WO2018229866A1 - 電動機 - Google Patents

電動機 Download PDF

Info

Publication number
WO2018229866A1
WO2018229866A1 PCT/JP2017/021805 JP2017021805W WO2018229866A1 WO 2018229866 A1 WO2018229866 A1 WO 2018229866A1 JP 2017021805 W JP2017021805 W JP 2017021805W WO 2018229866 A1 WO2018229866 A1 WO 2018229866A1
Authority
WO
WIPO (PCT)
Prior art keywords
toroidal core
coil
electric motor
motor according
rotating
Prior art date
Application number
PCT/JP2017/021805
Other languages
English (en)
French (fr)
Inventor
政司 鈴木
Original Assignee
株式会社 Fd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Fd filed Critical 株式会社 Fd
Priority to PCT/JP2017/021805 priority Critical patent/WO2018229866A1/ja
Publication of WO2018229866A1 publication Critical patent/WO2018229866A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the technology disclosed in this specification relates to an electric motor.
  • Japanese Patent No. 4309996 discloses an electric motor.
  • This electric motor includes a stator and a rotor supported to be rotatable with respect to the stator.
  • the stator is provided with a plurality of first fixed magnets and a plurality of second fixed magnets
  • the rotor is provided with a plurality of first rotating magnets and a plurality of second rotating magnets.
  • a first toroidal core around which a first coil is wound is interposed between the plurality of first fixed magnets and the plurality of first rotary magnets, and the plurality of second fixed magnets, the plurality of second rotary magnets, Between, a second toroidal core around which a second coil is wound is interposed.
  • the rotor can be rotated by supplying current intermittently to at least one of the first coil and the second coil.
  • the above-described electric motor is based on an operating principle different from that of a general electric motor. Therefore, many possibilities are hidden, but on the other hand, further improvements are required for practical use.
  • the present specification provides a new and useful technique that can improve electric motors based on such operating principles.
  • the present inventor first elucidated the operating principle in detail. The contents will be described below.
  • the first toroidal core around which the first coil is wound is disposed on the stator, and the plurality of first rotating magnets facing the first toroidal core are disposed on the rotor.
  • a current flows through the first coil, a magnetic flux is generated along the circumferential direction inside the first toroidal core.
  • the magnetic flux generated by the first coil is sealed inside the first toroidal core, so that no magnetic flux is generated outside the first toroidal core.
  • the first toroidal core is in a magnetic saturation state, and leakage magnetic flux is generated outside the first toroidal core. This leakage magnetic flux acts on the plurality of first rotating magnets to generate a magnetic force between the stator and the rotor.
  • a surge current periodically flows in the first coil, and a leakage magnetic flux is also periodically generated in synchronization therewith.
  • the current flowing through the first coil continuously changes under the influence of the counter electromotive force, so the magnitude and direction of the leakage magnetic flux also change continuously.
  • a circumferential force acts between the stator and the rotor, and the rotor rotates with respect to the stator at a speed according to the generation period of the leakage magnetic flux.
  • the plurality of first fixed magnets are not necessarily required, but promote a magnetic saturation (that is, generation of leakage magnetic flux) of the first toroidal core by forming a steady magnetic field in the first toroidal core.
  • the second fixed magnet, the second toroidal core, the second coil, and the second rotating magnet function in the same manner as described above.
  • the set of the second fixed magnet, the second toroidal core, the second coil, and the second rotating magnet is not necessarily required.
  • a set of a third fixed magnet, a third toroidal core, a third coil, and a third rotating magnet may be further provided.
  • the first toroidal core needs to be periodically magnetically saturated by the magnetic flux generated by the first coil.
  • the magnetic flux density in the first toroidal core repeats large fluctuations.
  • Such fluctuations in magnetic flux density can cause eddy currents due to electromagnetic induction in the first toroidal core, and can cause energy loss such as heat generation of the first toroidal core.
  • the first toroidal core is a laminated core having a laminated structure
  • generation of eddy current can be suppressed.
  • the magnetic flux in the first toroidal core is inclined in the axial direction (thickness direction). Therefore, when the first toroidal core is a laminated core having a laminated structure along the radial direction, generation of eddy current can be effectively suppressed.
  • This electric motor includes a stator and a rotor supported so as to be rotatable about a rotation axis with respect to the stator.
  • the stator includes a first toroidal core disposed coaxially with the rotation shaft, and at least one first coil wound around the first toroidal core.
  • the rotor has a plurality of first rotating magnets that are arranged so that N poles and S poles appear alternately along a circumferential direction about the rotation axis and that face the first toroidal core.
  • the first toroidal core is a laminated core having a laminated structure along the radial direction. That is, the first toroidal core has a structure in which magnetic material layers and insulating material layers are alternately arranged along the radial direction of the first toroidal core.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the electric motor 10 of the embodiment.
  • FIG. 2 is an exploded cross-sectional view schematically showing the structure of the electric motor 10 of the embodiment.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1 and shows an arrangement of a plurality of first fixed magnets 22.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 1 and shows an arrangement of a plurality of second fixed magnets 32.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 1 and shows an arrangement of a plurality of first rotating magnets 44.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 1 and shows an arrangement of a plurality of second rotating magnets 46.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 5 and shows the skew angle ⁇ 1 of the first rotating magnet 44.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 6 and shows the skew angle ⁇ 2 of the second rotating magnet 46.
  • FIG. 9 is a modification of the first rotating magnet 44 and shows the first rotating magnet 44 supported so as to be swingable.
  • FIG. 10 shows a first toroidal core 24 and a plurality of first coils 26. Since the second toroidal core 34 and the plurality of second coils 36 have the same structure, reference numerals relating to them are shown in parentheses.
  • FIG. 11 shows the first toroidal core 24 alone.
  • the second toroidal core 34 has the same structure.
  • FIG. 12 shows the skew angle ⁇ 3 of the third rotating magnet 50.
  • FIG. 13 shows the skew angle ⁇ 4 of the fourth rotating magnet 52.
  • the at least one first coil may include a first all-around coil.
  • the first full-winding coil may be wound over the entire circumference of the first toroidal core. According to such a configuration, a uniform magnetic flux can be generated over the entire first toroidal core.
  • the at least one first coil may include at least one first partially wound coil.
  • the first partial winding coil may be wound over a part of the circumference of the first toroidal core. According to such a configuration, the magnetic flux density in the first toroidal core can be selectively increased in the section in which the first partial winding coil is wound, and the leakage magnetic flux can be intentionally generated at that position. .
  • At least one first coil may include a plurality of first partial winding coils.
  • the plurality of first partial winding coils may be arranged at equal intervals along the circumferential length of the first toroidal core.
  • the number of the plurality of first partial winding coils may be the same as the number of the plurality of first rotating magnets.
  • the plurality of first partial winding coils may be arranged at the same angular intervals as the plurality of first rotating magnets.
  • the section of the first toroidal core around which the first partially wound coil is wound has a notch, a slit, or a hole that locally reduces the cross section perpendicular to the circumferential direction of the first toroidal core. It may be provided. According to such a configuration, the magnetic flux density in the first toroidal core can be increased, and magnetic saturation of the first toroidal core can be promoted.
  • the stator may further include a plurality of first fixed magnets facing the first toroidal core.
  • the plurality of first fixed magnets may be arranged so that N poles and S poles appear alternately along the circumferential direction described above. According to such a configuration, a stationary magnetic field is formed in the first toroidal core by the plurality of first fixed magnets, thereby promoting magnetic saturation (that is, generation of leakage magnetic flux) of the first toroidal core.
  • the first rotating magnet may be provided with a skew angle.
  • the torque applied to the rotor can be increased.
  • the first rotary magnet is supported so as to be swingable with respect to the rotor, and the skew angle may be changed by the centrifugal force accompanying the rotation of the rotor.
  • the skew angle of the first rotating magnet can be automatically adjusted to an appropriate angle corresponding to the rotational speed of the rotor.
  • This configuration can be similarly applied to a second rotating magnet described later.
  • the rotor may include a shaft portion extending along the rotation axis and at least one flange portion extending radially outward from the shaft portion.
  • at least one flange portion is provided with a plurality of first rotating magnets.
  • the shaft part is provided with the some 3rd rotation magnet which counters the inner skin of the 1st toroidal core.
  • the leakage magnetic flux from the first toroidal core also acts on the plurality of third rotating magnets, so that further torque can be applied to the rotor.
  • a skew angle may be provided in the plurality of third rotating magnets.
  • the stator may further include a second toroidal core disposed coaxially with the rotation shaft and at least one second coil wound around the second toroidal core.
  • the rotor may further include a plurality of second rotating magnets arranged so that the N pole and the S pole appear alternately along the circumferential direction and face the second toroidal core.
  • the second toroidal core is preferably a laminated core having a laminated structure along its radial direction.
  • the at least one second coil may include a second full turn coil.
  • the second all-around winding coil may be wound over the entire circumference of the second toroidal core. According to such a configuration, a uniform magnetic flux can be generated over the entire second toroidal core.
  • the at least one second coil may include at least one first partial winding coil.
  • the first partial winding coil may be wound over a portion of the circumference of the second toroidal core. According to such a configuration, the magnetic flux density in the second toroidal core can be selectively increased in the section where the second partial winding coil is wound, and a leakage magnetic flux can be intentionally generated at that position. .
  • At least one second coil may include a plurality of second partial winding coils.
  • the plurality of second partial winding coils may be arranged at equal intervals along the circumferential length of the second toroidal core.
  • the number of the plurality of second partial winding coils may be the same as the number of the plurality of second rotating magnets.
  • a plurality of second partial winding coils may be arranged at the same angular interval as the plurality of second rotating magnets.
  • a section of the second toroidal core around which the second partially wound coil is wound is provided with a notch, a slit, or a hole that locally reduces the cross section perpendicular to the circumferential direction of the second toroidal core. It may be done. According to such a configuration, the magnetic flux density in the second toroidal core can be increased to promote magnetic saturation of the second toroidal core.
  • the stator may further include a plurality of second fixed magnets facing the second toroidal core.
  • the plurality of second fixed magnets may be arranged so that N poles and S poles appear alternately along the circumferential direction described above. According to such a configuration, a stationary magnetic field is formed in the second toroidal core by the plurality of second fixed magnets, thereby promoting magnetic saturation (that is, generation of leakage magnetic flux) of the second toroidal core.
  • the rotor may further include a shaft portion that extends along the rotation axis, and a flange portion that extends radially outward from the shaft portion and is provided with a plurality of second rotating magnets.
  • the shaft portion may be provided with a plurality of fourth rotating magnets facing the inner peripheral surface of the second toroidal core.
  • the leakage magnetic flux from the second toroidal core also acts on the plurality of fourth rotating magnets, so that further torque can be applied to the rotor.
  • a skew angle may be provided in the plurality of fourth rotating magnets.
  • the electric motor is wound around the outer peripheral surface of the first toroidal core, and is electrically connected to the first outer coil and the outer peripheral surface of the second toroidal core. And a second outer peripheral coil wound along.
  • a relatively uniform magnetic field can be formed in the space between the first outer coil and the second outer coil along the rotation axis of the rotor. Thereby, disturbance of the magnetic field in the electric motor can be suppressed without applying unnecessary torque to the rotor.
  • the radii of the first outer coil and the second outer coil and the distance between the first outer coil and the second outer coil may be substantially equal. According to such a configuration, since the first outer coil and the second outer coil have a so-called Helmholtz coil structure, a more uniform magnetic field is formed, so that the disturbance of the magnetic field can be effectively suppressed. it can.
  • substantially equal means that the respective deviations from the average value are 10% or less of the average value.
  • the electric motor 10 of the embodiment will be described with reference to the drawings.
  • the electric motor 10 of the embodiment includes a stator 12 and a rotor 14.
  • the rotor 14 is attached to the stator 12 via a plurality of bearings 18, and is supported so as to be rotatable about the rotation axis C with respect to the stator 12.
  • the stator 12 includes a housing 16, a first stator unit 20, and a second stator unit 30.
  • the first stator unit 20 and the second stator unit 30 are disposed in the housing 16 and are fixed to the housing 16.
  • the housing 16 has a cylindrical shape
  • each of the first stator unit 20 and the second stator unit 30 has a ring shape (or a toroidal shape).
  • the first stator unit 20 includes a plurality of first fixed magnets 22, a first toroidal core 24, a plurality of first coils 26 wound around the first toroidal core 24, and a first outer peripheral coil 28.
  • the plurality of first fixed magnets 22 are arranged so that N poles and S poles appear alternately along the circumferential direction around the rotation axis C.
  • the six 1st fixed magnets 22 are provided, and they are arrange
  • the first fixed magnet 22 in the present embodiment is a permanent magnet.
  • some or all of the plurality of first fixed magnets 22 may be electromagnets instead of permanent magnets.
  • the number of the first fixed magnets 22 is not limited to six and can be changed as appropriate.
  • the first toroidal core 24 is a toroidal member, and at least a part thereof is made of a soft magnetic material.
  • the first toroidal core 24 is arranged coaxially with the rotation axis C and faces the plurality of first fixed magnets 22.
  • a plurality of first coils 26 are wound around the first toroidal core 24.
  • the number and structure of the first coils 26 are not particularly limited, and at least one first coil 26 may be wound around the first toroidal core 24.
  • the configuration of the first coil 26 in this embodiment will be described in detail later.
  • the first outer coil 28 is a coil wound in a ring shape along the outer peripheral surface of the first toroidal core 24.
  • the second stator unit 30 has a structure similar to that of the first stator unit 20.
  • the second stator unit 30 includes a plurality of second fixed magnets 32, a second toroidal core 34, a plurality of second coils 36 wound around the second toroidal core 34, and a second outer peripheral coil 38.
  • the plurality of second fixed magnets 32 are arranged so that N poles and S poles appear alternately along the circumferential direction around the rotation axis C.
  • the six 2nd fixed magnets 32 are provided, and they are arrange
  • the second fixed magnet 32 in the present embodiment is a permanent magnet.
  • the plurality of second fixed magnets 32 may be electromagnets instead of permanent magnets. Further, the number of the second fixed magnets 32 is not limited to six and can be changed as appropriate. The number of second fixed magnets 32 may be the same as or different from the number of first fixed magnets 22.
  • the second toroidal core 34 is a toroidal member, and at least a part thereof is made of a soft magnetic material. Although not particularly limited, the second toroidal core 34 may have the same configuration as the first toroidal core 24.
  • the second toroidal core 34 is disposed coaxially with the rotation axis C and faces the plurality of second fixed magnets 32.
  • a plurality of second coils 36 are wound around the second toroidal core 34.
  • the number and structure of the second coils 36 are not particularly limited as long as at least one second coil 36 is wound around the second toroidal core 34.
  • the configuration of the second coil 36 in the present embodiment is the same as the configuration of the first coil 26 as will be described later.
  • the second outer peripheral coil 38 is a coil wound in a ring shape along the outer peripheral surface of the second toroidal core 34.
  • the second outer coil 38 and the first outer coil 28 form a Helmholtz coil or a similar coil structure.
  • the rotor 14 As described above, the rotor 14 is supported so as to be rotatable about the rotation axis C with respect to the stator 12.
  • the rotor 14 includes a shaft portion 40 that extends along the rotation axis C and a flange portion 42 that extends radially outward from the shaft portion 40. Both ends of the shaft portion 40 pass through the first stator unit 20 and the second stator unit 30, respectively, and are supported by the bearings 18.
  • the flange portion 42 is located in the center of the shaft portion 40 in the axial direction, and is located between the first stator unit 20 and the second stator unit 30.
  • the rotor 14 has a plurality of first rotating magnets 44 and a plurality of second rotating magnets 46. As shown in FIGS. 1 and 5, the plurality of first rotating magnets 44 are arranged such that N poles and S poles appear alternately along the circumferential direction. The plurality of first rotating magnets 44 are opposed to the plurality of first fixed magnets 22 via the first toroidal core 24. Although it is an example, in the present Example, the six 1st rotation magnets 44 are provided, and they are arrange
  • the plurality of second rotating magnets 46 are arranged so that N poles and S poles appear alternately along the circumferential direction.
  • the plurality of second rotating magnets 46 are opposed to the plurality of second fixed magnets 32 via the second toroidal core 34.
  • the six 2nd rotating magnets 46 are provided, and they are arrange
  • the second rotating magnet 46 in the present embodiment is a permanent magnet.
  • some or all of the plurality of second rotating magnets 46 may be electromagnets instead of permanent magnets.
  • the number of second rotating magnets 46 is not limited to six and can be changed as appropriate.
  • the number of second rotating magnets 46 may be the same as or different from the number of second fixed magnets 32 and / or first rotating magnets 44.
  • each first rotating magnet 44 is inclined along the rotation direction of the rotor 14, and the normal line H ⁇ b> 1 of the first rotating magnet 44 is relative to the rotation axis C of the rotor 14. To form an angle ⁇ 1.
  • this angle ⁇ 1 is referred to as the skew angle ⁇ 1 of the first rotating magnet 44.
  • the normal line H1 of the first rotating magnet 44 here means the normal line of the surface of the first rotating magnet 44 that faces the first toroidal core 24.
  • each second rotating magnet 46 is inclined along the rotation direction of the rotor 14, and the normal line H ⁇ b> 2 of the second rotating magnet 46 is the rotation axis of the rotor 14.
  • An angle ⁇ 2 is formed with respect to C.
  • this angle ⁇ 2 is referred to as the skew angle ⁇ 2 of the first rotating magnet 44.
  • the normal line H2 of the second rotating magnet 46 here means the normal line of the surface of the second rotating magnet 46 that faces the second toroidal core 34.
  • the first rotating magnet 44 does not necessarily require the skew angle ⁇ 1.
  • the skew angle ⁇ 1 may be provided only in a part of the plurality of first rotating magnets 44. The same applies to the plurality of second rotating magnets 46.
  • such a skew angle can also be provided in the 1st fixed magnet 22 and / or the 2nd fixed magnet 32 as needed.
  • the first rotating magnet 44 may be supported so as to be swingable with respect to the flange portion 42 (that is, the rotor 14).
  • the skew angle ⁇ 1 of the first rotating magnet 44 may be changed by a centrifugal force accompanying the rotation of the rotor 14.
  • the second rotating magnet 46 is supported so as to be swingable with respect to the flange portion 42 (that is, the rotor 14), and even if the skew angle ⁇ 2 changes due to the centrifugal force accompanying the rotation of the rotor 14. Good.
  • the plurality of first fixed magnets 22 and the plurality of second fixed magnets 32 are mirror-symmetric with respect to the arrangement of the magnetic poles.
  • the plurality of first rotating magnets 44 and the plurality of second rotating magnets 46 are not mirror-symmetric with respect to the arrangement of the magnetic poles, and have a phase difference of 60 degrees from each other.
  • the second rotating magnet 46 and the second fixed magnet 32 have the same polarity at the rotational position of the rotor 14 when the first rotating magnet 44 and the first fixed magnet 22 face each other with different polarities. Oppose each other.
  • the second rotating magnet 46 and the second fixed magnet 32 face each other with different polarities.
  • the rotor 14 may optionally include a plurality of third rotating magnets 50 and a plurality of fourth rotating magnets 52.
  • the plurality of third rotating magnets 50 are provided on the shaft portion 40 of the rotor 14 and face the inner peripheral surface 24 a of the first toroidal core 24.
  • the plurality of third rotating magnets 50 are arranged so that N poles and S poles appear alternately along the circumferential direction.
  • the plurality of third rotating magnets 50 are at least partially opposed to the plurality of first fixed magnets 22 via the first toroidal core 24. Thereby, the plurality of third rotating magnets 50 can exhibit the same function as the plurality of first rotating magnets 44.
  • the six 3rd rotating magnets 50 are provided, and they are arrange
  • the third rotating magnet 50 in the present embodiment is a permanent magnet.
  • some or all of the plurality of third rotating magnets 50 may be electromagnets instead of permanent magnets.
  • the number of the third rotating magnets 50 is not limited to six and can be changed as appropriate. The number of third rotating magnets 50 may be the same as or different from the number of first rotating magnets 44.
  • the plurality of fourth rotating magnets 52 are provided on the shaft portion 40 of the rotor 14 and face the inner peripheral surface 34 a of the second toroidal core 34.
  • the plurality of fourth rotating magnets 52 are arranged so that N poles and S poles appear alternately along the circumferential direction.
  • the plurality of fourth rotating magnets 52 are at least partially opposed to the plurality of second fixed magnets 32 via the second toroidal core 34. Thereby, the plurality of fourth rotating magnets 52 can exhibit the same function as the plurality of second rotating magnets 46.
  • the six 4th rotating magnets 52 are provided, and they are arrange
  • the fourth rotating magnet 52 in the present embodiment is a permanent magnet.
  • the plurality of fourth rotating magnets 52 may be electromagnets instead of permanent magnets. Further, the number of the fourth rotating magnets 52 is not limited to six and can be changed as appropriate. The number of fourth rotating magnets 52 may be the same as or different from the number of second rotating magnets 46.
  • the plurality of first coils 26 includes a first full turn coil 26 a and a plurality of first partial winding coils 26 b.
  • the first full turn coil 26 a is wound over the entire circumference of the first toroidal core 24.
  • Each first partially wound coil 26 b is wound over a part of the circumferential length of the first toroidal core 24.
  • six first partial winding coils 26b are provided, and they are arranged at equal intervals along the circumferential direction.
  • Each of the first full-winding coil 26a and the first partial winding coil 26b is configured to be able to supply current from the outside.
  • the 1st full turn coil 26a and each 1st partial winding coil 26b are comprised so that an electric current may be supplied mutually independently.
  • the plurality of first partial winding coils 26b may be connected to each other in series or in parallel, and their currents may be controlled collectively.
  • the first toroidal core 24 is provided with a plurality of slits 25, and the cross section perpendicular to the circumferential direction of the first toroidal core 24 is locally reduced. Accordingly, the first toroidal core 24 has a structure in which the magnetic flux density is easily increased and the magnetic saturation is easily performed at the position where each slit 25 is provided. Although not particularly limited, each slit 25 is located in a section around which the first partial winding coil 26b is wound.
  • the first toroidal core 24 is a laminated core having a laminated structure along the radial direction R thereof. That is, the magnetic material layers 24 s and the insulating material layers 24 t are alternately arranged along the radial direction R of the first toroidal core 24.
  • the magnetic material layer 24s is not particularly limited, but can be made of, for example, silicon steel, permalloy, sendust, or a carbon-based material.
  • the second toroidal core 34 and the plurality of second coils 36 have the same configuration. That is, as shown in FIG. 10, the plurality of second coils 36 includes a second full turn coil 36 a and a plurality of second partial winding coils 36 b. In the present embodiment, six second partial winding coils 36b are provided, and they are arranged at equal intervals along the circumferential direction. Each of the second full-winding coil 36a and the second partial winding coil 36b is configured to be able to supply current from the outside. As shown in FIG. 11, the second toroidal core 34 is also provided with a plurality of slits 35, and the cross section of the second toroidal core 34 perpendicular to the circumferential direction is locally reduced.
  • the second toroidal core 34 is a laminated core having a laminated structure along the radial direction R thereof. That is, the magnetic material layers 34 s and the insulating material layers 34 t are alternately arranged along the radial direction R of the second toroidal core 34.
  • the first toroidal core 24 around which the first coil 26 is wound is disposed on the stator 12, and a plurality of first rotating magnets 44 that are opposed to the first toroidal core 24 are disposed on the rotor 14.
  • a current flows through the first coil 26 a magnetic flux is generated in the first toroidal core 24 along the circumferential direction.
  • the magnetic flux generated by the first coil 26 is sealed inside the first toroidal core 24, so that no magnetic flux is generated outside the first toroidal core 24.
  • the first toroidal core 24 when the current flowing through the first coil 26 is sufficiently large, the first toroidal core 24 is in a magnetic saturation state, and a leakage magnetic flux is generated outside the first toroidal core 24.
  • the leakage magnetic flux acts on the plurality of first rotating magnets 44 and the plurality of third rotating magnets 50, thereby generating a magnetic force between the stator 12 and the rotor 14.
  • a DC voltage can be intermittently applied to the first coil 26.
  • a DC voltage is intermittently applied to the first coil 26
  • a surge current periodically flows in the first coil 26
  • a leakage magnetic flux from the first toroidal core 24 is also periodically generated in synchronization therewith.
  • the magnitude and direction of the leakage magnetic flux are also continuously changed.
  • a circumferential force acts between the stator 12 and the rotor 14, and the rotor 14 rotates with respect to the stator 12 at a speed corresponding to the generation period of the leakage magnetic flux.
  • the plurality of first fixed magnets 22 are not necessarily required, by forming a steady magnetic field in the first toroidal core 24, magnetic saturation of the first toroidal core 24 (that is, generation of leakage magnetic flux) is promoted. To do. Note that, as another aspect of operating the electric motor 10, it is conceivable to apply a high-frequency AC voltage to the first coil 26.
  • the second fixed magnet 32, the second toroidal core 34, the second coil 36, and the second rotating magnet 46 also function in the same manner as described above. That is, by intermittently applying a DC voltage to the second coil 36, a circumferential force acts between the stator 12 and the rotor 14 and rotates at a speed corresponding to the generation period of the leakage magnetic flux. The child 14 rotates relative to the stator 12.
  • the set of the 2nd fixed magnet 32, the 2nd toroidal core 34, the 2nd coil 36, and the 2nd rotating magnet 46 is not necessarily required.
  • a set of a third fixed magnet, a third toroidal core, a third coil, and a third rotating magnet may be further provided.
  • the first toroidal core 24 needs to be periodically magnetically saturated by the magnetic flux generated by the first coil 26.
  • the magnetic flux density in the first toroidal core 24 repeats large fluctuations.
  • Such a change in magnetic flux density may cause an eddy current due to electromagnetic induction in the first toroidal core 24, and may cause an energy loss such as heat generation of the first toroidal core 24, for example.
  • the first toroidal core 24 in the present embodiment is a laminated core having a laminated structure (see FIG. 11), and can suppress the generation of eddy currents.
  • the magnetic flux in the first toroidal core 24 is inclined in the axial direction (thickness direction) of the first toroidal core 24 when the first toroidal core 24 is magnetically saturated. Therefore, when the first toroidal core 24 is a laminated core having a laminated structure along the radial direction R, generation of eddy current can be effectively suppressed.
  • the second toroidal core 34 When the second toroidal core 34 is a laminated core having a laminated structure along the radial direction R, generation of eddy currents in the second toroidal core 34 can be effectively suppressed.
  • the first full-turn coil 26a In order to magnetically saturate the first toroidal core 24, only the first full-turn coil 26a or one first partial-winding coil 26b is sufficient. However, the first full-turn coil 26a can generate a uniform magnetic flux over the entire first toroidal core 24, and the first toroidal core 24 can be more reliably magnetically saturated. This also applies to the second toroidal core 34. When the second all-around coil 36a is provided, a uniform magnetic flux is generated over the entire second toroidal core 34, and the second toroidal core 34 can be more reliably magnetically saturated.
  • the first partial winding coil 26b is not necessarily required. However, when the first partial winding coil 26b is provided, the magnetic flux density in the first toroidal core 24 is increased in the section where the first partial winding coil 26b is wound. Therefore, by providing the first partial winding coil 26b, a leakage magnetic flux can be intentionally generated at that position. The same applies to the second partial winding coil 36b. Also in the second toroidal core 34, by providing the second partial winding coil 36b, a leakage magnetic flux can be intentionally generated at that position.
  • the first toroidal core 24 is provided with a plurality of slits 25. According to such a configuration, the magnetic flux density in the first toroidal core 24 increases as the cross-sectional area of the first toroidal core 24 decreases. By this. Magnetic saturation of the first toroidal core 24 can be promoted.
  • a cutout or a hole may be formed in the first toroidal core 24 instead of or in addition to the slit 25. Even with such a configuration, the cross-sectional area of the first toroidal core 24 can be locally reduced. Such a configuration can be similarly adopted for the second toroidal core 34.
  • the first rotating magnet 44 and the second rotating magnet 46 are provided with skew angles ⁇ 1 and ⁇ 2, respectively. Thereby, the torque applied to the rotor 14 can be increased. In addition, the occurrence of cogging can be suppressed.
  • a skew angle may be similarly provided in the first fixed magnet 22 and / or the second fixed magnet 32.
  • a plurality of third rotating magnets 50 facing the inner peripheral surface 24 a of the first toroidal core 24 and a plurality of facing the inner peripheral surface 34 a of the second toroidal core 34 are arranged on the shaft portion 40 of the rotor 14.
  • the fourth rotating magnet 52 is provided.
  • the plurality of third rotating magnets 50 can function in the same manner as the plurality of first rotating magnets 44, and the plurality of fourth rotating magnets 52 can function in the same manner as the plurality of second rotating magnets 46. That is, the leakage magnetic flux from the first toroidal core 24 also acts on the plurality of third rotating magnets 50, so that further torque can be applied to the rotor 14. Further, the leakage magnetic flux from the second toroidal core 34 also acts on the plurality of fourth rotating magnets 52, so that further torque can be applied to the rotor 14.
  • the third rotating magnet 50 has a so-called step skew structure, and is provided with a skew angle ⁇ 3.
  • a skew angle ⁇ 3 is provided, the torque applied to the rotor 14 is increased and the occurrence of cogging is suppressed, similarly to the skew angle ⁇ 1 of the first rotating magnet 44.
  • the fourth rotating magnet 52 also has a step skew structure, and is provided with a skew angle ⁇ 4.
  • the torque applied to the rotor 14 is increased and the occurrence of cogging is suppressed.
  • the specific structure in which the skew angles ⁇ 3 and ⁇ 4 are provided in the third rotating magnet 50 and / or the fourth rotating magnet 52 is not particularly limited and can be changed as appropriate.
  • the first outer coil 28 and the second outer coil 38 form a Helmholtz coil or a similar coil structure.
  • the current in the same direction is supplied to each of the first outer coil 28 and the second outer coil 38, so that the space between the first outer coil 28 and the second outer coil 38 is rotated.
  • a relatively uniform magnetic field can be formed along the rotation axis C of the child 14.
  • the disturbance of the magnetic field in the electric motor 10 can be suppressed without applying unnecessary torque to the rotor 14.
  • the second outer coil 38 has an ideal Helmholtz coil structure. In this case, the magnetic field disturbance can be effectively suppressed by forming a more uniform magnetic field.
  • the electric motor 10 of this embodiment can also be used as a generator. That is, by rotating the rotor 14 with an external force, electric power can be extracted from the first coil 26 and the second coil 36. Specifically, when the rotor 14 rotates with respect to the stator 21, the distance between the first rotating magnet 44 and the first partial winding coil 26b varies, and an induced electromotive force is generated in each first partial winding coil 26b. appear. In addition, an electromotive force is generated in the first partial winding coil 26 b, and a current flows through the first partial winding coil 26 b, whereby a magnetic flux is generated in the first toroidal core 24.
  • the magnetic flux in the first toroidal core 24 fluctuates according to the rotation of the rotor 14, and as a result, an induced electromotive force is also generated in the first full-turn coil 26a. Thereby, electric power is output from the 1st all around winding coil 26a. Similarly, when the rotor 14 rotates with respect to the stator 21, electric power is also output from the second entire winding coil 36 a. Thus, the rotational energy applied to the rotor 14 is converted into electric power energy and output from the first coil 26 and the second coil 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

電動機は、固定子と、固定子に対して回転軸を中心に回転可能に支持された回転子とを備える。固定子は、回転軸と同軸に配置された第1トロイダルコアと、第1トロイダルコアに巻かれた少なくとも一つの第1コイルとを有する。回転子は、回転軸を中心とする周方向に沿ってN極とS極とが交互に現れるように配列されているとともに第1トロイダルコアに対向する複数の第1回転磁石を有する。第1トロイダルコアは、その径方向に沿って積層構造を有する積層コアである。

Description

電動機
 本明細書で開示する技術は、電動機に関する。
 特許第4309962号公報に、電動機が開示されている。この電動機は、固定子と、固定子に対して回転可能に支持された回転子とを備える。固定子には、複数の第1固定磁石と複数の第2固定磁石が設けられており、回転子には、複数の第1回転磁石と複数の第2回転磁石が設けられている。複数の第1固定磁石と複数の第1回転磁石との間には、第1コイルが巻かれた第1トロイダルコアが介在しており、複数の第2固定磁石と複数の第2回転磁石との間には、第2コイルが巻かれた第2トロイダルコアが介在している。このような構成によると、第1コイルと第2コイルの少なくとも一方へ、断続的に電流を供給することによって、回転子を回転させることができる。
 上記した電動機は、一般的な電動機とは異なる動作原理に基づく。従って、多くの可能性が秘められているが、その一方で、実用化のためにさらなる改良も必要とされている。本明細書は、そのような動作原理に基づく電動機を改良し得る新規で有用な技術を提供する。
 本発明者は、上述した電動機を改良するにあたり、先ずはその動作原理を詳細に解明した。その内容を以下に説明する。上述した電動機では、第1コイルの巻かれた第1トロイダルコアが固定子に配置され、第1トロイダルコアに対向する複数の第1回転磁石が回転子に配置されている。第1コイルに電流が流れると、第1トロイダルコアの内部には、周方向に沿って磁束が発生する。通常、第1コイルによる磁束は、第1トロイダルコアの内部に封じ込まれるので、第1トロイダルコアの外部に磁束は生じない。しかしながら、第1コイルに流れる電流が十分に大きいと、第1トロイダルコアが磁気飽和の状態となり、第1トロイダルコアの外部に漏れ磁束が発生する。この漏れ磁束が、複数の第1回転磁石に作用することで、固定子と回転子との間に磁力が生じる。
 例えば第1コイルに直流電圧を断続的に印加すると、第1コイルではサージ電流が周期的に流れ、それに同期して漏れ磁束も周期的に発生する。このとき、第1コイルに流れる電流は、逆起電力による影響を受けて連続的に変化するので、漏れ磁束の大きさや向きも連続的に変化していく。その結果、固定子と回転子との間に周方向の力が作用し、漏れ磁束の発生周期に応じた速度で、回転子は固定子に対して回転する。複数の第1固定磁石は、必ずしも必要とされないが、第1トロイダルコア内に定常的な磁場を形成することで、第1トロイダルコアの磁気飽和(即ち、漏れ磁束の発生)を助長する。
 第2固定磁石、第2トロイダルコア、第2コイル及び第2回転磁石についても、上記と同様に機能する。言い換えると、第2固定磁石、第2トロイダルコア、第2コイル及び第2回転磁石のセットは、必ずしも必要とされない。あるいは、第3固定磁石、第3トロイダルコア、第3コイル及び第3回転磁石のセットがさらに設けられてもよい。
 上記の知見から理解されるように、本技術に係る電動機では、第1コイルが発生する磁束によって、第1トロイダルコアを周期的に磁気飽和させる必要がある。その結果、第1トロイダルコア内の磁束密度は大きな変動を繰り返す。このような磁束密度の変動は、第1トロイダルコア内に電磁誘導による渦電流を生じさせ、例えば第1トロイダルコアの発熱といったエネルギー損失を招き得る。この点に関して、第1トロイダルコアが、積層構造を有する積層コアであると、渦電流の発生を抑制することができる。特に、本技術に係る電動機では、第1トロイダルコアが磁気飽和したときに、第1トロイダルコア内の磁束が軸方向(厚み方向)に傾く。従って、第1トロイダルコアが、その径方向に沿って積層構造を有する積層コアであると、渦電流の発生を効果的に抑制することができる。
 上記した本技術の一側面により、下記する電動機が開示される。この電動機は、固定子と、固定子に対して回転軸を中心に回転可能に支持された回転子とを備える。固定子は、回転軸と同軸に配置された第1トロイダルコアと、第1トロイダルコアに巻かれた少なくとも一つの第1コイルとを有する。回転子は、回転軸を中心とする周方向に沿ってN極とS極とが交互に現れるように配列されているとともに第1トロイダルコアに対向する複数の第1回転磁石を有する。第1トロイダルコアは、その径方向に沿って積層構造を有する積層コアである。即ち、第1トロイダルコアは、磁性材料の層と絶縁材料の層が、第1トロイダルコアの径方向に沿って交互に配置された構造を有する。
図1は、実施例の電動機10の構造を模式的に示す断面図である。
図2は、実施例の電動機10の構造を模式的に示す分解断面図である。
図3は、図1中のIII-III線における断面図であって、複数の第1固定磁石22の配列を示す。
図4は、図1中のIV-IV線における断面図であって、複数の第2固定磁石32の配列を示す。
図5は、図1中のV-V線における断面図であって、複数の第1回転磁石44の配列を示す。
図6は、図1中のVI-VI線における断面図であって、複数の第2回転磁石46の配列を示す。
図7は、図5中のVII-VII線における断面図であって、第1回転磁石44のスキュー角θ1を示す。
図8は、図6中のVIII-VIII線における断面図であって、第2回転磁石46のスキュー角θ2を示す。
図9は、第1回転磁石44に係る変形例であって、揺動可能に支持された第1回転磁石44を示す。
図10は、第1トロイダルコア24と複数の第1コイル26を示す。第2トロイダルコア34と複数の第2コイル36についても同様の構造を有することから、それらに係る参照番号を括弧内に示す。
図11は、第1トロイダルコア24を単体で示す。第2トロイダルコア34についても、同じ構造を有する。
図12は、第3回転磁石50のスキュー角θ3を示す。
図13は、第4回転磁石52のスキュー角θ4を示す。
 本技術の一実施形態において、少なくとも一つの第1コイルは、第1全周巻きコイルを含んでもよい。この場合、第1全周巻きコイルは、第1トロイダルコアの周長の全体に亘って巻かれているとよい。このような構成によると、第1トロイダルコアの全体に亘って均一な磁束を発生させることができる。
 本技術の一実施形態において、少なくとも一つの第1コイルは、少なくとも一つの第1部分巻きコイルを含んでもよい。この場合、第1部分巻きコイルは、第1トロイダルコアの周長の一部の区間に亘って巻かれているとよい。このような構成によると、第1部分巻きコイルが巻かれた区間において、第1トロイダルコア内の磁束密度を選択的に高めることができ、その位置において漏れ磁束を意図的に発生させることができる。
 上記した実施形態において、少なくとも一つの第1コイルは、複数の第1部分巻きコイルを含んでもよい。この場合、複数の第1部分巻きコイルは、第1トロイダルコアの周長に沿って等間隔で配置されていてもよい。一例ではあるが、複数の第1部分巻きコイルの数は、複数の第1回転磁石の数と同じであってよい。この場合、複数の第1部分巻きコイルが、複数の第1回転磁石と同じ角度間隔で配置されてもよい。
 上記した実施形態において、第1部分巻きコイルが巻かれている第1トロイダルコアの前記区間には、第1トロイダルコアの周方向に垂直な断面を局所的に減少させる切り欠き、スリット又は孔が設けられていてもよい。このような構成によると、第1トロイダルコア内の磁束密度を増大させて、第1トロイダルコアの磁気飽和を促すことができる。
 本技術の一実施形態において、固定子は、第1トロイダルコアに対向する複数の第1固定磁石をさらに有してもよい。この場合、複数の第1固定磁石は、前記した周方向に沿ってN極とS極とが交互に現れるように配列されてもよい。このような構成によると、複数の第1固定磁石によって第1トロイダルコア内に定常的な磁場が形成され、それによって第1トロイダルコアの磁気飽和(即ち、漏れ磁束の発生)が助長される。
 本技術の一実施形態において、第1回転磁石には、スキュー角が設けられていてもよい。第1回転磁石にスキュー角を設けることで、回転子に加えられるトルクを大きくすることができる。
 上記した実施形態において、第1回転磁石が回転子に対して揺動可能に支持されており、回転子の回転に伴う遠心力によってスキュー角が変化するとよい。このような構成によると、第1回転磁石のスキュー角が、回転子の回転速度に応じた適切な角度へ自動的に調整されるように構成することができる。この構成は、後述する第2回転磁石についても同様に適用することができる。
 本技術の一実施形態において、回転子は、回転軸に沿って延びるシャフト部と、シャフト部から径方向外側に広がる少なくとも一つのフランジ部とを有するとよい。この場合、少なくとも一つのフランジ部には、複数の第1回転磁石が設けられているとよい。そして、シャフト部には、第1トロイダルコアの内周面に対向する複数の第3回転磁石が設けられているとよい。このような構成によると、第1トロイダルコアからの漏れ磁束が、複数の第3回転磁石にも作用することで、回転子にさらなるトルクを加えることができる。一例ではあるが、複数の第3回転磁石には、スキュー角が設けられていてもよい。
 本技術の一実施形態において、固定子は、回転軸と同軸に配置された第2トロイダルコアと、第2トロイダルコアに巻かれた少なくとも一つの第2コイルとをさらに有してもよい。この場合、回転子は、周方向に沿ってN極とS極とが交互に現れるように配列されているとともに第2トロイダルコアに対向する複数の第2回転磁石をさらに有してもよい。この場合、第2トロイダルコアは、その径方向に沿って積層構造を有する積層コアであるとよい。
 上記した実施形態において、少なくとも一つの第2コイルは、第2全周巻きコイルを含んでもよい。この場合、第2全周巻きコイルは、第2トロイダルコアの周長の全体に亘って巻かれているとよい。このような構成によると、第2トロイダルコアの全体に亘って均一な磁束を発生させることができる。
 上記に加え、又は代えて、少なくとも一つの第2コイルは、少なくとも一つの第1部分巻きコイルを含んでもよい。この場合、第1部分巻きコイルは、第2トロイダルコアの周長の一部の区間に亘って巻かれているとよい。このような構成によると、第2部分巻きコイルが巻かれた区間において、第2トロイダルコア内の磁束密度を選択的に高めることができ、その位置において漏れ磁束を意図的に発生させることができる。
 上記した実施形態において、少なくとも一つの第2コイルは、複数の第2部分巻きコイルを含んでもよい。この場合、複数の第2部分巻きコイルは、第2トロイダルコアの周長に沿って等間隔で配置されていてもよい。一例ではあるが、複数の第2部分巻きコイルの数は、複数の第2回転磁石の数と同じであってよい。この場合、複数の第2部分巻きコイルが、複数の第2回転磁石と同じ角度間隔で配置されてもよい。
 上記した実施形態において、第2部分巻きコイルが巻かれている第2トロイダルコアの区間には、第2トロイダルコアの周方向に垂直な断面を局所的に減少させる切り欠き、スリット又は孔が設けられていてもよい。このような構成によると、第2トロイダルコア内の磁束密度を増大させて、第2トロイダルコアの磁気飽和を促すことができる。
 本技術の一実施形態において、固定子は、第2トロイダルコアに対向する複数の第2固定磁石をさらに有してもよい。この場合、複数の第2固定磁石は、前記した周方向に沿ってN極とS極とが交互に現れるように配列されてもよい。このような構成によると、複数の第2固定磁石によって第2トロイダルコア内に定常的な磁場が形成され、それによって第2トロイダルコアの磁気飽和(即ち、漏れ磁束の発生)が助長される。
 本技術の一実施形態において、回転子は、回転軸に沿って延びるシャフト部と、シャフト部から径方向外側に広がるとともに複数の第2回転磁石が設けられたフランジ部とをさらに有してもよい。この場合、シャフト部には、第2トロイダルコアの内周面に対向する複数の第4回転磁石が設けられていてもよい。このような構成によると、第2トロイダルコアからの漏れ磁束が、複数の第4回転磁石にも作用することで、回転子にさらなるトルクを加えることができる。一例ではあるが、複数の第4回転磁石には、スキュー角が設けられていてもよい。
 本技術の一実施形態では、電動機が、第1トロイダルコアの外周面に沿って巻かれた第1外周コイルと、第1外周コイルと電気的に接続されているとともに第2トロイダルコアの外周面に沿って巻かれた第2外周コイルとをさらに備えてもよい。このような構成によると、第1外周コイルと第2外周コイルとの間の空間に、回転子の回転軸に沿って比較的に一様な磁場を形成することができる。これにより、回転子に無用なトルクを加えることなく、電動機内における磁場の乱れを抑制することができる。
 上記した実施形態において、第1外周コイル及び第2外周コイルの各半径と、第1外周コイルと第2外周コイルとの間の距離とが、実質的に等しくてもよい。このような構成によると、第1外周コイル及び第2外周コイルがいわゆるヘルムホルツコイルの構造を有することから、より一様な磁場が形成されることによって、磁場の乱れを効果的に抑制することができる。なお、ここでいう実質的に等しいとは、それらの平均値に対するそれぞれの偏差が、当該平均値の10パーセント以下であることを意味する。
 以下では、本発明の代表的かつ非限定的な具体例について、図面を参照して詳細に説明する。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本発明の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに発明は、さらに改善された電動機、並びにそれらの使用及び製造方法を提供するために、他の特徴や発明とは別に、又は共に用いることができる。
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本発明を実施する際に必須のものではなく、特に本発明の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本発明の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
 図面を参照して実施例の電動機10について説明する。図1、図2に示すように、実施例の電動機10は、固定子12と回転子14とを備える。回転子14は、複数の軸受け18を介して固定子12に取付けられており、固定子12に対して回転軸Cを中心に回転可能に支持されている。
 先ず、固定子12について説明する。固定子12は、ハウジング16と、第1固定子ユニット20と、第2固定子ユニット30とを有する。第1固定子ユニット20及び第2固定子ユニット30は、ハウジング16内に配置されており、ハウジング16に固定されている。一例ではあるが、ハウジング16は筒形状を有しており、第1固定子ユニット20と第2固定子ユニット30のそれぞれはリング形状(あるいは、トロイダル形状)を有する。
 第1固定子ユニット20は、複数の第1固定磁石22と、第1トロイダルコア24と、第1トロイダルコア24に巻かれた複数の第1コイル26と、第1外周コイル28とを有する。図3に示すように、複数の第1固定磁石22は、回転軸Cを中心とする周方向に沿って、N極とS極とが交互に現れるように配列されている。一例ではあるが、本実施例では、六つの第1固定磁石22が設けられており、それらは周方向に沿って等間隔で配置されている。また、本実施例における第1固定磁石22は永久磁石である。但し、複数の第1固定磁石22の一部又は全部を、永久磁石に代えて電磁石としてもよい。また、第1固定磁石22の数も六つに限定されず、適宜変更することができる。
 第1トロイダルコア24は、トロイダル形状の部材であって、少なくとも一部が軟磁性材料によって構成されている。第1トロイダルコア24は、回転軸Cと同軸に配置されており、複数の第1固定磁石22に対向している。第1トロイダルコア24には、複数の第1コイル26が巻かれている。第1コイル26の数や構造は特に限定されず、少なくとも一つの第1コイル26が、第1トロイダルコア24に巻かれていればよい。本実施例における第1コイル26の構成については、後段において詳細に説明する。第1外周コイル28は、第1トロイダルコア24の外周面に沿って、リング状に巻かれたコイルである。
 第2固定子ユニット30は、第1固定子ユニット20と類似した構造を有する。第2固定子ユニット30は、複数の第2固定磁石32と、第2トロイダルコア34と、第2トロイダルコア34に巻かれた複数の第2コイル36と、第2外周コイル38とを有する。図4に示すように、複数の第2固定磁石32は、回転軸Cを中心とする周方向に沿って、N極とS極とが交互に現れるように配列されている。一例ではあるが、本実施例では、六つの第2固定磁石32が設けられており、それらは周方向に沿って等間隔で配置されている。また、本実施例における第2固定磁石32は永久磁石である。但し、複数の第2固定磁石32の一部又は全部を、永久磁石に代えて、電磁石としてもよい。また、第2固定磁石32の数も六つに限定されず、適宜変更することができる。第2固定磁石32の数は、第1固定磁石22の数と同じであってもよいし、異なってもよい。
 第2トロイダルコア34は、トロイダル形状の部材であって、少なくとも一部が軟磁性材料によって構成されている。特に限定されないが、第2トロイダルコア34は、第1トロイダルコア24と同じ構成を有してもよい。第2トロイダルコア34は、回転軸Cと同軸に配置されており、複数の第2固定磁石32に対向している。第2トロイダルコア34には、複数の第2コイル36が巻かれている。第2コイル36の数や構造についても特に限定されず、少なくとも一つの第2コイル36が、第2トロイダルコア34に巻かれていればよい。本実施例における第2コイル36の構成については、後段において説明するように、第1コイル26の構成と同一である。第2外周コイル38は、第2トロイダルコア34の外周面に沿って、リング状に巻かれたコイルである。第2外周コイル38は、第1外周コイル28と共に、ヘルムホルツコイル又はそれに類似するコイル構造を形成している。
 次に、回転子14について説明する。回転子14は、前述したように、固定子12に対して回転軸Cを中心に回転可能に支持されている。回転子14は、回転軸Cに沿って延びるシャフト部40と、シャフト部40から径方向外側に広がるフランジ部42とを有する。シャフト部40の両端は、第1固定子ユニット20と第2固定子ユニット30とをそれぞれ通過し、軸受け18によって支持されている。フランジ部42は、シャフト部40の軸方向の中央に位置しており、第1固定子ユニット20と第2固定子ユニット30との間に位置している。
 回転子14は、複数の第1回転磁石44と、複数の第2回転磁石46とを有する。図1、図5に示すように、複数の第1回転磁石44は、周方向に沿ってN極とS極とが交互に現れるように配列されている。また、複数の第1回転磁石44は、第1トロイダルコア24を介して複数の第1固定磁石22に対向している。一例ではあるが、本実施例では、六つの第1回転磁石44が設けられており、それらは周方向に沿って等間隔で配置されている。また、本実施例における第1回転磁石44は永久磁石である。但し、複数の第1回転磁石44の一部又は全部を、永久磁石に代えて、電磁石としてもよい。また、第1回転磁石44の数は六つに限定されず、適宜変更することができる。第1回転磁石44の数は、第1固定磁石22の数と同じであってもよいし、異なってもよい。
 図1、図6に示すように、複数の第2回転磁石46は、周方向に沿ってN極とS極とが交互に現れるように配列されている。また、複数の第2回転磁石46は、第2トロイダルコア34を介して複数の第2固定磁石32に対向している。一例ではあるが、本実施例では、六つの第2回転磁石46が設けられており、それらは周方向に沿って等間隔で配置されている。また、本実施例における第2回転磁石46は永久磁石である。但し、複数の第2回転磁石46の一部又は全部を、永久磁石に代えて、電磁石としてもよい。また、第2回転磁石46の数は六つに限定されず、適宜変更することができる。第2回転磁石46の数は、第2固定磁石32及び/又は第1回転磁石44の数と同じであってもよいし、異なってもよい。
 図7に示すように、各々の第1回転磁石44は、回転子14の回転方向に沿って傾けられており、第1回転磁石44の法線H1は、回転子14の回転軸Cに対して角度θ1を成す。本明細書では、この角度θ1を第1回転磁石44のスキュー角θ1と称する。なお、ここでいう第1回転磁石44の法線H1とは、第1回転磁石44の第1トロイダルコア24に対向する面の法線を意味する。同様に、図8に示すように、各々の第2回転磁石46は、回転子14の回転方向に沿って傾けられており、第2回転磁石46の法線H2は、回転子14の回転軸Cに対して角度θ2を成す。本明細書では、この角度θ2を第1回転磁石44のスキュー角θ2と称する。ここでいう第2回転磁石46の法線H2とは、第2回転磁石46の第2トロイダルコア34に対向する面の法線を意味する。なお、第1回転磁石44は、スキュー角θ1を必ずしも必要としない。また、複数の第1回転磁石44の一部のみに、スキュー角θ1を設けてもよい。これらの点については、複数の第2回転磁石46についても同様である。また、このようなスキュー角は、必要に応じて、第1固定磁石22及び/又は第2固定磁石32に設けることもできる。
 他の実施形態として、図9に示すように、第1回転磁石44は、フランジ部42(即ち、回転子14)に対して揺動可能に支持されていてもよい。この場合、第1回転磁石44のスキュー角θ1は、回転子14の回転に伴う遠心力によって変化してもよい。第2回転磁石46も同様に、フランジ部42(即ち、回転子14)に対して揺動可能に支持されており、そのスキュー角θ2が回転子14の回転に伴う遠心力によって変化してもよい。
 図3、図4に示すように、複数の第1固定磁石22と複数の第2固定磁石32は、磁極の配置について鏡面対称となっている。それに対して、複数の第1回転磁石44と複数の第2回転磁石46は、磁極の配置について鏡面対称となっておらず、互いに60度の位相差を有する。このような構造により、第1回転磁石44と第1固定磁石22とが異極同士で対向するときの回転子14の回転位置では、第2回転磁石46と第2固定磁石32とが同極同士で対向する。また、第1回転磁石44と第1固定磁石22とが同極同士で対向するときの回転子14の回転位置では、第2回転磁石46と第2固定磁石32とが異極同士で対向する。
 図1、図2に戻り、回転子14は、任意付加的に、複数の第3回転磁石50と複数の第4回転磁石52とを有してもよい。複数の第3回転磁石50は、回転子14のシャフト部40に設けられており、第1トロイダルコア24の内周面24aに対向している。複数の第3回転磁石50は、周方向に沿ってN極とS極とが交互に現れるように配列されている。また、複数の第3回転磁石50は、少なくとも部分的に、第1トロイダルコア24を介して複数の第1固定磁石22に対向している。これにより、複数の第3回転磁石50は、複数の第1回転磁石44と同様の機能を発揮し得る。一例ではあるが、本実施例では、六つの第3回転磁石50が設けられており、それらは周方向に沿って等間隔で配置されている。また、本実施例における第3回転磁石50は永久磁石である。但し、複数の第3回転磁石50の一部又は全部を、永久磁石に代えて、電磁石としてもよい。また、第3回転磁石50の数は六つに限定されず、適宜変更することができる。第3回転磁石50の数は、第1回転磁石44の数と同じであってもよいし、異なってもよい。
 複数の第4回転磁石52は、回転子14のシャフト部40に設けられており、第2トロイダルコア34の内周面34aに対向している。複数の第4回転磁石52は、周方向に沿ってN極とS極とが交互に現れるように配列されている。また、複数の第4回転磁石52は、少なくとも部分的に、第2トロイダルコア34を介して複数の第2固定磁石32に対向している。これにより、複数の第4回転磁石52は、複数の第2回転磁石46と同様の機能を発揮し得る。一例ではあるが、本実施例では、六つの第4回転磁石52が設けられており、それらは周方向に沿って等間隔で配置されている。また、本実施例における第4回転磁石52は永久磁石である。但し、複数の第4回転磁石52の一部又は全部を、永久磁石に代えて、電磁石としてもよい。また、第4回転磁石52の数は六つに限定されず、適宜変更することができる。第4回転磁石52の数は、第2回転磁石46の数と同じであってもよいし、異なってもよい。
 次に、図10、図11を参照して、第1トロイダルコア24及び複数の第1コイル26について説明する。図10に示すように、複数の第1コイル26には、第1全周巻きコイル26aと、複数の第1部分巻きコイル26bとが含まれる。第1全周巻きコイル26aは、第1トロイダルコア24の周長の全体に亘って巻かれている。各々の第1部分巻きコイル26bは、第1トロイダルコア24の周長の一部の区間に亘って巻かれている。本実施例では、六つの第1部分巻きコイル26bが設けられており、それらは周方向に沿って等間隔で配置されている。第1全周巻きコイル26aと第1部分巻きコイル26bのそれぞれは、外部から電流が供給可能に構成されている。一例ではあるが、第1全周巻きコイル26aと、各々の第1部分巻きコイル26bは、互いに独立して電流が供給されるように構成されている。但し、他の実施形態として、複数の第1部分巻きコイル26bは、互いに直列又は並列に接続され、それらの電流が一括して制御されてもよい。
 図11に示すように、第1トロイダルコア24には、複数のスリット25が設けられており、第1トロイダルコア24の周方向に垂直な断面は局所的に減少している。これにより、第1トロイダルコア24は、各々のスリット25が設けられた位置において、磁束密度が高まりやすく、磁気飽和しやすい構造となっている。特に限定されないが、各々のスリット25は、第1部分巻きコイル26bが巻かれている区間に位置している。また、第1トロイダルコア24は、その径方向Rに沿って積層構造を有する積層コアである。即ち、磁性材料の層24sと絶縁材料の層24tが、第1トロイダルコア24の径方向Rに沿って交互に配置されている。磁性材料の層24sは、特に限定されないが、例えばケイ素鋼、パーマロイ、センダスト、炭素系材料で構成することができる。
 第2トロイダルコア34及び複数の第2コイル36も、同様の構成を有している。即ち、図10に示すように、複数の第2コイル36には、第2全周巻きコイル36aと、複数の第2部分巻きコイル36bとが含まれる。本実施例では、六つの第2部分巻きコイル36bが設けられており、それらは周方向に沿って等間隔で配置されている。第2全周巻きコイル36aと第2部分巻きコイル36bのそれぞれは、外部から電流が供給可能に構成されている。そして、図11に示すように、第2トロイダルコア34にも、複数のスリット35が設けられており、第2トロイダルコア34の周方向に垂直な断面は局所的に減少している。各々のスリット35は、第2部分巻きコイル36bが巻かれている区間に位置している。第2トロイダルコア34は、その径方向Rに沿って積層構造を有する積層コアである。即ち、磁性材料の層34sと絶縁材料の層34tが、第2トロイダルコア34の径方向Rに沿って交互に配置されている。
 次に、電動機10の動作について説明する。本実施例の電動機10では、第1コイル26の巻かれた第1トロイダルコア24が固定子12に配置され、第1トロイダルコア24に対向する複数の第1回転磁石44が回転子14に配置されている。第1コイル26に電流が流れると、第1トロイダルコア24の内部には、周方向に沿って磁束が発生する。通常、第1コイル26による磁束は、第1トロイダルコア24の内部に封じ込まれるので、第1トロイダルコア24の外部に磁束は生じない。しかしながら、第1コイル26に流れる電流が十分に大きいと、第1トロイダルコア24が磁気飽和の状態となり、第1トロイダルコア24の外部に漏れ磁束が発生する。この漏れ磁束が、複数の第1回転磁石44や複数の第3回転磁石50に作用することで、固定子12と回転子14との間に磁力が生じる。
 電動機10を動作させる一態様として、第1コイル26に直流電圧を断続的に印加することができる。第1コイル26に直流電圧が断続的に印加されると、第1コイル26ではサージ電流が周期的に流れ、それに同期して第1トロイダルコア24からの漏れ磁束も周期的に発生する。このとき、第1コイル26に流れる電流は、逆起電力による影響を受けて連続的に変化するので、漏れ磁束の大きさや向きも連続的に変化していく。その結果、固定子12と回転子14との間に周方向の力が作用し、漏れ磁束の発生周期に応じた速度で、回転子14は固定子12に対して回転する。複数の第1固定磁石22は、必ずしも必要とされないが、第1トロイダルコア24内に定常的な磁場を形成することで、第1トロイダルコア24の磁気飽和(即ち、漏れ磁束の発生)を助長する。なお、電動機10を動作させる他の一態様として、第1コイル26に高周波数の交流電圧を印加することも考えられる。
 第2固定磁石32、第2トロイダルコア34、第2コイル36及び第2回転磁石46についても、上記と同様に機能する。即ち、第2コイル36にも直流電圧を断続的に印加することで、固定子12と回転子14との間に周方向の力が作用し、漏れ磁束の発生周期に応じた速度で、回転子14は固定子12に対して回転する。なお、第2固定磁石32、第2トロイダルコア34、第2コイル36及び第2回転磁石46のセットは、必ずしも必要とされない。あるいは、第3固定磁石、第3トロイダルコア、第3コイル及び第3回転磁石のセットがさらに設けられてもよい。
 本実施例の電動機10では、第1コイル26が発生する磁束によって、第1トロイダルコア24を周期的に磁気飽和させる必要がある。その結果、第1トロイダルコア24内の磁束密度は大きな変動を繰り返す。このような磁束密度の変動は、第1トロイダルコア24内に電磁誘導による渦電流を生じさせ、例えば第1トロイダルコア24の発熱といったエネルギー損失を招き得る。この点に関して、本実施例における第1トロイダルコア24は、積層構造を有する積層コアであり(図11参照)、渦電流の発生を抑制することができる。ここで、第1トロイダルコア24内の磁束は、第1トロイダルコア24が磁気飽和したときに、第1トロイダルコア24の軸方向(厚み方向)に傾く。従って、第1トロイダルコア24が、その径方向Rに沿って積層構造を有する積層コアであると、渦電流の発生を効果的に抑制することができる。第2トロイダルコア34についても同様である。第2トロイダルコア34が、その径方向Rに沿って積層構造を有する積層コアであると、第2トロイダルコア34における渦電流の発生を効果的に抑制することができる。
 第1トロイダルコア24を磁気飽和させるためには、第1全周巻きコイル26a又は一つの第1部分巻きコイル26bだけでも足りる。但し、第1全周巻きコイル26aは、第1トロイダルコア24の全体に亘って均一な磁束を発生させ、第1トロイダルコア24をより確実に磁気飽和させることができる。この点は、第2トロイダルコア34についても同様である。第2全周巻きコイル36aが設けられていると、第2トロイダルコア34の全体に亘って均一な磁束が発生して、第2トロイダルコア34をより確実に磁気飽和させることができる。
 第1部分巻きコイル26bは、必ずしも必要とされない。但し、第1部分巻きコイル26bが設けられていると、第1部分巻きコイル26bが巻かれた区間において、第1トロイダルコア24内の磁束密度が高まる。従って、第1部分巻きコイル26bを設けることにより、その位置において漏れ磁束を意図的に発生させることができる。第2部分巻きコイル36bについても同様である。第2トロイダルコア34においても、第2部分巻きコイル36bを設けることにより、その位置において漏れ磁束を意図的に発生させることができる。
 本実施例では、第1トロイダルコア24に複数のスリット25が設けられている。このような構成によると、第1トロイダルコア24の断面積が減少することによって、第1トロイダルコア24内の磁束密度が増大する。これにより。第1トロイダルコア24の磁気飽和を促すことができる。なお、他の実施形態として、第1トロイダルコア24には、スリット25に代えて、又は加えて、切り欠き又は孔が形成されてもよい。このような構成によっても、第1トロイダルコア24の断面積を局所的に減少させることができる。このような構成は、第2トロイダルコア34にも同様に採用することができる。
 本実施例では、第1回転磁石44と第2回転磁石46とに、スキュー角θ1、θ2がそれぞれ設けられている。これにより、回転子14に加えられるトルクを大きくすることができる。また、コギングの発生を抑制することもできる。このようなスキュー角は、第1固定磁石22及び/又は第2固定磁石32にも同様に設けてもよい。
 本実施例では、回転子14のシャフト部40に、第1トロイダルコア24の内周面24aに対向する複数の第3回転磁石50と、第2トロイダルコア34の内周面34aに対向する複数の第4回転磁石52が設けられている。複数の第3回転磁石50は、複数の第1回転磁石44と同様に機能することができ、複数の第4回転磁石52は、複数の第2回転磁石46と同様に機能することができる。即ち、第1トロイダルコア24からの漏れ磁束が、複数の第3回転磁石50にも作用することで、回転子14にさらなるトルクを加えることができる。また、第2トロイダルコア34からの漏れ磁束が、複数の第4回転磁石52にも作用することで、回転子14にさらなるトルクを加えることができる。
 図12に示すように、第3回転磁石50は、いわゆるステップスキューの構造を有しており、スキュー角θ3が設けられている。このようなスキュー角θ3が設けられていると、第1回転磁石44のスキュー角θ1と同様に、回転子14へ加えられるトルクが増大され、かつ、コギングの発生が抑制される。図13に示すように、第4回転磁石52もステップスキューの構造を有しており、スキュー角θ4が設けられている。これにより、第2回転磁石46のスキュー角θ2と同様に、回転子14へ加えられるトルクが増大され、かつ、コギングの発生が抑制される。なお、第3回転磁石50及び/又は第4回転磁石52にスキュー角θ3、θ4を設ける具体的な構造については、特に限定されず、適宜変更することができる。
 本実施例では、第1外周コイル28と第2外周コイル38とが、ヘルムホルツコイル又はそれに類似するコイル構造を形成している。このような構成によると、第1外周コイル28と第2外周コイル38のそれぞれに同じ方向の電流を供給することで、第1外周コイル28と第2外周コイル38との間の空間に、回転子14の回転軸Cに沿って比較的に一様な磁場を形成することができる。これにより、回転子14に無用なトルクを加えることなく、電動機10内における磁場の乱れを抑制することができる。一例ではあるが、第1外周コイル28及び第2外周コイル38の各半径と、第1外周コイル28と第2外周コイル38との間の距離とが実質的に等しいと、第1外周コイル28及び第2外周コイル38は理想的なヘルムホルツコイルの構造を有する。この場合、より一様な磁場が形成されることによって、磁場の乱れを効果的に抑制することができる。
 本実施例の電動機10は、発電機としても利用することができる。即ち、外力によって回転子14を回転させることによって、第1コイル26及び第2コイル36から電力を取り出すことができる。詳しくは、回転子14が固定子21に対して回転すると、第1回転磁石44と第1部分巻きコイル26bとの間の距離が変動し、各々の第1部分巻きコイル26bに誘導起電力が発生する。また、第1部分巻きコイル26bに起電力が発生し、第1部分巻きコイル26bに電流が流れることで、第1トロイダルコア24内に磁束が発生する。回転子14の回転に応じて第1トロイダルコア24内の磁束は変動し、その結果、第1全周巻きコイル26aにも誘導起電力が発生する。これにより、第1全周巻きコイル26aから電力が出力される。同様に、回転子14が固定子21に対して回転すると、第2全周巻きコイル36aからも電力が出力される。このように、回転子14に加えられた回転エネルギーが、電力エネルギーに変換されて第1コイル26及び第2コイル36から出力される。

Claims (19)

  1.  固定子と、
     前記固定子に対して回転軸を中心に回転可能に支持された回転子と、を備え、
     前記固定子は、前記回転軸と同軸に配置された第1トロイダルコアと、前記第1トロイダルコアに巻かれた少なくとも一つの第1コイルとを有し、
     前記回転子は、前記回転軸を中心とする周方向に沿ってN極とS極とが交互に現れるように配列されているとともに前記第1トロイダルコアに対向する複数の第1回転磁石を有し、
     前記第1トロイダルコアは、その径方向に沿って積層構造を有する積層コアである、電動機。
  2.  前記少なくとも一つの第1コイルは、第1全周巻きコイルを含み、
     前記第1全周巻きコイルは、前記第1トロイダルコアの周長の全体に亘って巻かれている、請求項1に記載の電動機。
  3.  前記少なくとも一つの第1コイルは、少なくとも一つの第1部分巻きコイルを含み、
     前記第1部分巻きコイルは、前記第1トロイダルコアの周長の一部の区間に亘って巻かれている、請求項1又は2に記載の電動機。
  4.  前記少なくとも一つの第1コイルは、複数の前記第1部分巻きコイルを含み、
     前記複数の第1部分巻きコイルは、前記第1トロイダルコアの前記周長に沿って等間隔で配置されている、請求項3に記載の電動機。
  5.  前記第1部分巻きコイルが巻かれている前記第1トロイダルコアの前記区間には、前記第1トロイダルコアの周方向に垂直な断面を局所的に減少させる切り欠き、スリット又は孔が設けられている、請求項3又は4に記載の電動機。
  6.  前記固定子は、前記第1トロイダルコアに対向する複数の第1固定磁石をさらに有し、
     前記複数の第1固定磁石は、前記周方向に沿ってN極とS極とが交互に現れるように配列されている、請求項1から5のいずれか一項に記載の電動機。
  7.  前記第1回転磁石には、スキュー角が設けられている、請求項1から6のいずれか一項に記載の電動機。
  8.  前記第1回転磁石は、前記回転子に対して揺動可能に支持されており、前記回転子の回転に伴う遠心力によって前記スキュー角が変化する、請求項7に記載の電動機。
  9.  前記回転子は、
     前記回転軸に沿って延びるシャフト部と、
     前記シャフト部から径方向外側に広がるとともに、前記複数の第1回転磁石が設けられたフランジ部と、をさらに有し、
     前記シャフト部には、前記第1トロイダルコアの内周面に対向する複数の第3回転磁石が設けられている、請求項1から8のいずれか一項に記載の電動機。
  10.  前記第3回転磁石には、スキュー角が設けられている、請求項9に記載の電動機。
  11.  前記固定子は、前記回転軸と同軸に配置された第2トロイダルコアと、前記第2トロイダルコアに巻かれた少なくとも一つの第2コイルとをさらに有し、
     前記回転子は、前記周方向に沿ってN極とS極とが交互に現れるように配列されているとともに前記第2トロイダルコアに対向する複数の第2回転磁石をさらに有し、
     前記第2トロイダルコアは、その径方向に沿って積層構造を有する積層コアである、請求項1から10のいずれか一項に記載の電動機。
  12.  前記少なくとも一つの第2コイルは、第2全周巻きコイルを含み、
     前記第2全周巻きコイルは、前記第2トロイダルコアの周長の全体に亘って巻かれている、請求項11に記載の電動機。
  13.  前記少なくとも一つの第2コイルは、少なくとも一つの第1部分巻きコイルを含み、
     前記第2部分巻きコイルは、前記第2トロイダルコアの周長の一部の区間に亘って巻かれている、請求項11又は12に記載の電動機。
  14.  前記少なくとも一つの第2コイルは、複数の前記第2部分巻きコイルを含み、
     前記複数の第2部分巻きコイルは、前記第2トロイダルコアの前記周長に沿って等間隔で配置されている、請求項13に記載の電動機。
  15.  前記第2部分巻きコイルが巻かれている前記第2トロイダルコアの前記区間には、前記第2トロイダルコアの周方向に垂直な断面を局所的に減少させる切り欠き、スリット又は孔が設けられている、請求項13又は14に記載の電動機。
  16.  前記固定子は、前記第2トロイダルコアに対向する複数の第2固定磁石をさらに有し、
     前記複数の第2固定磁石は、前記周方向に沿ってN極とS極とが交互に現れるように配列されている、請求項11から15のいずれか一項に記載の電動機。
  17.  前記回転子は、
     前記回転軸に沿って延びるシャフト部と、
     前記シャフト部から径方向外側に広がるとともに、前記複数の第2回転磁石が設けられたフランジ部と、をさらに有し、
     前記シャフト部には、前記第2トロイダルコアの内周面に対向する複数の第4回転磁石が設けられている、請求項11から16のいずれか一項に記載の電動機。
  18.  前記第1トロイダルコアの外周面に沿って巻かれた第1外周コイルと、
     前記第1外周コイルと電気的に接続されているとともに、前記第2トロイダルコアの外周面に沿って巻かれた第2外周コイルと、
     をさらに備える請求項11から17のいずれか一項に記載の電動機。
  19.  前記第1外周コイル及び前記第2外周コイルの各半径と、前記第1外周コイルと前記第2外周コイルとの間の距離とが実質的に等しい、請求項18に記載の電動機。
PCT/JP2017/021805 2017-06-13 2017-06-13 電動機 WO2018229866A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021805 WO2018229866A1 (ja) 2017-06-13 2017-06-13 電動機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021805 WO2018229866A1 (ja) 2017-06-13 2017-06-13 電動機

Publications (1)

Publication Number Publication Date
WO2018229866A1 true WO2018229866A1 (ja) 2018-12-20

Family

ID=64660835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021805 WO2018229866A1 (ja) 2017-06-13 2017-06-13 電動機

Country Status (1)

Country Link
WO (1) WO2018229866A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129841A (ja) * 1986-11-20 1988-06-02 Haiteku Kenkyusho:Kk 高効率ブラシレスモ−タ
JPH09135545A (ja) * 1995-11-07 1997-05-20 Nippon Steel Corp 電気モ−タ
JP2002010537A (ja) * 2000-06-26 2002-01-11 Mitsubishi Heavy Ind Ltd アキシャルギャップ型モータ
JP2006074989A (ja) * 2004-08-02 2006-03-16 Nissan Motor Co Ltd アキシャルギャップ型回転電機
JP2010115096A (ja) * 2008-11-10 2010-05-20 Tetsuo Okamoto 発電機
JP2010172048A (ja) * 2009-01-20 2010-08-05 Tetsuo Okamoto 電動機
JP2011172385A (ja) * 2010-02-18 2011-09-01 Daikin Industries Ltd アキシャルギャップ型モータおよび圧縮機
JP2015033287A (ja) * 2013-08-06 2015-02-16 株式会社ダイナックス アキシャルギャップモータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129841A (ja) * 1986-11-20 1988-06-02 Haiteku Kenkyusho:Kk 高効率ブラシレスモ−タ
JPH09135545A (ja) * 1995-11-07 1997-05-20 Nippon Steel Corp 電気モ−タ
JP2002010537A (ja) * 2000-06-26 2002-01-11 Mitsubishi Heavy Ind Ltd アキシャルギャップ型モータ
JP2006074989A (ja) * 2004-08-02 2006-03-16 Nissan Motor Co Ltd アキシャルギャップ型回転電機
JP2010115096A (ja) * 2008-11-10 2010-05-20 Tetsuo Okamoto 発電機
JP2010172048A (ja) * 2009-01-20 2010-08-05 Tetsuo Okamoto 電動機
JP2011172385A (ja) * 2010-02-18 2011-09-01 Daikin Industries Ltd アキシャルギャップ型モータおよび圧縮機
JP2015033287A (ja) * 2013-08-06 2015-02-16 株式会社ダイナックス アキシャルギャップモータ

Similar Documents

Publication Publication Date Title
JP6503950B2 (ja) ロータ及びブラシレスモータ
WO2013047076A1 (ja) 回転電機
WO2003056688A1 (fr) Generateur
JP6327221B2 (ja) 回転電機
JP2014051995A (ja) 3軸能動制御型磁気軸受
JP2016538817A (ja) 横磁束形電気機械
JP2016192886A (ja) 磁石レス回転電機
JP3207418U (ja) 単相モータ
WO2017171037A1 (ja) ロータ及びロータの設計方法
JP2007202363A (ja) 回転電機
JP6658707B2 (ja) 回転電機
JP2010045932A (ja) モータ
JP6201405B2 (ja) 回転電機
WO2018229866A1 (ja) 電動機
WO2018221449A1 (ja) 電動機
JP2017028842A (ja) モータ
WO2011036723A1 (ja) 同期発電機
JP6580182B2 (ja) 回転電機
JP6830073B2 (ja) 回転電機
JP2009273231A (ja) ハイブリッド励磁モータ
JP2009124852A (ja) 回転電機のロータ及び回転電機
JP2016158318A (ja) 回転電機
JP5340332B2 (ja) 回転電機
JP2008220143A (ja) 回転電機のロータ及び回転電機
JP2010166787A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP