WO2018229915A1 - 電力変換装置および電力変換装置の接続方法 - Google Patents
電力変換装置および電力変換装置の接続方法 Download PDFInfo
- Publication number
- WO2018229915A1 WO2018229915A1 PCT/JP2017/022016 JP2017022016W WO2018229915A1 WO 2018229915 A1 WO2018229915 A1 WO 2018229915A1 JP 2017022016 W JP2017022016 W JP 2017022016W WO 2018229915 A1 WO2018229915 A1 WO 2018229915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- converter
- primary
- terminals
- voltage
- pair
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0074—Plural converter units whose inputs are connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33573—Full-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/225—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode comprising two stages of AC-AC conversion, e.g. having a high frequency intermediate link
Definitions
- the present invention relates to a power converter and a method for connecting the power converter.
- Patent Document 1 states that “as shown in the first embodiment of the present invention, a plurality of converter cells 20-1, 20-2,... N is a natural number of 2 or more), the AC side of each of the first AC / DC converters 11 of the plurality of converter cells 20-1, 20-2,.
- the AC sides of the fourth AC / DC converters 14 of the plurality of converter cells are connected in series, and the AC voltage becomes multi-level (multi-level) as the number of converter cells connected in series increases. (See paragraph 0019 of the specification).
- the power conversion device of the present invention includes a pair of primary terminals and a pair of secondary terminals, each of which includes a pair of primary terminals and a pair of secondary sides.
- a plurality of converter cells that transmit power to and from the terminals, wherein the primary terminals of the plurality of converter cells are sequentially connected in series to a primary power supply system, and the plurality of converter cells
- the secondary side terminals are sequentially connected in series to a secondary side power supply system, and the absolute value of the ground voltage appearing at the pair of primary side terminals among the plurality of the converter cells is the highest.
- the converter cell is different from the converter cell having the highest absolute value of the ground voltage appearing at the pair of secondary terminals.
- FIG. 1 is a block diagram of a power conversion apparatus 1 according to the first embodiment of the present invention.
- the power conversion apparatus 1 has N converter cells 20-1 to 20-N (N is a natural number of 2 or more).
- Each converter cell 20-k (where k is the stage number and 1 ⁇ k ⁇ N) is connected to the pair of primary terminals 25 and 26 and the pair of secondary terminals 27 and 28.
- the primary terminals 25 and 26 of the converter cells 20-1 to 20-N are sequentially connected in series, and the primary power supply system 31 is connected to these series circuits.
- the secondary terminals 27 and 28 of the converter cells 20-1 to 20-N are sequentially connected in series, and the secondary power supply system 32 is connected to these series circuits.
- Each converter cell 20-1 to 20-N transmits electric power between the primary side terminals 25 and 26 and the secondary side terminals 27 and 28 in both directions or in one direction.
- the primary side and secondary side power supply systems 31 and 32 include inductive impedances or filter reactors.
- various power generation facilities and power reception facilities such as a commercial power supply system, a solar power generation system, and a motor can be employed.
- the voltage of the primary side power supply system 31 is the primary side system voltage VS1
- the voltage of the secondary side power supply system 32 is the secondary side system voltage VS2.
- the primary side and secondary side system voltages VS1 and VS2 are independent of each other in amplitude and frequency, and the power conversion device 1 is bidirectional or one-way between the primary side and secondary side power supply systems 31 and 32. Transmit power in the direction.
- one of the pair of terminals of the primary power supply system 31 is called a primary reference terminal 33 and the other is called a terminal 35.
- one of the pair of terminals of the secondary power supply system 32 is called a secondary reference terminal 34 and the other is called a terminal 36.
- the primary side reference terminal 33 is a terminal where the primary side reference potential appears
- the secondary side reference terminal 34 is a terminal where the secondary side reference potential appears.
- the primary side and secondary side reference potentials are, for example, ground potentials.
- the primary side reference terminal 33 is preferably a terminal on the side where the maximum value (absolute value) of the ground potential is lower than the other terminal 35.
- the reference terminal 34 is preferably a terminal on the side where the maximum value (absolute value) of the ground potential is lower than the other terminal 36.
- the primary side reference terminal 33 is connected to the primary side terminal 25 of the converter cell 20-1, and the secondary side reference terminal 34 is connected to the secondary side terminal 28 of the converter cell 20-N. That is, as the stage number k increases, the absolute value of the ground voltage at the primary terminals 25 and 26 increases and the absolute value of the ground voltage at the secondary terminals 27 and 28 decreases.
- FIG. 2 is a block diagram (circuit diagram) of the converter cell 20-k.
- the AC / DC converters 11 to 14 each have four switching elements connected in an H-bridge shape and FWDs (Free Wheeling Diodes) connected in antiparallel to these switching elements (both are not labeled).
- these switching elements are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
- a voltage appearing between both ends of the capacitor 17 is called a primary side DC link voltage V dc1 (primary side DC voltage).
- the higher voltage is called the primary DC link positive voltage V dc1 + [k] (k is the stage number), and the lower voltage. Is called the primary side DC link negative voltage V dc1- [k].
- a voltage appearing between the primary side terminals 25 and 26 is referred to as a primary side AC terminal voltage V 1 [k].
- the higher voltage is called the primary AC positive voltage V 1+ [k]
- the lower voltage is the primary voltage.
- This is referred to as a side AC negative voltage V 1 ⁇ [k].
- the AC / DC converter 11 transmits electric power while converting the primary-side AC terminal voltage V 1 [k] and the primary-side DC link voltage V dc1 bidirectionally or unidirectionally.
- the high-frequency transformer 15 has a primary winding 15a and a secondary winding 15b, and transmits power at a predetermined frequency between the primary winding 15a and the secondary winding 15b.
- the current input / output from / to the high-frequency transformer 15 by the AC / DC converters 12 and 13 is a high frequency.
- the high frequency is, for example, a frequency of 100 Hz or more, preferably a frequency of 1 kHz or more, more preferably a frequency of 10 kHz or more.
- the AC / DC converter 12 transmits power while converting the primary-side DC link voltage V dc1 and the voltage appearing in the primary winding 15a in both directions or in one direction.
- the voltage appearing across the capacitor 18 is called a secondary side DC link voltage V dc2 (secondary side DC voltage).
- V dc2 secondary side DC voltage
- the higher voltage is called the secondary DC link positive voltage V dc2 + [k]
- the lower voltage is the secondary DC link. This is called negative voltage V dc2- [k].
- the AC / DC converter 13 transmits electric power while converting the secondary side DC link voltage V dc2 and the voltage appearing in the secondary winding 15b in both directions or in one direction.
- the maximum potential difference is referred to as a transformer potential difference V tr [k].
- the voltage appearing between the secondary side terminals 27 and 28 is referred to as a secondary side AC terminal voltage V 2 [k].
- the higher voltage is called the secondary AC positive voltage V 2+ [k]
- the lower voltage is the secondary voltage. This is called the side AC negative voltage V 2- [k].
- the AC / DC converter 14 transmits electric power while converting the voltage V 2 [k] between the secondary AC terminals and the secondary DC link voltage V dc2 bidirectionally or unidirectionally.
- the primary side, the amplitude value of the secondary-side system voltage VS1, VS2 are to be V ac1, V ac2, primary side of the converter cells 20-k, the secondary side DC link voltage V dc1, V
- dc2 is assumed to be 1 / N of amplitude V ac1, V ac2
- the voltage V 1 [k] between the primary-side AC terminal shown in FIG. 2 one of the voltage of ⁇ V ac1 / N or 0
- the voltage V 2 [k] between the secondary side AC terminals is either ⁇ V ac2 / N or 0.
- FIG. 3 is an example of a waveform diagram of the primary side and secondary side system voltages VS1 and VS2.
- primary side, the secondary side system voltage VS1, VS2, have the same amplitude value V max, and the frequencies are different.
- the primary side terminal 26 of the converter cell 20-1 is connected to the primary side reference terminal 33 of the primary side power supply system 31. Therefore, if the primary system voltage VS1 is evenly divided by the converter cells 20-1 to 20-N, the range in which the voltage at the primary terminal 26 fluctuates becomes “ ⁇ V max / N”. On the other hand, the secondary terminal 27 of the converter cell 20-1 is connected to the other terminal 36 of the secondary power supply system 32.
- the range in which the voltage of the secondary terminal 27 varies is “ ⁇ V max ”.
- the transformer potential difference V tr [k] becomes “ ⁇ (1 + 1 / N) V max ”.
- the transformer potential difference V tr [k] is the same value, that is, “ ⁇ 1.25 V max ” in all the converter cells 20-1 to 20-4. The detailed grounds will be described later.
- FIG. 4 is a block diagram of a configuration in which the first embodiment is applied to a three-phase AC system. 4, the primary side three-phase power supply system of the U-phase, V-phase, a terminal of W-phase and U 1, V 1, W 1, 2 primary three-phase power supply system of the U-phase, V-phase, and W-phase
- the terminals are U 2 , V 2 , W 2, and the neutral points thereof are N 1 , N 2 .
- the neutral points N 1 and N 2 serve as primary and secondary reference terminals.
- the primary side terminals 25 and 26 (see FIGS. 1 and 2) of the converter cells 20-1 to 20-N are sequentially connected in series.
- secondary side terminals 27 and 28 are sequentially connected in series between the neutral point N 2 on the secondary side and the terminal U 2 .
- the power converter device 1 is connected similarly to U phase.
- the transformer potential difference V tr in each converter cell 20-k is the same as the example shown in FIG. [K] is “ ⁇ (1 + 1 / N) V max ”.
- FIG. 5 is a block diagram of a power conversion device in a comparative example. Similar to the power conversion device 1 of the first embodiment, the power conversion device 101 of this comparative example has N converter cells 20-1 to 20-N. The internal configuration of each converter cell 20-k is the same as that of the first embodiment (see FIG. 2). However, in this comparative example, the connection method of the primary side terminals 25 and 26 is different from that of the first embodiment. That is, in this comparative example, the primary side reference terminal 33 is connected to the primary side terminal 26 of the converter cell 20-N, and the high voltage side terminal 35 of the primary side power supply system 31 is connected to the converter cell 20-1. The primary side terminal 25 is connected.
- the voltage appearing at the primary side terminals 25 and 26 and the voltage appearing at the secondary side terminals 27 and 28 become lower as the stage number k increases. Then, the range in which the voltage of the primary side terminal 26 of the converter cell 20-1 varies is “ ⁇ V max ”, and the range in which the voltage of the secondary side terminal 27 of the converter cell 20-1 varies is also “ ⁇ V max ”. Thereby, the transformer potential difference V tr [1] in the converter cell 20-1 becomes “ ⁇ 2 V max ”.
- the transformer potential difference V tr [k] varies depending on the stage number k
- it is impractical to apply the high-frequency transformer 15 having different withstand voltage performance depending on the stage number k. is there. That is, in order to reduce the cost by the mass production effect, it is realistic to apply the high-frequency transformer 15 having the same specification to all the converter cells 20-1 to 20-N.
- the withstand voltage performance of the high-frequency transformer 15 in each of the converter cells 20-1 to 20-N must correspond to the highest transformer potential difference V tr [1], that is, “ ⁇ 2 V max ” described above.
- FIG. 6 is a block diagram of a configuration in which the power conversion device 101 of the comparative example is applied to a three-phase AC system.
- the U-phase, V-phase, and W-phase terminals of the primary-side three-phase power supply system are designated as U 1 , V 1 , and W 1.
- the U-phase, V-phase, and W-phase terminals of the phase power supply system are U 2 , V 2 , and W 2, and their neutral points are N 1 and N 2 .
- the primary terminals 25 and 26 (see FIG. 5) of the converter cells 20-1 to 20-N are sequentially connected in series between the primary terminal U 1 and the neutral point N 1 . It is connected.
- secondary terminals 27 and 28 are sequentially connected in series between the secondary terminal U 2 and the neutral point N 2 .
- the power converter device 1 is connected similarly to U phase.
- the primary side terminal 26 of the converter cell 20-1 is similar to the example shown in FIG.
- the range in which the voltage varies is “ ⁇ V max ”
- the range in which the voltage at the secondary terminal 27 of the converter cell 20-1 varies is also “ ⁇ V max ”.
- the highest transformer potential difference V tr [1] becomes “ ⁇ 2 V max ”.
- FIGS. 7A to 7D are explanatory diagrams of operation modes of the AC / DC converter 11 (see FIG. 2) included in the converter cell 20-k.
- the illustrated operation modes are common to the first embodiment and the comparative example.
- the four switching elements included in the AC / DC converter 11 are denoted as Q 1 to Q 4 .
- the switching elements Q 1 and Q 4 are turned on, and the other switching elements Q 2 and Q 3 are turned off.
- the primary side DC link negative voltage V dc1- [k] is equal to the primary side AC negative voltage V 1- [k]
- the primary side AC terminal voltage V 1 [k] is the primary side DC link. It becomes equal to the voltage V dc1 .
- the switching elements Q 2 and Q 4 are turned on, and the other switching elements Q 1 and Q 3 are turned off.
- the primary side DC link negative voltage V dc1- [k] is equal to the primary side AC negative voltage V 1- [k], and the primary side AC terminal voltage V 1 [k] is 0.
- the switching elements Q 2 and Q 3 are turned on, and the other switching elements Q 1 and Q 4 are turned off. Then, the primary side DC link negative voltage V dc1- [k] becomes “ ⁇ V dc1 + V 1- [k]”, and the primary side AC terminal voltage V 1 [k] becomes “ ⁇ V dc1 ”. .
- the switching elements Q 1 and Q 3 are turned on, and the switching elements Q 2 and Q 4 are turned off. Then, the primary side DC link negative voltage V dc1- [k] becomes “ ⁇ V dc1 + V 1 ⁇ [k]”, and the primary side AC terminal voltage V 1 [k] becomes 0.
- the primary side DC link voltage V dc1 + [k] may be added to the equation (6), and the result is as the following equation (7).
- the primary side potential of the high-frequency transformer 15 is determined by the switch state of the AC / DC converter 12. That is, either or both of the primary side DC link negative voltage V dc1- [k] and the positive voltage V dc1 + [k], which are the ground potential of the capacitor 17, are applied to both ends of the primary winding 15a. . Therefore, when the potential of any point of the primary winding 15a and V tr1arb [k], as in the following equation (8), the upper limit value and the lower limit value of V tr1arb [k], 1 primary DC It is determined by the link negative voltage V dc1- [k] and the positive voltage V dc1 + [k].
- the secondary side terminal 28 of the converter cell 20 -N is connected to the secondary side reference terminal 34.
- the potential V tr2arb [k] at an arbitrary position of the secondary winding 15b of the high-frequency transformer 15 is expressed by the following equation (10), similarly to the equation (9).
- equation (12) Substituting equation (12) into equation (11) yields equation (13) below.
- FIG. 8 is a waveform diagram of the primary side AC terminal voltage V 1 [k], that is, V 1 [1], V 1 [2], V 1 [3], V 1 [4] in this specific example.
- FIG. 9 is a waveform diagram of the secondary-side AC terminal voltage V 2 [k], that is, V 2 [1], V 2 [2], V 2 [3], V 2 [4] in this specific example. is there. 8 and 9, the DC link voltage V dc and its inverted value ⁇ V dc of each converter cell 20-k are indicated by broken lines .
- FIG. 10 is a waveform diagram of the primary side DC link negative voltage V dc1- [k] in each converter cell 20 -k .
- FIG. 11 is a waveform diagram of the secondary side DC link negative voltage V dc2- [k] in the converter cell 20 -k .
- the primary side DC link positive voltage V dc1 + [k] is obtained by adding the primary side DC link voltage V dc1 to the primary side DC link negative voltage V dc1- [k].
- the DC link positive voltage V dc2 + [k] is obtained by adding the secondary DC link voltage V dc2 to the secondary DC link negative voltage V dc2- [k], and is not shown here.
- the DC link voltage V dc of each converter cell 20-k, its inverted value ⁇ V dc , and the integer multiples thereof are indicated by broken lines.
- FIG. 12 shows a possible range of potential difference V tr1arb [k] ⁇ V tr2arb [k] generated between the primary winding 15a and the secondary winding 15b of the high-frequency transformer 15 in each converter cell 20-k of the comparative example.
- V tr1arb [k] ⁇ V tr2arb [k] that is, the transformer potential difference V for each of the converter cells 20-1, 20-2, 20-3, and 20-4 of the comparative example. It can be seen that tr [k] becomes ⁇ 2 V max , ⁇ 1.5 V max , ⁇ V max , and ⁇ 0.5 V max .
- equations (15) to (17) are established for the primary side AC terminal voltage V 1 [k] of each converter cell 20-k instead of the equations (3) to (5) described above.
- the primary side DC link voltage V dc1 + [k] the primary side DC link voltage V dc1 may be added to the equation (18), and the result is as the following equation (19).
- connection state of the converter cells 20-1 to 20-N with respect to the secondary power supply system 32 is the same.
- V tr2arb [k] at an arbitrary position of the winding 15b the above-described formula (10) is established as it is.
- Expression (14) is established, Expression (21) is further rearranged, and the following Expression (22) is established.
- the stage number k is deleted from the possible range of the potential difference V tr1arb [k] ⁇ V tr2arb [k]. That is, the range that the potential difference can take is constant regardless of the stage number k.
- FIG. 13 is a waveform diagram of the primary side DC link negative voltage V dc1- [k] in this specific example.
- the waveform of the secondary side DC link negative voltage V dc2- [k] is the same as that of the comparative example (see FIG. 11).
- FIG. 14 shows a possible range of the potential difference V tr1arb [k] ⁇ V tr2arb [k] generated between the primary winding 15a and the secondary winding 15b of the high-frequency transformer 15 in each converter cell 20-k of this embodiment.
- the pair of primary terminals (25, 26) are connected.
- the converter cell (20 ⁇ (N + 1 ⁇ j)) in which the absolute value of the ground voltage that appears is the jth highest (where 1 ⁇ j ⁇ N) is the absolute value of the ground voltage that appears at the pair of secondary terminals (27, 28). Is (N + 1 ⁇ j) th higher.
- the transformer potential difference V tr [k] of all the converter cells 20-k can be suppressed to “ ⁇ (1 + 1 / N) V max ”.
- voltage resistant performance can be used as the high frequency transformer 15, and the power converter device 1 can be comprised small and cheaply.
- FIG. 15 is a block diagram of a power conversion device 200 according to the second embodiment of the present invention.
- the power conversion device 200 has N converter cells 20-1 to 20-N (N is a natural number of 2 or more).
- the configuration of the converter cell 20-k (where 1 ⁇ k ⁇ N) is the same as that of the first embodiment (see FIG. 2).
- the primary terminals 25 and 26 of the converter cells 20-1 to 20-N are sequentially connected in series. Both ends of these series circuits are terminals A and C.
- a connection point between the primary side terminal 26 of the converter cell 20-m (where 1 ⁇ m ⁇ N) and the primary side terminal 25 of the converter cell 20- (m + 1) is defined as a terminal B.
- the secondary terminals 27 and 28 of the converter cells 20-1 to 20-N are sequentially connected in series, and both ends of these series circuits are terminals D and E.
- the voltage V 1 [k] (see FIG. 2) between the primary side AC terminals of each converter cell 20-k has a different electrical angle phase of the ground potential.
- the secondary AC terminal voltage V 2 [k] of the converter cell 20-k also has a different electrical angle phase of the ground potential.
- the power converter device 200 of this embodiment also transmits electric power bidirectionally or unidirectionally between the primary side and the secondary side.
- the power conversion device 200 of the present embodiment can be considered to have a more generalized configuration by applying the power conversion device 1 of the first embodiment.
- FIG. 16 is a block diagram of a configuration in which the second embodiment is applied to a three-phase AC system. 16, the primary three-phase power supply system of the U-phase, V-phase, a terminal of W-phase and U 1, V 1, W 1, 2 primary three-phase power supply system of the U-phase, V-phase, and W-phase the terminal and U 2, V 2, W 2 .
- the configuration of the power conversion device 200 is as illustrated in FIG. 15, and the other power conversion devices 250 and 260 are configured in the same manner as the power conversion device 200.
- Terminals A, B, C, D, and E of the power conversion device 200 shown in FIG. 15 are also shown in FIG. Further, the terminals of the corresponding power converter 250 are A ′, B ′, C ′, D ′, E ′, and the terminals of the corresponding power converter 260 are A ′′, B ′′, C ′′, D ′. Let ', E''. As shown, terminals A and C ′, terminals A ′′ and C, terminals A ′ and C ′′ are connected to each other, terminals U 1 and B, terminals V 1 and B ′, terminals W 1 and B ′. 'Are connected to each other.
- the terminals U 2 and D ′ and E ′′, the terminals V 2 and D ′′ and E, and the terminals W 2 , D and E ′ are connected to each other. That is, the power converters 200 , 250, and 260 are connected to the terminals U 1 , V 1 , W 1 and the terminals U 2 , V 2 , W 2 by ⁇ connection. As described above, the converter cell 20-k can also be applied to a ⁇ connection system having no neutral point.
- FIG. 17 is a block diagram of a power conversion device 300 according to the third embodiment of the present invention.
- the power conversion apparatus 300 includes N converter cells 40-1 to 40-N (N is a natural number of 2 or more).
- the converter cell 40-k (where 1 ⁇ k ⁇ N) has AC / DC converters 12 to 14, capacitors 17 and 18, primary terminals 45 and 46, and secondary terminals 27 and 28. is doing.
- the converter cell 40-k of the present embodiment is not provided with one corresponding to the AC / DC converter 11 (see FIG. 2) in the first embodiment, and both ends of the capacitor 17 are connected to the primary side terminals 45, 46. It is connected to the.
- the configuration of the converter cell 40-k other than the above is the same as that of the first embodiment (see FIG. 2). That is, the converter cell 40-k transmits power while converting power in both directions or in one direction between the direct current at the primary side terminals 45 and 46 and the alternating current at the secondary side terminals 27 and 28.
- the primary terminals 45 and 46 of the converter cells 40-1 to 40-N are sequentially connected in series, and a primary DC power supply system 61 (primary power supply system) is connected to these series circuits.
- the secondary terminals 27 and 28 of the converter cells 20-1 to 20-N are sequentially connected in series, and the secondary power supply system 32 is connected to these series circuits.
- the primary side DC power supply system 61 for example, DC power generation equipment such as a storage battery or various DC loads can be employed.
- the side close to the ground potential is referred to as a primary side reference terminal 63, and the other is referred to as a terminal 65.
- the negative terminal of the primary side DC power supply system 61 is the primary side reference terminal 63.
- the terminal near the ground potential is called the secondary reference terminal 34 and the other is the terminal 36. Call.
- the primary side reference terminal 63 is connected to the primary side terminal 45 of the converter cell 40-1, and the secondary side reference terminal 34 is connected to the secondary side terminal 28 of the converter cell 40-N. That is, as the stage number k increases, the absolute value of the ground voltage of the primary terminals 45 and 46 increases and the absolute value of the ground voltage of the secondary terminals 27 and 28 decreases. Therefore, as in the first embodiment, the difference in the transformer potential difference V tr (see FIG. 2) between the converter cells 40-1 to 40-N can also be reduced in this embodiment. Thereby, also in this embodiment, the thing with a low pressure
- the present invention is not limited to the above-described embodiments, and various modifications can be made.
- the above-described embodiments are illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
- the control lines and information lines shown in the figure are those that are considered necessary for the explanation, and not all the control lines and information lines that are necessary on the product are shown. Actually, it may be considered that almost all the components are connected to each other. Examples of possible modifications to the above embodiment are as follows.
- MOSFETs are applied as the switching elements Q 1 to Q 4 as the switching elements Q 1 to Q 4 .
- IGBTs Insulated Gate Bipolar Transistors
- bipolar transistors bipolar transistors
- thyristors GTOs
- GTOs Gate Turn- A vacuum tube type element such as Off Thyristor
- IEGT Injection Enhanced Gate Transistor
- thyratron may be applied.
- any material such as Si, SiC, or GaN can be applied.
- the AC / DC converters 11 to 14 in each of the above embodiments employ an H-bridge using a switching element so that power can be converted in both directions.
- An H-bridge using a rectifying element may be applied to a part of the AC / DC converters 11 to 14.
- An example of a circuit diagram of an H bridge to which the rectifying elements D 1 to D 4 are applied is shown in FIG.
- the transformer potential difference V tr of the high-frequency transformer 15 (see FIG. 2) is the same as that in each of the above embodiments, so that the power converter can be configured in a small size and at low cost.
- the rectifying elements D 1 to D 4 may be semiconductor diodes, vacuum tube type mercury rectifiers, or the like.
- any material such as Si, SiC, or GaN can be applied.
- a capacitor may be inserted between the AC / DC converters 12 and 13 and the high-frequency transformer 15.
- FIG. 19A shows an example in which a capacitor 51 is inserted between the AC / DC converter 12 and the primary winding 15a, and a capacitor 52 is inserted between the AC / DC converter 13 and the secondary winding 15b.
- FIG. 19B shows an example in which a capacitor 51 is inserted between the AC / DC converter 12 and the primary winding 15a.
- FIG. 19C shows an AC / DC converter 13 and the secondary winding 15b.
- a capacitor 52 is inserted between the two.
- the high frequency transformer 15 applied to each of the above embodiments may be one designed so as to intentionally generate a leakage inductance.
- connection method of the converter cells 20-1 to 20-N is not limited to that of each of the above-described embodiments, and “the voltages of the primary terminals 25, 26, 45, 46 with respect to the primary reference potential are The connection method is not particularly limited as long as the “highest converter cell” is different from the “converter cell having the highest voltage at the secondary terminals 27 and 28 with respect to the secondary reference potential”.
- the “converter cell having the highest voltage at the primary terminals 25 and 26 with respect to the primary reference potential” is the converter cell 20-N connected to the terminal 35.
- the “converter cell having the highest voltage at the secondary terminals 27 and 28 with respect to the secondary reference potential” is the converter cell 20-1 connected to the terminal 36.
- the latter converter cell is not limited to the converter cell 20-1, and may be changed to any one of the converter cells 20-2 to 20- (N-1).
- the maximum value (absolute value) of the transformer potential difference V tr [k] is higher than that in the first embodiment (that is, “ ⁇ (1 + 1 / N) V max ”).
- the maximum value of the transformer potential difference V tr [k] in this modification can be made lower than the maximum value (that is, “ ⁇ 2 V max ”) in the comparative example (see FIG. 5).
- this modification is advantageous in that the converter cell 20-k can be made smaller and less expensive than the comparative example.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
- Ac-Ac Conversion (AREA)
Abstract
小型で安価に構成できる電力変換装置を実現するために、各々が一対の1次側端子(25,26)と一対の2次側端子(27,28)とを備え、一対の1次側端子(25,26)と一対の2次側端子(27,28)との間で電力を伝送する複数のコンバータセル(20-1~20-N)を設け、複数のコンバータセル(20-1~20-N)の1次側端子(25,26)は、1次側電源系統(31)に対して順次に直列に接続され、複数のコンバータセル(20-1~20-N)の2次側端子(27,28)は、2次側電源系統(32)に対して順次に直列に接続され、複数のコンバータセル(20-1~20-N)のうち、一対の1次側端子(25,26)に現れる対地電圧の絶対値が最も高くなるコンバータセル(20-N)は、一対の2次側端子(27,28)に現れる対地電圧の絶対値が最も高くなるコンバータセル(20-1)とは異なるようにした。
Description
本発明は、電力変換装置および電力変換装置の接続方法に関する。
本技術分野の背景技術として、下記特許文献1には、「図示のように、本発明の第1の態様において、複数のコンバータセル20-1、20-2、…、20-N(ただし、Nは2以上の自然数)を備える電力変換装置1は、複数のコンバータセル20-1、20-2、…、20-Nの各第1の交直変換器11の交流側どうしが直列接続され、かつ、この複数のコンバータセルの各第4の交直変換器14の交流側どうしが直列接続される。直列接続するコンバータセルの段数が増加するほど、交流電圧は多レベル(マルチレベル)化される。」と記載されている(明細書の段落0019参照)。
しかし、特許文献1に記載された技術では、1次側(各第1の交直変換器11の交流側)と、2次側(各第4の交直変換器14の交流側)との電位差が大きくなる。これにより、コンバータセルの内部に設けられているトランス等の耐圧を高くしなければならず、コンバータセルが大型化し高価になるという問題が生じる。
この発明は上述した事情に鑑みてなされたものであり、小型で安価に構成できる電力変換装置および電力変換装置の接続方法を提供することを目的とする。
この発明は上述した事情に鑑みてなされたものであり、小型で安価に構成できる電力変換装置および電力変換装置の接続方法を提供することを目的とする。
上記課題を解決するため本発明の電力変換装置にあっては、各々が一対の1次側端子と一対の2次側端子とを備え、一対の前記1次側端子と一対の前記2次側端子との間で電力を伝送する複数のコンバータセルを有し、複数の前記コンバータセルの前記1次側端子は、1次側電源系統に対して順次に直列に接続され、複数の前記コンバータセルの前記2次側端子は、2次側電源系統に対して順次に直列に接続され、複数の前記コンバータセルのうち、一対の前記1次側端子に現れる対地電圧の絶対値が最も高くなる前記コンバータセルは、一対の前記2次側端子に現れる対地電圧の絶対値が最も高くなる前記コンバータセルとは異なることを特徴とする。
本発明によれば、小型で安価な電力変換装置を実現できる。
[第1実施形態]
〈第1実施形態の構成〉
まず、本発明の第1実施形態による電力変換装置の構成を説明する。
図1は、本発明の第1実施形態による電力変換装置1のブロック図である。
電力変換装置1は、N台(Nは2以上の自然数)のコンバータセル20-1~20-Nを有している。そして、各々のコンバータセル20-k(但し、kは段数番号であり、1≦k≦N)は、一対の1次側端子25,26と、一対の2次側端子27,28と、交直変換器11(第1の交直変換器、1次側変換器)と、交直変換器12(第2の交直変換器、1次側変換器)と、交直変換器13(第3の交直変換器、2次側変換器)と、交直変換器14(第4の交直変換器、2次側変換器)と、高周波トランス15(トランス)と、コンデンサ17,18とを有している。
〈第1実施形態の構成〉
まず、本発明の第1実施形態による電力変換装置の構成を説明する。
図1は、本発明の第1実施形態による電力変換装置1のブロック図である。
電力変換装置1は、N台(Nは2以上の自然数)のコンバータセル20-1~20-Nを有している。そして、各々のコンバータセル20-k(但し、kは段数番号であり、1≦k≦N)は、一対の1次側端子25,26と、一対の2次側端子27,28と、交直変換器11(第1の交直変換器、1次側変換器)と、交直変換器12(第2の交直変換器、1次側変換器)と、交直変換器13(第3の交直変換器、2次側変換器)と、交直変換器14(第4の交直変換器、2次側変換器)と、高周波トランス15(トランス)と、コンデンサ17,18とを有している。
そして、コンバータセル20-1~20-Nの1次側端子25,26は、順次直列に接続され、これら直列回路に1次側電源系統31が接続されている。また、コンバータセル20-1~20-Nの2次側端子27,28は、順次直列に接続され、これら直列回路に2次側電源系統32が接続されている。各コンバータセル20-1~20-Nは、1次側端子25,26と2次側端子27,28との間で双方向または一方向に電力を伝送する。1次側,2次側電源系統31,32は誘導性のインピーダンス、またはフィルタリアクトルを内包するものとする。また、1次側,2次側電源系統31,32としては、例えば商用電源系統、太陽光発電システム、モータ等、様々な発電設備や受電設備を採用することができる。1次側電源系統31の電圧を1次側系統電圧VS1とし、2次側電源系統32の電圧を2次側系統電圧VS2とする。1次側,2次側系統電圧VS1,VS2は、振幅および周波数が相互に独立しており、電力変換装置1は、1次側,2次側電源系統31,32の間で双方向または一方向に電力を伝送する。
図1に示すように、1次側電源系統31の一対の端子のうち、一方を1次側基準端子33と呼び、他方を端子35と呼ぶ。同様に、2次側電源系統32の一対の端子のうち、一方を2次側基準端子34と呼び、他方を端子36と呼ぶ。1次側基準端子33は、1次側基準電位が現れる端子であり、2次側基準端子34は、2次側基準電位が現れる端子である。1次側および2次側基準電位は、例えば接地電位である。基準電位は必ずしも接地電位でなくてもよいが、1次側基準端子33は、他方の端子35よりも対地電位の最高値(絶対値)が低い側の端子にすることが好ましく、2次側基準端子34は、他方の端子36よりも対地電位の最高値(絶対値)が低い側の端子にすることが好ましい。
そして、1次側基準端子33は、コンバータセル20-1の1次側端子25に接続され、2次側基準端子34は、コンバータセル20-Nの2次側端子28に接続されている。すなわち、段数番号kが大きくなるほど1次側端子25,26の対地電圧の絶対値は高くなり、2次側端子27,28の対地電圧の絶対値は低くなる。
図2は、コンバータセル20-kのブロック図(回路図)である。
交直変換器11~14は、各々Hブリッジ状に接続された4個のスイッチング素子と、これらスイッチング素子に逆並列に接続されたFWD(Free Wheeling Diode)とを有している(共に符号なし)。なお、本実施形態において、これらスイッチング素子は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。コンデンサ17の両端の間に現れる電圧を1次側DCリンク電圧Vdc1(1次側直流電圧)と呼ぶ。そして、コンデンサ17の両端に現れる電圧(接地を基準とする電位)のうち、高い側の電圧を1次側DCリンク正電圧Vdc1+[k](kは段数番号)と呼び、低い側の電圧を1次側DCリンク負電圧Vdc1-[k]と呼ぶ。
交直変換器11~14は、各々Hブリッジ状に接続された4個のスイッチング素子と、これらスイッチング素子に逆並列に接続されたFWD(Free Wheeling Diode)とを有している(共に符号なし)。なお、本実施形態において、これらスイッチング素子は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。コンデンサ17の両端の間に現れる電圧を1次側DCリンク電圧Vdc1(1次側直流電圧)と呼ぶ。そして、コンデンサ17の両端に現れる電圧(接地を基準とする電位)のうち、高い側の電圧を1次側DCリンク正電圧Vdc1+[k](kは段数番号)と呼び、低い側の電圧を1次側DCリンク負電圧Vdc1-[k]と呼ぶ。
また、1次側端子25,26の間に現れる電圧を1次側AC端子間電圧V1[k]と呼ぶ。そして、1次側端子25,26に現れる電圧(接地を基準とする電位)のうち、高い側の電圧を1次側AC正電圧V1+[k]と呼び、低い側の電圧を1次側AC負電圧V1-[k]と呼ぶ。そして、交直変換器11は、1次側AC端子間電圧V1[k]と、1次側DCリンク電圧Vdc1とを双方向または一方向に変換しつつ電力を伝送する。
高周波トランス15は、1次巻線15aと、2次巻線15bとを有し、1次巻線15aと2次巻線15bとの間で、所定の周波数で電力を伝送する。交直変換器12および13が高周波トランス15との間で入出力する電流は、高周波である。ここで、高周波とは、例えば100Hz以上の周波数であるが、1kHz以上の周波数を採用することが好ましく、10kHz以上の周波数を採用することがより好ましい。交直変換器12は、1次側DCリンク電圧Vdc1と、1次巻線15aに現れる電圧とを双方向または一方向に変換しつつ電力を伝送する。
また、コンデンサ18の両端の間に現れる電圧を2次側DCリンク電圧Vdc2(2次側直流電圧)と呼ぶ。そして、コンデンサ18の両端に現れる電圧(接地を基準とする電位)のうち、高い側の電圧を2次側DCリンク正電圧Vdc2+[k]と呼び、低い側の電圧を2次側DCリンク負電圧Vdc2-[k]と呼ぶ。交直変換器13は、2次側DCリンク電圧Vdc2と、2次巻線15bに現れる電圧とを双方向または一方向に変換しつつ電力を伝送する。1次巻線15aと2次巻線15bとの電位差は測定位置によって異なるが、最大となる電位差をトランス電位差Vtr[k]と呼ぶ。
また、2次側端子27,28の間に現れる電圧を2次側AC端子間電圧V2[k]と呼ぶ。そして、2次側端子27,28に現れる電圧(接地を基準とする電位)のうち、高い側の電圧を2次側AC正電圧V2+[k]と呼び、低い側の電圧を2次側AC負電圧V2-[k]と呼ぶ。そして、交直変換器14は、2次側AC端子間電圧V2[k]と、2次側DCリンク電圧Vdc2とを双方向または一方向に変換しつつ電力を伝送する。
図1において、1次側,2次側系統電圧VS1,VS2の振幅値がVac1,Vac2であるとし、各コンバータセル20-kの1次側,2次側DCリンク電圧Vdc1,Vdc2が振幅値Vac1,Vac2の1/Nであると仮定すると、図2に示した1次側AC端子間電圧V1[k]は、±Vac1/Nまたは0のいずれかの電圧となり、2次側AC端子間電圧V2[k]は±Vac2/Nまたは0のいずれかの電圧となる。
図3は、1次側,2次側系統電圧VS1,VS2の波形図の例である。
なお、説明の簡略化のため、図示の例においては、1次側,2次側系統電圧VS1,VS2は、同一の振幅値Vmaxを有し、周波数が異なることとする。
なお、説明の簡略化のため、図示の例においては、1次側,2次側系統電圧VS1,VS2は、同一の振幅値Vmaxを有し、周波数が異なることとする。
図1に示したように、コンバータセル20-1の1次側端子26は、1次側電源系統31の、1次側基準端子33に接続されている。従って、1次側系統電圧VS1がコンバータセル20-1~20-Nによって均等に分圧されたとすると、1次側端子26の電圧が変動する範囲は、「±Vmax/N」になる。一方、コンバータセル20-1の2次側端子27は、2次側電源系統32の他方の端子36に接続されている。
従って、2次側端子27の電圧が変動する範囲は、「±Vmax」になる。すると、トランス電位差Vtr[k]は、「±(1+1/N)Vmax」になる。例えば、コンバータセルの段数Nが「4」であれば、全てのコンバータセル20-1~20-4においてトランス電位差Vtr[k]は、同一値すなわち「±1.25Vmax」になる。なお、その詳細な根拠については後述する。
〈三相交流システムへの適用例〉
図4は、第1実施形態を三相交流システムに適用した構成のブロック図である。
図4において、1次側三相電源系統のU相,V相,W相の端子をU1,V1,W1とし、2次側三相電源系統のU相,V相,W相の端子をU2,V2,W2とし、これらの中性点をN1,N2とする。図示の三相交流システムでは、中性点N1,N2が1次側および2次側の基準端子になる。1次側の端子U1と中性点N1との間には、コンバータセル20-1~20-Nの1次側端子25,26(図1,図2参照)が順次直列に接続されている。また、2次側の中性点N2と端子U2との間には、2次側端子27,28が順次直列に接続されている。
図4は、第1実施形態を三相交流システムに適用した構成のブロック図である。
図4において、1次側三相電源系統のU相,V相,W相の端子をU1,V1,W1とし、2次側三相電源系統のU相,V相,W相の端子をU2,V2,W2とし、これらの中性点をN1,N2とする。図示の三相交流システムでは、中性点N1,N2が1次側および2次側の基準端子になる。1次側の端子U1と中性点N1との間には、コンバータセル20-1~20-Nの1次側端子25,26(図1,図2参照)が順次直列に接続されている。また、2次側の中性点N2と端子U2との間には、2次側端子27,28が順次直列に接続されている。
V相,W相については図示を省略するが、U相と同様に電力変換装置1が接続されている。
本実施形態において、1次側相電圧および2次側相電圧の振幅値が共にVmaxであるとすると、図1に示した例と同様に、各コンバータセル20-k内のトランス電位差Vtr[k]は、「±(1+1/N)Vmax」になる。
本実施形態において、1次側相電圧および2次側相電圧の振幅値が共にVmaxであるとすると、図1に示した例と同様に、各コンバータセル20-k内のトランス電位差Vtr[k]は、「±(1+1/N)Vmax」になる。
〈比較例〉
図5は、比較例における電力変換装置のブロック図である。
本比較例の電力変換装置101は、第1実施形態の電力変換装置1と同様に、N台のコンバータセル20-1~20-Nを有している。そして、各コンバータセル20-kの内部構成も第1実施形態のもの(図2参照)と同様である。但し、本比較例においては、1次側端子25,26の接続方法が第1実施形態のものとは異なっている。すなわち、本比較例においては、1次側基準端子33は、コンバータセル20-Nの1次側端子26に接続され、1次側電源系統31の高圧側の端子35はコンバータセル20-1の1次側端子25に接続されている。
図5は、比較例における電力変換装置のブロック図である。
本比較例の電力変換装置101は、第1実施形態の電力変換装置1と同様に、N台のコンバータセル20-1~20-Nを有している。そして、各コンバータセル20-kの内部構成も第1実施形態のもの(図2参照)と同様である。但し、本比較例においては、1次側端子25,26の接続方法が第1実施形態のものとは異なっている。すなわち、本比較例においては、1次側基準端子33は、コンバータセル20-Nの1次側端子26に接続され、1次側電源系統31の高圧側の端子35はコンバータセル20-1の1次側端子25に接続されている。
すなわち、本比較例によれば、段数番号kが大きくなるほど、1次側端子25,26に現れる電圧も、2次側端子27,28に現れる電圧も低くなる。すると、コンバータセル20-1の1次側端子26の電圧が変動する範囲は、「±Vmax」になり、コンバータセル20-1の2次側端子27の電圧が変動する範囲も、「±Vmax」になる。これにより、コンバータセル20-1におけるトランス電位差Vtr[1]は、「±2Vmax」になる。
但し、本比較例において、このトランス電位差Vtr[k]は段数番号kに応じて異なる。例えば、コンバータセルの段数Nを「4」としたとき、トランス電位差Vtr[k]は、コンバータセル20-2(k=2)では「±1.5Vmax」、コンバータセル20-3(k=3)では「±Vmax」、コンバータセル20-4(k=4)では「±0.5Vmax」になる。なお、その詳細な根拠については後述する。
このように、本比較例によれば、段数番号kに応じてトランス電位差Vtr[k]は異なるが、段数番号kに応じて耐圧性能が異なる高周波トランス15を適用することは非現実的である。すなわち、量産効果によってコストダウンを図るためには、全てのコンバータセル20-1~20-Nに対して同一仕様の高周波トランス15を適用することが現実的である。すると、各コンバータセル20-1~20-N内の高周波トランス15の耐圧性能は、上述した中の最も高いトランス電位差Vtr[1]すなわち「±2Vmax」に対応せざるを得ない。
図6は、比較例の電力変換装置101を三相交流システムに適用した構成のブロック図である。
図6において、第1実施形態(図4参照)と同様に、1次側三相電源系統のU相,V相,W相の端子をU1,V1,W1とし、2次側三相電源系統のU相,V相,W相の端子をU2,V2,W2とし、これらの中性点をN1,N2とする。本比較例において、1次側の端子U1と中性点N1との間には、コンバータセル20-1~20-Nの1次側端子25,26(図5参照)が順次直列に接続されている。また、2次側の端子U2と中性点N2との間には、2次側端子27,28(図5参照)が順次直列に接続されている。
図6において、第1実施形態(図4参照)と同様に、1次側三相電源系統のU相,V相,W相の端子をU1,V1,W1とし、2次側三相電源系統のU相,V相,W相の端子をU2,V2,W2とし、これらの中性点をN1,N2とする。本比較例において、1次側の端子U1と中性点N1との間には、コンバータセル20-1~20-Nの1次側端子25,26(図5参照)が順次直列に接続されている。また、2次側の端子U2と中性点N2との間には、2次側端子27,28(図5参照)が順次直列に接続されている。
V相,W相については図示を省略するが、U相と同様に電力変換装置1が接続されている。
本実施形態において、1次側相電圧および2次側相電圧の振幅値が共にVmaxであるとすると、図5に示した例と同様に、コンバータセル20-1の1次側端子26の電圧が変動する範囲は、「±Vmax」になり、コンバータセル20-1の2次側端子27の電圧が変動する範囲も、「±Vmax」になる。これにより、最も高いトランス電位差Vtr[1]は、「±2Vmax」になる。
本実施形態において、1次側相電圧および2次側相電圧の振幅値が共にVmaxであるとすると、図5に示した例と同様に、コンバータセル20-1の1次側端子26の電圧が変動する範囲は、「±Vmax」になり、コンバータセル20-1の2次側端子27の電圧が変動する範囲も、「±Vmax」になる。これにより、最も高いトランス電位差Vtr[1]は、「±2Vmax」になる。
〈数値的根拠の詳細説明〉
上述したように、コンバータセルの段数Nを「4」としたとき、比較例におけるコンバータセル20-1~20-4のトランス電位差Vtr[k]は各々「±2Vmax」、「±1.5Vmax」、「±Vmax」、「±0.5Vmax」であり、第1実施形態におけるコンバータセル20-1~20-4のトランス電位差Vtr[k]は全て「±1.25Vmax」である。これらの数値の根拠を以下説明する。
上述したように、コンバータセルの段数Nを「4」としたとき、比較例におけるコンバータセル20-1~20-4のトランス電位差Vtr[k]は各々「±2Vmax」、「±1.5Vmax」、「±Vmax」、「±0.5Vmax」であり、第1実施形態におけるコンバータセル20-1~20-4のトランス電位差Vtr[k]は全て「±1.25Vmax」である。これらの数値の根拠を以下説明する。
(比較例の数値的根拠)
図7(a)~(d)は、コンバータセル20-kに含まれる交直変換器11(図2参照)の動作モードの説明図である。なお、図示の各動作モードは、第1実施形態および比較例において共通のものである。
図7(a)~(d)において、交直変換器11に含まれる4個のスイッチング素子をQ1~Q4とする。交直変換器11の動作モードには、M1~M4の4種類があり、4つのスイッチング素子Q1~Q4のうち導通するスイッチング素子は、動作モードに基づいて決定される。
図7(a)~(d)は、コンバータセル20-kに含まれる交直変換器11(図2参照)の動作モードの説明図である。なお、図示の各動作モードは、第1実施形態および比較例において共通のものである。
図7(a)~(d)において、交直変換器11に含まれる4個のスイッチング素子をQ1~Q4とする。交直変換器11の動作モードには、M1~M4の4種類があり、4つのスイッチング素子Q1~Q4のうち導通するスイッチング素子は、動作モードに基づいて決定される。
まず、図7(a)の動作モードM1においては、スイッチング素子Q1,Q4が導通し、他のスイッチング素子Q2,Q3は非導通になる。そして、1次側DCリンク負電圧Vdc1-[k]は1次側AC負電圧V1-[k]に等しくなり、1次側AC端子間電圧V1[k]は1次側DCリンク電圧Vdc1に等しくなる。
また、図7(b)の動作モードM2においては、スイッチング素子Q2,Q4が導通し、他のスイッチング素子Q1,Q3は非導通になる。そして、1次側DCリンク負電圧Vdc1-[k]は1次側AC負電圧V1-[k]に等しくなり、1次側AC端子間電圧V1[k]は0になる。
また、図7(c)の動作モードM3においては、スイッチング素子Q2,Q3が導通し、他のスイッチング素子Q1,Q4は非導通になる。そして、1次側DCリンク負電圧Vdc1-[k]は「-Vdc1+V1-[k]」になり、1次側AC端子間電圧V1[k]は「-Vdc1」になる。
また、図7(d)の動作モードM4においては、スイッチング素子Q1,Q3が導通し、スイッチング素子Q2,Q4は非導通になる。そして、1次側DCリンク負電圧Vdc1-[k]は「-Vdc1+V1-[k]」になり、1次側AC端子間電圧V1[k]は0になる。
図5に示した比較例において、動作モードM1~M4における各部の電圧をまとめると、その結果は下式(1)~(3)のようになる。
高周波トランス15の1次側電位は交直変換器12のスイッチ状態に依って決定される。すなわち、1次巻線15aの両端には、コンデンサ17の対地電位である1次側DCリンク負電圧Vdc1-[k],正電圧Vdc1+[k]の何れか一方または双方が印加される。従って、1次巻線15aの任意の箇所の電位をVtr1arb[k]としたとき、下式(8)のように、Vtr1arb[k]の上限値と下限値とは、1次側DCリンク負電圧Vdc1-[k],正電圧Vdc1+[k]によって定まる。
式(6),(7)で求めた1次側DCリンク負電圧Vdc1-[k],正電圧Vdc1+[k]の範囲と、式(8)で求めた電位Vtr1arb[k]とによれば、電位Vtr1arb[k]の取り得る範囲は、下式(9)の通りになる。
図5に示した比較例においては、コンバータセル20-Nの2次側端子28は、2次側基準端子34に接続されている。ここで、2次側基準端子34の電位が接地電位であることとする。すなわち2次側AC負電圧V2-[N]=0とする。すると、高周波トランス15の2次巻線15bの任意の箇所の電位Vtr2arb[k]は、式(9)と同様に、下式(10)の通りになる。
また、1次側,2次側系統電圧VS1,VS2の振幅値をVac1,Vac2であるとし、各コンバータセル20-kの1次側,2次側DCリンク電圧Vdc1,Vdc2が振幅値Vac1,Vac2の1/Nであると仮定すると、下式(12)が成立する。
図3に示した具体例において、式(13)が成立することを以下に示す。
上述のように、図3においては、1次側,2次側系統電圧VS1,VS2は同一の振幅値Vmaxを有し、周波数が異なる。この例においては、Vac1=Vac2=Vmaxであるため、下式(14)に示すように、1次側,2次側DCリンク電圧Vdc1,Vdc2は、同一値であるDCリンク電圧Vdcになる。
上述のように、図3においては、1次側,2次側系統電圧VS1,VS2は同一の振幅値Vmaxを有し、周波数が異なる。この例においては、Vac1=Vac2=Vmaxであるため、下式(14)に示すように、1次側,2次側DCリンク電圧Vdc1,Vdc2は、同一値であるDCリンク電圧Vdcになる。
以下、比較例(図5参照)において、コンバータセルの段数Nが「4」である場合の電圧波形の具体例を、図8~図12を参照し説明する。
図8は、この具体例における1次側AC端子間電圧V1[k]すなわちV1[1],V1[2],V1[3],V1[4]の波形図である。また、図9は、この具体例における2次側AC端子間電圧V2[k]すなわちV2[1],V2[2],V2[3],V2[4]の波形図である。図8、図9において、各コンバータセル20-kのDCリンク電圧Vdcおよびその反転値-Vdcを破線で示す。
図8は、この具体例における1次側AC端子間電圧V1[k]すなわちV1[1],V1[2],V1[3],V1[4]の波形図である。また、図9は、この具体例における2次側AC端子間電圧V2[k]すなわちV2[1],V2[2],V2[3],V2[4]の波形図である。図8、図9において、各コンバータセル20-kのDCリンク電圧Vdcおよびその反転値-Vdcを破線で示す。
また、図10は、各コンバータセル20-kにおける1次側DCリンク負電圧Vdc1-[k]の波形図である。また、図11は、コンバータセル20-kにおける2次側DCリンク負電圧Vdc2-[k]の波形図である。
ここで、1次側DCリンク正電圧Vdc1+[k]は1次側DCリンク負電圧Vdc1-[k]に1次側DCリンク電圧Vdc1を加えたものであり、同様に2次側DCリンク正電圧Vdc2+[k]は2次側DCリンク負電圧Vdc2-[k]に2次側DCリンク電圧Vdc2を加えたものであり、ここでは図示しない。
図10、図11において、各コンバータセル20-kのDCリンク電圧Vdcその反転値-Vdc、およびこれらの整数倍の値を破線で示す。
ここで、1次側DCリンク正電圧Vdc1+[k]は1次側DCリンク負電圧Vdc1-[k]に1次側DCリンク電圧Vdc1を加えたものであり、同様に2次側DCリンク正電圧Vdc2+[k]は2次側DCリンク負電圧Vdc2-[k]に2次側DCリンク電圧Vdc2を加えたものであり、ここでは図示しない。
図10、図11において、各コンバータセル20-kのDCリンク電圧Vdcその反転値-Vdc、およびこれらの整数倍の値を破線で示す。
図12は、比較例の各コンバータセル20-kにおける高周波トランス15の1次巻線15aおよび2次巻線15bの間に生じる電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲を示す図である。
すなわち、図中のVdc1+[k]-Vdc2-[k]の波形とVdc1-[k]-Vdc2+[k]の波形に挟まれた範囲が、電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲になる。図示のように、比較例のコンバータセル20-1,20-2,20-3,20-4の各々について、電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲、すなわちトランス電位差Vtr[k]は、±2Vmax、±1.5Vmax、±Vmax、±0.5Vmaxになることが解る。
すなわち、図中のVdc1+[k]-Vdc2-[k]の波形とVdc1-[k]-Vdc2+[k]の波形に挟まれた範囲が、電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲になる。図示のように、比較例のコンバータセル20-1,20-2,20-3,20-4の各々について、電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲、すなわちトランス電位差Vtr[k]は、±2Vmax、±1.5Vmax、±Vmax、±0.5Vmaxになることが解る。
(第1実施形態の数値的根拠)
次に、第1実施形態(図1参照)において、コンバータセルの段数Nを「4」としたとき、全てのコンバータセル20-kのトランス電位差Vtr[k]が「±1.25Vmax」の範囲に収まる理由を詳細に説明する。
本実施形態においても、1次側,2次側基準端子33,34の電位が接地電位であるとすると、式(1),(2)は上記比較例と同様に成立する。
但し、本実施形態においては、図1に示したように、コンバータセル20-1の1次側端子25が1次側基準端子33に接続されている。
次に、第1実施形態(図1参照)において、コンバータセルの段数Nを「4」としたとき、全てのコンバータセル20-kのトランス電位差Vtr[k]が「±1.25Vmax」の範囲に収まる理由を詳細に説明する。
本実施形態においても、1次側,2次側基準端子33,34の電位が接地電位であるとすると、式(1),(2)は上記比較例と同様に成立する。
但し、本実施形態においては、図1に示したように、コンバータセル20-1の1次側端子25が1次側基準端子33に接続されている。
本実施形態(図1参照)と比較例(図5参照)とは、2次側電源系統32に対するコンバータセル20-1~20-Nの接続状態は同様であるため、高周波トランス15の2次巻線15bの任意の箇所の電位Vtr2arb[k]は、上述した式(10)がそのまま成立する。
また、式(14)が成り立とき、式(21)は更に整理され、下式(22)が成立する。式(22)によると、電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲からは、段数番号kが消去されている。すなわち、該電位差の取り得る範囲は、段数番号kにかかわらず一定になる。
次に、本実施形態において、コンバータセルの段数Nが「4」である場合の電圧波形の具体例を、図13,図14を用いて説明する。
図13は、この具体例における1次側DCリンク負電圧Vdc1-[k]の波形図である。なお、2次側DCリンク負電圧Vdc2-[k]の波形は、比較例のもの(図11参照)と同様である。
図13は、この具体例における1次側DCリンク負電圧Vdc1-[k]の波形図である。なお、2次側DCリンク負電圧Vdc2-[k]の波形は、比較例のもの(図11参照)と同様である。
図14は、本実施形態の各コンバータセル20-kにおける高周波トランス15の1次巻線15aおよび2次巻線15bの間に生じる電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲を示す図である。
すなわち、図中のVdc1+[k]-Vdc2-[k]の波形とVdc1-[k]-Vdc2+[k]の波形に挟まれた範囲が、電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲になる。図示のように、本実施形態においては、全てのコンバータセル20-1~20-4について、電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲、すなわちトランス電位差Vtr[k]は、±1.25Vmaxになることが解る。
すなわち、図中のVdc1+[k]-Vdc2-[k]の波形とVdc1-[k]-Vdc2+[k]の波形に挟まれた範囲が、電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲になる。図示のように、本実施形態においては、全てのコンバータセル20-1~20-4について、電位差Vtr1arb[k]-Vtr2arb[k]の取り得る範囲、すなわちトランス電位差Vtr[k]は、±1.25Vmaxになることが解る。
〈第1実施形態の効果〉
以上のように、比較例の構成(図5,図6参照)では、各コンバータセル20-kの高周波トランス15の耐圧性能は、「±2Vmax」のトランス電位差Vtr[1]に対応せざるを得なくなる。これにより、高周波トランス15や電力変換装置101が大型化し、高価になるという問題が生じる。
以上のように、比較例の構成(図5,図6参照)では、各コンバータセル20-kの高周波トランス15の耐圧性能は、「±2Vmax」のトランス電位差Vtr[1]に対応せざるを得なくなる。これにより、高周波トランス15や電力変換装置101が大型化し、高価になるという問題が生じる。
これに対して、本実施形態の構成(図1~図4参照)によれば、複数のコンバータセル(20-1~20-N)のうち、一対の1次側端子(25,26)に現れる対地電圧の絶対値がj番目(但し1≦j≦N)に高いコンバータセル(20-(N+1-j))は、一対の2次側端子(27,28)に現れる対地電圧の絶対値が(N+1-j)番目に高くなるようにしている。これにより、全てのコンバータセル20-kのトランス電位差Vtr[k]を「±(1+1/N)Vmax」に抑制できる。これにより、高周波トランス15として耐圧性能の低いものを使用することができ、電力変換装置1を小型かつ安価に構成することができる。
[第2実施形態]
〈第2実施形態の構成〉
次に、本発明の第2実施形態による電力変換装置の構成を説明する。
図15は、本発明の第2実施形態による電力変換装置200のブロック図である。
電力変換装置200は、N台(Nは2以上の自然数)のコンバータセル20-1~20-Nを有している。コンバータセル20-k(但し、1≦k≦N)の構成は、第1実施形態のもの(図2参照)と同様である。
〈第2実施形態の構成〉
次に、本発明の第2実施形態による電力変換装置の構成を説明する。
図15は、本発明の第2実施形態による電力変換装置200のブロック図である。
電力変換装置200は、N台(Nは2以上の自然数)のコンバータセル20-1~20-Nを有している。コンバータセル20-k(但し、1≦k≦N)の構成は、第1実施形態のもの(図2参照)と同様である。
コンバータセル20-1~20-Nの1次側端子25,26は、順次直列に接続されている。これら直列回路の両端を端子A,Cとする。また、コンバータセル20-m(但し、1≦m<N)の1次側端子26と、コンバータセル20-(m+1)の1次側端子25との接続点を端子Bとする。また、コンバータセル20-1~20-Nの2次側端子27,28は、順次直列に接続され、これら直列回路の両端を端子D,Eとする。
各コンバータセル20-kの1次側AC端子間電圧V1[k](図2参照)は、それぞれ対地電位の電気角位相が異なっている。また、コンバータセル20-kの2次側AC端子間電圧V2[k]も、それぞれ対地電位の電気角位相が異なっている。このように、各部の対地電位の電気角位相が異なることが本実施形態の特徴の一つである。そして、本実施形態の電力変換装置200も、1次側,2次側の間で双方向または一方向に電力を伝送する。このように、本実施形態の電力変換装置200は、第1実施形態の電力変換装置1を応用し、より一般化した構成であると考えることができる。
〈三相交流システムへの適用例〉
図16は、第2実施形態を三相交流システムに適用した構成のブロック図である。
図16において、1次側三相電源系統のU相,V相,W相の端子をU1,V1,W1とし、2次側三相電源系統のU相,V相,W相の端子をU2,V2,W2とする。
電力変換装置200の構成は、図15に示した通りであり、他の電力変換装置250,260も電力変換装置200と同様に構成されている。
図16は、第2実施形態を三相交流システムに適用した構成のブロック図である。
図16において、1次側三相電源系統のU相,V相,W相の端子をU1,V1,W1とし、2次側三相電源系統のU相,V相,W相の端子をU2,V2,W2とする。
電力変換装置200の構成は、図15に示した通りであり、他の電力変換装置250,260も電力変換装置200と同様に構成されている。
図15に示した電力変換装置200の端子A,B,C,D,Eを、図16においても示す。また、対応する電力変換装置250の端子をA',B',C',D',E'とし、対応する電力変換装置260の端子をA'',B'',C'',D'',E''とする。図示のように、端子AとC'、端子A''とC、端子A'とC''は相互に接続され、端子U1とB、端子V1とB'、端子W1とB''は相互に接続されている。
また、端子U2とD'とE''、端子V2とD''とE、端子W2とDとE'は相互に接続されている。すなわち、電力変換装置200,250,260は、Δ結線によって、端子U1,V1,W1と端子U2,V2,W2とに接続されている。
以上のように、中性点を有しないΔ結線システムにおいても、コンバータセル20-kを適用することができる。
以上のように、中性点を有しないΔ結線システムにおいても、コンバータセル20-kを適用することができる。
[第3実施形態]
次に、本発明の第3実施形態による電力変換装置の構成を説明する。
図17は、本発明の第3実施形態による電力変換装置300のブロック図である。
電力変換装置300は、N台(Nは2以上の自然数)のコンバータセル40-1~40-Nを有している。コンバータセル40-k(但し、1≦k≦N)は、交直変換器12~14と、コンデンサ17,18と、1次側端子45,46と、2次側端子27,28と、を有している。
次に、本発明の第3実施形態による電力変換装置の構成を説明する。
図17は、本発明の第3実施形態による電力変換装置300のブロック図である。
電力変換装置300は、N台(Nは2以上の自然数)のコンバータセル40-1~40-Nを有している。コンバータセル40-k(但し、1≦k≦N)は、交直変換器12~14と、コンデンサ17,18と、1次側端子45,46と、2次側端子27,28と、を有している。
本実施形態のコンバータセル40-kには、第1実施形態における交直変換器11(図2参照)に対応するものは設けられておらず、コンデンサ17の両端は、1次側端子45,46に接続されている。上記以外のコンバータセル40-kの構成は、第1実施形態のもの(図2参照)と同様である。すなわち、コンバータセル40-kは、1次側端子45,46における直流と、2次側端子27,28における交流との間で双方向または一方向に電力を変換しつつ伝送する。
コンバータセル40-1~40-Nの1次側端子45,46は順次直列に接続され、これら直列回路に1次側直流電源系統61(1次側電源系統)が接続されている。また、コンバータセル20-1~20-Nの2次側端子27,28は、順次直列に接続され、これら直列回路に2次側電源系統32が接続されている。1次側直流電源系統61としては、例えば蓄電池等の直流発電設備、あるいは各種直流負荷を採用することができる。
1次側直流電源系統61の正極端子および負極端子のうち、接地電位に近い側を1次側基準端子63と呼び、他方を端子65と呼ぶ。図示の例では、1次側直流電源系統61の負極端子が1次側基準端子63になっている。また、第1実施形態(図1参照)と同様に、2次側電源系統32の一対の端子のうち、接地電位に近い側の端子を2次側基準端子34と呼び、他方を端子36と呼ぶ。
そして、1次側基準端子63は、コンバータセル40-1の1次側端子45に接続され、2次側基準端子34は、コンバータセル40-Nの2次側端子28に接続されている。すなわち、段数番号kが大きくなるほど1次側端子45,46の対地電圧の絶対値は高くなり、2次側端子27,28の対地電圧の絶対値は低くなる。
従って、第1実施形態と同様に、本実施形態においても、コンバータセル40-1~40-Nのトランス電位差Vtr(図2参照)の差を小さくすることができる。これにより、本実施形態においても、高周波トランス15として耐圧性能の低いものを使用することができ、電力変換装置300を小型かつ安価に構成することができる。
従って、第1実施形態と同様に、本実施形態においても、コンバータセル40-1~40-Nのトランス電位差Vtr(図2参照)の差を小さくすることができる。これにより、本実施形態においても、高周波トランス15として耐圧性能の低いものを使用することができ、電力変換装置300を小型かつ安価に構成することができる。
[変形例]
本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、若しくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、若しくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
(1)上記各実施形態においては、スイッチング素子Q1~Q4としてMOSFETを適用した例を説明したが、スイッチング素子として、IGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタ、サイリスタ、GTO(Gate Turn-Off Thyristor)、IEGT(Injection Enhanced Gate Transistor)、あるいはサイラトロン等の真空管式の素子を適用してもよい。また、半導体を適用する場合に、その材質はSi、SiC、GaN等、任意のものを適用できる。
(2)また、上記各実施形態における交直変換器11~14は、双方向に電力を変換できるようにスイッチング素子を用いたHブリッジを適用したが、一方向に電力を変換できればよい場合は、交直変換器11~14の一部において、整流素子を用いたHブリッジを適用してもよい。整流素子D1~D4を適用したHブリッジの回路図の一例を図18に示す。本変形例においても、高周波トランス15(図2参照)のトランス電位差Vtrは、上記各実施形態と同様になるため、電力変換装置を小型かつ安価に構成することができる。整流素子D1~D4は、半導体ダイオードであってもよく、真空管式の水銀整流器等であってもよい。また、半導体を適用する場合に、その材質はSi、SiC、GaN等、任意のものを適用できる。
(3)また、上記各実施形態において、交直変換器12,13と高周波トランス15との間にコンデンサを挿入してもよい。図19(a)は、交直変換器12と1次巻線15aとの間にコンデンサ51を挿入するとともに、交直変換器13と2次巻線15bとの間にコンデンサ52を挿入した例を示す。また、図19(b)は、交直変換器12と1次巻線15aとの間にコンデンサ51を挿入した例であり、図19(c)は、交直変換器13と2次巻線15bとの間にコンデンサ52を挿入した例である。また、上記各実施形態に適用される高周波トランス15は、意図的に漏れインダクタンスを発生させるように設計したものを用いてもよい。
(4)また、コンバータセル20-1~20-Nの接続方法は上述した各実施形態のものに限られず、「1次側基準電位に対する1次側端子25,26,45,46の電圧が最も高くなるコンバータセル」と、「2次側基準電位に対する2次側端子27,28の電圧が最も高くなるコンバータセル」とが、異なるようにすれば、接続方法は特に限定されない。
例えば、第1実施形態(図1参照)において、「1次側基準電位に対する1次側端子25,26の電圧が最も高くなるコンバータセル」は、端子35に接続されているコンバータセル20-Nであり、「2次側基準電位に対する2次側端子27,28の電圧が最も高くなるコンバータセル」とは、端子36に接続されているコンバータセル20-1である。しかし、後者のコンバータセルは、コンバータセル20-1に限られず、コンバータセル20-2~20-(N-1)の何れかに変更してもよい。この変形例においては、トランス電位差Vtr[k]の最高値(絶対値)は、第1実施形態の場合(すなわち「±(1+1/N)Vmax」)よりも高くなる。しかし、この変形例におけるトランス電位差Vtr[k]の最高値は、比較例(図5参照)における最高値(すなわち「±2Vmax」)よりは低くすることができる。これにより、この変形例は、比較例のものよりも、コンバータセル20-kを小型かつ安価に構成することができる点で有利である。
1 電力変換装置
11 交直変換器(第1の交直変換器、1次側変換器)
12 交直変換器(第2の交直変換器、1次側変換器)
13 交直変換器(第3の交直変換器、2次側変換器)
14 交直変換器(第4の交直変換器、2次側変換器)
15 高周波トランス(トランス)
15a 1次巻線
15b 2次巻線
20-1~20-N コンバータセル
25,26 1次側端子
27,28 2次側端子
31 1次側電源系統
32 2次側電源系統
40-1~40-N コンバータセル
45,46 1次側端子
61 1次側直流電源系統(1次側電源系統)
200,250,260,300 電力変換装置
Vdc1 1次側DCリンク電圧(1次側直流電圧)
Vdc2 2次側DCリンク電圧(2次側直流電圧)
11 交直変換器(第1の交直変換器、1次側変換器)
12 交直変換器(第2の交直変換器、1次側変換器)
13 交直変換器(第3の交直変換器、2次側変換器)
14 交直変換器(第4の交直変換器、2次側変換器)
15 高周波トランス(トランス)
15a 1次巻線
15b 2次巻線
20-1~20-N コンバータセル
25,26 1次側端子
27,28 2次側端子
31 1次側電源系統
32 2次側電源系統
40-1~40-N コンバータセル
45,46 1次側端子
61 1次側直流電源系統(1次側電源系統)
200,250,260,300 電力変換装置
Vdc1 1次側DCリンク電圧(1次側直流電圧)
Vdc2 2次側DCリンク電圧(2次側直流電圧)
Claims (6)
- 各々が一対の1次側端子と一対の2次側端子とを備え、一対の前記1次側端子と一対の前記2次側端子との間で電力を伝送する複数のコンバータセルを有し、
複数の前記コンバータセルの前記1次側端子は、1次側電源系統に対して順次に直列に接続され、
複数の前記コンバータセルの前記2次側端子は、2次側電源系統に対して順次に直列に接続され、
複数の前記コンバータセルのうち、一対の前記1次側端子に現れる対地電圧の絶対値が最も高くなる前記コンバータセルは、一対の前記2次側端子に現れる対地電圧の絶対値が最も高くなる前記コンバータセルとは異なる
ことを特徴とする電力変換装置。 - 各々の前記コンバータセルは、
1次巻線と2次巻線との間で100Hz以上の周波数で電力を伝送するトランスと、
前記1次側端子と前記1次巻線との間で周波数を変換しつつ電力を伝送する1次側変換器と、
前記2次側端子と前記2次巻線との間で周波数を変換しつつ電力を伝送する2次側変換器と、を有する
ことを特徴とする請求項1に記載の電力変換装置。 - 前記1次側電源系統および前記2次側電源系統は交流電源系統であり、
前記1次側変換器は、一対の前記1次側端子に現れる交流電圧と1次側直流電圧との間で電力を伝送する第1の交直変換器と、前記1次側直流電圧と前記1次巻線との間で電力を伝送する第2の交直変換器と、を有し、
前記2次側変換器は、前記2次巻線と2次側直流電圧との間で電力を伝送する第3の交直変換器と、前記2次側直流電圧と一対の前記2次側端子に現れる交流電圧との間で電力を伝送する第4の交直変換器と、を有する
ことを特徴とする請求項2に記載の電力変換装置。 - 前記1次側電源系統は直流電源系統であり、前記2次側電源系統は交流電源系統であり、
前記1次側変換器は、一対の前記1次側端子に現れる直流電圧と前記1次巻線との間で電力を伝送するものであり、
前記2次側変換器は、前記2次巻線と2次側直流電圧との間で電力を伝送する第3の交直変換器と、前記2次側直流電圧と一対の前記2次側端子に現れる交流電圧との間で電力を伝送する第4の交直変換器と、を有する
ことを特徴とする請求項2に記載の電力変換装置。 - 複数の前記コンバータセルのうち、一対の前記1次側端子に現れる対地電圧の絶対値がj番目(但し1≦j≦N)に高い前記コンバータセルは、一対の前記2次側端子に現れる対地電圧の絶対値が(N+1-j)番目に高い
ことを特徴とする請求項1に記載の電力変換装置。 - 各々が一対の1次側端子と一対の2次側端子とを備え、一対の前記1次側端子と一対の前記2次側端子との間で電力を伝送する複数のコンバータセルを有する電力変換装置に適用される接続方法であって、
複数の前記コンバータセルの前記1次側端子を1次側電源系統に対して順次に直列に接続する過程と、
複数の前記コンバータセルのうち、一対の前記1次側端子に現れる対地電圧の絶対値が最も高くなる前記コンバータセルは、一対の前記2次側端子に現れる対地電圧の絶対値が最も高くなる前記コンバータセルとは異なるように、複数の前記コンバータセルの前記2次側端子を2次側電源系統に対して順次に直列に接続する過程と、を有する
ことを特徴とする電力変換装置の接続方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/617,875 US11201559B2 (en) | 2017-06-14 | 2017-06-14 | Power conversion device and power conversion device connection method |
PCT/JP2017/022016 WO2018229915A1 (ja) | 2017-06-14 | 2017-06-14 | 電力変換装置および電力変換装置の接続方法 |
JP2019524641A JP6705948B2 (ja) | 2017-06-14 | 2017-06-14 | 電力変換装置および電力変換装置の接続方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/022016 WO2018229915A1 (ja) | 2017-06-14 | 2017-06-14 | 電力変換装置および電力変換装置の接続方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018229915A1 true WO2018229915A1 (ja) | 2018-12-20 |
Family
ID=64660702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022016 WO2018229915A1 (ja) | 2017-06-14 | 2017-06-14 | 電力変換装置および電力変換装置の接続方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11201559B2 (ja) |
JP (1) | JP6705948B2 (ja) |
WO (1) | WO2018229915A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007020384A (ja) * | 2005-06-08 | 2007-01-25 | Tokyo Electric Power Co Inc:The | 電力変換装置及び制御方法 |
US20100295383A1 (en) * | 2009-05-19 | 2010-11-25 | Coolearth Solar | Architecture for power plant comprising clusters of power-generation devices |
WO2017073150A1 (ja) * | 2015-10-29 | 2017-05-04 | 株式会社日立製作所 | 電源装置及びその制御方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005073362A (ja) | 2003-08-22 | 2005-03-17 | Rikogaku Shinkokai | 電力変換装置、モータドライブ装置、btbシステムおよび系統連系インバータシステム |
EP2995495B1 (en) * | 2014-09-15 | 2019-06-19 | ABB Schweiz AG | Method for controlling of a modular converter |
WO2016177399A1 (en) * | 2015-05-05 | 2016-11-10 | Abb Technology Ltd | Converter arrangement |
-
2017
- 2017-06-14 US US16/617,875 patent/US11201559B2/en active Active
- 2017-06-14 WO PCT/JP2017/022016 patent/WO2018229915A1/ja active Application Filing
- 2017-06-14 JP JP2019524641A patent/JP6705948B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007020384A (ja) * | 2005-06-08 | 2007-01-25 | Tokyo Electric Power Co Inc:The | 電力変換装置及び制御方法 |
US20100295383A1 (en) * | 2009-05-19 | 2010-11-25 | Coolearth Solar | Architecture for power plant comprising clusters of power-generation devices |
WO2017073150A1 (ja) * | 2015-10-29 | 2017-05-04 | 株式会社日立製作所 | 電源装置及びその制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6705948B2 (ja) | 2020-06-03 |
US11201559B2 (en) | 2021-12-14 |
US20210143744A1 (en) | 2021-05-13 |
JPWO2018229915A1 (ja) | 2019-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Overview of silicon carbide technology: Device, converter, system, and application | |
US9331595B2 (en) | Multi-level inverter | |
EP3072229B1 (en) | Soft switching inverter | |
KR102075494B1 (ko) | 양방향 공진형 변환 회로 및 컨버터 | |
US8787049B2 (en) | Control method for converting power, and electronic power converter adapted to carry out said method | |
US20050111246A1 (en) | Multilevel converter based intelligent universal transformer | |
US20130099572A1 (en) | Cell Based DC/DC Converter | |
CN105191100A (zh) | 双向dc/dc转换器 | |
EP3400644B1 (en) | Modular multilevel converter and power electronic transformer | |
EP3681038A1 (en) | Transformer based gate drive circuit | |
CN105098820A (zh) | 高压直流输电系统及其控制方法 | |
JP6009003B2 (ja) | Dc/dcコンバータ | |
US9461538B2 (en) | DC/DC converter | |
US20160149509A1 (en) | Connecting power plants to high voltage networks | |
WO2018229915A1 (ja) | 電力変換装置および電力変換装置の接続方法 | |
US9705418B2 (en) | Power converter with oil filled reactors | |
CN215871226U (zh) | 一种混合钳位五电平电压源型变换器 | |
WO2019163185A1 (ja) | 電力変換装置 | |
CN111108676B (zh) | 电力转换装置和电力转换装置的连接方法 | |
EP2490335A2 (en) | Semiconductor device | |
JP2019097323A (ja) | 電力変換装置、電力変換用制御装置および電力変換回路の制御方法 | |
JP2020080583A (ja) | 電力変換装置、およびそれを用いた多相交流電力変換装置 | |
JP2000184720A (ja) | コンバータ及びインバータ装置 | |
CN106411145A (zh) | 一种岸电系统的逆变单元及逆变系统 | |
JP2012191760A (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17913682 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019524641 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17913682 Country of ref document: EP Kind code of ref document: A1 |