WO2018228381A1 - 1,2,5-恶二唑化合物制备方法及其中间体 - Google Patents

1,2,5-恶二唑化合物制备方法及其中间体 Download PDF

Info

Publication number
WO2018228381A1
WO2018228381A1 PCT/CN2018/090848 CN2018090848W WO2018228381A1 WO 2018228381 A1 WO2018228381 A1 WO 2018228381A1 CN 2018090848 W CN2018090848 W CN 2018090848W WO 2018228381 A1 WO2018228381 A1 WO 2018228381A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
solvent
acid
nitrite
Prior art date
Application number
PCT/CN2018/090848
Other languages
English (en)
French (fr)
Inventor
张杨
付志飞
罗妙荣
黎健
陈曙辉
Original Assignee
山东绿叶制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东绿叶制药有限公司 filed Critical 山东绿叶制药有限公司
Publication of WO2018228381A1 publication Critical patent/WO2018228381A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the invention relates to a pharmaceutical intermediate of the compound of the formula (II), a process for the preparation thereof and a compound of the formula (II) for use in the preparation of other compounds.
  • Indoleamine-2,3-dioxygenase is a monomeric enzyme containing heme found in the cell for the first time in 1967 by the Hayaishi group.
  • the cDNA encodes a protein. 403 amino acid composition with a molecular weight of 455 kDa, which is the rate-limiting enzyme of the leucine-kynurenine pathway catabolism and is widely expressed in various mammalian tissues (Hayaishi O.eta l Science, 1969, 164, 389-396).
  • IDO In tumor cells, IDO often plays an important physiological role in inducing tumor microenvironmental immune tolerance. Its mediated tryptophan (Trp) kynurenine (Kyn) metabolic pathway is involved in tumor immunity. Escape, and IDO also plays an important role as an immune tolerance to induce tumor microenvironment.
  • Trp Tryptophan
  • niacin niacin
  • serotonin neurotransmitter serotonin
  • IDO degrades the purines of tryptophan, serotonin and melatonin, triggering the production of neuroactive and immunomodulatory metabolites collectively known as kynurenine.
  • Dendritic cell (DC)-expressed IDO can greatly affect T cell proliferation and survival by local consumption of tryptophan and increased proapoptotic kynurenine. Induction of IDO in DCs may be a common mechanism of regulatory T cell driven consumption tolerance.
  • tryptophan metabolism and kynurenine production can represent a key interface between the immune and nervous systems (Grohmann et al., 2003, Trends). Immunol., 24: 242-8).
  • available free serum Trp is reduced, and serotonergic function may also be affected due to reduced serotonin production (Wirleitner et al., 2003, Curr. Med. Chem., 10:1581). -91).
  • IDO inhibitors for the treatment or prevention of IDO related diseases are being developed. Faced with a huge unmet market, there is still a need for more active IDO inhibitors in the field to meet treatment needs.
  • Patent CN201610859676.5 uses hydrogen peroxide to oxidize amine groups into nitro groups and then into thioethers.
  • the risk factor is large and the reaction time is long, which is not conducive to industrial amplification.
  • the present invention provides a compound of the following formula (II) as a pharmaceutical intermediate,
  • X is selected from: F, Cl or Br
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently selected from: H, F, Cl, Br or I.
  • the invention also provides a preparation method of the compound of the formula (II), the reaction steps of which are as follows:
  • X is selected from F, Cl or Br
  • R 1 , R 2 , R 3 , R 4 , R 5 are each independently selected from: H, F, Cl, Br or I;
  • the solvent 1 is selected from a single or mixed organic solvent in acetonitrile, tetrahydrofuran, dioxane, dichloromethane, or a mixed solvent selected from the group consisting of glacial acetic acid/concentrated hydrochloric acid/water, glacial acetic acid/hydrobromic acid/water.
  • reaction steps for preparing compound 2a are as follows:
  • the chlorinating agent is selected from the group consisting of cuprous chloride, copper powder/copper chloride, copper powder/concentrated hydrochloric acid, concentrated hydrochloric acid;
  • the diazotizing agent is selected from the group consisting of: nitrite or nitrite;
  • the solvent 1 is selected from the group consisting of acetonitrile, tetrahydrofuran, dioxane, a single solvent of dichloromethane or a mixed solvent of several solvents, or a mixed solvent of glacial acetic acid/concentrated hydrochloric acid/water.
  • reaction steps for preparing compound 2b are as follows:
  • the brominating agent is selected from the group consisting of cuprous bromide, copper bromide, liquid bromine and hydrobromic acid;
  • the diazotizing agent is selected from the group consisting of: nitrite or nitrite;
  • the solvent 1 is selected from the group consisting of acetonitrile, tetrahydrofuran, dioxane, a single solvent of dichloromethane or a mixed solvent of several solvents, or a mixed solvent selected from glacial acetic acid/hydrobromic acid/water.
  • reaction step for preparing compound 2c is as follows:
  • the fluorinating agent is selected from the group consisting of: triethylamine hydrofluoride, pyridine hydrofluoride, hydrofluoric acid, fluorine gas, potassium fluoride, tetrabutylammonium fluoride, tetraethylammonium fluoride;
  • the salification reagent is selected from the group consisting of: 1-butyl-3-methylimidazolium tetrafluoroborate, tetraethyltetrafluoroborate, trimethyloxonium tetrafluoroborate, tri-tert-butylphosphine tetrafluoroboron Acid salt, 1-octyl-3-methylimidazolium tetrafluoroborate, nitrite or nitrite.
  • the diazotizing agent is selected from the group consisting of nitrite
  • the solvent 1 is selected from the group consisting of glacial acetic acid/concentrated hydrochloric acid/water mixed solvent.
  • the diazotizing agent is selected from the group consisting of nitrite
  • the solvent 1 is selected from the group consisting of acetonitrile, dichloromethane, glacial acetic acid/hydrobromic acid/water mixed solvent.
  • the diazotizing agent is selected from the group consisting of sodium nitrite
  • the solvent 1 is selected from the group consisting of acetonitrile, dichloromethane, glacial acetic acid/hydrobromic acid/water mixed solvent.
  • the diazotizing agent in the reaction for preparing the compound 2a is selected from the group consisting of nitrite, and the solvent 1 is selected from a single solvent or several solvents selected from the group consisting of acetonitrile, tetrahydrofuran, dioxane, and dichloromethane. Mixed solvent.
  • the diazotizing agent in the reaction for preparing the compound 2b is selected from the group consisting of nitrite, and the solvent 1 is selected from a single solvent or several solvents selected from the group consisting of acetonitrile, tetrahydrofuran, dioxane, and dichloromethane. Mixed solvent.
  • the nitrite is selected from the group consisting of sodium nitrite and potassium nitrite.
  • the nitrite is selected from the group consisting of t-butyl nitrite, isoamyl nitrite, n-butyl nitrite, and isobutyl nitrite.
  • the present invention provides a process for the preparation of compound 4 using a compound of formula (II), the reaction steps of which are as follows:
  • the present invention provides a process for the preparation of compound 5 using a compound of formula (II), the reaction steps of which are as follows:
  • the present invention provides a process for the preparation of compound 8 using a compound of formula (II), the reaction steps of which are as follows:
  • the present invention provides a process for the preparation of compound 9 using a compound of formula (II), the reaction steps of which are as follows:
  • the present invention provides a process for the preparation of compound I-1 using a compound of formula (II), the reaction steps of which are as follows:
  • the present invention provides a process for the preparation of compound 1-2 from a compound of formula (II), the reaction steps of which are as follows:
  • R 1 , R 2 , R 3 , R 4 , and R 5 are each independently selected from the group consisting of: H, F, Cl, Br, or I.
  • the base A is selected from the group consisting of sodium hydrogen, sodium carbonate, cesium carbonate, and potassium carbonate.
  • the solvent Z is selected from the group consisting of tetrahydrofuran, acetonitrile, N,N-dimethylformamide, and ethanol.
  • the acid B is selected from the group consisting of hydrochloric acid, trifluoroacetic acid, sulfuric acid, formic acid, and hydrogen chloride gas.
  • the solvent Y is selected from the group consisting of tetrahydrofuran, dichloromethane, ethyl acetate, dioxane, methanol, ethanol, a single solvent in water or a mixed solvent of several solvents.
  • the base C is selected from the group consisting of triethylamine, diisopropylethylamine, sodium carbonate, sodium hydrogencarbonate, and potassium carbonate.
  • the solvent X is selected from the group consisting of dichloromethane, acetonitrile, and chloroform.
  • the acid D is selected from the group consisting of hydrochloric acid, trifluoroacetic acid, sulfuric acid, formic acid, and hydrogen chloride gas.
  • the solvent W is selected from the group consisting of tetrahydrofuran, dichloromethane, ethyl acetate, dioxane, methanol, ethanol, a single solvent in water or a mixed solvent of several solvents.
  • the base E is selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triaminoethylamine, and ethylenediamine.
  • the solvent V is selected from the group consisting of tetrahydrofuran, dioxane, methanol, ethanol, a single solvent in water or a mixed solvent of several solvents.
  • the reagent F is selected from the group consisting of potassium cyanate, sodium cyanate, cyanic acid, silver cyanate, and ammonium cyanate.
  • the acid T is selected from the group consisting of hydrochloric acid, acetic acid, ammonium chloride, and sulfuric acid.
  • compound 1-2 is prepared from compound 5 without the addition of acid T.
  • the base S is selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, trisaminoethylamine, and ethylenediamine.
  • the above compound I-2 is prepared from compound 5 without the addition of base S.
  • the solvent U is selected from the group consisting of tetrahydrofuran, dioxane, methanol, ethanol, a single solvent in water or a mixed solvent of several solvents.
  • R 1 , R 2 , R 3 , R 4 , R 5 are each independently selected from: H, F, Cl, Br or I;
  • the base A is selected from the group consisting of sodium hydrogen, sodium carbonate, barium carbonate, and potassium carbonate;
  • the solvent Z is selected from the group consisting of: tetrahydrofuran, acetonitrile, N,N-dimethylformamide, ethanol;
  • Acid B is selected from the group consisting of: hydrochloric acid, trifluoroacetic acid, sulfuric acid, formic acid, hydrogen chloride gas;
  • the solvent Y is selected from the group consisting of tetrahydrofuran, dichloromethane, ethyl acetate, dioxane, methanol, ethanol, a single solvent in water or a mixed solvent of several solvents;
  • the base C is selected from the group consisting of triethylamine, diisopropylethylamine, sodium carbonate, sodium hydrogencarbonate, and potassium carbonate;
  • the solvent X is selected from the group consisting of dichloromethane, acetonitrile, and chloroform;
  • Acid D is selected from the group consisting of: hydrochloric acid, trifluoroacetic acid, sulfuric acid, formic acid, hydrogen chloride gas;
  • the solvent W is selected from the group consisting of tetrahydrofuran, dichloromethane, ethyl acetate, dioxane, methanol, ethanol, a single solvent in water or a mixed solvent of several solvents;
  • the base E is selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, trisaminoethylamine, and ethylenediamine;
  • the solvent V is selected from the group consisting of tetrahydrofuran, dioxane, methanol, ethanol, a single solvent in water or a mixed solvent of several solvents;
  • Reagent F is selected from the group consisting of: potassium cyanate, sodium cyanate, cyanic acid, silver cyanate, ammonium cyanate;
  • the acid T is selected from the group consisting of hydrochloric acid, acetic acid, ammonium chloride and sulfuric acid;
  • compound I-2 is prepared from compound 5 without the addition of acid T;
  • the base S is selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, trisaminoethylamine, and ethylenediamine;
  • the compound I-2 is prepared from the compound 5 without adding the base S;
  • the solvent U is selected from tetrahydrofuran, dioxane, methanol, ethanol, a single solvent in water or a mixed solvent of several solvents.
  • the molar ratio of the compound of formula (II) to base A is selected from the group consisting of 1:1 to 2.
  • the molar ratio of the compound of formula (II) to compound 3 is selected from the group consisting of 1:1 to 2.
  • the molar ratio of the above compound 4 to base B is selected from the range of 1:1 to 50.
  • the molar ratio of the above compound 5 to base C is selected from the group consisting of 1:1 to 4.
  • the molar ratio of the above compound 5 to the compound 7 is selected from the group consisting of 1:1 to 3.
  • the molar ratio of the above compound 8 to base D is selected from 1:1 to 50.
  • the molar ratio of the above compound 9 to base E is selected from 1:2 to 10.
  • the molar ratio of the above compound 5 to the reagent F is selected from the group consisting of 1:1 to 4.
  • the molar ratio of the above compound 5 to the base S is selected from the group consisting of 1:0 to 4.
  • intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, combinations thereof with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, embodiments of the invention.
  • the halogenating agent of the present invention refers to a reagent used for halogenating an amino group in the compound SM1 to form a corresponding halide, which includes a fluorinating reagent/salting reagent, a chlorinating reagent/diazonium reagent, Bromination reagent / diazotization reagent.
  • the present invention employs the following abbreviations: Br 2 for liquid bromine; NaNO 2 for sodium nitrite; eq for equivalent, equivalent;
  • the invention has the advantages of the process of synthesizing the compound I-1 and the compound I-2 and the intermediate thereof, and the beneficial effects are as follows: the raw material is cheap and easy to obtain, and the disadvantages of the reagents used are large, the reaction conditions are harsh, the separation and purification are difficult, and the industrialization is difficult. .
  • the NFK green TM fluorescent molecule was used to detect changes in the formation of the IDO1 enzyme metabolite NFK, and the IC50 value of the compound was used as an index to evaluate the inhibitory effect of the compound on the recombinant human IDO1 enzyme.
  • the compound was diluted to 1 mM with dimethyl sulfoxide (DMSO), diluted 3 fold, 10 gradients, double duplicate wells.
  • DMSO dimethyl sulfoxide
  • 48 ⁇ L of 50 mM phosphate buffer pH 6.5 was transferred to the compound plate via a Bravo automated liquid handling platform.
  • 2 ⁇ L of the diluted compound DMSO solution was added, and after mixing, 10 ⁇ L was transferred to the enzyme reaction plate.
  • reaction buffer 50 mM phosphate buffer pH 6.5, 0.1% Tween-20, 2% glycerol, 20 mM ascorbic acid, 20 ⁇ g/ml catalase and 20 ⁇ M methylene blue
  • reaction buffer 50 mM phosphate buffer pH 6.5, 0.1% Tween-20, 2% glycerol, 20 mM ascorbic acid, 20 ⁇ g/ml catalase and 20 ⁇ M methylene blue
  • the reaction was started by adding 10 ⁇ L of 400 ⁇ M L-type tryptophan substrate and incubated at 23 ° C for 90 minutes.
  • 10 ⁇ L of NFK green TM fluorescent dye was added, sealed with a sealing plate, and placed at 37 ° C for 4 hours, and then read on an Envision multi-function plate reader (Ex 400 nm / Em 510 nm).
  • the reference well to which the IDO1 enzyme was added but no compound was added was determined to have a 0% inhibition rate, and the reference well to which the IDO1 enzyme was not added was determined to be 100% inhibition rate, and the IC50 value of the compound was calculated by analyzing the data with XLFit 5.
  • the change of kynurenine in Hela cells was detected by LCMS method, and the inhibitory effect of the compound on IDO1 enzyme was evaluated by the IC50 value of the compound.
  • Precipitant 4 ⁇ M L-kynurenine-d4 dissolved in 100% acetonitrile, CacheSyn#CSTK008002
  • Pre-heated medium trypsin, DPBS in a 37 ° C water bath. Aspirate the culture medium and wash it with 10 mL of DPBS; add pre-warmed trypsin to the flask, rotate the flask to cover the flask evenly, and place it in a 37 ° C, 5% CO 2 incubator for digestion 1 - 2 minutes; each T150 was suspended with 10-15 mL of medium, centrifuged at 800 rpm for 5 minutes, resuspended in 10 mL of medium, pipet 1 mL of cell suspension, counted with Vi-cell; diluted Hela cells with medium 5 ⁇ 10 5 /mL, 80 ⁇ L was added to a 96-cell plate, and cultured at 37 ° C for 5-6 hours in a 5% CO 2 incubator.
  • the compound was diluted to 1 mM with DMSO, diluted 3 fold, 9 gradients, double duplicate wells. 5 ⁇ L of the diluted compound DMSO solution was added to a compound plate containing 95 ⁇ L of the medium. After mixing, transfer 10 ⁇ L to the cell plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

医药中间体式(Ⅱ)化合物及其制备方法和式(Ⅱ)化合物在制备其他化合物中的应用。

Description

1,2,5-恶二唑化合物制备方法及其中间体
相关申请的引用
本申请要求于2017年06月13日向中华人民共和国国家知识产权局提交的第201710441426.4号中国发明专利申请的权益,在此将其全部内容以援引的方式整体并入本文中。
技术领域
发明涉及医药中间体式(Ⅱ)化合物及其制备方法和式(Ⅱ)化合物在制备其他化合物中的应用。
背景技术
吲哚胺-2,3-双加氧酶(Indoleamine-2,3-dioxygenase,IDO)是1967年Hayaishi小组首次在细胞内发现的一种含有亚铁血红素的单体酶,cDNA编码蛋白由403氨基酸组成,分子量为455kDa,它是延着色氨酸-犬尿氨酸途径分解代谢的限速酶,并且在多种哺乳动物的组织中具有广泛的表达(Hayaishi O.eta l Science,1969,164,389-396)。在肿瘤患者的细胞中,IDO常作为诱导肿瘤微环境免疫耐受产生重要的生理作用,其介导的色氨酸(Tryptophan,Trp)犬尿氨酸(Kynurenine,Kyn)代谢途径参与了肿瘤免疫逃逸,而IDO作为诱导肿瘤微环境免疫耐受也产生重要的作用。
色氨酸(Trp)是生物合成蛋白、烟酸和神经递质5-羟色胺(血清素)所需要的一种必要氨基酸。近来,Trp耗竭的免疫调节作用受到很多关注。IDO将色氨酸、5-羟色胺和褪黑素的吲哚部分降解,引发产生统称为犬尿氨酸的神经活性和免疫调节代谢物。通过局部消耗色氨酸和增加促凋亡的犬尿氨酸,树突细胞(DC)表达的IDO可极大影响T细胞增殖和存活。在DC中诱发IDO可能是调节性T细胞驱动的消耗耐受性的普通机制。因为,可预计此类耐受原性反应在多种生理病理病症中起作用,色氨酸代谢和犬尿氨酸产生可代表免疫和神经系统之间的关键介面(Grohmann等人,2003,Trends Immunol.,24:242-8)。在持续免疫激活的状态中,可利用的游离血清Trp减少,并且由于5-羟色胺生成减少,5-羟色胺能功能可能也受影响(Wirleitner等人,2003,Curr.Med.Chem.,10:1581-91)。
正在开发治疗或预防IDO相关疾病的IDO抑制剂。面对巨大的未满足市场,该领域仍然需要活性更好的IDO抑制剂,以满足治疗需求。
专利CN201610859676.5使用双氧水将胺基氧化成硝基,再变成硫醚的方法,危险系数大,反应时间长,不利于工业放大。我们改用胺基转化成氯再变成硫醚,避免了危险试剂,后处理简单,利于工业放大。
发明内容
本发明提供了作为医药中间体的下式(Ⅱ)化合物,
Figure PCTCN2018090848-appb-000001
其中,
X选自:F、Cl或Br;
R 1、R 2、R 3、R 4、R 5分别独立地选自:H、F、Cl、Br或I。
本发明还提供了式(Ⅱ)化合物的制备方法,其反应步骤如下:
Figure PCTCN2018090848-appb-000002
其中,
X选自F、Cl或Br;
R 1、R 2、R 3、R 4、R 5分别独立地选自:H、F、Cl、Br或I;
溶剂1选自:乙腈、四氢呋喃、二氧六环、二氯甲烷中的单一或混合有机溶剂,或选自冰醋酸/浓盐酸/水、冰醋酸/氢溴酸/水的混合溶剂。
本发明的一些方案中,上述制备化合物2a的反应步骤如下:
Figure PCTCN2018090848-appb-000003
其中,
氯化试剂选自:氯化亚铜、铜粉/氯化铜、铜粉/浓盐酸、浓盐酸;
重氮化试剂选自:亚硝酸盐或亚硝酸酯;
溶剂1选自:乙腈、四氢呋喃、二氧六环、二氯甲烷中的一种单一溶剂或几种溶剂的混合溶剂,或选自冰醋酸/浓盐酸/水混合溶剂。
本发明的一些方案中,上述制备化合物2b的反应步骤如下:
Figure PCTCN2018090848-appb-000004
其中,
溴化试剂选自:溴化亚铜、溴化铜、液溴、氢溴酸;
重氮化试剂选自:亚硝酸盐或亚硝酸酯;
溶剂1选自:乙腈、四氢呋喃、二氧六环、二氯甲烷中的一种单一溶剂或几种溶剂的混合溶剂,或选自冰醋酸/氢溴酸/水的混合溶剂。
本发明的一些方案中,上述制备化合物2c的反应步骤如下:
Figure PCTCN2018090848-appb-000005
其中,
氟化试剂选自:三乙胺氢氟酸盐,吡啶氢氟酸盐、氢氟酸、氟气、氟化钾、四丁基氟化胺、四乙基氟化铵;
盐化试剂选自:1-丁基-3-甲基咪唑四氟硼酸盐、四乙基四氟硼酸盐、三甲基氧鎓四氟硼酸盐、三叔丁基膦四氟硼酸盐、1-辛基-3-甲基咪唑四氟硼酸盐、亚硝酸盐或亚硝酸酯。
本发明的一些方案中,上述制备化合物2a的反应中,重氮化试剂选自亚硝酸盐,溶剂1选自冰醋酸/浓盐酸/水的混合溶剂。
本发明的一些方案中,上述制备化合物2b的反应中,重氮化试剂选自亚硝酸盐,溶剂1选自:乙腈、二氯甲烷、冰醋酸/氢溴酸/水的混合溶剂。
本发明的一些方案中,上述制备化合物2b的反应中,重氮化试剂选自亚硝酸钠,溶剂1选自:乙腈、二氯甲烷、冰醋酸/氢溴酸/水的混合溶剂。
本发明的一些方案中,上述制备化合物2a的反应中重氮化试剂选自亚硝酸酯,溶剂1选自乙腈、四氢呋喃、二氧六环、二氯甲烷中的一种单一溶剂或几种溶剂的混合溶剂。
本发明的一些方案中,上述制备化合物2b的反应中重氮化试剂选自亚硝酸酯,溶剂1选自乙腈、四氢呋喃、二氧六环、二氯甲烷中的一种单一溶剂或几种溶剂的混合溶剂。
本发明的一些方案中,上述亚硝酸盐选自:亚硝酸钠、亚硝酸钾。
本发明的一些方案中,上述亚硝酸酯选自:亚硝酸叔丁酯、亚硝酸异戊酯、亚硝酸正丁酯、亚硝酸 异丁酯。
本发明提供了用式(Ⅱ)化合物制备化合物4的方法,其反应步骤如下:
Figure PCTCN2018090848-appb-000006
本发明提供了用式(Ⅱ)化合物制备化合物5的方法,其反应步骤如下:
Figure PCTCN2018090848-appb-000007
本发明提供了用式(Ⅱ)化合物制备化合物8的方法,其反应步骤如下:
Figure PCTCN2018090848-appb-000008
本发明提供了用式(Ⅱ)化合物制备化合物9的方法,其反应步骤如下:
Figure PCTCN2018090848-appb-000009
本发明提供了用式(Ⅱ)化合物制备化合物Ⅰ-1的方法,其反应步骤如下:
Figure PCTCN2018090848-appb-000010
本发明提供了用式(Ⅱ)化合物制备化合物Ⅰ-2的方法,其反应步骤如下:
Figure PCTCN2018090848-appb-000011
本发明的一些方案中,上述R 1、R 2、R 3、R 4、R 5分别独立地选自:H、F、Cl、Br或I。
本发明的一些方案中,上述碱A选自:钠氢、碳酸钠、碳酸铯、碳酸钾。
本发明的一些方案中,上述溶剂Z选自:四氢呋喃、乙腈、N,N-二甲基甲酰胺、乙醇。
本发明的一些方案中,上述酸B选自:盐酸、三氟乙酸、硫酸、甲酸、氯化氢气体。
本发明的一些方案中,上述溶剂Y选自:四氢呋喃、二氯甲烷、乙酸乙酯、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂。
本发明的一些方案中,上述碱C选自:三乙胺、二异丙基乙胺、碳酸钠、碳酸氢钠、碳酸钾。
本发明的一些方案中,上述溶剂X选自:二氯甲烷、乙腈、三氯甲烷。
本发明的一些方案中,上述酸D选自:盐酸、三氟乙酸、硫酸、甲酸、氯化氢气体。
本发明的一些方案中,上述溶剂W选自:四氢呋喃、二氯甲烷、乙酸乙酯、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂。
本发明的一些方案中,上述碱E选自:氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、三氨乙基胺、乙二胺。
本发明的一些方案中,上述溶剂V选自:四氢呋喃、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂。
本发明的一些方案中,上述试剂F选自:氰酸钾、氰酸钠、氰酸、氰酸银、氰酸铵。
本发明的一些方案中,上述酸T选自:盐酸、醋酸、氯化铵、硫酸。
本发明的一些方案中,由化合物5制备化合物Ⅰ-2不添加酸T。
本发明的一些方案中,上述碱S选自:氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、三氨乙基胺、乙二胺。
本发明的一些方案中,上述由化合物5制备化合物Ⅰ-2不添加碱S。
本发明的一些方案中,上述溶剂U选自四氢呋喃、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂。
本发明的一些方案中,上述:
R 1、R 2、R 3、R 4、R 5分别独立地选自:H、F、Cl、Br或I;
碱A选自:钠氢、碳酸钠、碳酸铯、碳酸钾;
溶剂Z选自:四氢呋喃、乙腈、N,N-二甲基甲酰胺、乙醇;
酸B选自:盐酸、三氟乙酸、硫酸、甲酸、氯化氢气体;
溶剂Y选自:四氢呋喃、二氯甲烷、乙酸乙酯、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂;
碱C选自:三乙胺、二异丙基乙胺、碳酸钠、碳酸氢钠、碳酸钾;
溶剂X选自:二氯甲烷、乙腈、三氯甲烷;
酸D选自:盐酸、三氟乙酸、硫酸、甲酸、氯化氢气体;
溶剂W选自:四氢呋喃、二氯甲烷、乙酸乙酯、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂;
碱E选自:氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、三氨乙基胺、乙二胺;
溶剂V选自:四氢呋喃、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂;
试剂F选自:氰酸钾、氰酸钠、氰酸、氰酸银、氰酸铵;
酸T选自:盐酸、醋酸、氯化铵、硫酸;
或者,由化合物5制备化合物Ⅰ-2不添加酸T;
碱S选自:氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、三氨乙基胺、乙二胺;
或者,由化合物5制备化合物Ⅰ-2不添加碱S;
溶剂U选自四氢呋喃、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂。
本发明的一些方案中,上述式(Ⅱ)化合物与碱A的摩尔比选自1:1~2。
本发明的一些方案中,上述式(Ⅱ)化合物与化合物3的摩尔比选自1:1~2。
本发明的一些方案中,上述化合物4与碱B的摩尔比选自1:1~50。
本发明的一些方案中,上述化合物5与碱C的摩尔比选自1:1~4。
本发明的一些方案中,上述化合物5与化合物7的摩尔比选自1:1~3。
本发明的一些方案中,上述化合物8与碱D的摩尔比选自1:1~50。
本发明的一些方案中,上述化合物9与碱E的摩尔比选自1:2~10。
本发明的一些方案中,上述化合物5与试剂F的摩尔比选自1:1~4。
本发明的一些方案中,上述化合物5与碱S的摩尔比选自1:0~4。
定义和说明:
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的所述的卤化试剂是指用于将化合物SM1中的氨基卤代,生成相应卤化物所使用的试剂,其包括了氟化试剂/盐化试剂、氯化试剂/重氮化试剂、溴化试剂/重氮化试剂。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本领域任何合成路线规划中的一个重要考量因素是为反应性官能团(如本发明中的氨基)选择合适的保护基。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂可经市售获得。
本发明采用下述缩略词:Br 2代表液溴;NaNO 2代表亚硝酸钠;eq代表当量、等量;
化合物经手工或者
Figure PCTCN2018090848-appb-000012
软件命名,市售化合物采用供应商目录名称。
技术效果:
本发明给出的合成化合物Ⅰ-1和化合物Ⅰ-2及其中间体的工艺,有益效果为:原料价格便宜易得,克服所用试剂毒害大,反应条件苛刻,分离纯化困难以及不易工业化等缺点。
具体地:
1)本发明制备化合物化合物Ⅰ-1和化合物Ⅰ-2方法原料为常规或常见试剂,在市场上容易获得且价格低廉;
2)制备化合物2时反应条件温和、易控制、后处理简单,固体产物直接析出,经简单重结晶就可得纯度较高的产物,收率高,较易工业化。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1 化合物2b-1的合成
Figure PCTCN2018090848-appb-000013
将化合物SM1-1(100.00mg,292.33μmol,1.00eq)溶于CH 3CN(500.00uL)和DCM(500.00uL),加入Br 2(93.43mg,584.66μmol,30.14uL,2.00eq),再加入NaNO 2(40.34mg,584.66μmol,31.76uL,2.00eq),该反应液于27℃反应18hr。加入5ml水,乙酸乙酯萃取(5ml*3),合并有机相,无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干。使用pre-TLC板进行纯化(石油醚:乙酸乙酯=10:1)。该反应成功,得到黄色固体,即化合物2b-1(45.00mg,收率:37.92%)
1H NMR(400MHz,DMSO-d 6): 1H NMR(400MHz,DMSO-d 6)δ10.29(s,1H),7.87(dd,J=2.8,6.0Hz,1H),7.58-7.52(m,1H),7.46-7.36(m,1H)
实施例2 化合物2c-1的合成
Figure PCTCN2018090848-appb-000014
将化合物SM1-1(100.00mg,268.77μmol,1.00eq)与1-丁基-3-甲基咪唑四氟硼酸盐(1.21g,5.33mmol,1.00mL,19.83eq)加入到圆底烧瓶中,再加入三乙胺氢氟酸盐(64.99mg,403.16μmol,65.65 uL,1.50eq),该反应液加热至80℃反应16hr。向反应液中加入10ml水,乙酸乙酯萃取(10ml*3),合并有机相,无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干得粗品。使用pre-TLC进行纯化(石油醚:乙酸乙酯=5:1)。该反应成功,得到无色液体化合物2c-1(76.00mg,收率:81.95%) 19FNMR(400MHz,CDCl 3):-102,-140.
实施例3 化合物Ⅰ-1a的制备
Figure PCTCN2018090848-appb-000015
步骤1:化合物2a-1的合成
将化合物SM1-1(120.00g,350.8mmol,1.00eq)加入到5L的三口烧瓶中,装温度计,加入冰醋酸(2.4L)和浓盐酸(766mL)搅拌10分钟,冰水浴冷却至5℃,用滴液漏斗滴加入亚硝酸钠(29.05g,420.96mmol,1.20eq)的水(90.00mL)溶液,期间控制体系内温在5℃以下,冰水浴5℃继续反应3小时,再在5℃下用恒压漏斗滴加入氯化亚铜(3.47g,35.08mmol,0.10eq)的浓盐酸(134mL)溶液,反应液变为墨绿色,加完氯化亚铜后逐渐升温至15℃(室温)反应23小时,反应液逐渐变为草绿色。向反应液中缓慢加入3.6L水稀释,在此过程中有白色固体析出,加完水后冰水浴下继续搅拌30分钟,然后将反应液抽滤,抽滤得到的固体水洗(300mL*10),将此固体溶于400mL乙酸乙酯,分相,有机相无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干得产品。旋干后即得化合物2a-1(白色固体,110.0g,收率:86.74%,纯度:100%)。MS(ESI)m/z:361.0[M+H] +
步骤2:化合物4-1的合成
将化合物2a-1(8.90g,24.62mmol,1.00eq)加入到单口烧瓶中,加入乙腈(80.00mL)使其溶解,再加入化合物3(4.36g,24.62mmol,1.00eq),然后加入化合物碳酸铯(8.82g,27.08mmol,1.10eq),18℃ 反应1小时,反应液逐渐变为浅灰色,将反应液过滤,滤饼乙酸乙酯洗(15mL*4),滤液于减压蒸馏下旋干得浅褐色固体粗品,溶于15mL乙酸乙酯,缓慢加入80mL石油醚打浆,在此期间有白色固体析出,冰水浴下继续搅拌30分钟,抽滤,得到的白色固体石油醚淋洗(15mL*3),收集得到的白色固体,将此白色粉末状固体晾干,即得化合物4-1(白色粉末状固体,11.24g,收率:90.89%,纯度:100%)。MS(ESI)m/z:502.0[M+H] +
步骤3:化合物5-1的合成
将化合物4-1(130g,258.8mmol,1.00eq)加入到1L的单口烧瓶中,加入二氯甲烷(200.00mL)搅拌,再分批加入氯化氢/1,4-二氧六环(4M,750.00mL,11.59eq),该反应液于20℃下反应1小时,有大量的白色固体析出,用布氏漏斗抽滤,滤饼用二氯甲烷(30mL*3)洗涤,将滤饼刮出并于减压蒸馏下旋干,即为化合物5-1(白色粉末状固体,109g,收率:96.01%,纯度:100%,盐酸盐)。MS(ESI)m/z:401.9[M+H] +
步骤4:化合物8-1的合成
将化合物7(12.00g,84.79mmol,7.36mL,1.00eq)加入到500mL的单口烧瓶中,加入100mL二氯甲烷使其溶解,用冰水浴将体系冷却至0℃,0℃下用恒压漏斗滴加入叔丁醇(7.54g,101.75mmol,9.67mL,1.20eq)的二氯甲烷溶液(28mL),该反应液于0℃下反应1小时,得到二氯甲烷溶液(约128mL)。
将化合物5-1(20.00g,45.59mmol,1.00eq,盐酸盐)加入到1L的单口烧瓶中,加入170mL二氯甲烷,用冰水浴将体系冷却至0℃,0℃下分批加入N,N-二异丙基乙胺(23.57g,182.36mmol,31.85mL,4.00eq),再滴加入上述二氯甲烷溶液(90mL),然后将反应液升温至16℃下反应0.5小时。加入200mL水洗,分相,有机相用200mL 0.5M盐酸水溶液洗,有大量白色固体析出,抽滤,滤饼二氯甲烷淋洗(20mL*3),水洗(30mL*5),收集得到的白色固体,溶于200mL乙酸乙酯,无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干得到化合物8-1(白色粉末状固体,20.47g,收率:77.23%,纯度:100%)。MS(ESI)m/z:581.0[M+H] +
步骤5:化合物9-1的合成
将化合物8-1(17.35g,29.84mmol,1.00eq)加入到100mL的单口烧瓶中,加入二氯甲烷(80.00mL)搅拌使其溶解,然后分批加入氯化氢/1,4-二氧六环(4M,120.03mL,16.09eq),反应液于13℃反应20小时,有大量白色固体析出。将反应液抽滤,得到的滤饼二氯甲烷淋洗(10mL*2),滤液于减压蒸馏下旋干,加入50mL二氯甲烷打浆,有白色固体析出,冰水浴下继续搅拌30分钟,抽滤,滤饼二氯甲烷洗(10mL*1),将两次得到的白色固体合并,晾干即得到化合物9-1(白色粉末状固体,14.7g,粗品,纯度:100%)。MS(ESI)m/z:481.0[M+H] +
步骤6:化合物Ⅰ-1a的合成
将化合物9-1(14.70g,30.54mmol,1.00eq)加入到500mL的三口烧瓶中,加入四氢呋喃(70.00mL) 搅拌使其溶解,用冰水浴将反应体系冷却至0℃,0℃下分批缓慢加入氢氧化钠(4.89g,122.17mmol,4.00eq)的水溶液(40.00mL),加入氢氧化钠溶液过程中有白色固体析出,待加完氢氧化钠溶液后继续搅拌则反应液变为深灰色澄清液,然后将反应液逐渐升温至15℃反应2.5小时。将反应液冷却至0℃,用4M HCl调pH=1,加入30mL水,乙酸乙酯萃取(100mL*3),合并有机相,无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干,用130mL二氯甲烷打浆,有白色固体析出,继续搅拌1小时,抽滤,滤饼二氯甲烷淋洗(20mL*3),将抽滤得到的白色固体晾干即得到化合物Ⅰ-1a(11.4g,收率:81.99%,纯度:100%)。MS(ESI)m/z:454.9[M+H] +
1HNMR(400MHz,DMSO-d 6)δ=11.77(s,1H),8.99(s,1H),7.18(t,J=8.8Hz,1H),7.11(dd,J=2.8,6.0Hz,1H),6.87(t,J=5.6Hz,1H),6.74-6.68(m,1H),6.65(s,2H),3.32(br d,J=5.5Hz,2H),3.28(br t,J=5.6Hz,2H)。
实施例4 化合物Ⅰ-2a的制备
Figure PCTCN2018090848-appb-000016
步骤1:化合物Ⅰ-2a的合成
将化合物5-1(30.0g,68.39mmol,1.00eq)和氰酸钾(11.09g,136.78mmol,2eq)溶于二氧六环(200mL)和水(100.00mL),该反应液加热至100℃反应0.5hr。将反应液冷却至0℃,缓慢加入氢氧化钠(5.47g,136.78mmol,2.00eq)的水溶液(50mL),该反应液于0℃继续反应1hr。反应液用12N浓盐酸调pH值至3-4,乙酸乙酯萃取(200ml*2),合并有机相,饱和食盐水(100mL)洗,无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干。粗品用甲醇/水(100mL/70mL)重结晶得到类白色固体,即化合物Ⅰ-2a(24g,收率:83.71%)MS(ESI)m/z:420.8[M+H] +.
实施例5 化合物Ⅰ-2a的制备
Figure PCTCN2018090848-appb-000017
步骤1:化合物Ⅰ-2a的合成
将水(2.0L)加到5L烧杯中,加入氢氧化钠(376.25g),搅拌溶解然后冰浴到15℃。将四氢呋喃(3.7L)加入10L三口瓶中,启动搅拌,将5-1(750.91g)、氯化铵(321.33g)、氰酸钾(346.53g)、水(3.7L)依次加入三口瓶中。升温至70℃,保温反应30min,停止反应。用冰浴降温至15℃,加入 四氢呋喃(1L),15℃滴加氢氧化钠溶液,约22分钟滴加完毕,14℃继续反应50分钟,反应液变澄清。加入浓盐酸(1L)酸化,静置,分液,减压浓缩有机相,水相用5L分液漏斗萃取,用1000mL(500mL×2)乙酸乙酯萃取,萃取后有机相与浓缩产品合并,合并有机相用饱和氯化钠水溶液洗涤(500mL×2),有机相用无水硫酸钠(500g)干燥,过滤,滤液减压浓缩得固体。固体于40~50℃、P≤-0.85MPa真空干燥17h得I-2a粗品714.26g。收率为99.5%。
实验例1:hIDO1体外活性测试
hIDO1体外酶活性测试
实验目的:
通过NFK green TM荧光分子检测IDO1酶代谢产物NFK生成的变化,以化合物的IC50值为指标,来评价化合物对重组人源IDO1酶的抑制作用。
实验材料:
NFK green TM试剂,Netherlands Translational research center
IDO1酶活力检测试剂盒,NTRC#NTRC-hIDO-10K
384孔酶反应板,PerkinElmer#6007279
384孔化合物板,Greiner#781280
封板膜,PerkinElmer#6050185
Envision多功能读板仪,PerkinElmer
Bravo自动液体处理平台,Agilent
实验步骤和方法:
1.化合物加样:
用二甲基亚砜(DMSO)将化合物稀释成1mM,3倍稀释,10个梯度,双复孔。通过Bravo自动液体处理平台转移48μL 50mM磷酸盐缓冲液pH6.5加到化合物板中。然后再加入2μL稀释好的化合物DMSO溶液,混匀后转移10μL到酶反应板中。
2.IDO1酶活性检测实验:
于反应缓冲液(50mM磷酸盐缓冲液pH6.5,0.1%Tween-20,2%甘油,20mM抗坏血酸,20μg/ml过氧化氢酶和20μM亚甲蓝)中稀释IDO1酶至20nM,转移20μL到酶反应板中,23℃孵育30分钟。加入10μL 400μM L型色氨酸底物开始反应,23℃孵育90分钟。加入10μL NFK green TM荧光染料,用封板膜封好,放置于37℃孵育4小时后,在Envision多功能读板仪上读数(Ex 400nm/Em 510nm)。
3.分析数据:
将加入IDO1酶但未加化合物的参照孔定为0%抑制率,未加IDO1酶的参照孔定为100%抑制率,用XLFit 5分析数据,计算化合物的IC50值。
hIDO1细胞学活性测试
实验目的:
通过LCMS方法检测Hela细胞犬尿氨酸的变化,以化合物的IC50值为指标,来评价化合物对IDO1酶的抑制作用。
实验材料:
细胞系:Hela细胞
培养基:RPMI 1640 phenol red free,Invitrogen#11835030
        10%胎牛血清,Gibco#10099141
        1X青链霉素,Gibco#15140-122
沉淀剂:4μM L-犬尿氨酸-d4溶于100%乙腈,CacheSyn#CSTK008002
胰酶,Invitrogen#25200-072
DPBS,Hyclone#SH30028.01B
重组人源γ型干扰素,Invitrogen#PHC4033
5%(w/v)三氯乙酸,Alfa Aesar#A11156
96孔细胞板,Corning#3357
96孔化合物板,Greiner#781280
96孔V底板,Axygen#WIPP02280
CO 2培养箱,Thermo#371
离心机,Eppendorf#5810R
Vi-cell细胞计数仪,Beckman Coulter
实验步骤和方法:
1.Hela细胞接种:
37℃水浴预热培养基、胰酶、DPBS。吸掉细胞培养的培养基,用10mL DPBS清洗;加入预热过的胰酶到培养瓶中,旋转培养瓶使胰酶均匀覆盖培养瓶,放到37℃、5%CO 2培养箱中消化1-2分钟;每个T150用10-15mL培养基垂悬细胞,800rpm离心5分钟,用10mL培养基重悬细胞,吸取1mL细胞重悬液,用Vi-cell计数;用培养基稀释Hela细胞到5×10 5/mL,取80μL加入到96细胞板中,5%CO 2培养箱37℃培养5-6小时。
2.化合物加样:
用DMSO将化合物稀释成1mM,3倍稀释,9个梯度,双复孔。取5μL稀释好的化合物DMSO溶液加 到含有95μL培养基的化合物板中。混匀后转移10μL到细胞板中。
3.细胞学活性测试:
加入10μL重组人源γ型干扰素至终浓度100ng/ml,诱导IDO1的表达。放置于5%CO 2培养箱37℃培养20小时。加入4μL 5%(w/v)三氯乙酸,混匀后于50℃孵育30分钟。2400rpm离心10分钟,取40μL上清到96孔V底板中,加入沉淀剂。混匀后4000rpm离心10分钟。转移100μL上清到新的96孔V底板中。LCMS检测犬尿氨酸的含量。
4.分析数据:
将加入γ型干扰素但未加化合物的参照孔定为0%抑制率,未加Hela细胞的参照孔定为100%抑制率,用XLFit 5分析数据,计算化合物的IC50值。其测试结果如表1所示:
表1:本发明化合物体外筛选试验结果
Figure PCTCN2018090848-appb-000018
结论:化合物Ⅰ-1a和化合物Ⅰ-2a体外活性良好。

Claims (26)

  1. 作为医药中间体的下式(Ⅱ)化合物,
    Figure PCTCN2018090848-appb-100001
    其中,
    X选自:F、Cl或Br;
    R 1、R 2、R 3、R 4、R 5分别独立地选自:H、F、Cl、Br或I。
  2. 式(Ⅱ)化合物的制备方法,其反应步骤如下:
    Figure PCTCN2018090848-appb-100002
    其中,
    X选自F、Cl或Br;
    R 1、R 2、R 3、R 4、R 5分别独立地选自:H、F、Cl、Br或I;
    溶剂1选自:乙腈、四氢呋喃、二氧六环、二氯甲烷中的一种单一溶剂或几种溶剂的混合溶剂,或选自冰醋酸/浓盐酸/水、冰醋酸/氢溴酸/水的混合溶剂。
  3. 根据权利要求2所述的制备方法,其中,制备化合物2a的反应步骤如下:
    Figure PCTCN2018090848-appb-100003
    其中,
    氯化试剂选自:氯化亚铜、铜粉/氯化铜、铜粉/浓盐酸、浓盐酸;
    重氮化试剂选自:亚硝酸盐或亚硝酸酯;
    溶剂1选自:乙腈、四氢呋喃、二氧六环、二氯甲烷中的一种单一溶剂或几种溶剂的混合溶剂,或选自冰醋酸/浓盐酸/水混合溶剂。
  4. 根据权利要求2所述的制备方法,其中,制备化合物2b的反应步骤如下:
    Figure PCTCN2018090848-appb-100004
    其中,
    溴化试剂选自:溴化亚铜、溴化铜、液溴、氢溴酸;
    重氮化试剂选自:亚硝酸盐或亚硝酸酯;
    溶剂1选自:乙腈、四氢呋喃、二氧六环、二氯甲烷中的一种单一溶剂或几种溶剂的混合溶剂,或选自冰醋酸/氢溴酸/水的混合溶剂。
  5. 根据权利要求2所述的制备方法,其中,制备化合物2c的反应步骤如下:
    Figure PCTCN2018090848-appb-100005
    其中,
    氟化试剂选自:三乙胺氢氟酸盐,吡啶氢氟酸盐、氢氟酸、氟气、氟化钾、四丁基氟化胺、四乙基氟化铵;
    盐化试剂选自:1-丁基-3-甲基咪唑四氟硼酸盐、四乙基四氟硼酸盐、三甲基氧鎓四氟硼酸盐、三叔丁基膦四氟硼酸盐、1-辛基-3-甲基咪唑四氟硼酸盐、亚硝酸盐或亚硝酸酯。
  6. 根据权利要求3所述的制备方法,其中,重氮化试剂选自亚硝酸盐,溶剂1选自冰醋酸/浓盐酸/水的混合溶剂。
  7. 根据权利要求4所述的制备方法,其中,重氮化试剂选自亚硝酸盐,溶剂1选自:乙腈、二氯甲烷、冰醋酸/氢溴酸/水的混合溶剂。
  8. 根据权利要求3或4所述的制备方法,其中,重氮化试剂选自亚硝酸酯,溶剂1选自乙腈、四氢呋喃、二氧六环、二氯甲烷中的一种单一溶剂或几种溶剂的混合溶剂。
  9. 根据权利要求6或7所述的制备方法,其中,亚硝酸盐选自:亚硝酸钠、亚硝酸钾。
  10. 根据权利要求8所述的制备方法,其中,亚硝酸酯选自:亚硝酸叔丁酯、亚硝酸异戊酯、亚硝酸正丁酯、亚硝酸异丁酯。
  11. 用式(Ⅱ)化合物制备化合物4的方法,其反应步骤如下:
    Figure PCTCN2018090848-appb-100006
  12. 用式(Ⅱ)化合物制备化合物5的方法,其反应步骤如下:
    Figure PCTCN2018090848-appb-100007
  13. 用式(Ⅱ)化合物制备化合物8的方法,其反应步骤如下:
    Figure PCTCN2018090848-appb-100008
  14. 用式(Ⅱ)化合物制备化合物9的方法,其反应步骤如下:
    Figure PCTCN2018090848-appb-100009
  15. 用式(Ⅱ)化合物制备化合物Ⅰ-1的方法,其反应步骤如下:
    Figure PCTCN2018090848-appb-100010
  16. 用式(Ⅱ)化合物制备化合物Ⅰ-2的方法,其反应步骤如下:
    Figure PCTCN2018090848-appb-100011
  17. 根据权利要求11~16任意一项所述的制备方法,其中
    碱A选自:钠氢、碳酸钠、碳酸铯、碳酸钾;
    溶剂Z选自:四氢呋喃、乙腈、N,N-二甲基甲酰胺、乙醇;
    酸B选自:盐酸、三氟乙酸、硫酸、甲酸、氯化氢气体;
    溶剂Y选自:四氢呋喃、二氯甲烷、乙酸乙酯、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂;
    碱C选自:三乙胺、二异丙基乙胺、碳酸钠、碳酸氢钠、碳酸钾;
    溶剂X选自:二氯甲烷、乙腈、三氯甲烷;
    酸D选自:盐酸、三氟乙酸、硫酸、甲酸、氯化氢气体;
    溶剂W选自:四氢呋喃、二氯甲烷、乙酸乙酯、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种 溶剂的混合溶剂;
    碱E选自:氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、三氨乙基胺、乙二胺;
    溶剂V选自:四氢呋喃、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂;
    试剂F选自:氰酸钾、氰酸钠、氰酸、氰酸银、氰酸铵;
    酸T选自:盐酸、醋酸、氯化铵、硫酸;
    或者,由化合物5制备化合物Ⅰ-2不添加酸T;
    碱S选自:氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、三氨乙基胺、乙二胺;
    或者,由化合物5制备化合物Ⅰ-2不添加碱S;
    溶剂U选自四氢呋喃、二氧六环、甲醇、乙醇、水中的一种单一溶剂或几种溶剂的混合溶剂。
  18. 根据权利要求17所述的制备方法,其中,式(Ⅱ)化合物与碱A的摩尔比选自1:1~2。
  19. 根据权利要求17所述的制备方法,其中,式(Ⅱ)化合物与化合物3的摩尔比选自1:1~2。
  20. 根据权利要求17所述的制备方法,其中,化合物4与碱B的摩尔比选自1:1~50。
  21. 根据权利要求17所述的制备方法,其中,化合物5与碱C的摩尔比选自1:1~4。
  22. 根据权利要求17所述的制备方法,其中,化合物5与化合物7的摩尔比选自1:1~3。
  23. 根据权利要求17所述的制备方法,其中,化合物8与碱D的摩尔比选自1:1~50。
  24. 根据权利要求17所述的制备方法,其中,化合物9与碱E的摩尔比选自1:2~10。
  25. 根据权利要求17所述的制备方法,其中,化合物5与试剂F的摩尔比选自1:1~4。
  26. 根据权利要求17所述的制备方法,其中,化合物5与碱S的摩尔比选自1:0~4。
PCT/CN2018/090848 2017-06-13 2018-06-12 1,2,5-恶二唑化合物制备方法及其中间体 WO2018228381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710441426.4 2017-06-13
CN201710441426 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018228381A1 true WO2018228381A1 (zh) 2018-12-20

Family

ID=64658902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090848 WO2018228381A1 (zh) 2017-06-13 2018-06-12 1,2,5-恶二唑化合物制备方法及其中间体

Country Status (1)

Country Link
WO (1) WO2018228381A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190169140A1 (en) * 2016-08-02 2019-06-06 Shandong Luye Pharmaceutical Co., Ltd. Ido1 inhibitor and preparation method and application thereof
WO2019149159A1 (zh) * 2018-02-02 2019-08-08 山东绿叶制药有限公司 一种包含噁二唑类衍生物的组合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016155545A1 (zh) * 2015-03-31 2016-10-06 江苏恒瑞医药股份有限公司 含氨磺酰基的1,2,5-噁二唑类衍生物、其制备方法及其在医药上的应用
CN106565696A (zh) * 2015-10-09 2017-04-19 江苏恒瑞医药股份有限公司 噁二唑类衍生物、其制备方法及其在医药上的应用
CN107311956A (zh) * 2017-08-22 2017-11-03 合肥圣迪利克医药科技有限公司 一种艾卡跺司他合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016155545A1 (zh) * 2015-03-31 2016-10-06 江苏恒瑞医药股份有限公司 含氨磺酰基的1,2,5-噁二唑类衍生物、其制备方法及其在医药上的应用
CN106565696A (zh) * 2015-10-09 2017-04-19 江苏恒瑞医药股份有限公司 噁二唑类衍生物、其制备方法及其在医药上的应用
CN107311956A (zh) * 2017-08-22 2017-11-03 合肥圣迪利克医药科技有限公司 一种艾卡跺司他合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALEKSEI B.SHEREMETEVNINA N.MAKHOVAWILLYFRIEDRICHSEN: "Monocyclic furazans and furoxans", ADVANCES IN HETEROCYCLIC CHEMISTRY, vol. 78, 31 December 2001 (2001-12-31), pages 65 - 188, DOI: 10.1016/S0065-2725(01)78003-8 *
MATSUBARA, R. ET AL.: "Study on the photoinduced Nitric-Oxide-Releasing ability of 4-Alkoxy Furoxans", ASIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 6, 6 February 2017 (2017-02-06), pages 619 - 626, XP055643416, DOI: 10.1002/ajoc.201700030 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190169140A1 (en) * 2016-08-02 2019-06-06 Shandong Luye Pharmaceutical Co., Ltd. Ido1 inhibitor and preparation method and application thereof
WO2019149159A1 (zh) * 2018-02-02 2019-08-08 山东绿叶制药有限公司 一种包含噁二唑类衍生物的组合物及其制备方法和应用

Similar Documents

Publication Publication Date Title
EP1144409B1 (en) Phenyl urea and phenyl thiourea derivatives
US6372757B1 (en) Phenylurea and phenylthio urea derivatives
EP1150977B1 (en) Phenyl urea and phenyl thiourea derivatives as orexin receptor antagonists
US6410529B1 (en) Phenyl urea and phenyl thiourea derivatives as HFGAN72 antagonists
EP1353918B1 (en) Morpholine derivatives as antagonists of orexin receptors
WO2000047576A1 (en) Cinnamide derivatives as orexin-1 receptors antagonists
WO2004041807A1 (en) Novel compounds
WO2018024208A1 (zh) Ido1抑制剂及其制备方法和应用
WO2004041791A1 (en) N-aryl acetyl cyclic amine derivatives as orexin antagonists
JP2005519038A (ja) エチレンジアミン誘導体およびそのオレキシン−受容体アンタゴニストとしての使用
US9428488B2 (en) Method for producing 4-[5-(pyridin-4-yl)-1H-1,2,4-triazol-3-yl]pyridine-2-carbonitrile, and intermediate thereof
WO2018228381A1 (zh) 1,2,5-恶二唑化合物制备方法及其中间体
WO1996011916A1 (fr) Derive d'azole
WO2019201291A1 (zh) 组蛋白乙酰转移酶(hat)抑制剂及其用途
WO2022199289A1 (zh) 新型雄激素受体降解剂、制备方法和医药用途
RU2342368C2 (ru) Агонисты рецептора пептида-1, подобного глюкагону, их получение и применение
NO155879B (no) Bis (p-alkylfenyletynyl) antracener og anvendelse derav som fluorescerende komponent i kjemiluminescerende blandinger.
CN111479809A (zh) 一种TGF-βRI抑制剂的晶型、盐型及其制备方法
CN115594655B (zh) 色酮肟类衍生物及其制备方法和应用
KR101916901B1 (ko) 2―아릴카보닐하이드라진카보티오아마이드 유도체 화합물을 포함하는 소포체 스트레스 관련 질환의 예방 또는 치료용 약제학적 조성물
WO2019163731A1 (ja) オキサゾリジノン化合物の製造方法
WO2018214958A1 (zh) Ido1抑制剂的晶型及其制备方法
CN116554103A (zh) 苯基吡唑类化合物及其应用
TW201710260A (zh) 食慾素受體阻抗劑受體化合物的製備方法及其中間體和晶型
CN116283990B (zh) 取代吡咯烷酮类化合物在作为肿瘤坏死因子抑制剂方面的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18816536

Country of ref document: EP

Kind code of ref document: A1