WO2018227841A1 - 颗粒物的捕集装置 - Google Patents

颗粒物的捕集装置 Download PDF

Info

Publication number
WO2018227841A1
WO2018227841A1 PCT/CN2017/107712 CN2017107712W WO2018227841A1 WO 2018227841 A1 WO2018227841 A1 WO 2018227841A1 CN 2017107712 W CN2017107712 W CN 2017107712W WO 2018227841 A1 WO2018227841 A1 WO 2018227841A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush
hole
particulate matter
air
filter
Prior art date
Application number
PCT/CN2017/107712
Other languages
English (en)
French (fr)
Inventor
岳仁亮
齐丛亮
吴傲立
Original Assignee
江苏中科睿赛污染控制工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中科睿赛污染控制工程有限公司 filed Critical 江苏中科睿赛污染控制工程有限公司
Publication of WO2018227841A1 publication Critical patent/WO2018227841A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof

Definitions

  • the present disclosure relates to the field of purification and filtration technologies, for example, to a particulate capture device.
  • HEPA High Efficiency particulate air filter
  • the wind resistance of such equipment is large, and high-power equipment is required to provide power for the air, so it consumes a large amount of power, and the filter screen needs to be replaced at regular intervals. Otherwise, the particulate matter filtering function may be lost, and even secondary pollution may be caused. Therefore, the cost of filtering the particulate matter is increased.
  • the principle of this method is generally to charge the particles through a high-pressure ionization device, so that the charged particles enter an electrostatic field, such as a parallel plate electric field. Because the opposite charges are attracted, the charged particles are adsorbed on the electrode with the opposite polarity. On the plate, the filtration of particulate matter is realized, but there is a serious secondary pollution problem in this way. After the electrostatic particles are used to capture the charged particulate matter, the charged particulate matter is neutralized, and with the flow of air, Air flows out.
  • the present disclosure provides a particulate matter trapping device which has low gas resistance and can reduce secondary pollution, and can remove the trapped particulate matter by cleaning the casing of the trapped particulate matter, thereby realizing repeated use of the casing and reducing cost.
  • the present disclosure provides a particulate matter trapping device, comprising: a filter brush, a casing, and a gas ionization device, wherein
  • An air inlet surface of the casing to the air outlet surface of the casing passes through a plurality of through holes, and the filter brush is inserted into the through holes, and the filter brush is in contact with the sidewall of the corresponding through hole.
  • Material of the housing The conductive metal, the material of the filter brush comprises a piezoelectric material;
  • the gas ionization device is mounted on an intake surface of the housing, and the gas ionization device is configured to charge and transfer particulate matter in the air to the through hole when air flows through the gas ionization device;
  • the filter brush is configured to generate a charge by the air to the pressure of the filter brush when the air flows through the through hole, and conduct the generated charge to a sidewall of the corresponding through hole;
  • the housing is configured to trap particulate matter in the air when there is charge in the sidewall of the through hole.
  • the filter brush comprises a brush bar and a brush wire, and the wire is circumferentially fixed on the brush bar.
  • the material of the brush bar is a conductive metal
  • the material of the brush wire is a piezoelectric material
  • the first end of the filament is fixed on an outer wall of the brush rod, and the second end of the filament is in contact with a sidewall of the corresponding through hole.
  • the filament comprises a plurality of bundle filaments, and the first end of each bundle filament is fixed on the outer wall of the brush bar, and the second end of each bundle filament is in contact with the sidewall of the corresponding through hole.
  • a cross section of the through hole perpendicular to a central axis of the through hole is circular.
  • the length of the brush bar is greater than or equal to the length of the corresponding through hole.
  • the housing is a rectangular parallelepiped, a cube or a curved body.
  • the sub-filaments are evenly distributed.
  • the collecting device for the particulate matter provided by the present disclosure is provided with a filter brush, a casing and a gas ionization device.
  • the filter brush includes a piezoelectric material. When the air flows through the through hole in the casing, the pressure of the air on the filter brush causes the filter brush to be filtered. An electric charge is generated, and the electric charge is conducted to the side wall of the corresponding through hole, and collects particles which are electrically opposite to the side wall of the corresponding through hole after flowing through the ionization device.
  • the device provided by the present disclosure can avoid the use of a sieve or the like to collect particulate matter through the micropores, has low air resistance, large air circulation, and at the same time, if the particulate matter is trapped by the casing, if the particulate matter trapped due to neutralization is again When the air flows, the particulate matter can be intercepted again by the filament located downstream of the air, thereby greatly reducing secondary pollution, and if the sidewall of the through hole captures excessive particulate matter, the captured particulate matter can be removed by washing to realize
  • the regeneration of the housing eliminates the need to frequently replace the housing and reduce the integration.
  • FIG. 1 is a schematic structural view of a particulate matter trapping device in the first embodiment
  • FIG. 2A is a schematic structural view of a casing in the first embodiment
  • Figure 2B is a side view of the housing of the first embodiment
  • FIG. 3 is a schematic structural view of a filter brush in the first embodiment
  • FIG. 4A is a front elevational view of a correspondingly inserted filter brush in the through hole of the housing in the first embodiment
  • 4B is a side view of the through-hole filter in the through hole of the casing in the first embodiment
  • Figure 5A is a front elevational view of the gas ionization device of the first embodiment
  • Figure 5B is a perspective view of the gas ionization device of the first embodiment
  • FIG. 6 is a schematic structural view of trapping charged particulate matter in a single through hole in the first embodiment
  • Fig. 7 is a schematic structural view of another housing in the second embodiment.
  • FIG. 1 is a schematic structural view of a particulate matter trapping device provided in the present embodiment, which can be used for trapping particulate matter in a gas, the device comprising: a filter brush (not shown in FIG. 1), a casing 10, and gas ionization Device 20, wherein
  • the air inlet surface of the casing 10 extends through the plurality of through holes, and the filter holes are respectively inserted into the through holes, and the filter brush is in contact with the side walls of the corresponding through holes, and the material of the casing 10 is conductive metal.
  • the material of the filter brush comprises a piezoelectric material; the gas ionization device 20 is mounted on the inlet surface of the casing 10, and the gas ionization device is arranged to charge and transport the particulate matter in the air to the through hole when the air flows through the gas ionization device 20;
  • the filter brush is arranged to generate an electric charge to the pressure of the filter brush by the air when the air flows through the through hole, and conduct the generated electric charge to the side wall of the corresponding through hole;
  • the outer casing 10 is disposed to have a charge in the side wall of the through hole Capture particulate matter in the air.
  • FIG. 2A is a schematic structural view of a housing according to an embodiment of the present invention
  • FIG. 2B is a side view of the housing provided by the embodiment.
  • the casing 10 is a rectangular parallelepiped, and the cross section of the through hole is circular.
  • 11 in FIG. 2A is the upper cover of the casing 10
  • 17 is the lower cover of the casing
  • 12 and 15 are the side cover plates of the casing 10
  • 14 and 16 are respectively the front and rear panels of the casing 10, which are left thereon.
  • the circular holes into which the airflow enters, 13 are through holes constituting the air flow passage
  • the arrows in Fig. 2A are the combined directions of the respective portions.
  • Each of the portions shown in Fig. 2A is combined in the direction of the corresponding arrow to become the casing 10 shown in Fig. 2B.
  • the housing 10 may be made of a conductive metal such as carbon steel, stainless steel, iron, aluminum, copper or aluminum alloy.
  • FIG. 3 is a schematic structural view of a filter brush according to the embodiment.
  • the filter brush 30 includes a brush bar 31 and a brush wire 32.
  • the brush wire 31 may be a piezoelectric material, and the material for the brush bar is not specifically limited in this embodiment.
  • the piezoelectric material has piezoelectricity, that is, when the piezoelectric material is deformed by pressure or tensile force in a certain direction, causing relative polarization of the internal positive and negative charge centers to cause polarization, on the opposite surface of the piezoelectric material. It will generate an opposite charge. If the pressure or tension is removed, it will return to the uncharged state.
  • the filament 32 is an organic piezoelectric material. Due to the flexibility of the organic piezoelectric material, the organic piezoelectric material can be used to make the filament.
  • the piezoelectric material may be a material such as polyvinylidene fluoride (PVDF) or a copolymer of PVDF.
  • PVDF polyvinylidene fluoride
  • the length of the filament 32 may be 1.3-1.6 times the aperture of the corresponding through hole.
  • each of the filaments 32 can be a cylinder or a rectangular parallelepiped.
  • FIG. 4A is a front view of a corresponding through-filter brush in a through hole of a housing
  • FIG. 4B is a side view of a corresponding through-filter brush in a through hole of the housing.
  • the first end of the filament 32 and the second end of the filament in contact with the sidewall of the via create an opposite charge, and since the housing 10 is a conductive metal, the first end of the filament 32 in contact with the sidewall of the via
  • the charge is conducted to the sidewall of the via hole, so that the sidewall of the via hole and the first end of the filament 32 in contact with the sidewall are electrically identical. Therefore, according to the principle of the opposite attraction, the sidewall of the via can be trapped and Charged particles with opposite side walls.
  • the casing 10 can be charged during the flow of air, thereby capturing charged particles that are electrically opposite to the casing 10.
  • the dust removal module is generally connected to the positive electrode or the negative electrode of the power supply, so that the dust removal module is positively or negatively charged to capture charged particulate matter.
  • the device provided in this embodiment does not need additional It is simple and convenient to increase the power supply to charge the casing 10 that collects particulate matter.
  • the sidewalls of each of the through holes capture the particulate matter in a three-dimensional structure, so that the dust holding capacity of the device is large. And can avoid passing through the filter etc.
  • micropores capture the particulate matter, so that the air resistance is small and the circulation is large. If too much particulate matter is trapped in the sidewall of the through hole, the trapped particulate matter can be removed by washing to realize the reuse of the casing 10, and the casing 10 need not be frequently replaced, thereby reducing the cost.
  • the electrical property of the casing 10 can be obtained through experiments before the device leaves the factory.
  • FIG. 5A is a front view of a gas ionization device provided in the embodiment
  • FIG. 5B is a perspective view of the gas ionization device.
  • 21 is a high voltage power source
  • 22 is a corona pole of the gas ionization device
  • 23 is a dust collecting plate of the gas ionizing device
  • 24 is a power supply connecting line of the corona pole group of the gas ionizing device 20, the power supply connecting line 24 and
  • the positive or negative electrode of the high voltage power source 21 is connected
  • 25 is a ground connection line of the outer casing of the gas ionization device 20 and the dust collecting plate 23, and the ground connection line 25 is connected to the other pole of the high voltage power source 21.
  • the corona pole 22 of the gas ionization device 20 is connected to the positive pole of the high voltage power supply when the electrical property of the casing 10 is negative, and is connected to the negative pole of the high voltage power supply when the electrical property of the casing 10 is positive.
  • the gas ionization device 20 is used.
  • the corona pole 22 is connected to the negative pole of the high voltage power supply as an example.
  • the gas ionization device 20 is mounted in the through hole of the casing 10 shown in FIG. 4A corresponding to the intake surface of the casing 10 through which the filter brush 30 is inserted, that is, the trapping device constituting the particulate matter shown in FIG.
  • the electrical properties of the particles in the air flow are opposite to the electrical properties of the casing 10.
  • the sidewall of the corresponding through hole is adopted according to the principle of opposite attraction. It can capture charged particles in the air.
  • FIG. 6 is a schematic view showing the structure of trapped charged particles in a single through hole.
  • 18 is the side wall of the through hole of the casing 10
  • 31 is the brush rod of the filter brush 30
  • 32 is the filament of the filter brush 30
  • 40 is a negatively charged particulate matter.
  • the positive side wall of the through hole 18 is taken as an example. After the air passes through the gas ionization device 20 , the particles in the air are negatively charged, and the negatively charged particles enter the through hole and then face the sidewall of the through hole 18 . Moving, the through-wall side 18 captures the negatively charged particles.
  • the brush wire 32 of the filter brush 30 intercepts the particles entering the through hole, thereby enhancing the trapping effect on the particulate matter.
  • the trapped particulate matter flows again with the air due to neutralization, it is again intercepted by the filament 32 located downstream of the air, so that the problem of secondary pollution can be greatly reduced.
  • the gas ionization device 20 can also be an ionization device of other structures, as long as the air passes through the ionization device to make the particles in the air positively or negatively charged.
  • the shape of the housing 10, the shape of the through hole cross section, the number of through holes, and the arrangement of the through holes in this embodiment The method is not specifically limited.
  • the shape of the housing 10 may be a rectangular parallelepiped, a rectangular parallelepiped or a curved surface; the cross-sectional shape of the through hole may be a circular, rectangular, square or hexagonal shape; the through holes may be arranged in an equilateral triangle as shown in FIG. 2A, or may be other Arbitrarily arranged.
  • the device provided in this embodiment is provided with a filter brush, a casing and a gas ionization device.
  • the filter brush includes a piezoelectric material.
  • the pressure of the air on the filter brush causes the filter brush to generate electric charge.
  • the charge is conducted to the side wall of the corresponding through hole, and the particles in the air that are electrically opposite to the sidewall of the corresponding through hole are trapped in the air, thereby avoiding the use of the filter or the like to collect the particulate matter through the micropores, and the air resistance is low.
  • the air circulation is large, and after the particulate matter is trapped by the casing, if the particulate matter trapped due to the neutralization acts again with the air, the particulate matter can be intercepted again by the filament located downstream of the air, thereby greatly reducing the number of times.
  • Contamination if the side wall of the through hole captures too much particulate matter, the collected particulate matter can be removed by washing to realize the regeneration of the casing, and the casing can be replaced frequently, thereby reducing the cost.
  • the filter brush 30 includes a brush bar 31 and a brush wire 32.
  • the brush wire 32 is circumferentially fixed to the brush bar 31 so that after the charged particles enter the corresponding through holes, each direction Both of the filaments can be blocked to enhance the effect of trapping particulate matter.
  • the brush bar 31 is a conductive metal
  • the brush wire 31 is a piezoelectric material
  • the first end of the brush wire 32 is fixed on the outer wall of the brush bar, and the second end of the brush wire is in contact with the side wall of the corresponding through hole.
  • the brush bar 31 When the brush bar 31 is a conductive metal, after the air enters the corresponding through hole, the pressure of the air against the wire 32 causes the wire 32 to deform, and thus the first end of the wire 32 fixed on the outer wall of the brush bar 31 and The second ends of the filaments 32 that are in contact with the sidewalls of the through holes generate opposite charges and are respectively transmitted to the sidewalls of the brush bars 31 and the through holes, thereby making the brush bars 31 and the through holes of the filter brush 30
  • the sidewalls exhibit different electrical properties, and the charged particles of different electrical properties can be respectively captured.
  • the brush rod 31 when the brush rod 31 is a conductive metal, after the air enters the gas ionization device, the particles may be positively or negatively charged, and the charged particles may be trapped by the brush rod 31 or the sidewall of the corresponding through hole.
  • the filament 32 includes a plurality of bundles of filaments 320, One end of each bundle of filaments 320 is fixed to the outer wall of the brush rod 31, and the other end of each bundle of filaments 320 is in contact with the side wall of the corresponding through hole.
  • the sub-filaments 320 are evenly distributed.
  • the length of the brush bar 31 is not less than (ie, greater than or equal to) the length of the corresponding through hole.
  • the length of the brush bar 31 may be 1.1-1.4 times the length of the corresponding through hole.
  • the length of the brush bar in which the brush wire 32 is fixed in the brush bar 31 is equal to the length of the corresponding through hole.
  • the housing is a rectangular parallelepiped, a cube or a curved body.
  • FIG. 7 is a schematic structural view of another housing according to the embodiment.
  • the shape of the casing 10 is an arc structure, and the through hole 13 has a circular cross section.
  • a brush rod and a brush wire are disposed through the filter brush, and the brush wire is circumferentially fixed on the brush rod, so that after the charged particles enter the corresponding through hole, the brush wire can be blocked in each direction to enhance the trapping of the particulate matter.
  • the brush rod is a conductive metal
  • the brush wire is a piezoelectric material, so that after the air enters the corresponding through hole, one end of the brush wire fixed on the outer wall of the brush bar and the side wall corresponding to the corresponding through hole can be contacted. The other end generates an opposite charge and is respectively conducted to the brush rod and the corresponding side wall of the through hole, thereby causing the side wall of the brush rod or the through hole to capture the charged particles.
  • the trapping of the particulate matter provided by the present disclosure, after collecting the particulate matter by using the shell, if the particulate matter trapped due to the neutralization again flows with the air, the particulate matter can be intercepted again by the filament located downstream of the air, thereby greatly reducing Secondary pollution, if the side wall of the through hole captures too much particulate matter, the collected particulate matter can be removed by washing to realize the regeneration of the casing, and the casing can be replaced frequently, thereby reducing the cost.

Abstract

一种颗粒物的捕集装置。捕集装置包括:过滤刷(30)、壳体(10)和气体电离装置(20),其中,壳体(10)的进气面至壳体(10)的出气面贯穿若干通孔(13),通孔(13)中一一对应穿插过滤刷(30),过滤刷(30)与对应通孔(13)的侧壁相接触,壳体(10)的材料为导电金属,过滤刷(30)的材料包括压电材料;气体电离装置(20)安装于壳体(10)的进气面,气体电离装置(20)设置为当空气流经气体电离装置(20)时使空气流中的颗粒物荷电并传输到通孔(13);过滤刷(30)设置为当空气流经通孔(13)时,利用空气对过滤刷(30)的压力产生电荷并将产生的电荷传导至对应通孔(13)的侧壁;壳体(10)设置为当通孔(13)的侧壁中具有电荷时捕集空气中的颗粒物。

Description

颗粒物的捕集装置 技术领域
本公开涉及净化和过滤技术领域,例如涉及一种颗粒物的捕集装置。
背景技术
由于空气中伴随有颗粒物,在需要洁净空间时,经常需要对空气中的颗粒物进行滤除。如对于印制电路板(Printed Circuit Board,PCB)、液晶显示器(Liquid Crystal Display,LCD)或者精密仪器等行业,需要在无尘净化车间的空调出风口进行颗粒物过滤,以将洁净的空气送入车间中。
相关技术中,常见的颗粒物过滤方式有两种,其中一种为过滤网方式,如高效空气过滤器(High efficiency particulate air Filter,HEPA)。但是这类设备的风阻较大,需要大功率的设备为空气提供动力,因此会消耗较大的电力,同时滤网还需定时进行更换,否则,会失去颗粒物过滤功能,甚至可能造成二次污染,因此,导致颗粒物过滤的成本增加。
另外还有一种常见的颗粒物过滤方式为电除尘方式。这种方式的原理一般是通过高压电离装置使得颗粒物荷电,使得荷电的颗粒物进入静电场,如平行板式电场,由于异性电荷相吸,因此荷电的颗粒物被吸附在与其极性相反的电极板上,从而实现颗粒物的过滤,但是这种方式会存在较严重的二次污染的问题,通过静电场来捕捉荷电颗粒物后,荷电的颗粒物被中和,随着空气的流动,再次随空气流出。
发明内容
本公开提供一种颗粒物的捕集装置,该装置气体阻力低,同时可减少二次污染,并可通过清洗捕集颗粒物的壳体去除捕集的颗粒物,实现壳体的重复使用,降低成本。
本公开提供一种颗粒物的捕集装置,包括:过滤刷、壳体和气体电离装置,其中,
所述壳体的进气面至所述壳体的出气面贯穿若干通孔,所述通孔中一一对应穿插有所述过滤刷,所述过滤刷与对应通孔的侧壁相接触,所述壳体的材料 为导电金属,所述过滤刷的材料包括压电材料;
所述气体电离装置安装于所述壳体的进气面,所述气体电离装置设置为当空气流经所述气体电离装置时使所述空气中的颗粒物荷电并传输到所述通孔;
所述过滤刷设置为当所述空气流经所述通孔时,利用所述空气对所述过滤刷的压力产生电荷并将产生的电荷传导至对应通孔的侧壁;
所述壳体设置为当所述通孔的侧壁中具有电荷时捕集所述空气中的颗粒物。
可选地,所述过滤刷包括刷杆和刷丝,所述刷丝环绕固定在所述刷杆上。
可选地,所述刷杆的材料为导电金属,所述刷丝的材料为压电材料。
可选地,所述刷丝的第一端固定在所述刷杆的外壁上,所述刷丝的第二端与对应通孔的侧壁相接触。
可选地,所述刷丝包括若干束子刷丝,每束子刷丝的第一端固定在所述刷杆的外壁上,每束子刷丝的第二端与对应通孔的侧壁相接触。
可选地,所述通孔的与通孔中心轴垂直的截面为圆形。
可选地,所述刷杆的长度大于等于对应通孔的长度。
可选地,所述壳体为长方体、正方体或者曲面体。
可选地,所述子刷丝均匀分布。
本公开提供的颗粒物的捕集装置设置有过滤刷、壳体和气体电离装置,通过过滤刷包括压电材料,当空气流经壳体中的通孔时,空气对过滤刷的压力使得过滤刷产生电荷,电荷传导至对应通孔的侧壁,并捕集流经电离装置后与对应通孔的侧壁电性相反的颗粒物。本公开提供的装置可避免用滤网等通过微孔来捕集颗粒物,空气阻力低,空气流通量大,同时在颗粒物被壳体捕集后,若由于中和作用被捕集的颗粒物再次随空气流动,则该颗粒物可再次被位于空气下游的刷丝拦截,从而可大大减少二次污染,且若通孔的侧壁捕集过多的颗粒物,通过洗涤即可去除捕集的颗粒物进而实现壳体的再生,无须经常对壳体进行更换,降低捕集成本。
附图说明
图1是实施例一中的一种颗粒物的捕集装置的结构示意图;
图2A为实施例一中的一种壳体的结构示意图;
图2B为实施例一中的壳体的侧视图;
图3是实施例一中的一种过滤刷的结构示意图;
图4A是实施例一中的壳体的通孔中对应穿插过滤刷的正视图;
图4B是实施例一中的壳体的通孔中对应穿插过滤刷的侧视图;
图5A是实施例一中的气体电离装置的正视图;
图5B是实施例一中的气体电离装置的斜视图;
图6是实施例一中的单个通孔内的捕集荷电颗粒物的结构示意图;
图7是实施例二中的另一壳体的结构示意图。
具体实施方式
下面结合附图和实施例对本公开进行说明。
实施例一
图1为本实施例提供的一种颗粒物的捕集装置的结构示意图,该装置可用于捕集气体中的颗粒物,该装置包括:过滤刷(图1未示出)、壳体10和气体电离装置20,其中,
壳体10的进气面至壳体10的出气面贯穿若干通孔,通孔中一一对应穿插过滤刷,过滤刷与对应通孔的侧壁相接触,壳体10的材料为导电金属,过滤刷的材料包括压电材料;气体电离装置20安装于壳体10的进气面,气体电离装置设置为当空气流经气体电离装置20时使空气中的颗粒物荷电并传输到通孔;过滤刷设置为当空气流经通孔时,利用空气对过滤刷的压力产生电荷,并将产生的电荷传导至对应通孔的侧壁;外壳10设置为,当通孔的侧壁中具有电荷时捕集空气中的颗粒物。
图2A为本实施例提供的一种壳体的结构示意图,图2B为本实施例提供的该壳体的侧视图。图2A中以壳体10为长方体,通孔的截面为圆形为例。其中,图2A中11为壳体10上盖板,17为壳体10下盖板,12和15为壳体10侧面盖板,14和16分别为壳体10的前后花板,上面留有气流进入的圆孔,13为构成气流通道的通孔,图2A中的箭头为每个部分的组合方向。图2A中所示每个部分按照对应箭头方向组合好后,成为图2B中所示的壳体10。其中,壳体10可以由碳素钢、不锈钢、铁、铝、铜或铝合金等导电金属制成。
图3为本实施例的一种过滤刷的结构示意图。其中,过滤刷30包括刷杆31和刷丝32。其中,刷丝31可以为压电材料,本实施例中对于刷杆的制作材料不做具体限定。其中,压电材料具有压电性,即当压电材料沿一定方向受到压力或者拉力作用而发生变形时,引起内部正负电荷中心相对转移而产生极化现象,在压电材料相对的表面上会产生异性电荷,若将压力或者拉力去掉,则又重新回到不带电的状态。
可选的,刷丝32为有机压电材料。由于有机压电材料具有柔韧性好等优点,可以使用有机压电材料制作刷丝。
压电材料可以为聚偏二氟乙烯(polyvinylidene fluoride,PVDF)或者为PVDF的共聚物等材质。
可选的,刷丝32的长度可为对应通孔孔径的1.3-1.6倍。
本实施例中对于刷丝的形状不做限定。例如每个刷丝32可为圆柱体或者为长方体。
图4A为壳体的通孔中对应穿插过滤刷的正视图,图4B为壳体的通孔中对应穿插过滤刷的侧视图。图2B中所示壳体10的通孔中一一对应穿插过滤刷30后,刷丝32的第一端固定在刷杆上,刷丝32的第二端与对应通孔的侧壁相接触。则当空气进入壳体10的通孔后,由于空气对刷丝32有压力作用,刷丝32在受到压力后产生形变,由于刷丝32为压电材料,可在固定在刷杆31外壁的刷丝32第一端以及与通孔侧壁相接触的刷丝第二端产生异性电荷,且由于壳体10为导电金属,使得与通孔侧壁相接触的刷丝32的第一端的电荷传导至通孔侧壁,进而使得通孔侧壁和与侧壁相接触的刷丝32的第一端电性相同,因此,根据异性相吸的原理,通孔的侧壁可捕集与侧壁电性相反的带电颗粒物。
由此,通过使过滤刷30的材料包括压电材料,在空气流动过程中即可使得壳体10带电,进而可捕捉与壳体10电性相反的荷电颗粒物。相关技术中电除尘的方式,一般是将除尘模块与电源的正极或者负极连接,进而使得除尘模块带正电或者负电以捕集荷电颗粒物,与相关技术相比,本实施例提供的装置无需额外增加电源以使捕集颗粒物的壳体10带电,简单方便。且每个通孔的侧壁均以立体结构来捕集颗粒物,使得装置的容尘量巨大。并可避免用滤网等通过 微孔来捕集颗粒物,从而空气阻力小,流通量大。若通孔的侧壁捕集过多的颗粒物,通过洗涤即可去除捕集的颗粒物进而实现壳体10的再次使用,无须经常对壳体10进行更换,降低成本。
其中,空气进入通孔后,壳体10的电性可在装置出厂前,通过实验得到。
图5A为本实施例提供的一种气体电离装置的正视图,图5B为该气体电离装置的斜视图。其中,21为高压电源,22为气体电离装置20的电晕极,23为气体电离装置20的收尘板,24为气体电离装置20电晕极组的供电连接线,该供电连接线24和高压电源21的正极或者负极连接,25为气体电离装置20外壳和收尘板23的接地连接线,该接地连接线25和高压电源21的另一极相连。其中气体电离装置20的电晕极22在壳体10的电性为负时接高压电源正极,在壳体10的电性为正时接高压电源负极,本实施例中以气体电离装置20的电晕极22接高压电源负极为例。将该气体电离装置20安装于图4A中所示的通孔中对应穿插有过滤刷30的壳体10的进气面,即构成图1所示的颗粒物的捕集装置。进而,当空气流经气体电离装置20后,使得空气流中的颗粒物电性与壳体10的电性相反,当空气流经通孔后,根据异性相吸的原则,对应通孔的侧壁可捕集空气中的荷电颗粒物。
图6为单个通孔内的捕集荷电颗粒物的结构示意图。图6中18为壳体10的通孔的侧壁,31为过滤刷30的刷杆,32为过滤刷30的刷丝,40为带负电的颗粒物。其中,图6中以通孔侧壁18带正电为例,则空气经过气体电离装置20后,使得空气中的颗粒物带负电,带负电的颗粒物进入通孔后,向通孔的侧壁18移动,进而通孔侧壁18捕集到带负电的颗粒物。
此外,在空气流经气体电离装置20使得空气中的颗粒物荷电进入通孔后,过滤刷30的刷丝32对进入到通孔中的颗粒物有拦截的作用,可增强对颗粒物的捕集效果。同时当被捕集的颗粒物由于中和作用,再次随空气流动时,则会再次被位于空气下游的刷丝32拦截,因此,可大大减少二次污染的问题。
其中,气体电离装置20也可为其他结构的电离装置,只要在空气经过该电离装置可使空气中的颗粒物带正电或者负电即可。
本实施例对壳体10的形状、通孔截面的形状、通孔的数量以及通孔的排列 方式不做具体限定。其中,壳体10的形状可为长方体、正方体或者曲面体;通孔的截面形状可为圆形、长方形、正方形或六边形等形状;通孔可以如图2A呈正三角形排列,也可以以其他方式任意排列。
本实施例提供的装置设置有过滤刷、壳体和气体电离装置,通过过滤刷包括压电材料,当空气流经壳体中的通孔时,空气对过滤刷的压力使得过滤刷产生电荷,电荷传导至对应通孔的侧壁,并捕集空气中通过电离装置进而与对应通孔的侧壁电性相反的颗粒物,可避免用滤网等通过微孔来捕集颗粒物,空气阻力低,空气流通量大,且在颗粒物被壳体捕集后,若由于中和作用被捕集的颗粒物再次随空气流动,则该颗粒物可再次被位于空气下游的刷丝拦截,从而可大大减少二次污染,若通孔的侧壁捕集过多的颗粒物,通过洗涤即可去除捕集的颗粒物进而实现壳体的再生,无须经常对壳体进行更换,从而降低成本。
实施例二
本实施例为在上述实施例的基础上进行进一步优化。在本实施例中,继续参考图3,过滤刷30包括刷杆31和刷丝32,刷丝32环绕固定在刷杆31上,以使得在荷电的颗粒物进入对应通孔后,每个方向均有刷丝可进行阻挡,增强捕集颗粒物的效果。
上述方案中,可选的是,刷杆31为导电金属,刷丝31为压电材料。
上述方案中,可选的是,刷丝32的第一端固定在刷杆的外壁上,刷丝的第二端与对应通孔的侧壁相接触。
当刷杆31为导电金属时,在空气进入对应通孔后,空气对刷丝32的压力使得刷丝32形变,进而可在固定在刷杆31的外壁上的刷丝32第一端以及与对应通孔的侧壁相接触的刷丝32的第二端产生异性电荷,并分别传到至刷杆31和通孔的侧壁,由此,使得过滤刷30的刷杆31和通孔的侧壁呈现不同的电性,可分别捕集电性不同的荷电颗粒物。则当刷杆31为导电金属时,空气进入气体电离装置后,颗粒物带正电或者负电均可,荷电颗粒物可由刷杆31或者对应通孔的侧壁来捕集。
上述方案中,可选的是,继续参考图3,刷丝32包括若干束子刷丝320, 每束子刷丝320的一端固定在刷杆31的外壁上,每束子刷丝320的另一端与对应通孔的侧壁相接触。
可选的,子刷丝320均匀分布。
上述方案中,可选的是,刷杆31的长度不小于(即大于等于)对应通孔的长度。
示例性的,刷杆31的长度可为对应通孔长度的1.1-1.4倍。
可选的,刷杆31中固定有刷丝32的刷杆长度等于对应通孔的长度。
上述方案中,可选的是,壳体为长方体、正方体或者曲面体。
图7为本实施例提供的另一壳体的结构示意图。图7中,壳体10的形状为弧形结构,通孔13的截面为圆形。
本实施例通过过滤刷设置有刷杆和刷丝,刷丝环绕固定在刷杆上,实现在荷电的颗粒物进入对应通孔后,每个方向均有刷丝可进行阻挡,增强捕集颗粒物的效果;通过刷杆为导电金属,刷丝为压电材料,实现在空气进入对应通孔后,可在固定在刷杆的外壁上的刷丝一端以及与对应通孔的侧壁相接触的另一端产生异性电荷,并分别传导至刷杆和对应通孔侧壁,进而使得刷杆或者通孔的侧壁来捕集荷电颗粒物。
工业实用性
本公开提供的颗粒物的捕集,使用壳体捕集颗粒物后,若由于中和作用被捕集的颗粒物再次随空气流动,则该颗粒物可再次被位于空气下游的刷丝拦截,从而可大大减少二次污染,若通孔的侧壁捕集过多的颗粒物,通过洗涤即可去除捕集的颗粒物进而实现壳体的再生,无须经常对壳体进行更换,从而降低成本。

Claims (9)

  1. 一种颗粒物的捕集装置,包括:过滤刷、壳体和气体电离装置,其中,
    所述壳体的进气面至所述壳体的出气面贯穿若干通孔,所述通孔中一一对应穿插有所述过滤刷,所述过滤刷与对应通孔的侧壁相接触,所述壳体的材料为导电金属,所述过滤刷的材料包括压电材料;
    所述气体电离装置安装于所述壳体的进气面,所述气体电离装置设置为当空气流经所述气体电离装置时使所述空气中的颗粒物荷电并传输到所述通孔;
    所述过滤刷设置为当所述空气流经所述通孔时,利用所述空气对所述过滤刷的压力产生电荷并将产生的电荷传导至对应通孔的侧壁;
    所述壳体设置为当所述通孔的侧壁中具有电荷时捕集所述空气中的颗粒物。
  2. 根据权利要求1所述的装置,其中,所述过滤刷包括刷杆和刷丝,所述刷丝环绕固定在所述刷杆上。
  3. 根据权利要求2所述的装置,其中,所述刷杆的材料为导电金属,所述刷丝的材料为压电材料。
  4. 根据权利要求2或3所述的装置,其中,所述刷丝的第一端固定在所述刷杆的外壁上,所述刷丝的第二端与对应通孔的侧壁相接触。
  5. 根据权利要求2或3所述的装置,其中,所述刷丝包括若干束子刷丝,每束子刷丝的第一端固定在所述刷杆的外壁上,每束子刷丝的第二端与对应通孔的侧壁相接触。
  6. 根据权利要求1所述的装置,其中,所述通孔的与通孔中心轴垂直的截面为圆形。
  7. 根据权利要求1所述的装置,其中,所述刷杆的长度大于等于对应通孔的长度。
  8. 根据权利要求1所述的装置,其中,所述壳体为长方体、正方体或者曲面体。
  9. 根据权利要求5所述的装置,其中,所述子刷丝均匀分布。
PCT/CN2017/107712 2017-06-12 2017-10-25 颗粒物的捕集装置 WO2018227841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710437810.7 2017-06-12
CN201710437810.7A CN107413527B (zh) 2017-06-12 2017-06-12 一种颗粒物的捕集装置

Publications (1)

Publication Number Publication Date
WO2018227841A1 true WO2018227841A1 (zh) 2018-12-20

Family

ID=60428102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107712 WO2018227841A1 (zh) 2017-06-12 2017-10-25 颗粒物的捕集装置

Country Status (2)

Country Link
CN (1) CN107413527B (zh)
WO (1) WO2018227841A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108529227B (zh) * 2018-04-28 2021-01-22 京东方科技集团股份有限公司 传送滚轮、传送组件、传送装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118284A1 (en) * 2002-12-23 2004-06-24 Samsung Electronics Co., Ltd. Air purifier
DE102011110805A1 (de) * 2011-08-15 2013-02-21 Peter Oertmann Elektronischer Feinstaubabscheider
CN203525870U (zh) * 2013-10-17 2014-04-09 禾新环保科技有限公司 静电集尘式过滤装置
CN103949343A (zh) * 2014-05-08 2014-07-30 汉王科技股份有限公司 空气净化装置
CN104588211A (zh) * 2015-01-28 2015-05-06 张文明 自发电防雾霾空气过滤装置
CN104971823A (zh) * 2015-06-16 2015-10-14 东莞市长资实业有限公司 一种便于清洗的空气集尘设备及具有该设备的空气净化器
CN205761767U (zh) * 2016-06-24 2016-12-07 南京复苏等离子科技有限公司 一种静电集尘装置
CN106733181A (zh) * 2017-02-28 2017-05-31 广东美的环境电器制造有限公司 一种电净化组件及空气净化器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249554A (ja) * 1985-04-30 1986-11-06 Mitsubishi Heavy Ind Ltd 集じん装置
CN203532024U (zh) * 2013-09-09 2014-04-09 国家纳米科学中心 汽车尾气净化器
CN204806496U (zh) * 2015-06-26 2015-11-25 珠海格力电器股份有限公司 导风管及抽油烟机
CN206035349U (zh) * 2016-09-13 2017-03-22 金陵科技学院 一种可通过压电发电的纱窗
CN106731390A (zh) * 2016-12-27 2017-05-31 江苏中科睿赛污染控制工程有限公司 一种高通量的三维旋滤分离装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118284A1 (en) * 2002-12-23 2004-06-24 Samsung Electronics Co., Ltd. Air purifier
DE102011110805A1 (de) * 2011-08-15 2013-02-21 Peter Oertmann Elektronischer Feinstaubabscheider
CN203525870U (zh) * 2013-10-17 2014-04-09 禾新环保科技有限公司 静电集尘式过滤装置
CN103949343A (zh) * 2014-05-08 2014-07-30 汉王科技股份有限公司 空气净化装置
CN104588211A (zh) * 2015-01-28 2015-05-06 张文明 自发电防雾霾空气过滤装置
CN104971823A (zh) * 2015-06-16 2015-10-14 东莞市长资实业有限公司 一种便于清洗的空气集尘设备及具有该设备的空气净化器
CN205761767U (zh) * 2016-06-24 2016-12-07 南京复苏等离子科技有限公司 一种静电集尘装置
CN106733181A (zh) * 2017-02-28 2017-05-31 广东美的环境电器制造有限公司 一种电净化组件及空气净化器

Also Published As

Publication number Publication date
CN107413527B (zh) 2019-05-24
CN107413527A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6367123B2 (ja) 集塵装置、集塵システム及び集塵方法
KR101199554B1 (ko) 멀티크로스핀 이오나이저를 이용한 유도전압 전기집진장치
EP3166728B1 (en) Electric dust collecting device and air conditioner including the same
KR920004208B1 (ko) 공기 청정기용 전기 집진장치
KR101651034B1 (ko) 전기집진기 및 그 전기집진기를 포함하는 공기청정 시스템
KR101957095B1 (ko) 전기집진 기능을 갖는 소형 공기청정기
KR20160001203A (ko) 전기집진장치 및 그를 갖는 공기조화기
US20170014757A1 (en) Plasma filtration device
KR20140110513A (ko) 레인지 후드형 플라즈마 전기 집진 필터 장치
WO2018227841A1 (zh) 颗粒物的捕集装置
KR20170092294A (ko) 전기 집진장치
KR101180035B1 (ko) 멀티크로스핀 이오나이저를 이용한 유도전압 전기집진장치
KR200363531Y1 (ko) 전기집진기용 전기필터셀
KR101331611B1 (ko) 집진판 교체가 용이한 전기집진장치
JP2010240578A (ja) 集塵セル及びこれを用いたエアクリーナ
JP2965952B2 (ja) トンネル用電気集塵装置
CN203710872U (zh) 一种自洁抗污式油烟尘雾空气过滤净化设备
JP3178634U (ja) 空気清浄機
KR102466261B1 (ko) 정전 필터 및 정전 필터의 필터 판을 위한 랙
JP2010234187A (ja) エアクリーナ
JP2011050896A (ja) 電気集塵機
KR100638093B1 (ko) 전기집진장치
TW201932192A (zh) 電氣集塵裝置
TWM646587U (zh) 靜電集塵裝置
CN219252906U (zh) 一种静电集尘器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913497

Country of ref document: EP

Kind code of ref document: A1