WO2018229859A1 - 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 - Google Patents

表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 Download PDF

Info

Publication number
WO2018229859A1
WO2018229859A1 PCT/JP2017/021776 JP2017021776W WO2018229859A1 WO 2018229859 A1 WO2018229859 A1 WO 2018229859A1 JP 2017021776 W JP2017021776 W JP 2017021776W WO 2018229859 A1 WO2018229859 A1 WO 2018229859A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
subpixel
adjacent
display device
Prior art date
Application number
PCT/JP2017/021776
Other languages
English (en)
French (fr)
Inventor
山渕 浩二
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2017/021776 priority Critical patent/WO2018229859A1/ja
Priority to US16/620,070 priority patent/US20210083016A1/en
Publication of WO2018229859A1 publication Critical patent/WO2018229859A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a display device.
  • Patent Document 1 discloses a configuration in which a common light emitting layer is provided for a plurality of sub-pixels of the same color in an organic EL display.
  • the mask used for forming the light emitting layer is a stripe type (slit type), and this type has a problem that the position of the slit is biased, so that there is a problem that it is difficult to achieve high definition and large size.
  • a display device includes a first sub-pixel, a second sub-pixel, a third sub-pixel, a fourth sub-pixel, and a fifth sub-pixel, and the first sub-pixel adjacent in the first direction and
  • the fourth sub-pixel shares an island-shaped light emitting layer that emits light of the first color
  • the third sub-pixel and the fifth sub-pixel adjacent in the first direction emit an island-shaped light-emitting layer that emits the second color.
  • the first sub-pixel and the third sub-pixel are adjacent to each other in a second direction orthogonal to the first direction.
  • the definition of the opening of the mask used for forming the light emitting layer of each color can be made lower than the definition of the subpixel of each color. Therefore, it is suitable for high definition and large size.
  • FIG. 2 is a plan view showing a sub-pixel structure according to Embodiment 1.
  • FIG. (A) is a top view which shows the subpixel structure of Embodiment 1
  • (b) is a top view which shows the structure of the mask (for red subpixel) used in Embodiment 1
  • FIG. 4 is a plan view showing a configuration of a mask (for blue subpixels) used in the first embodiment
  • (d) is a plan view showing a configuration of a mask (for green subpixels) used in the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a method for depositing a light emitting layer (red) in the first embodiment.
  • 1 is a block diagram illustrating a configuration of a display device manufacturing apparatus according to a first embodiment.
  • A is a top view which shows the subpixel structure of a reference example
  • (b) is a top view which shows the structure of the mask (for red subpixels) used by a reference example
  • (c) is a reference example
  • FIG. 4D is a plan view showing a configuration of a mask (for blue subpixel) used in FIG.
  • FIG. 4D is a plan view showing a configuration of a mask (for green subpixel) used in a reference example.
  • FIG. 10 is a plan view illustrating a modification of the sub-pixel arrangement in the first embodiment. 6 is a plan view showing a sub-pixel arrangement according to Embodiment 2.
  • FIG. 10 is a plan view showing a modification of the sub-pixel arrangement in the second embodiment. It is a top view which shows the modification of FIG.
  • FIG. 1 is a flowchart showing an example of a display device manufacturing method.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of a display device.
  • a resin layer 12 is formed on a substrate (for example, mother glass) (step S1).
  • the inorganic barrier film 3 is formed (step S2).
  • the TFT layer 4 is formed (step S3).
  • a light emitting element layer (for example, OLED element layer) 5 is formed (step S4).
  • the sealing layer 6 is formed (step S5).
  • step S6 the substrate (for example, mother glass) is peeled off by laser irradiation, and the lower surface film 10 is attached (step S6).
  • step S7 division is performed, and a plurality of pieces are cut out (step S7).
  • step S8 the functional film 39 is attached to the upper side of the individual sealing layer 6 via the adhesive layer 38 (step S8).
  • step S9 an electronic circuit board (IC chip, FPC, etc.) is mounted on the individual terminal portions (step S9). Thereby, the display device 2 shown in FIG. 2 is obtained.
  • Each step of FIG. 1 is performed by a display device manufacturing apparatus. Note that step S6 can be skipped when an inflexible display device is manufactured.
  • the lower film 10 is made of PET or the like and functions as a support material and a protective material.
  • Examples of the material of the resin layer 12 include polyimide, epoxy, and polyamide.
  • Examples of the material of the lower film 10 include polyethylene terephthalate (PET).
  • the barrier layer 3 is a layer that prevents moisture and impurities from reaching the TFT layer 4 and the light emitting element layer 5 when the display device is used.
  • the barrier layer 3 is formed by CVD, such as a silicon oxide film, a silicon nitride film, Alternatively, a silicon oxynitride film or a laminated film thereof can be used.
  • the TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) formed above the semiconductor film 15, a gate electrode G formed above the inorganic insulating film 16, and a gate electrode G From the inorganic insulating film 18 formed on the upper side, the capacitive wiring C formed on the upper side of the inorganic insulating film 18, the inorganic insulating film 20 formed on the upper side of the capacitive wiring C, and the inorganic insulating film 20 Source electrode S and drain electrode D, and planarization film 21 formed above source electrode S and drain electrode D, respectively.
  • the thin film transistor Tr is configured to include the semiconductor film 15, the inorganic insulating film 16 (gate insulating film), and the gate electrode G.
  • the source electrode S is connected to the source region of the semiconductor film 15, and the drain electrode D is connected to the drain region of the semiconductor film 15.
  • the semiconductor film 15 is made of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor.
  • the gate insulating film 16 can be constituted by, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method.
  • the gate electrode G, the source wiring S, and the drain wiring D are, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu). It is comprised by the metal single layer film or laminated film containing at least 1 of these.
  • the TFT having the semiconductor film 15 as a channel is shown as a top gate structure, but a bottom gate structure may be used (for example, when the TFT channel is an oxide semiconductor).
  • the inorganic insulating films 18 and 20 can be composed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
  • the planarizing film (interlayer insulating film) 21 can be made of a photosensitive organic material that can be applied, such as polyimide or acrylic.
  • the light-emitting element layer 5 (for example, an organic light-emitting diode layer) includes anodes (first electrodes) 22r, 22R, and 22g formed above the planarizing film 21, banks (partition walls) 23 that define sub-pixels, An EL (electroluminescence) layer 24 formed above the anode and a cathode (second electrode) 25 formed above the EL layer 24 are included.
  • OLED organic light emitting diode
  • a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are stacked in this order from the lower layer side by vapor deposition, for example. Can be formed.
  • the light emitting layer is formed in an island shape, but at least one of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer may be a solid common layer.
  • the light emitting layer (R ⁇ G ⁇ B) and the hole transport layer (G ⁇ R) can be formed in an island shape, and the other layers can be used as a common layer.
  • a positive hole injection layer, a positive hole transport layer, an electron carrying layer, and an electron injection layer the structure which does not form one or more of these is also possible.
  • a light emitting element for example, organic light emitting diode: OLED
  • OLED organic light emitting diode
  • the edge of each anode is covered with a bank 23, and a subpixel is constituted by an area in each anode bank (exposed area not covered by the bank), an EL layer (including a light emitting layer), and a cathode overlapping therewith. Is done.
  • a region overlapping with an exposed region of each anode is a light emitting region.
  • the TFT layer 4 is provided with a sub-pixel circuit that drives each sub-pixel.
  • the red sub-pixel SP1 has the anode 22r
  • the red sub-pixel SP4 has the anode 22R
  • the red sub-pixels SP1 and SP4 share the island-shaped light emitting layer 24r that emits red light
  • the green subpixel SP2 has an anode 22g and a light emitting layer 24g that emits green light
  • the subpixels SP1, SP2, and SP4 have a common cathode 25.
  • the island-shaped light emitting layer 24r is formed so as to straddle the bank 23 that separates the sub-pixel SP1 and the sub-pixel SP4.
  • the red sub-pixels SP1 and SP4 share one island-like light emitting layer 24r, but the anodes are electrically independent, and the luminance of the sub-pixels SP1 and SP4 is controlled separately.
  • the bank 23 that separates the subpixels SP1 and SP4 is lower than the bank 23 that separates the subpixels SP1 and SP2, but this is for convenience of description, and both may be the same height. (See FIG. 5). However, the former (the bank 23 that separates the subpixels SP1 and SP4) can be made higher than the latter (the bank 23 that separates the subpixels SP1 and SP2), or the latter can be made higher than the former.
  • the convex portion formed by the higher bank can be used as the contact portion of the mask during vapor deposition.
  • the anode (22r, 22R, 22g) is composed of, for example, a laminate of ITO (Indium Tin Oxide) and an alloy containing Ag, and has light reflectivity.
  • the cathode 25 can be made of a light-transmitting conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zincum Oxide).
  • the light emitting element layer 5 is an OLED layer
  • holes and electrons are recombined in the EL layer 24 by the drive current between the anode (22r, 22R, 22g) and the cathode 25, and the exciton generated thereby returns to the ground state.
  • the cathode 25 is light-transmitting and the anode 22 is light-reflective, the light emitted from the light emitting layer of the EL layer 24 is directed upward and becomes top emission.
  • the light emitting element layer 5 is not limited to constituting an OLED element, and may constitute an inorganic light emitting diode or a quantum dot light emitting diode.
  • the sealing layer 6 is translucent, and includes a first inorganic sealing film 26 that covers the cathode 25, an organic sealing film 27 that is formed above the first inorganic sealing film 26, and an organic sealing film 27. And a second inorganic sealing film 28 covering the surface.
  • the first inorganic sealing film 26 and the second inorganic sealing film 28 are each formed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a stacked film thereof formed by CVD using a mask. Can be configured.
  • the organic sealing film 27 is a light-transmitting organic film thicker than the first inorganic sealing film 26 and the second inorganic sealing film 28, and is made of a photosensitive organic material that can be applied, such as polyimide or acrylic. Can do.
  • a photosensitive organic material such as polyimide or acrylic.
  • an ink containing such an organic material is applied onto the first inorganic sealing film 26 by inkjet and then cured by UV irradiation.
  • the sealing layer 6 covers the light emitting element layer 5 and prevents penetration of foreign matters such as water and oxygen into the light emitting element layer 5.
  • the functional film 39 has, for example, an optical compensation function, a touch sensor function, a protection function, and the like.
  • FIG. 3 is a plan view showing a sub-pixel structure according to the first embodiment.
  • FIG. 4A is a plan view showing the sub-pixel structure of Embodiment 1
  • FIG. 4B is a plan view showing the configuration of the mask (for red sub-pixel) used in Embodiment 1.
  • 4C is a plan view showing the configuration of the mask (for blue subpixel) used in the first embodiment
  • FIG. 4D is the configuration of the mask (for green subpixel) used in the first embodiment.
  • FIG. 4E is a cross-sectional view showing a configuration of adjacent red sub-pixels
  • FIG. 4F is a cross-sectional view showing a configuration of adjacent blue sub-pixels.
  • the display device 2 includes a plurality of pixels PX arranged in a first direction (horizontal direction in the figure) and a second direction (vertical direction in the figure).
  • the pixel PX includes a red sub-pixel SP (R), a blue sub-pixel SP (B), and a green sub-pixel SP (G).
  • the sub-pixel SP (R) and the sub-pixel SP (G) are the first.
  • the sub-pixel SP (B) that is adjacent to the direction and extends in the first direction is adjacent to the red sub-pixel sub-pixel SP (R) and the sub-pixel SP (G) in the second direction. Pixels constitute an OLED.
  • the first direction is the row direction
  • the second direction is the column direction
  • n is an integer greater than or equal to 0, and the (4n + 1) th and (4n + 3) th subpixel rows are in the first direction.
  • a red pair composed of two adjacent red sub-pixels and a green pair composed of two green sub-pixels adjacent in the first direction are alternately arranged, and the (4n + 2) and (4n + 4) rows
  • a blue pair composed of two blue sub-pixels adjacent in the first direction is arranged, and in each pair, two sub-pixels adjacent in the first direction share the light emitting layer and are viewed in the second direction.
  • Red sub-pixel, blue sub-pixel, green sub-pixel, blue sub-pixel array, or green sub-pixel, blue sub-pixel, red sub-pixel and blue sub-pixel array are repeated .
  • the display device 2 includes a first subpixel SP1 (red), a second subpixel SP2 (green), a third subpixel SP3 (blue), a fourth subpixel SP4 (red), a fifth subpixel SP5 (blue), And a sixth sub-pixel SP6 (green).
  • the first sub-pixel SP1 and the second sub-pixel SP2 are adjacent to each other in the first direction
  • the third sub-pixel SP3 is adjacent to the first sub-pixel SP1 and the second sub-pixel SP2 in the second direction
  • the first A pixel PX1 is configured by the sub-pixel SP1, the second sub-pixel, and the third sub-pixel SP3, and one of the two pixels (PX2) adjacent to the pixel PX1 in the first direction (PX2) has a fourth sub-pixel SP4 and a fifth sub-pixel.
  • SP5 is included
  • the other (PX3) includes the sixth sub-pixel SP6.
  • the three subpixels red, blue, The arrangement of (green) is line symmetric.
  • the first sub-pixel SP1 and the fourth sub-pixel SP4 adjacent in the first direction share the island-shaped light emitting layer 24r that emits red light, and the third sub-pixel SP3 and the fifth sub-pixel SP5 adjacent in the first direction.
  • Share the island-shaped light emitting layer 24b that emits blue light, and the first subpixel SP1 and the third subpixel SP3 are adjacent to each other in the second direction orthogonal to the first direction, and are adjacent to each other in the first direction.
  • SP2 and the sixth sub-pixel SP6 share the island-shaped light emitting layer 24g that emits green light.
  • Each of the first subpixel SP1 to the sixth subpixel SP6 has an electrically independent anode.
  • the first subpixel SP1 has an anode 22r
  • the fourth subpixel SP4 has an anode 22R
  • the third subpixel SP3 has an anode 22b.
  • the fifth sub-pixel SP5 has an anode 22B.
  • the first subpixel SP1 to the sixth subpixel SP6 have a common cathode 25.
  • the display device 2 includes a sub-pixel circuit for each sub-pixel, and the potential of the anode of each sub-pixel is set by the sub-pixel circuit formed in the TFT layer 4, whereby data is transmitted to each sub-pixel (OLED). A current corresponding to the signal flows.
  • the third sub-pixel SP3 (blue) has a larger light emitting area than the first sub-pixel SP1 (red) and the second sub-pixel SP2 (green). Specifically, the size of the light emitting region in the first direction is large. In general, a blue light-emitting layer is more easily deteriorated than a red light-emitting layer and a green light-emitting layer, but this makes it possible to compensate for blue light.
  • the island-shaped light emitting layer 24b (blue) shared by the third subpixel SP3 and the fifth subpixel SP5 is the island-shaped light emitting layer 24r (red) shared by the first subpixel SP1 and the fourth subpixel SP4.
  • the area is larger than the island-shaped light emitting layer 24g (green) shared by the second subpixel SP2 and the sixth subpixel SP6.
  • step S4 of FIG. 1 the red light emitting layer forming step for forming the island-shaped light emitting layer 24r shared by the first subpixel SP1 and the fourth subpixel SP4, and the third subpixel SP3 and the fifth subpixel SP5 are shared.
  • the mask Mr is aligned with the laminated body 7 in which the substrate, the resin layer, the barrier layer, the TFT layer, the anodes 22r and 22R, and the bank 23 are laminated. Then, the red light emitting material from the vapor deposition source passes through the opening Kr overlapping the anodes 22r and 22R, and is vapor deposited inside the bank 23.
  • the definition of the opening Kr of the mask Mr used in the red light emitting layer forming step is higher than the definition of the red sub-pixel (SP1, SP4, etc.).
  • the definition of the opening Kb of the mask Mb used in the blue light emitting layer forming step is lower than the definition of the blue sub-pixel (SP3, SP5, etc.), and the opening Kg of the mask Mg used in the green light emitting layer forming step is low.
  • the definition is lower than the definition of the green sub-pixel (SP2, SP6, etc.).
  • the opening Kb of the mask Mb is larger than the opening Kr of the mask Mr and the opening Kg of the mask Mg. Note that the definition (numerical aperture) of the mask Mr, the mask Mb, and the mask Mg is the same.
  • FIG. 6 is a block diagram illustrating a configuration of the display device manufacturing apparatus according to the first embodiment.
  • the display device manufacturing apparatus 70 includes a film forming apparatus 76, a cutting apparatus 77, a mounting apparatus 80, and a controller 72 that controls these apparatuses.
  • the film forming apparatus 76 performs step S4 of FIG.
  • an independent light emitting layer is formed for each sub-pixel using the mask (mr ⁇ mb ⁇ mg) shown in FIG. 7 having the same aperture definition as that of the sub-pixel for each color.
  • the mask (Mr / Mb / Mg) used for forming the light emitting layers of the respective colors can have a half of the opening definition, which facilitates mask alignment. Further, since a conventional stripe type mask is not used, it contributes to high definition and large size.
  • FIG. 8 is a plan view showing a modification of the sub-pixel arrangement in the first embodiment.
  • the gap width kx between two sub-pixels that share the light-emitting layer and are adjacent in the first direction is equal to the gap width kx between the two sub-pixels that are adjacent in the first direction without sharing the light-emitting layer. It can also be made smaller than the gap width KX.
  • the gap width kx between the first subpixel SP1 and the fourth subpixel SP4 and the gap width kx between the third subpixel SP3 and the fifth subpixel SP5 are set as the gap between the first subpixel SP1 and the second subpixel SP2. It is made smaller than the width KX.
  • the light emitting layer (shared by two subpixels) can be made small without changing the size of the light emitting region of each subpixel, which is suitable for high definition.
  • the openings of the masks of the respective colors are reduced, the strength of the mask is increased and generation of wrinkles or the like is suppressed. This makes it easier to align the mask.
  • adjacent sub-pixels of the same color that are adjacent in the first direction are close to each other, and the definition in the first direction may appear to be low.
  • the first sub-pixel row BJ is shared by the first light emitting layer so that the position of the luminance center of gravity does not vary from pixel to pixel. It is also possible to make the gap width between two subpixels adjacent in the direction equal to the gap width between two subpixels adjacent in the first direction without sharing the light emitting layer.
  • FIG. 9 is a plan view showing a sub-pixel arrangement according to the second embodiment.
  • the display device 2 includes a plurality of pixels PX arranged in a first direction (horizontal direction in the figure) and a second direction (vertical direction in the figure).
  • the pixel PX includes a red sub-pixel SP (R), a blue sub-pixel SP (B), and a green sub-pixel SP (G).
  • the sub-pixel SP (R) and the sub-pixel SP (G) are the first.
  • the sub-pixel SP (B) that is adjacent to the direction and extends in the first direction is adjacent to the red sub-pixel sub-pixel SP (R) and the sub-pixel SP (G) in the second direction. Pixels constitute an OLED.
  • the first direction is the row direction
  • the second direction is the column direction
  • n is an integer greater than or equal to 0.
  • a red pair composed of two red sub-pixels adjacent in the first direction and a green pair composed of two green sub-pixels adjacent in the first direction are alternately arranged
  • the (8n + 2) th, (8n + 3) th, (8n + 6) th, and (8n + 7) th subpixel rows blue pairs of two blue subpixels adjacent in the first direction are arranged.
  • Two sub-pixels adjacent in the first direction share a light emitting layer, and when viewed in the second direction, a red sub-pixel, a blue sub-pixel, a blue sub-pixel, a green sub-pixel, a green sub-pixel, Of blue sub-pixel, blue sub-pixel, red sub-pixel Beauty, or green sub-pixel, blue sub-pixels, the sub-pixels of blue, red sub-pixels, the red sub-pixel, blue sub-pixels, blue sub-pixels, the arrangement of the green sub-pixel is repeated.
  • the display device 2 of Embodiment 2 includes a seventh subpixel SP7 (red) and an eighth subpixel SP8 (red) adjacent in the first direction, A ninth sub-pixel SP9 (blue) and a tenth sub-pixel SP10 (blue) adjacent in the first direction, and an eleventh sub-pixel SP11 (green) and a twelfth sub-pixel SP12 (green) adjacent in the first direction.
  • the pixel PX4 is adjacent to each of the pixels PX5 and PX6 in the first direction, the pixel PX7 and the pixel PX8 are adjacent to each other in the first direction, and one of the two pixels adjacent to the pixel PX1 in the second direction (PX4).
  • the seventh sub-pixel SP7 and the eleventh sub-pixel SP11 are included, and the other (PX7) includes the ninth sub-pixel SP9.
  • One of the two pixels adjacent to the pixel PX2 in the second direction (PX5) includes the eighth sub-pixel SP8, and the other (PX8) includes the tenth sub-pixel SP10.
  • the twelfth sub-pixel SP12 is included in the pixel PX6 adjacent to the pixel PX3 in the second direction.
  • the three subpixels (red, blue, and red) in the pixel are defined with the boundary line of both subpixels running in the second direction as the symmetry axis.
  • the arrangement of green) is line symmetric, and for two pixels adjacent to the second direction (for example, PX1 and PX4), 3 pixels in the pixel with the boundary line of both sub-pixels running in the first direction as the symmetry axis
  • the arrangement of the two sub-pixels (red, blue, green) is line symmetric.
  • the pixel SP8 shares the island-shaped light emitting layer 24r.
  • the light emitting layer 24r is formed so as to straddle the banks separating the subpixels SP1, SP4, SP7, and SP8.
  • the pixel SP10 shares the island-shaped light emitting layer 24b.
  • the pixel SP12 shares the island-shaped light emitting layer 24g.
  • an independent light-emitting layer is formed for each sub-pixel using the mask (mr ⁇ mb ⁇ mg) shown in FIG. 7 having the same aperture definition as that of the sub-pixel for each color.
  • the aperture definition of the mask used for forming the light emitting layers of the respective colors can be reduced to a quarter, so that the mask alignment becomes easier.
  • FIG. 10 is a plan view showing a modification of the sub-pixel arrangement in the second embodiment.
  • the gap width between two subpixels adjacent in the first direction sharing the light emitting layer is larger than the gap width between two subpixels adjacent in the first direction without sharing the light emitting layer.
  • the gap width ky between two subpixels adjacent in the second direction sharing the light emitting layer is made smaller than the gap width KY between two subpixels adjacent in the second direction without sharing the light emitting layer. You can also do it.
  • the gap width ky between the first subpixel SP1 and the seventh subpixel SP7 and the gap width ky between the third subpixel SP3 and the ninth subpixel SP9 are set as the gap between the first subpixel SP1 and the third subpixel SP3.
  • the light emitting layer (shared by two subpixels) can be made small without changing the size of the light emitting region of each subpixel, which is suitable for high definition.
  • the openings of the masks of the respective colors are reduced, the strength of the mask is increased and generation of wrinkles or the like is suppressed. This makes it easier to align the mask.
  • the blue sub-pixel row BJ shares the light emitting layer and is adjacent in the first direction so that the position of the luminance centroid of the pixel unit does not vary from pixel to pixel. It is also possible to make the gap width between two subpixels that match each other equal to the gap width between two subpixels adjacent in the first direction without sharing the light emitting layer.
  • the third sub-pixel and the fifth sub-pixel adjacent to each other in the first direction share the island-shaped light-emitting layer that emits the second color, and the first sub-pixel and the fifth sub-pixel
  • the sixth sub-pixel adjacent to the second sub-pixel in the first direction is provided, and the second sub-pixel and the sixth sub-pixel share an island-shaped light emitting layer that emits the third color light.
  • the indicated display device is
  • each of the first subpixel to the sixth subpixel includes a first electrode that is electrically independent.
  • the first sub-pixel and the second sub-pixel are adjacent to each other in the first direction, and the first sub-pixel, the second sub-pixel, and the third sub-pixel constitute a first pixel,
  • the display device according to, for example, aspect 3, wherein the second pixel adjacent in the first direction includes the fourth subpixel and the fifth subpixel adjacent in the second direction.
  • the first subpixel, the second subpixel, the third subpixel, the fourth subpixel, the fifth subpixel, and the sixth subpixel have a common second electrode. Display device.
  • the island-shaped light emitting layer emitting the first color is formed across the bank between the first sub-pixel and the fourth sub-pixel, and the island-shaped light emitting layer emitting the second color emits the third sub-pixel.
  • Aspect 9 The display device according to Aspect 2, for example, wherein the island-shaped light emitting layer shared by the plurality of subpixels is formed so as to straddle a bank separating the plurality of subpixels.
  • Aspect 10 The display device according to Aspect 4, for example, wherein one of the first color and the third color is red, the other is green, and the second color is blue.
  • Aspect 11 The display device according to Aspect 10, for example, wherein the third sub-pixel has a light emitting area larger than that of the first sub-pixel and the second sub-pixel.
  • Aspect 12 The display device according to Aspect 11, for example, wherein the third sub-pixel has a larger size in the first direction of the light emitting region than the first sub-pixel and the second sub-pixel.
  • a third subpixel; and a fifth subpixel comprising: a ninth subpixel adjacent to the first direction; a tenth subpixel adjacent to the first direction; an eleventh subpixel and a twelfth subpixel adjacent to the first direction; And the ninth sub-pixel adjacent to the third sub-pixel in the second direction and the tenth sub-pixel adjacent to the fifth sub-pixel in the second direction emit light of the second color.
  • One of the two pixels adjacent to the one pixel in the second direction includes the seventh sub-pixel and the eleventh sub-pixel, and the other includes the ninth sub-pixel.
  • the second pixel and the second pixel The display device according to Aspect 14, for example, wherein one of two pixels adjacent in the direction includes the eighth sub-pixel and the other includes the tenth sub-pixel.
  • Aspect 16 The display device according to Aspect 15, for example, wherein a gap width between the first subpixel and the seventh subpixel is smaller than a gap width between the first subpixel and the third subpixel.
  • Aspect 18 The definition of the opening of the first mask used in the first step is lower than the definition of the sub-pixel of the first color, and the definition of the opening of the second mask used in the second step is the second color.
  • the display device manufacturing method according to Aspect 17 which is lower than the definition of the sub-pixel.
  • Aspect 20 The display device manufacturing method according to Aspect 18 or 19, for example, wherein the first color is red or green and the second color is blue.
  • the fifth sub-pixel is adjacent to the first direction, and the first sub-pixel and the third sub-pixel are adjacent to each other in a second direction orthogonal to the first direction.
  • a display device manufacturing apparatus that performs a second step of forming an island-shaped light emitting layer for color light emission.
  • the electro-optical element (electro-optical element whose luminance and transmittance are controlled by current) included in the display device according to the present embodiment is not particularly limited.
  • the display device according to the present embodiment includes, for example, an organic EL (Electro Luminescence) display including an OLED (Organic Light Emitting Diode) as an electro-optical element, and an inorganic light-emitting diode as an electro-optical element.
  • OLED Organic Light Emitting Diode
  • inorganic light-emitting diode as an electro-optical element.
  • Inorganic EL displays, and QLED displays equipped with QLEDs (Quantum dot Light Emitting Diodes) as electro-optical elements are exemplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

第1サブ画素(SP1)、第2サブ画素(SP2)、第3サブ画素(SP3)、第4サブ画素(SP4)および第5サブ画素(SP5)を備え、第1方向に隣接する前記第1サブ画素および前記第4サブ画素が、第1色発光する島状の発光層(24r)を共有し、第1方向に隣接する前記第3サブ画素および前記第5サブ画素が、第2色発光する島状の発光層(24b)を共有し、前記第1サブ画素および前記第3サブ画素が、前記第1方向と直交する第2方向に隣接する。

Description

表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
 本発明は、表示デバイスに関する。
 特許文献1には、有機ELディスプレイにおいて、同色の複数のサブ画素に共通の発光層を設ける構成が開示されている。
特開2011-48962号公報(2011年3月10日公開)
 特許文献1においては発光層の形成に用いるマスクがストライプタイプ(スリットタイプ)であり、このタイプはスリット位置が偏る性質があるため、高精細化や大型化することが難しいという問題がある。
 本発明の一態様に係る表示デバイスは、第1サブ画素、第2サブ画素、第3サブ画素、第4サブ画素および第5サブ画素を備え、第1方向に隣接する前記第1サブ画素および前記第4サブ画素が、第1色発光する島状の発光層を共有し、第1方向に隣接する前記第3サブ画素および前記第5サブ画素が、第2色発光する島状の発光層を共有し、前記第1サブ画素および前記第3サブ画素が、前記第1方向と直交する第2方向に隣接する。
 本発明の一態様によれば、各色の発光層の形成に用いるマスクについて、その開口の精細度を各色のサブ画素の精細度よりも低くすることができる。よって、高精細化や大型化に好適である。
表示デバイスの製造方法の一例を示すフローチャートである。 表示デバイスの構成例を示す断面図である。 実施形態1のサブ画素構造を示す平面図である。 (a)は実施形態1のサブ画素構造を示す平面図であり、(b)は、実施形態1で用いるマスク(赤のサブ画素用)の構成を示す平面図であり、(c)は、実施形態1で用いるマスク(青のサブ画素用)の構成を示す平面図であり、(d)は、実施形態1で用いるマスク(緑のサブ画素用)の構成を示す平面図であり、(e)は隣り合う赤のサブ画素の構成を示す断面図であり、(f)は隣り合う青のサブ画素の構成を示す断面図である。 実施形態1における発光層(赤)の蒸着方法を示す断面図である。 実施形態1の表示デバイス製造装置の構成を示すブロック図である。 (a)は参考例のサブ画素構造を示す平面図であり、(b)は、参考例で用いるマスク(赤のサブ画素用)の構成を示す平面図であり、(c)は、参考例で用いるマスク(青のサブ画素用)の構成を示す平面図であり、(d)は、参考例で用いるマスク(緑のサブ画素用)の構成を示す平面図である。 実施形態1におけるサブ画素配列の変形例を示す平面図である。 実施形態2のサブ画素配列を示す平面図である。 実施形態2におけるサブ画素配列の変形例を示す平面図である。 図10の変形例を示す平面図である。
 図1は、表示デバイスの製造方法の一例を示すフローチャートである。図2は、表示デバイスの構成例を示す断面図である。例えば、可撓性の表示デバイスを製造する場合、図1・図2に示すように、まず、基板(例えば、マザーガラス)上に樹脂層12を形成する(ステップS1)。次いで、無機バリア膜3を形成する(ステップS2)。次いで、TFT層4を形成する(ステップS3)。次いで、発光素子層(例えば、OLED素子層)5を形成する(ステップS4)。次いで、封止層6を形成する(ステップS5)。次いで、レーザ照射によって基板(例えば、マザーガラス)を剥がし、下面フィルム10を貼り付ける(ステップS6)。次いで、分断を行い、複数の個片を切り出す(ステップS7)。次いで、個片の封止層6の上側に接着層38を介して機能フィルム39を貼り付ける(ステップS8)。次いで、個片の端子部に電子回路基板(ICチップ、FPC等)を実装する(ステップS9)。これにより、図2に示す表示デバイス2を得る。図1の各ステップは表示デバイスの製造装置が行う。なお、非可撓性の表示デバイスを製造する場合にはステップS6をスキップすることができる。
 下面フィルム10は、PET等で構成され、支持材、保護材として機能とする。樹脂層12の材料としては、例えば、ポリイミド、エポキシ、ポリアミド等が挙げられる。下面フィルム10の材料としては、例えばポリエチレンテレフタレート(PET)が挙げられる。
 バリア層3は、表示デバイスの使用時に、水分や不純物が、TFT層4や発光素子層5に到達することを防ぐ層であり、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
 TFT層4は、半導体膜15と、半導体膜15よりも上側に形成される無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも上側に形成されるゲート電極Gと、ゲート電極Gよりも上側に形成される無機絶縁膜18と、無機絶縁膜18よりも上側に形成される容量配線Cと、容量配線Cよりも上側に形成される無機絶縁膜20と、無機絶縁膜20よりも上側に形成される、ソース電極Sおよびドレイン電極Dと、ソース電極Sおよびドレイン電極Dよりも上側に形成される平坦化膜21とを含む。
 半導体膜15、無機絶縁膜16(ゲート絶縁膜)、ゲート電極Gを含むように薄膜トランジスタTrが構成される。ソース電極Sは半導体膜15のソース領域に接続され、ドレイン電極Dは半導体膜15のドレイン領域に接続される。
 半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。ゲート絶縁膜16は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。ゲート電極G、ソース配線S、およびドレイン配線Dは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。なお、図2では、半導体膜15をチャネルとするTFTがトップゲート構造で示されているが、ボトムゲート構造でもよい(例えば、TFTのチャネルが酸化物半導体の場合)。
 無機絶縁膜18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。平坦化膜(層間絶縁膜)21は、例えば、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。
 発光素子層5(例えば、有機発光ダイオード層)は、平坦化膜21よりも上側に形成されるアノード(第1電極)22r・22R・22gと、サブ画素を規定するバンク(隔壁)23と、アノードよりも上側に形成されるEL(エレクトロルミネッセンス)層24と、EL層24よりも上側に形成されるカソード(第2電極)25とを含む。 発光素子層5が有機発光ダイオード(OLED)層である場合、は、例えば蒸着法によって、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を積層することによって形成しうる。なお、図2等のEL層24には発光層だけを記載している。発光層は島状に形成されるが、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の少なくとも1層をベタ状の共通層としてもよい。例えば、発光層(R・G・B)および正孔輸送層(G・R)を島状にして、その他の層を共通層とすることができる。正孔注入層、正孔輸送層、電子輸送層、および電子注入層については、これらのうち1つ以上を形成しない構成も可能である。
 電気的に独立したアノード(22r・22R・22g)、EL層24、およびカソード25によって発光素子(例えば、有機発光ダイオード:OLED)が構成される。各アノードのエッジはバンク23によって覆われており、各アノードのバンク内の領域(バンクで覆われていない露出領域)と、これに重なるEL層(発光層含む)およびカソードとによってサブ画素が構成される。発光層のうち、各アノードの露出領域(バンクで覆われていない領域)と重なる領域が発光領域である。なお、TFT層4には、サブ画素ごとにこれを駆動するサブ画素回路が設けられる。
 図2では、赤のサブ画素SP1がアノード22rを有し、赤のサブ画素SP4がアノード22Rを有し、赤のサブ画素SP1・SP4が赤色発光する島状の発光層24rを共有する。また、緑のサブ画素SP2がアノード22gおよび緑色発光する発光層24gを有し、サブ画素SP1・SP2・SP4は共通のカソード25を有する。例えば、島状の発光層24rは、サブ画素SP1およびサブ画素SP4を分離するバンク23を跨ぐように形成される。赤のサブ画素SP1・SP4は、1つの島状の発光層24rを共有しているが、それぞれのアノードは電気的に独立しており、サブ画素SP1・SP4は別々に輝度制御される。
 図2では、サブ画素SP1・SP4を分離するバンク23が、サブ画素SP1・SP2を分離するバンク23よりも低いが、これは記載上の便宜のためであって、両者は同じ高さでよい(図5参照)。ただし、前者(サブ画素SP1・SP4を分離するバンク23)を後者(サブ画素SP1・SP2を分離するバンク23)よりも高くしたり、後者を前者よりも高くしたりすることも可能である。高い方のバンクによって形成される凸部を蒸着時のマスクの当接部とすることもできる。
 アノード(22r・22R・22g)は、例えばITO(Indium Tin Oxide)とAgを含む合金との積層によって構成され、光反射性を有する。カソード25は、ITO(Indium Tin Oxide)、IZO(Indium Zincum Oxide)等の透光性の導電材で構成することができる。
 発光素子層5がOLED層である場合、アノード(22r・22R・22g)およびカソード25間の駆動電流によって正孔と電子がEL層24内で再結合し、これによって生じたエキシトンが基底状態に落ちることによって、光が放出される。カソード25が透光性であり、アノード22が光反射性であるため、EL層24の発光層から放出された光は上方に向かい、トップエミッションとなる。
 発光素子層5は、OLED素子を構成する場合に限られず、無機発光ダイオードあるいは量子ドット発光ダイオードを構成してもよい。
 封止層6は透光性であり、カソード25を覆う第1無機封止膜26と、第1無機封止膜26よりも上側に形成される有機封止膜27と、有機封止膜27を覆う第2無機封止膜28とを含む。
 第1無機封止膜26および第2無機封止膜28はそれぞれ、例えば、マスクを用いたCVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
 有機封止膜27は、第1無機封止膜26および第2無機封止膜28よりも厚い、透光性有機膜であり、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。例えば、このような有機材料を含むインクを第1無機封止膜26上にインクジェット塗布した後、UV照射により硬化させる。封止層6は、発光素子層5を覆い、水、酸素等の異物の発光素子層5への浸透を防いでいる。
 機能フィルム39は、例えば、光学補償機能、タッチセンサ機能、保護機能等を有する。
 〔実施形態1〕
 図3は、実施形態1のサブ画素構造を示す平面図である。図4(a)は実施形態1のサブ画素構造を示す平面図であり、図4(b)は、実施形態1で用いるマスク(赤のサブ画素用)の構成を示す平面図であり、図4(c)は、実施形態1で用いるマスク(青のサブ画素用)の構成を示す平面図であり、図4(d)は、実施形態1で用いるマスク(緑のサブ画素用)の構成を示す平面図であり、図4(e)は隣り合う赤のサブ画素の構成を示す断面図であり、図4(f)は隣り合う青のサブ画素の構成を示す断面図である。
 図3に示すように、表示デバイス2は、第1方向(図中横方向)および第2方向(図中縦方向)に並べられた複数の画素PXを含む。画素PXは、赤のサブ画素SP(R)、青のサブ画素SP(B)および緑のサブ画素SP(G)によって構成され、サブ画素SP(R)およびサブ画素SP(G)が第1方向に隣接し、第1方向に延伸する形状であるサブ画素SP(B)が、赤のサブ画素サブ画素SP(R)およびサブ画素SP(G)それぞれと第2方向に隣接し、各サブ画素がOLEDを構成する。
 実施形態1の表示デバイス2では、第1方向を行方向、第2方向を列方向、nを0以上の整数として、(4n+1)番目および(4n+3)番目のサブ画素行では、第1方向に隣り合う2つの赤のサブ画素からなる赤のペアと、第1方向に隣り合う2つの緑のサブ画素からなる緑のペアとが交互に並べられ、(4n+2)行目および(4n+4)行目では、第1方向に隣り合う2つの青のサブ画素からなる青のペアが並べられ、各ペアでは、第1方向に隣り合う2つのサブ画素が発光層を共有し、第2方向に見ると、赤のサブ画素、青のサブ画素、緑のサブ画素、青のサブ画素の並び、あるいは緑のサブ画素、青のサブ画素、赤のサブ画素および青のサブ画素の並びが繰り返されている。
 表示デバイス2は、第1サブ画素SP1(赤)、第2サブ画素SP2(緑)、第3サブ画素SP3(青)、第4サブ画素SP4(赤)、第5サブ画素SP5(青)、および第6サブ画素SP6(緑)を備える。ここでは、第1サブ画素SP1および第2サブ画素SP2が第1方向に隣接し、第3サブ画素SP3が、第1サブ画素SP1および第2サブ画素SP2と第2方向に隣接し、第1サブ画素SP1、第2サブ画素および第3サブ画素SP3によって画素PX1が構成され、画素PX1と第1方向に隣接する2つの画素の一方(PX2)に、第4サブ画素SP4および第5サブ画素SP5が含まれ、他方(PX3)に第6サブ画素SP6が含まれる。
 図9では、第1方向に隣り合う2つの画素(例えば、PX1・PX2)について、第2方向に走る両サブ画素の境界線を対称軸として、画素内の3つサブ画素(赤・青・緑)の配置が線対称である。そして、第1方向に隣接する第1サブ画素SP1および第4サブ画素SP4が赤色発光する島状の発光層24rを共有し、第1方向に隣接する第3サブ画素SP3および第5サブ画素SP5が青色発光する島状の発光層24bを共有し、第1サブ画素SP1および第3サブ画素SP3が、第1方向と直交する第2方向に隣接し、第1方向に隣接する第2サブ画素SP2および第6サブ画素SP6が緑色発光する島状の発光層24gを共有する。
 第1サブ画素SP1~第6サブ画素SP6それぞれが電気的に独立したアノードを有する。例えば、図4(e)(f)に示すように、第1サブ画素SP1はアノード22rを有し、第4サブ画素SP4はアノード22Rを有し、第3サブ画素SP3はアノード22bを有し、第5サブ画素SP5はアノード22Bを有する。また、第1サブ画素SP1~第6サブ画素SP6が共通のカソード25を有する。
 表示デバイス2は、サブ画素ごとにサブ画素回路を備えており、TFT層4に形成されるサブ画素回路によって各サブ画素のアノードの電位が設定され、これによって、各サブ画素(OLED)にデータ信号に応じた電流が流れる。
 第3サブ画素SP3(青)は、第1サブ画素SP1(赤)および第2サブ画素SP2(緑)よりも発光領域が大きい。具体的には発光領域の第1方向のサイズが大きい。一般に青の発光層は、赤の発光層および緑の発光層よりも劣化し易いとされるが、こうすれば青色光の補償を行うことが可能となる。
 なお、第3サブ画素SP3および第5サブ画素SP5が共有する島状の発光層24b(青)は、第1サブ画素SP1および第4サブ画素SP4が共有する島状の発光層24r(赤)、および第2サブ画素SP2および第6サブ画素SP6が共有する島状の発光層24g(緑)よりも面積が大きい。
 図1のステップS4は、第1サブ画素SP1および第4サブ画素SP4が共有する島状の発光層24rを形成する赤色発光層形成工程と、第3サブ画素SP3および第5サブ画素SP5が共有する島状の発光層24bを形成する青色発光層形成工程と、第2サブ画素SP2および第6サブ画素SP6が共有する島状の発光層24gを形成する緑色発光層形成工程とを含む。
 例えば、赤色発光層形成工程では、図5に示すように、基板、樹脂層、バリア層、TFT層、アノード22r・22Rおよびバンク23が積層されている積層体7に対してマスクMrを位置合わせし、蒸着源からの赤の発光材料を、アノード22r・22Rと重なる開口Krを通過させ、バンク23の内側に蒸着させる。
 ここで、図4(b)(c)(d)に示すように、赤色発光層形成工程で用いるマスクMrの開口Krの精細度は、赤色のサブ画素(SP1・SP4等)の精細度よりも低く、青色発光層形成工程で用いるマスクMbの開口Kbの精細度は、青色のサブ画素(SP3・SP5等)の精細度よりも低く、緑色発光層形成工程で用いるマスクMgの開口Kgの精細度は、緑色のサブ画素(SP2・SP6等)の精細度よりも低い。
 また、マスクMbの開口Kbは、マスクMrの開口KrおよびマスクMgの開口Kgよりも大きい。なお、マスクMr、マスクMbおよびマスクMgの精細度(開口数)は同一である。
 図6は、実施形態1の表示デバイス製造装置の構成を示すブロック図である。図6に示すように、表示デバイス製造装置70は、成膜装置76と、分断装置77と、実装装置80と、これらの装置を制御するコントローラ72とを含んでおり、コントローラ72の制御を受けた成膜装置76が図1のステップS4を行う。
 実施形態1によれば、図7に示す、各色についてサブ画素の精細度と同一の開口精細度を有するマスク(mr・mb・mg)を用いて、サブ画素ごとに独立した発光層を形成する参考形態と比較して、各色の発光層の形成に用いるマスク(Mr・Mb・Mg)の開口精細度を2分の1とすることができるため、マスクの位置合わせが容易になる。また、従来のようなストライプタイプのマスクを用いないため、高精細化、大型化にも資する。
 図8は実施形態1におけるサブ画素配列の変形例を示す平面図である。図8(a)に示すように、発光層を共有して第1方向に隣り合う2つのサブ画素の間隙幅kxを、発光層を共有することなく第1方向に隣り合う2つのサブ画素の間隙幅KXよりも小さくすることもできる。例えば、第1サブ画素SP1および第4サブ画素SP4の間隙幅kxと、第3サブ画素SP3および第5サブ画素SP5の間隙幅kxとを、第1サブ画素SP1および第2サブ画素SP2の間隙幅KXよりも小さくする。こうすれば、各サブ画素の発光領域のサイズを変えることなく、(2つのサブ画素で共有する)発光層を小さくすることができるため、高精細化に好適となる。また、各色のマスクの開口が小さくなるため、マスクの強度が高められ、皺等の発生が抑えられる。これにより、マスクの位置合わせが一層容易になる。
ただし、図8(a)では、第1方向に隣り合う同色のサブ画素が近接しており、第1方向の精細度が低く見える可能性があるため、隣り合う同色のサブ画素が分割視認されるように、画素ごとの仕切りと、同一画素内で3色の光が拡散する構造を設けることが望ましい。
 図8(b)に示すように、ホワイトバランスを考慮し、画素単位の輝度重心の位置が画素ごとにばらつかないように、青のサブ画素行BJについては、発光層を共有して第1方向に隣り合う2つのサブ画素の間隙幅と、発光層を共有することなく第1方向に隣り合う2つのサブ画素の間隙幅とを等しくすることも可能である。
 〔実施形態2〕
 図9は、実施形態2のサブ画素配列を示す平面図である。図9に示すように、表示デバイス2は、第1方向(図中横方向)および第2方向(図中縦方向)に並べられた複数の画素PXを含む。画素PXは、赤のサブ画素SP(R)、青のサブ画素SP(B)および緑のサブ画素SP(G)によって構成され、サブ画素SP(R)およびサブ画素SP(G)が第1方向に隣接し、第1方向に延伸する形状であるサブ画素SP(B)が、赤のサブ画素サブ画素SP(R)およびサブ画素SP(G)それぞれと第2方向に隣接し、各サブ画素がOLEDを構成する。
 実施形態2の表示デバイス2では、第1方向を行方向、第2方向を列方向、nを0以上の整数として、(8n+1)番目、(8n+4)番目、(8n+5)番目、および(8n+8)番目のサブ画素行では、第1方向に隣り合う2つの赤のサブ画素からなる赤のペアと、第1方向に隣り合う2つの緑のサブ画素からなる緑のペアとが交互に並べられ、(8n+2)番目、(8n+3)番目、(8n+6)番目、および(8n+7)番目のサブ画素行では、第1方向に隣り合う2つの青のサブ画素からなる青のペアが並べられ、各ペアでは、第1方向に隣り合う2つのサブ画素が発光層を共有し、第2方向に見ると、赤のサブ画素、青のサブ画素、青のサブ画素、緑のサブ画素、緑のサブ画素、青のサブ画素、青のサブ画素、赤のサブ画素の並び、あるいは緑のサブ画素、青のサブ画素、青のサブ画素、赤のサブ画素、赤のサブ画素、青のサブ画素、青のサブ画素、緑のサブ画素の並びが繰り返されている。
 実施形態2の表示デバイス2は、前述の第1サブ画素SP1~第6サブ画素SP6に加え、第1方向に隣接する第7サブ画素SP7(赤)および第8サブ画素SP8(赤)と、第1方向に隣接する第9サブ画素SP9(青)および第10サブ画素SP10(青)と、第1方向に隣接する第11サブ画素SP11(緑)および第12サブ画素SP12(緑)とを備える。
 画素PX4は画素PX5および画素PX6それぞれと第1方向に隣接し、画素PX7および画素PX8が第1方向に隣接しており、画素PX1と第2方向に隣接する2つの画素の一方(PX4)に、第7サブ画素SP7および第11サブ画素SP11が含まれ、他方(PX7)に第9サブ画素SP9が含まれる。画素PX2と第2方向に隣接する2つの画素の一方(PX5)に、第8サブ画素SP8が含まれ、他方(PX8)に第10サブ画素SP10が含まれる。画素PX3と第2方向に隣接する画素PX6に、第12サブ画素SP12が含まれる。
 図9では、第1方向に隣り合う2つの画素(例えば、PX1・PX2)については、第2方向に走る両サブ画素の境界線を対称軸として、画素内の3つサブ画素(赤・青・緑)の配置が線対称であり、第2方向に隣り合う2つの画素(例えば、PX1・PX4)については、第1方向に走る両サブ画素の境界線を対称軸として、画素内の3つサブ画素(赤・青・緑)の配置が線対称である。
 そして、第1サブ画素SP1と、第4サブ画素SP4と、第1サブ画素SP1と第2方向に隣接する第7サブ画素SP7と、第4サブ画素SP4と第2方向に隣接する第8サブ画素SP8とが、島状の発光層24rを共有する。なお、発光層24rは、サブ画素SP1・SP4・SP7・SP8を分離するバンクを跨ぐように形成される。
また、第3サブ画素SP3と、第5サブ画素SP5と、第3サブ画素SP3と第2方向に隣接する第9サブ画素SP9と、第5サブ画素SP5と第2方向に隣接する第10サブ画素SP10とが、島状の発光層24bを共有する。また、第2サブ画素SP2と、第6サブ画素SP6と、第2サブ画素SP2と第2方向に隣接する第11サブ画素SP11と、第6サブ画素SP6と第2方向に隣接する第12サブ画素SP12とが、島状の発光層24gを共有する。
 実施形態2によれば、図7に示す、各色についてサブ画素の精細度と同一の開口精細度を有するマスク(mr・mb・mg)を用いて、サブ画素ごとに独立した発光層を形成する参考形態と比較して、各色の発光層の形成に用いるマスクの開口精細度を4分の1とすることができるため、マスクの位置合わせが一層容易になる。
 図10は実施形態2におけるサブ画素配列の変形例を示す平面図である。図10に示すように、発光層を共有して第1方向に隣り合う2つのサブ画素の間隙幅を、発光層を共有することなく第1方向に隣り合う2つのサブ画素の間隙幅よりも小さくするとともに、発光層を共有して第2方向に隣り合う2つのサブ画素の間隙幅kyを、発光層を共有することなく第2方向に隣り合う2つのサブ画素の間隙幅KYよりも小さくするすることもできる。例えば、第1サブ画素SP1および第7サブ画素SP7の間隙幅kyと、第3サブ画素SP3および第9サブ画素SP9の間隙幅kyとを、第1サブ画素SP1および第3サブ画素SP3の間隙幅KYよりも小さくする。こうすれば、各サブ画素の発光領域のサイズを変えることなく、(2つのサブ画素で共有する)発光層を小さくすることができるため、高精細化に好適となる。また、各色のマスクの開口が小さくなるため、マスクの強度が高められ、皺等の発生が抑えられる。これにより、マスクの位置合わせが一層容易になる。
 図11に示すように、ホワイトバランスを考慮し、画素単位の輝度重心の位置が画素ごとにばらつかないように、青のサブ画素行BJについては、発光層を共有して第1方向に隣り合う2つのサブ画素の間隙幅と、発光層を共有することなく第1方向に隣り合う2つのサブ画素の間隙幅とを等しくすることも可能である。
 〔態様1〕
 第1サブ画素、第2サブ画素、第3サブ画素、第4サブ画素および第5サブ画素を備え、第1方向に隣接する前記第1サブ画素および前記第4サブ画素が、第1色発光する島状の発光層を共有し、第1方向に隣接する前記第3サブ画素および前記第5サブ画素が、第2色発光する島状の発光層を共有し、前記第1サブ画素および前記第3サブ画素が、前記第1方向と直交する第2方向に隣接する表示デバイス。
 〔態様2〕
 前記第2サブ画素と前記第1方向に隣接する第6サブ画素を備え、前記第2サブ画素および前記第6サブ画素が、第3色発光する島状の発光層を共有する例えば態様1に記載の表示デバイス。
 〔態様3〕
 前記第1サブ画素~前記第6サブ画素それぞれが電気的に独立した第1電極を有する例えば態様2に記載の表示デバイス。
 〔態様4〕
 前記第1サブ画素および前記第2サブ画素が前記第1方向に隣接し、前記第1サブ画素、前記第2サブ画素および前記第3サブ画素によって第1画素が構成され、前記第1画素と前記第1方向に隣接する第2画素に、前記第2方向に隣接する前記第4サブ画素および前記第5サブ画素が含まれる例えば態様3に記載の表示デバイス。
 〔態様5〕
 前記第1サブ画素および前記第4サブ画素の間隙幅は、前記第1サブ画素および前記第2サブ画素の間隙幅よりも小さい例えば態様4に記載の表示デバイス。
 〔態様6〕
 前記第3サブ画素および前記第5サブ画素の間隙幅は、前記第1サブ画素および前記第2サブ画素の間隙幅よりも小さい例えば態様4に記載の表示デバイス。
 〔態様7〕
 前記第1サブ画素、前記第2サブ画素、前記第3サブ画素、前記第4サブ画素、前記第5サブ画素、および前記第6サブ画素が共通の第2電極を有する例えば態様4に記載の表示デバイス。
態様8
 前記第1色発光する島状の発光層は、前記第1サブ画素および前記第4サブ画素間のバンクを跨いで形成され、前記第2色発光する島状の発光層は、前記第3サブ画素および前記第5サブ画素間のバンクを跨いで形成されている例えば態様1に記載の表示デバイス。
 〔態様9〕
 複数のサブ画素で共有される島状の発光層は、前記複数のサブ画素を分離するバンクを跨ぐように形成されている例えば態様2に記載の表示デバイス。
 〔態様10〕
 前記第1色および前記第3色の一方は赤色、他方は緑色であり、前記第2色は青色である例えば態様4に記載の表示デバイス。
 〔態様11〕
 前記第3サブ画素は、前記第1サブ画素および前記第2サブ画素よりも発光領域が大きい例えば態様10に記載の表示デバイス。
 〔態様12〕
 前記第3サブ画素は、前記第1サブ画素および前記第2サブ画素よりも発光領域の第1方向のサイズが大きい例えば態様11に記載の表示デバイス。
 〔態様13〕
 前記第1方向に隣接する、第7サブ画素および第8サブ画素を備え、前記第1サブ画素と、前記第4サブ画素と、前記第1サブ画素と前記第2方向に隣接する前記第7サブ画素と、前記第4サブ画素と前記第2方向に隣接する前記第8サブ画素とが、前記第1色発光する島状の発光層を共有する例えば態様4に記載の表示デバイス。
 〔態様14〕
 前記第1方向に隣接する第9サブ画素および第10サブ画素と、前記第1方向に隣接する第11サブ画素および第12サブ画素とを備え、前記第3サブ画素と、前記第5サブ画素と、前記第3サブ画素と前記第2方向に隣接する前記第9サブ画素と、前記第5サブ画素と前記第2方向に隣接する前記第10サブ画素とが、前記第2色発光する島状の発光層を共有し、前記第2サブ画素と、前記第6サブ画素と、前記第2サブ画素と前記第2方向に隣接する前記第11サブ画素と、前記第6サブ画素と前記第2方向に隣接する前記第12サブ画素とが、前記第3色発光する島状の発光層を共有する例えば態様13記載の表示デバイス。
 〔態様15〕
 前記1画素と前記第2方向に隣接する2つの画素の一方に前記第7サブ画素および前記第11サブ画素が含まれ、他方に前記第9サブ画素が含まれ、前記2画素と前記第2方向に隣接する2つの画素の一方に前記第8サブ画素が含まれ、他方に前記第10サブ画素が含まれる例えば態様14記載の表示デバイス。
 〔態様16〕
 前記第1サブ画素および前記第7サブ画素の間隙幅は、前記第1サブ画素および前記第3サブ画素の間隙幅よりも小さい例えば態様15に記載の表示デバイス。
 〔態様17〕
 第1サブ画素、第2サブ画素、第3サブ画素、第4サブ画素、および第5サブ画素を備え、第1サブ画素および第4サブ画素が第1方向に隣接し、第3サブ画素および第5サブ画素が前記第1方向に隣接し、前記第1サブ画素および前記第3サブ画素が、前記第1方向と直交する第2方向に隣接する表示デバイスの製造方法であって、前記第1サブ画素および前記第4サブ画素で共有される、第1色発光の島状の発光層を形成する第1工程と、前記第3サブ画素および前記第5サブ画素で共有される、第2色発光の島状の発光層を形成する第2工程とを含む表示デバイスの製造方法。
 〔態様18〕
 前記第1工程で用いる第1マスクの開口の精細度は、前記第1色のサブ画素の精細度よりも低く、前記第2工程で用いる第2マスクの開口の精細度は、前記第2色のサブ画素の精細度よりも低い例えば態様17記載の表示デバイスの製造方法。
 〔態様19〕
 前記第1マスクおよび前記第2マスクは前記精細度が同一である例えば態様18に記載の表示デバイスの製造方法。
 〔態様20〕
 前記第1色は赤色または緑色であり、前記第2色は青色である例えば態様18または19に記載の表示デバイスの製造方法。
 〔態様21〕
 前記第2マスクの開口は、前記第1マスクの開口よりも大きい例えば態様20記載の表示デバイスの製造方法。
 〔態様22〕
 第1サブ画素、第2サブ画素、第3サブ画素、第4サブ画素、および第5サブ画素を備え、第1サブ画素および第4サブ画素が第1方向に隣接し、第3サブ画素および第5サブ画素が前記第1方向に隣接し、前記第1サブ画素および前記第3サブ画素が、前記第1方向と直交する第2方向に隣接する表示デバイスの製造装置であって、前記第1サブ画素および前記第4サブ画素で共有される、第1色発光の島状の発光層を形成する第1工程と、前記第3サブ画素および前記第5サブ画素で共有される、第2色発光の島状の発光層を形成する第2工程とを行う表示デバイスの製造装置。
 〔まとめ〕
 本実施形態にかかる表示デバイスが備える電気光学素子(電流によって輝度や透過率が制御される電気光学素子)は特に限定されるものではない。本実施形態にかかる表示装置としては、例えば、電気光学素子としてOLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイ、電気光学素子として無機発光ダイオードを備えた無機ELディスプレイ、電気光学素子としてQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等が挙げられる。
 〔まとめ〕
 本発明は上述した実施形態に限定されるものではなく、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 2  表示デバイス
 4  TFT層
 5  発光素子層
 6  封止層
 10 下面フィルム
 12 樹脂層
 21 平坦化膜
 24 EL層
 24r・24g・24b 発光層
 70 表示デバイス製造装置

Claims (22)

  1.  第1サブ画素、第2サブ画素、第3サブ画素、第4サブ画素および第5サブ画素を備え、
     第1方向に隣接する前記第1サブ画素および前記第4サブ画素が、第1色発光する島状の発光層を共有し、
     第1方向に隣接する前記第3サブ画素および前記第5サブ画素が、第2色発光する島状の発光層を共有し、
     前記第1サブ画素および前記第3サブ画素が、前記第1方向と直交する第2方向に隣接する表示デバイス。
  2.  前記第2サブ画素と前記第1方向に隣接する第6サブ画素を備え、
     前記第2サブ画素および前記第6サブ画素が、第3色発光する島状の発光層を共有する請求項1に記載の表示デバイス。
  3.  前記第1サブ画素~前記第6サブ画素それぞれが電気的に独立した第1電極を有する請求項2に記載の表示デバイス。
  4.  前記第1サブ画素および前記第2サブ画素が前記第1方向に隣接し、前記第1サブ画素、前記第2サブ画素および前記第3サブ画素によって第1画素が構成され、
     前記第1画素と前記第1方向に隣接する第2画素に、前記第2方向に隣接する前記第4サブ画素および前記第5サブ画素が含まれる請求項3に記載の表示デバイス。
  5.  前記第1サブ画素および前記第4サブ画素の間隙幅は、前記第1サブ画素および前記第2サブ画素の間隙幅よりも小さい請求項4に記載の表示デバイス。
  6.  前記第3サブ画素および前記第5サブ画素の間隙幅は、前記第1サブ画素および前記第2サブ画素の間隙幅よりも小さい請求項4に記載の表示デバイス。
  7.  前記第1サブ画素、前記第2サブ画素、前記第3サブ画素、前記第4サブ画素、前記第5サブ画素、および前記第6サブ画素が共通の第2電極を有する請求項4に記載の表示デバイス。
  8.  前記第1色発光する島状の発光層は、前記第1サブ画素および前記第4サブ画素間のバンクを跨いで形成され、
     前記第2色発光する島状の発光層は、前記第3サブ画素および前記第5サブ画素間のバンクを跨いで形成されている請求項1に記載の表示デバイス。
  9.  複数のサブ画素で共有される島状の発光層は、前記複数のサブ画素を分離するバンクを跨ぐように形成されている請求項2に記載の表示デバイス。
  10.  前記第1色および前記第3色の一方は赤色、他方は緑色であり、前記第2色は青色である請求項4に記載の表示デバイス。
  11.  前記第3サブ画素は、前記第1サブ画素および前記第2サブ画素よりも発光領域が大きい請求項10に記載の表示デバイス。
  12.  前記第3サブ画素は、前記第1サブ画素および前記第2サブ画素よりも発光領域の第1方向のサイズが大きい請求項11に記載の表示デバイス。
  13.  前記第1方向に隣接する、第7サブ画素および第8サブ画素を備え、
     前記第1サブ画素と、前記第4サブ画素と、前記第1サブ画素と前記第2方向に隣接する前記第7サブ画素と、前記第4サブ画素と前記第2方向に隣接する前記第8サブ画素とが、前記第1色発光する島状の発光層を共有する請求項4に記載の表示デバイス。
  14.  前記第1方向に隣接する第9サブ画素および第10サブ画素と、前記第1方向に隣接する第11サブ画素および第12サブ画素とを備え、
     前記第3サブ画素と、前記第5サブ画素と、前記第3サブ画素と前記第2方向に隣接する前記第9サブ画素と、前記第5サブ画素と前記第2方向に隣接する前記第10サブ画素とが、前記第2色発光する島状の発光層を共有し、
     前記第2サブ画素と、前記第6サブ画素と、前記第2サブ画素と前記第2方向に隣接する前記第11サブ画素と、前記第6サブ画素と前記第2方向に隣接する前記第12サブ画素とが、前記第3色発光する島状の発光層を共有する請求項13記載の表示デバイス。
  15.  前記1画素と前記第2方向に隣接する2つの画素の一方に前記第7サブ画素および前記第11サブ画素が含まれ、他方に前記第9サブ画素が含まれ、
     前記2画素と前記第2方向に隣接する2つの画素の一方に前記第8サブ画素が含まれ、他方に前記第10サブ画素が含まれる請求項14記載の表示デバイス。
  16.  前記第1サブ画素および前記第7サブ画素の間隙幅は、前記第1サブ画素および前記第3サブ画素の間隙幅よりも小さい請求項15に記載の表示デバイス。
  17.  第1サブ画素、第2サブ画素、第3サブ画素、第4サブ画素、および第5サブ画素を備え、第1サブ画素および第4サブ画素が第1方向に隣接し、第3サブ画素および第5サブ画素が前記第1方向に隣接し、前記第1サブ画素および前記第3サブ画素が、前記第1方向と直交する第2方向に隣接する表示デバイスの製造方法であって、
     前記第1サブ画素および前記第4サブ画素で共有される、第1色発光の島状の発光層を形成する第1工程と、前記第3サブ画素および前記第5サブ画素で共有される、第2色発光の島状の発光層を形成する第2工程とを含む表示デバイスの製造方法。
  18.  前記第1工程で用いる第1マスクの開口の精細度は、前記第1色のサブ画素の精細度よりも低く、前記第2工程で用いる第2マスクの開口の精細度は、前記第2色のサブ画素の精細度よりも低い請求項17記載の表示デバイスの製造方法。
  19.  前記第1マスクおよび前記第2マスクは前記精細度が同一である請求項18に記載の表示デバイスの製造方法。
  20.  前記第1色は赤色または緑色であり、前記第2色は青色である請求項18または19に記載の表示デバイスの製造方法。
  21.  前記第2マスクの開口は、前記第1マスクの開口よりも大きい請求項20記載の表示デバイスの製造方法。
  22.  第1サブ画素、第2サブ画素、第3サブ画素、第4サブ画素、および第5サブ画素を備え、第1サブ画素および第4サブ画素が第1方向に隣接し、第3サブ画素および第5サブ画素が前記第1方向に隣接し、前記第1サブ画素および前記第3サブ画素が、前記第1方向と直交する第2方向に隣接する表示デバイスの製造装置であって、
     前記第1サブ画素および前記第4サブ画素で共有される、第1色発光の島状の発光層を形成する第1工程と、前記第3サブ画素および前記第5サブ画素で共有される、第2色発光の島状の発光層を形成する第2工程とを行う表示デバイスの製造装置。
PCT/JP2017/021776 2017-06-13 2017-06-13 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 WO2018229859A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/021776 WO2018229859A1 (ja) 2017-06-13 2017-06-13 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
US16/620,070 US20210083016A1 (en) 2017-06-13 2017-06-13 Display device, display device manufacturing method, and display device manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021776 WO2018229859A1 (ja) 2017-06-13 2017-06-13 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置

Publications (1)

Publication Number Publication Date
WO2018229859A1 true WO2018229859A1 (ja) 2018-12-20

Family

ID=64658620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021776 WO2018229859A1 (ja) 2017-06-13 2017-06-13 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置

Country Status (2)

Country Link
US (1) US20210083016A1 (ja)
WO (1) WO2018229859A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370448A (zh) * 2018-12-26 2020-07-03 乐金显示有限公司 显示装置
US20220157896A1 (en) * 2020-11-13 2022-05-19 Samsung Display Co., Ltd. Display apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403451A (zh) * 2020-03-26 2020-07-10 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法、掩膜板
US11610951B2 (en) * 2020-06-04 2023-03-21 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121983A1 (en) * 2007-11-13 2009-05-14 Samsung Electronics Co., Ltd. Organic light emitting diode display and method for manufacturing the same
JP2016503231A (ja) * 2013-01-17 2016-02-01 カティーバ, インコーポレイテッド 高解像度有機発光ダイオードデバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121983A1 (en) * 2007-11-13 2009-05-14 Samsung Electronics Co., Ltd. Organic light emitting diode display and method for manufacturing the same
JP2016503231A (ja) * 2013-01-17 2016-02-01 カティーバ, インコーポレイテッド 高解像度有機発光ダイオードデバイス

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370448A (zh) * 2018-12-26 2020-07-03 乐金显示有限公司 显示装置
US11678548B2 (en) 2018-12-26 2023-06-13 Lg Display Co., Ltd. Display device with reduced power consumption
CN111370448B (zh) * 2018-12-26 2023-09-12 乐金显示有限公司 显示装置
US20220157896A1 (en) * 2020-11-13 2022-05-19 Samsung Display Co., Ltd. Display apparatus

Also Published As

Publication number Publication date
US20210083016A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US11296172B2 (en) Semiconductor device
US10615229B2 (en) Display device including a plurality of normal pixels and dummy pixels in the display area
US9825109B2 (en) Display device
KR102491276B1 (ko) 유기 발광 표시 장치
US11195898B2 (en) Organic light emitting diode display device
WO2019187076A1 (ja) 表示デバイス
KR20150024575A (ko) 고 개구율 유기발광 다이오드 표시장치 및 그 제조 방법
US10756310B2 (en) Display device
WO2018229859A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
WO2019187137A1 (ja) 表示装置
JP6230328B2 (ja) 有機el表示装置
KR102607376B1 (ko) 유기 발광 표시 장치
WO2019026131A1 (ja) 表示デバイス
WO2019058485A1 (ja) 表示デバイス
KR20090021580A (ko) 유기전계발광소자
KR20200141548A (ko) 유기 발광 표시 장치
WO2018179133A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置、成膜装置、コントローラ
WO2019026132A1 (ja) 表示デバイス
KR20160092183A (ko) 유기전계 발광소자
KR20160060832A (ko) 유기전계발광 표시장치
KR20150113422A (ko) 유기발광 다이오드 표시장치 및 그 제조 방법
KR20150034462A (ko) 고 개구율 유기발광 다이오드 표시장치 및 그 제조 방법
WO2019187077A1 (ja) 表示デバイス
KR20150037278A (ko) 대면적 상부 발광형 유기발광 다이오드 표시장치
CN112753058B (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP