる場合、パワーランピングステップとの差分値が用いられてもよく、パワーランピングカウンタの増加量が用いられてもよい。指定の回数を超えたときに増加させる送信電力量は、基地局100から設定情報として通知されてもよく、仕様によって予め規定されてもよい。
 <具体例2>
 図3及び図5を参照して、ビームスイッチングを適用するときにプリアンブルの送信電力を増加させる具体例について説明する。
 具体例2では、送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件として、ユーザ装置200がランダムアクセス手順の中でプリアンブルを送信した回数が指定の回数以下であるという条件を有していることを仮定する。
 ステップS301~S305の処理は具体例1と同じであるため、以下では具体例1と異なる箇所について説明する。
 送信ビームを変更する場合(S305:YES)、ユーザ装置200は、同じ送信電力を用いることができるか否かを判断する(S309)。例えば、ユーザ装置200は、送信カウンタを参照して初回送信時からプリアンブルを送信した回数を認識することができる。プリアンブルを送信した回数が指定の回数以下である場合(S309:YES)、ユーザ装置200は送信ビームを変更するときに送信電力を変更する必要はない(S311)。ユーザ装置200は、送信カウンタ及びビームスイッチングカウンタを増加させる(S313)。
 初回送信時からプリアンブルを送信した回数が指定の回数を超えた場合(S309:NO)、ユーザ装置200は、プリアンブルの送信電力を増加させる(S307)。そして、ユーザ装置200は、送信カウンタ及びパワーランピングカウンタを増加させる(S313)。ユーザ装置200は、ビームスイッチングカウンタをリセットしてもよく、リセットしなくてもよい。
 例えば、送信電力を変更する必要なくプリアンブルを送信することができる指定の回数が4回である場合、図5に示すように、ユーザ装置200は、4回目の送信まではパワーランピング又はビームスイッチングを適用してプリアンブルを送信することができる。4回目の送信時にビームスイッチングを適用するときに送信電力を変更する必要はない。しかし、5回目の送信のときに、ユーザ装置200は、ビームスイッチングを適用したとしても、送信電力を増加させる。このように、指定の回数までに送信電力を増加させていても、指定の回数を超えた場合、ユーザ装置200は送信電力を増加させる。6回目の送信以降においても、ユーザ装置200はビームスイッチングを適用したとしても、送信電力を増加させ続けてもよい。
 なお、ランダムアクセス手順の中でプリアンブルを送信した回数が指定の回数以下であるという条件は、ランダムアクセス手順の中でプリアンブルを再送した回数が指定の回数以下であるという条件と読み替えることができる。例えば、送信電力を変更する必要なくプリアンブルを再送することができる指定の再送回数が3回である場合、図5に示すように、ユーザ装置200は、3回目の再送時(4回目の送信時)にビームスイッチングを適用するときに送信電力を変更する必要はない。しかし、4回目の再送(5回目の送信)のときに、ユーザ装置200は、ビームスイッチングを適用したとしても、送信電力を増加させる。
 指定の回数を超えたときに増加させる送信電力量は、パワーランピングステップと同じ値が用いられてもよく、異なる値が用いられてもよい。パワーランピングステップと異なる値が用いられる場合、パワーランピングステップとの差分値が用いられてもよく、パワーランピングカウンタの増加量が用いられてもよい。指定の回数を超えたときに増加させる送信電力量は、基地局100から設定情報として通知されてもよく、仕様によって予め規定されてもよい。
 なお、具体例2は具体例1と組み合わせて用いることも可能である。
 <具体例3>
 次に、具体例1又は具体例2が用いられる場合、上記の指定の回数を超えた後のプリアンブルの再送を制限する具体例について説明する。
 まず、プリアンブルの再送に先立ち、ユーザ装置200は再送が可能であるか否かを判断するが(S301)、具体例3では、指定の回数を超えた後のプリアンブルの再送回数によってプリアンブルの再送が制限される。例えば、ユーザ装置200は、指定の回数を超えた後の送信カウンタの増加量を参照して、指定の回数を超えた後のプリアンブルの再送回数を認識することができる。また、例えば、ユーザ装置200が指定の回数を超えた後にビームスイッチングを行っている場合には、ビームスイッチングカウンタを参照して、指定の回数を超えた後のプリアンブルの再送回数を認識することができる。指定の回数を超えた後のプリアンブルの再送回数が指定の再送回数に到達するまで、ユーザ装置200はプリアンブルを再送することができる。指定の回数を超えた後のプリアンブルの再送回数が指定の再送回数に到達した場合、ユーザ装置200は再送が不可能であると判断してもよい。
 再送が不可能である場合(S301:NO)、ユーザ装置200はランダムアクセス手順を中断してもよく、上位レイヤに通知するがランダムアクセス手順は中断しなくてもよい(S303)。ランダムアクセス手順の中断/上位レイヤへの通知及びその後の処理については、具体例1と同様に実現できる。
 指定の回数を超えた後にプリアンブルを再送できる再送回数の上限値である指定の再送回数は、基地局100から設定情報として通知されてもよく、仕様によって予め規定されてもよい。また、指定の再送回数として、ビームスイッチングカウンタの最大値又は送信カウンタの最大値又は指定の回数を超えた後にビームスイッチングカウンタを増加させてもよい最大値又は指定の回数を超えた後に送信カウンタを増加させてもよい最大値が指定されてもよい。
 例えば、図5の例において、ビームスイッチングカウンタの最大値が3回又は送信カウンタの最大値が6回又は指定の回数を超えた後にビームスイッチングカウンタを増加させてもよい最大値が2回又は指定の回数を超えた後に送信カウンタを増加させてもよい最大値が2回である場合、ユーザ装置200は、7回目のプリアンブルの送信は不可能であると判断してもよい。
 <具体例4>
 次に、具体例1又は具体例2が用いられる場合、上記の指定の回数を超えた後のプリアンブルの再送を制限する具体例について説明する。
 まず、プリアンブルの再送に先立ち、ユーザ装置200は再送が可能であるか否かを判断するが(S301)、具体例4では、指定の回数を超えた後のプリアンブルの送信電力によってプリアンブルの再送が制限される。指定の回数を超えた後にパワーランピング等によってプリアンブルの送信電力を増加させる場合、プリアンブルの送信電力が指定の送信電力を超過するまで、ユーザ装置200はプリアンブルを再送することができる。指定の回数を超えた後にパワーランピング等によってプリアンブルの送信電力が指定の送信電力を超過する場合、ユーザ装置200は再送が不可能であると判断してもよい。なお、指定の送信電力はユーザ装置200の最大送信電力でもよい。
 再送が不可能である場合(S301:NO)、ユーザ装置200はランダムアクセス手順を中断してもよく、上位レイヤに通知するがランダムアクセス手順は中断しなくてもよい(S303)。ランダムアクセス手順の中断/上位レイヤへの通知及びその後の処理については、具体例1と同様に実現できる。
 指定の回数を超えた後にプリアンブルを送信できる送信電力の上限値である指定の送信電力は、基地局100から設定情報として通知されてもよく、仕様によって予め規定されてもよい。また、指定の送信電力として、送信電力の絶対値が指定されてもよく、初期送信時の送信電力との相対値が指定されてもよく、パワーランピングを適用することができる許容回数が指定されてもよい。或いは、指定の送信電力として、パワーランピングカウンタの最大値又は指定の回数を超えた後にパワーランピングカウンタを増加させてもよい最大値が指定されてもよい。
 例えば、図5の例において、パワーランピングカウンタの最大値が4回又は指定の回数を超えた後にパワーランピングカウンタを増加させてもよい最大値が2回である場合、ユーザ装置200は、7回目のプリアンブルの送信は不可能であると判断してもよい。
 なお、具体例4は具体例3と組み合わせて用いることも可能である。
 <具体例5>
 図3及び図6を参照して、ビームスイッチングを適用するときにプリアンブルの送信電力を減少させる具体例について説明する。
 具体例5では、送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件として、ユーザ装置200がプリアンブルの送信電力が最大送信電力未満であるという条件を有していることを仮定する。
 ステップS301~S305の処理は具体例1と同じであるため、以下では具体例1と異なる箇所について説明する。
 送信ビームを変更する場合(S305:YES)、ユーザ装置200は、同じ送信電力を用いることができるか否かを判断する(S309)。ユーザ装置200は、プリアンブルの送信電力が最大送信電力未満である場合(S309:YES)、ユーザ装置200は送信ビームを変更するときに送信電力を変更する必要はない(S311)。ユーザ装置200は、送信カウンタ及びビームスイッチングカウンタを増加させる(S313)。
 プリアンブルの送信電力が最大送信電力に到達した場合(S309:NO)、ユーザ装置200は、プリアンブルの送信電力を減少させる(S307)。最大送信電力は、パワーランピングカウンタに対応付けることもできる。例えば、ユーザ装置200が送信ビームを変更した直後の再送時にパワーランピングカウンタが最大値に到達していればパワーランピングカウンタ最大値未満の値Xに変更し、Xに相当する送信電力でプリアンブルを送信してもよい。そして、ユーザ装置200は、送信カウンタを増加させ、パワーランピングカウンタを減少させる(S313)。ユーザ装置200は、ビームスイッチングカウンタをリセットしてもよく、リセットしなくてもよい。
 例えば、3回目の送信で最大送信電力に到達した場合、図6に示すように、ユーザ装置200は、4回目の送信のときに、ユーザ装置200は、ビームスイッチングを適用したとしても、送信電力を減少させる。なお、5回目の送信以降において、ユーザ装置200は送信電力を変更しなくてもよく、パワーランピングによって送信電力を増加させてもよく、送信電力を更に減少させてもよい。
 最大送信電力は、端末が送信可能な最大送信電力でもよく、基地局100から設定情報として通知されてもよく、仕様によって予め規定されてもよい。また、最大送信電力として、送信電力の絶対値が指定されてもよく、初期送信時の送信電力との相対値が指定されてもよく、パワーランピングを適用することができる許容回数が指定されてもよい。
 また、最大送信電力に到達した後に減少させる送信電力量は、パワーランピングステップと同じ値が用いられてもよく、異なる値が用いられてもよい。パワーランピングステップと異なる値が用いられる場合、パワーランピングステップとの差分値が用いられてもよく、パワーランピングカウンタの減少量が用いられてもよい。最大送信電力に到達した後に減少させる送信電力量は、基地局100から設定情報として通知されてもよく、仕様によって予め規定されてもよい。
 なお、最大送信電力に到達した後に送信ビームを変更せずにプリアンブルを再送する場合も考えられる。この場合、ユーザ装置200は、送信電力を変更せずに最大再送電力のままでプリアンブルを再送してもよく、送信電力を減少させてもよい。送信電力を変更しない場合には、ユーザ装置200は、送信カウンタを増加させる。送信電力を減少させる場合には、ステップS313と同様に、ユーザ装置200は、送信カウンタを増加させ、パワーランピングカウンタを減少させる。また、ビームスイッチングカウンタをリセットしてもよく、リセットしなくてもよい。
 なお、具体例5は具体例1~4と組み合わせて用いることも可能である。
 <具体例6>
 図3及び図7を参照して、ビームスイッチングを適用するときにプリアンブルの送信電力を減少させる具体例について説明する。
 具体例5では、送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件として、ユーザ装置200がプリアンブルの送信電力が指定の送信電力未満であるという条件を有していることを仮定する。
 ステップS301~S305の処理は具体例1と同じであるため、以下では具体例1と異なる箇所について説明する。
 送信ビームを変更する場合(S305:YES)、ユーザ装置200は、同じ送信電力を用いることができるか否かを判断する(S309)。ユーザ装置200は、プリアンブルの送信電力が指定の送信電力未満である場合(S309:YES)、ユーザ装置200は送信ビームを変更するときに送信電力を変更する必要はない(S311)。ユーザ装置200は、送信カウンタ及びビームスイッチングカウンタを増加させる(S313)。
 プリアンブルの送信電力が指定の送信電力に到達した場合(S309:NO)、ユーザ装置200は、プリアンブルの送信電力を減少させる(S307)。指定の送信電力は、パワーランピングカウンタに対応付けることもできる。例えば、ユーザ装置200が送信ビームを変更した直後の再送時にパワーランピングカウンタが値Xよりも大きければパワーランピングカウンタをXに変更し、Xに相当する送信電力でプリアンブルを送信してもよい。そして、ユーザ装置200は、送信カウンタを増加させ、パワーランピングカウンタを減少させる(S313)。ユーザ装置200は、ビームスイッチングカウンタをリセットしてもよく、リセットしなくてもよい。
 例えば、3回目の送信で指定の送信電力に到達した場合、図7に示すように、ユーザ装置200は、4回目の送信のときに、ユーザ装置200は、ビームスイッチングを適用したとしても、送信電力を減少させる。なお、5回目の送信以降において、ユーザ装置200は送信電力を変更しなくてもよく、パワーランピングによって送信電力を増加させてもよく、送信電力を更に減少させてもよい。
 指定の送信電力は、基地局100から設定情報として通知されてもよく、仕様によって予め規定されてもよい。また、指定の送信電力として、送信電力の絶対値が指定されてもよく、初期送信時の送信電力との相対値が指定されてもよく、パワーランピングを適用することができる許容回数が指定されてもよい。
 また、最大送信電力に到達した後に減少させる送信電力量は、パワーランピングステップと同じ値が用いられてもよく、異なる値が用いられてもよい。パワーランピングステップと異なる値が用いられる場合、パワーランピングステップとの差分値が用いられてもよく、パワーランピングカウンタの減少量が用いられてもよい。最大送信電力に到達した後に減少させる送信電力量は、基地局100から設定情報として通知されてもよく、仕様によって予め規定されてもよい。
 なお、具体例6は具体例1~5と組み合わせて用いることも可能である。
 <具体例7>
 図3、図8及び図9を参照して、最大送信電力を用いてプリアンブルを再送することができる回数を制限する具体例について説明する。
 まず、プリアンブルの再送に先立ち、ユーザ装置200は再送が可能であるか否かを判断するが(S301)、具体例7では、ランダムアクセス手順の中で最大送信電力を用いてプリアンブルを再送した回数によってプリアンブルの再送が制限される。ランダムアクセス手順の中で最大送信電力を用いてプリアンブルを再送することができる指定の回数は、基地局100から設定情報として通知されてもよく、仕様によって予め規定されてもよい。ランダムアクセス手順の中で最大送信電力を用いてプリアンブルを再送することができる指定の回数は、パワーランピングカウンタが最大値となってからプリアンブルを送信することができる回数と読み替えられてもよい。ユーザ装置200は、プリアンブルを再送する場合、最大送信電力を用いてプリアンブルを再送した回数が指定の回数以下であるか否かを判断する。最大送信電力を用いてプリアンブルを再送した回数が指定の回数以下である場合、ユーザ装置200は再送が可能であると判断する。最大送信電力を用いてプリアンブルを再送した回数が指定の回数を超えた場合、ユーザ装置200は再送が不可能であると判断してもよい。
 例えば、最大送信電力を用いてプリアンブルを再送することができる指定の回数が3回である場合、図8に示すように、ユーザ装置200は、3回目の送信で最大送信電力に到達した場合には、5回目の送信までは可能であるが、6回目の送信は不可能であると判断してもよい。
 再送が不可能である場合(S301:NO)、ユーザ装置200はランダムアクセス手順を中断してもよく、上位レイヤに通知するがランダムアクセス手順は中断しなくてもよい(S303)。ランダムアクセス手順の中断/上位レイヤへの通知及びその後の処理については、具体例1と同様に実現できる。
 再送が可能である場合(S301:YES)、ユーザ装置200が送信ビームを変更したときに(S305:YES)もはや送信電力を増加させることはできないため(S309:YES)、最大送信電力のままでプリアンブルを送信する(S311)。ユーザ装置200は、送信カウンタ及びビームスイッチングカウンタを増加させる(S313)。或いは、具体例5において説明したように、再送が可能である場合(S301:YES)、ユーザ装置200が送信ビームを変更したときに(S305:YES)プリアンブルの送信電力が最大送信電力であるため(S309:NO)、ユーザ装置200は、プリアンブルの送信電力を減少させる(S307)。ユーザ装置200は、送信カウンタを増加させ、パワーランピングカウンタを減少させる(S313)。ユーザ装置200は、ビームスイッチングカウンタをリセットしてもよく、リセットしなくてもよい。
 なお、具体例7は具体例1~6と組み合わせて用いることも可能である。例えば、具体例7を具体例5と組み合わせたときの例を図9に示す。最大送信電力を用いてプリアンブルを再送することができる指定の回数が3回である場合、図9に示すように、ユーザ装置200は、3回目の送信で最大送信電力に到達したとしても、4回目及び6回目に送信電力を減少させるため、7回目の送信までは可能であると判断する。
 <基地局の機能構成>
 図10は、基地局100の機能構成の一例を示す図である。基地局100は、送信部110と、受信部120と、設定情報管理部130と、ランダムアクセス制御部140とを有する。図10に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部110は、上位レイヤの情報から下位レイヤの信号を生成し、当該信号を無線で送信するように構成されている。受信部120は、各種の信号を無線受信し、受信した信号から上位レイヤの情報を取得するように構成されている。
 設定情報管理部130は、予め設定される設定情報を格納するとともに、ダイナミック及び/又はセミスタティックにユーザ装置200に対して設定する設定情報(送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件、最大再送回数、再送時の送信電力の増減量、本実施の形態において用いられるいずれかの設定値等)を決定し、保持する。設定情報管理部130は、ダイナミック及び/又はセミスタティックにユーザ装置200に対して設定する設定情報を送信部110に渡し、送信部110に設定情報を送信させる。
 ランダムアクセス制御部140は、ユーザ装置200とのランダムアクセス手順を管理する。ユーザ装置200からプリアンブルを受信した場合、送信部110にRARを送信させ、ユーザ装置200からRRC Connection Requestを受信した場合、送信部110にRRC Connection Setupを送信させる。
 <ユーザ装置の機能構成>
 図11は、ユーザ装置200の機能構成の一例を示す図である。ユーザ装置200は、送信部210と、受信部220と、設定情報管理部230と、ランダムアクセス制御部240とを有する。図7に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部210は、上位レイヤの情報から下位レイヤの信号を生成し、当該信号を無線で送信するように構成されている。送信部210は、以下に説明する設定情報管理部230に格納された設定情報に基づき、プリアンブルを再送する場合に、ビームスイッチング及び/又はパワーランピングを適用してプリアンブルを送信する。受信部220は、各種の信号を無線受信し、受信した信号から上位レイヤの情報を取得するように構成されている。受信部220は、基地局100等から設定情報(送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件、最大再送回数、再送時の送信電力の増減量、本実施の形態において用いられるいずれかの設定値等)を受信する。
 設定情報管理部230は、予め設定される設定情報を格納するとともに、ダイナミック及び/又はセミスタティックに基地局100等から設定される設定情報(送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件、最大再送回数、再送時の送信電力の増減量、本実施の形態において用いられるいずれかの設定値等)を格納する。なお、設定情報管理部230において管理できる設定情報は、基地局100等から設定される設定情報のみならず、仕様によって予め規定された設定情報も含まれる。
 ランダムアクセス制御部240は、基地局100とのランダムアクセス手順を管理する。発信時又はハンドオーバ等により、ユーザ装置200が基地局100と接続を確立する場合又は再同期を行う場合、ランダムアクセス制御部240は、複数のプリアンブルの中からランダムに選択したプリアンブルを送信部210に送信させる。また、ランダムアクセス制御部240は、プリアンブルを送信した後、例えば、RARウィンドウと呼ばれる期間内にその応答情報であるRARを受信しない場合、送信部210にプリアンブルを再送させる。再送時には、ランダムアクセス制御部240は、設定情報管理部230において管理されている設定情報に従って、図3~図9を参照して説明したようにプリアンブルの送信電力を決定する。また、ランダムアクセス制御部240は、設定情報管理部230において管理されている設定情報に従って、図3~図9を参照して説明したようにプリアンブルの再送が可能であるか否かを判断し、必要に応じてランダムアクセス手順を中断してもよく、上位レイヤに通知するがランダムアクセス手順は中断しなくてもよい。ランダムアクセス制御部240は、基地局100からRARを受信した場合、送信部210にRRC Connection Requestを送信させる。
 <ハードウェア構成例>
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における基地局、ユーザ装置などは、本発明のランダムアクセス方法の処理を行うコンピュータとして機能してもよい。図12は、本発明の実施の形態に係る基地局100又はユーザ装置200である無線通信装置のハードウェア構成の一例を示す図である。上述の基地局100及びユーザ装置200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局100及びユーザ装置200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局100及びユーザ装置200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、及び/又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の基地局100の送信部110、受信部120、設定情報管理部130、ランダムアクセス制御部140、ユーザ装置200の送信部210、受信部220、設定情報管理部230、ランダムアクセス制御部240などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール及び/又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局100の送信部110、受信部120、設定情報管理部130、ランダムアクセス制御部140、ユーザ装置200の送信部210、受信部220、設定情報管理部230、ランダムアクセス制御部240は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係るランダムアクセス方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送信部110、受信部120、送信部210、受信部220などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び/又はメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、基地局100及びユーザ装置200は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
<本発明の実施の形態の効果>
 本発明の実施の形態によれば、送信ビームを変更してプリアンブルを再送するときに送信電力を増加又は減少させることにより、適切な送信電力を用いたランダムアクセスを実現することが可能になる。
 具体的には、送信ビームを変更してプリアンブルを再送するときに送信電力を増加させることにより、送信ビームごとの特性差が大きくない環境においてプリアンブルの再送回数を減少させることができる。このときに、指定の回数を超えた後のプリアンブルの再送を制限することで、送信電力を増加させ続けて干渉が大きくなるという状況を回避することができる。また、LTEにおいて用いられる最大再送回数だけでは、ビームスイッチング及びパワーランピングを組み合わせたときに送信ビームを変更して送信電力を上げる余地があるにもかかわらず最大再送回数によって再送が制限されることが考えられる。一方、指定の回数を超えた後のプリアンブルの再送を制限することで、ビームスイッチング及びパワーランピングを組み合わせたときに適切に再送を制限することができる。
 また、送信ビームを変更してプリアンブルを再送するときに送信電力を減少させることにより、干渉を低減することができる。
 さらに、ユーザ装置が最大送信電力を用いてプリアンブルを再送することができる回数を制限することによっても、干渉を低減することができる。この場合も同様に、LTEにおいて用いられる最大再送回数だけでは、ビームスイッチング及びパワーランピングを組み合わせたときに最大送信電力を用いて送信ビームを切り替え続けて干渉が大きくなることが考えられる。一方、最大送信電力を用いてプリアンブルを再送することができる回数を制限することで、ビームスイッチング及びパワーランピングを組み合わせたときに適切に再送を制限することができる。
 <補足>
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 本明細書において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
 情報等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されてもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的に解釈されるべきではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示した数式等と異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的に解釈されるべきではない。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的としており、本発明に対して何ら制限的な意味を有さない。
 100 基地局
 110 送信部
 120 受信部
 130 設定情報管理部
 140 ランダムアクセス制御部
 200 ユーザ装置
 210 送信部
 220 受信部
 230 設定情報管理部
 240 ランダムアクセス制御部

Claims (6)

  1.  送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件を満たすか否かを判断し、前記判断に基づいて、プリアンブルの送信電力を決定するランダムアクセス制御部と、
     前記決定された送信電力を用いてプリアンブルを送信する送信部と、
     を有するユーザ装置。
  2.  前記条件は、同じ送信電力を用いてプリアンブルを送信した回数が指定の回数以下であるという条件、又はランダムアクセス手順の中でプリアンブルを送信した回数が指定の回数以下であるという条件を含み、
     前記ランダムアクセス制御部は、送信ビームを変更してプリアンブルを再送するときに前記指定の回数を超えた場合、プリアンブルの送信電力を増加させる、請求項1に記載のユーザ装置。
  3.  前記ランダムアクセス制御部は、前記指定の回数を超えた後のプリアンブルの再送回数が指定の再送回数に到達するまで、又は前記指定の回数を超えた後のプリアンブルの送信電力が指定の送信電力を超過するまで、プリアンブルの再送を許可する、請求項2に記載のユーザ装置。
  4.  前記条件は、プリアンブルの送信電力が最大送信電力未満であるという条件、又はプリアンブルの送信電力が指定の送信電力未満であるという条件を含み、
     前記ランダムアクセス制御部は、プリアンブルの送信電力が前記最大送信電力又は前記指定の送信電力に到達した後に送信ビームを変更してプリアンブルを再送する場合、プリアンブルの送信電力を減少させる、請求項1乃至3のうちいずれか1項に記載のユーザ装置。
  5.  ユーザ装置におけるランダムアクセス制御方法であって、
     送信ビームを変更してプリアンブルを再送するときに同じ送信電力を用いることができる条件を満たすか否かを判断し、前記判断に基づいて、プリアンブルの送信電力を決定するステップと、
     前記決定された送信電力を用いてプリアンブルを送信するステップと、
     を有するランダムアクセス制御方法。
  6.  プリアンブルを再送するときに最大送信電力を用いてプリアンブルを再送した回数が指定の回数以下であるか否かを判断するランダムアクセス制御部と、
     前記最大送信電力を用いてプリアンブルを再送した回数が前記指定の回数以下である場合、プリアンブルを送信する送信部と、
     を有するユーザ装置。
PCT/JP2017/022234 2017-06-15 2017-06-15 ユーザ装置及びランダムアクセス制御方法 WO2018229959A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/022234 WO2018229959A1 (ja) 2017-06-15 2017-06-15 ユーザ装置及びランダムアクセス制御方法
US16/621,558 US20210153244A1 (en) 2017-06-15 2017-06-15 User equipment and random access control method
CN201780092151.6A CN110771059B (zh) 2017-06-15 2017-06-15 用户装置及随机接入控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022234 WO2018229959A1 (ja) 2017-06-15 2017-06-15 ユーザ装置及びランダムアクセス制御方法

Publications (1)

Publication Number Publication Date
WO2018229959A1 true WO2018229959A1 (ja) 2018-12-20

Family

ID=64659522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022234 WO2018229959A1 (ja) 2017-06-15 2017-06-15 ユーザ装置及びランダムアクセス制御方法

Country Status (3)

Country Link
US (1) US20210153244A1 (ja)
CN (1) CN110771059B (ja)
WO (1) WO2018229959A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114208383A (zh) * 2019-08-16 2022-03-18 Lg电子株式会社 终端在无线通信系统中发送/接收用于执行随机接入信道过程的信号的方法和用于该方法的装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597019B (zh) * 2017-06-16 2023-11-17 维沃移动通信有限公司 一种随机接入过程前导码重传计数的方法及终端
US11641674B2 (en) * 2017-09-25 2023-05-02 Beijing Xiaomi Mobile Software Co., Ltd. Random access method and device, user equipment and computer-readable storage medium
JP7004807B2 (ja) * 2017-09-28 2022-01-21 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハンドオーバ実行におけるマルチビームランダムアクセス手続き

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296464A (ja) * 2008-06-06 2009-12-17 Sharp Corp 無線通信システムおよび無線通信方法
WO2010018820A1 (ja) * 2008-08-11 2010-02-18 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置及び通信制御方法
JP2016140068A (ja) * 2015-01-26 2016-08-04 華碩電腦股▲ふん▼有限公司ASUSTeK COMPUTER INC. 無線通信システムにおけるビーム検出の改善方法及び装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718667B2 (en) * 2011-08-05 2014-05-06 Apple, Inc. Adaptive random access channel retransmission
CN105637969B (zh) * 2013-10-14 2020-03-03 株式会社Kt 用于发送和接收随机接入前导的方法及其设备
KR102298357B1 (ko) * 2014-03-21 2021-09-07 삼성전자 주식회사 무선통신 시스템에서 다중 기지국과 랜덤 엑세스 수행 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296464A (ja) * 2008-06-06 2009-12-17 Sharp Corp 無線通信システムおよび無線通信方法
WO2010018820A1 (ja) * 2008-08-11 2010-02-18 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置及び通信制御方法
JP2016140068A (ja) * 2015-01-26 2016-08-04 華碩電腦股▲ふん▼有限公司ASUSTeK COMPUTER INC. 無線通信システムにおけるビーム検出の改善方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI ELECTRIC: "On RACH retransmission", 3GPP TSG-RAN WG1 MEETING #89 R1-1707056, no. R1-1707056, 5 May 2017 (2017-05-05), Hangzhou, China, XP051261267 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114208383A (zh) * 2019-08-16 2022-03-18 Lg电子株式会社 终端在无线通信系统中发送/接收用于执行随机接入信道过程的信号的方法和用于该方法的装置
KR20220046543A (ko) * 2019-08-16 2022-04-14 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하기 위한 신호를 송수신하는 방법 및 이를 위한 장치
EP3982689A4 (en) * 2019-08-16 2022-08-03 LG Electronics Inc. METHOD FOR TRANSMITTING AND RECEIVING SIGNALS BY A TERMINAL IN ORDER TO PERFORM A RANDOM ACCESS CHANNEL PROCEDURE IN A WIRELESS COMMUNICATION SYSTEM AND ASSOCIATED DEVICE
JP2022544329A (ja) * 2019-08-16 2022-10-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末が任意接続過程を行うための信号を送受信する方法及びそのための装置
US11576210B2 (en) 2019-08-16 2023-02-07 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal for RACH procedure by UE in wireless communication system
KR102565557B1 (ko) 2019-08-16 2023-08-11 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하기 위한 신호를 송수신하는 방법 및 이를 위한 장치
CN114208383B (zh) * 2019-08-16 2023-12-12 Lg电子株式会社 终端发送/接收执行rach过程的信号的方法和装置
JP7420919B2 (ja) 2019-08-16 2024-01-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末が任意接続過程を行うための信号を送受信する方法及びそのための装置

Also Published As

Publication number Publication date
US20210153244A1 (en) 2021-05-20
CN110771059A (zh) 2020-02-07
CN110771059B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
JP7101620B2 (ja) 端末、基地局及びランダムアクセス方法
WO2017195653A1 (ja) 無線通信装置及び無線通信方法
WO2018229959A1 (ja) ユーザ装置及びランダムアクセス制御方法
WO2018128039A1 (ja) ユーザ装置及び基地局
WO2018142978A1 (ja) 基地局及び同期信号送信方法
US10863535B2 (en) User equipment and method for scheduling request transmission control
WO2018203411A1 (ja) ユーザ装置、基地局及びランダムアクセス方法
CN111557117B (zh) 用户装置以及前导码发送方法
WO2017170117A1 (ja) ユーザ装置
JPWO2018061322A1 (ja) ユーザ装置及び基地局
CN111373828B (zh) 用户装置以及前导码发送方法
WO2017141571A1 (ja) ユーザ装置
WO2018030121A1 (ja) ユーザ装置及び信号送信方法
WO2018083863A1 (ja) ユーザ装置
WO2020031310A1 (ja) 無線アクセスシステム及び通信装置
WO2019213934A1 (zh) 用于传输信号的方法及相应的用户终端、基站
CN111602460B (zh) 用户装置以及前导码发送方法
WO2020049868A1 (ja) ランダムアクセス待機時間設定方法
WO2018084115A1 (ja) 無線端末装置及び通信方法
WO2018173229A1 (ja) ユーザ装置、及びランダムアクセスプリアンブル送信方法
JP2019036873A (ja) 基地局
WO2018203410A1 (ja) ユーザ装置、基地局及び上り送信タイミング制御方法
WO2018201928A1 (zh) 数据检测方法和用户设备
JP2020014173A (ja) 基地局および通信方法
WO2019043800A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP