WO2018227786A1 - 光源系统及应用所述光源系统的投影系统 - Google Patents

光源系统及应用所述光源系统的投影系统 Download PDF

Info

Publication number
WO2018227786A1
WO2018227786A1 PCT/CN2017/100575 CN2017100575W WO2018227786A1 WO 2018227786 A1 WO2018227786 A1 WO 2018227786A1 CN 2017100575 W CN2017100575 W CN 2017100575W WO 2018227786 A1 WO2018227786 A1 WO 2018227786A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
blue
red
path
Prior art date
Application number
PCT/CN2017/100575
Other languages
English (en)
French (fr)
Inventor
侯海雄
胡飞
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018227786A1 publication Critical patent/WO2018227786A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to the field of projection display, and more particularly to a light source system and a projection system using the same.
  • a projection system using a monolithic spatial light modulator generally uses an excitation light source to illuminate a rotating color wheel to form a sequence of red, green, and blue primary colors, and emits red, green, and blue primary colors in time series.
  • the light is projected onto the spatial light modulator for modulation, and the modulated monochromatic light image is rapidly alternately switched on the screen, and then the monochrome light images of the respective timings are mixed together by the visual residual effect of the human eye to form a color image.
  • the color wheel is coated with red, green and blue phosphors to obtain red, green and blue primary colors.
  • the red phosphor has low light conversion efficiency, resulting in projection using monolithic spatial light modulation.
  • the image brightness of the red portion of the system is low, which affects the overall image display.
  • the engineering projections with a luminous flux of more than 20,000 lumens are realized by a 3-chip spatial light modulator, but the projection system using the 3-chip spatial light modulator is bulky.
  • the back focal length of the projection lens is required to be long, and the lens is required to be high and expensive.
  • the present invention provides a light source system and a projection system that are highly efficient in light energy utilization and compact in structure.
  • the present invention provides a light source system including a light emitting unit, a light path switching unit, a first light splitting unit, a wavelength converting unit, and a second beam splitting unit, wherein the light emitting unit emits a light beam, and the light path switching unit uses Switching the light beam emitted by the light emitting unit into a first light path or a second light path, the first light splitting unit is disposed at the end of the first light path and the second light path for the first light path The light beam incident on the second light path is respectively guided to the wavelength conversion unit or the second light splitting unit, and the first light splitting unit is further configured to guide the light beam emitted by the wavelength conversion unit after wavelength conversion to the second light splitting unit, a second beam splitting unit is configured to sequentially emit the incident light beam, and the second light path passes between the wavelength conversion unit and the first light splitting unit, and the second light path is in at least one dimension direction The height is lower than the height of the wavelength conversion unit in the dimension direction.
  • the present invention also provides a projection system including the above-described light source system and a spatial light modulator for modulating a light beam emitted from the light source system into a carrying image Information light of the information.
  • the light source system and the projection system provided by the embodiments of the present invention have the advantages that the light source system uses yellow light to separate the red light, and the light energy utilization rate is improved due to the arrangement of the overall structure; on the other hand, in some embodiments, A light path is multiplexed into one dimension of the fluorescent color wheel by a suitable arrangement of the optical elements, so that the structure of the light source system and the projection system using the light source system is more compact, and the difficulty in structural design of the light source system is reduced.
  • FIG. 1 is a block schematic diagram of a projection system in accordance with a first embodiment of the present invention.
  • FIG. 2 is a first specific structural diagram of a light source system of the projection system shown in FIG. 1.
  • FIG. 3 is a schematic view showing an embodiment of a spectroscopic wheel of the light source system shown in FIG. 2.
  • FIG. 4 is a schematic view of an embodiment of a color wheel of the light source system shown in FIG. 2.
  • Figure 5 is a second specific architectural diagram of the light source system of the projection system of Figure 1.
  • Fig. 6 is a schematic view showing an embodiment of a color wheel of the light source system shown in Fig. 5.
  • Figure 7 is a front elevational view of a third specific architectural diagram of the light source system of the projection system of Figure 1.
  • Figure 8 is a plan view of the light source system shown in Figure 7.
  • Figure 9 is a block schematic diagram of a projection system in accordance with a second embodiment of the present invention.
  • Figure 10 is a perspective view of a first specific architectural diagram of the light source system of the projection system of Figure 9.
  • Figure 11 is a front elevational view of the light source system of Figure 10.
  • Figure 12 is a plan view of the light source system shown in Figure 10.
  • FIG. 1 is a block diagram of a first embodiment of a projection system of the present invention.
  • the projection system 1 comprises a light source system 2, a spatial light modulator 3 and a projection lens 4.
  • the light beam emitted from the light source system 2 is modulated by the spatial light modulator 3 into image light carrying image information, and then projected onto a screen (not shown) via the projection lens 4 to form an image for display to the user.
  • the light source system 2 includes a light emitting unit 20, an optical path switching unit 21, a first beam splitting unit 22, a wavelength converting unit 23, and a second beam splitting unit 24.
  • the light path switching unit 21 switches the light beam emitted by the light emitting unit 20 into the first light path L1 or the second light path L2, and the first light splitting unit 22 is disposed at the end of the first light path L1 and the second light path L2.
  • the light beams emitted by one light path L1 and the second light path L2 all reach the first beam splitting unit 22, and the first beam splitting unit 22 respectively guides the incident light beam to the wavelength converting unit 23 or the second beam splitting unit 24 according to the difference of the incident beam light paths.
  • the first beam splitting unit 22 leads the light beam from the first light path L1 to the wavelength conversion unit 23 and the light beam from the second light path L2 to the second beam splitting unit 24.
  • the first beam splitting unit 22 directs the light beam from the first light path L1 to the second beam splitting unit 24 and the light beam from the second light path L2 to the wavelength converting unit 23.
  • the wavelength-converted light beam via the wavelength conversion unit 23 is further guided to the second beam splitting unit 24 via the first beam splitting unit 22.
  • the light beam After the light beam is split by the second beam splitting unit 24, a plurality of light beams of a set color are formed, and the light beam is sequentially outputted to the optical channel 25 disposed behind the second beam splitting unit 24, and is sequentially outputted through the optical channel 25 to Spatial light modulator 3.
  • the light emitting unit 20 is a blue laser module 20 a that emits blue laser light
  • the light path is
  • the switching unit 21 is a light splitting wheel 21a
  • the first light splitting unit 22 is an anti-blue transparent yellow film 22a
  • the wavelength converting unit 23 is a fluorescent color wheel 23a, more specifically, a yellow fluorescent color wheel.
  • the second beam splitting unit 24 is a color repair wheel 24a. The structure and function of each component are specifically described below.
  • the spectroscopic wheel 21a passes the blue laser light emitted from the blue laser module 20a to cause the blue laser light to enter the first optical path L1a or enter the second optical path L2a.
  • the splitter wheel 21a is driven to rotate about its rotation axis by a driving device 210a.
  • the beam splitter 21a is divided into a transmissive region 211a and a reflective region 212a along its rotational direction.
  • the transmissive region 211a and The reflection area 211b alternately cuts in the propagation path of the blue laser light, thereby causing the blue laser timing to enter the first light path L1a and the second light path L2a.
  • the reflection area 212a is smaller than the comparative transmission area 211a.
  • a relay system 26 is further disposed on the first optical path L1a, wherein the relay system 26 includes a spot relay system 261, a diffuser 262, and a uniform light disposed in sequence along the first optical path L1a. Rod 263 and converging lens 264.
  • the spot relay system 261 is configured to relay the focus of the blue laser spot entering the first light path L1a to the entrance of the homogenizing rod 263.
  • the laser spot incident on the spectroscopic wheel 21a is controlled to be as small as possible.
  • the spoke area refers to the boundary between the transmissive area 211a and the reflective area 212a on the spectroscopic wheel 21a and the two sides of the boundary.
  • the spot will be simultaneously
  • the transmissive area 211a and the reflective area 212a are covered so that a part of the spot is reflected and the other part is reflected, so that the light beam emitted from the color wheel 24a may be a mixed color light.
  • the homogenizing rod 263 is used to homogenize the incident light beam, and the homogenizing rod 263 can be a uniform light square rod.
  • the diffuser 262 is disposed at the entrance of the homogenizing rod 263 for diffusing the light beam that is about to enter the homogenizing rod 263 to further improve the uniformity of the laser light emitted from the homogenizing rod 263.
  • the converging lens 264 is used to relay the blue laser light emitted from the homogenizing rod 263 to the anti-blue transparent yellow film 22a.
  • the anti-blue transparent yellow film 22a includes opposite first and second faces 221a, 222a, and the blue laser beam incident from the first light path L1a is guided to the first surface 221a of the anti-blue transparent film 22a. And reflected by the first surface 221a of the anti-blue translucent film 22a to the fluorescent color wheel 23a, the blue laser light is absorbed by the yellow phosphor on the fluorescent color wheel 23a and the yellow fluorescent powder is excited to generate yellow light.
  • the second optical path L2a is further provided with a guiding system 27 for guiding the blue laser beam reflected by the spectroscopic wheel 21a to the anti-blue transparent yellow film 22a.
  • the guiding system 27 is a mirror system, which in turn comprises a first mirror 271, a second mirror 272 and a third mirror 273.
  • the first mirror 271 faces the splitter wheel 21a and is disposed substantially in parallel with the splitter wheel 21a.
  • the third mirror 273 faces the second face 222a of the anti-blue transparent film 22a.
  • the second surface 222a is disposed substantially in parallel, and the second mirror 272 is disposed between the first mirror 271 and the third mirror 273, and the first mirror 271 and the third mirror 273 are both
  • the blue laser beam reflected from the spectroscopic wheel 21a is reflected by the first mirror 271 to the second mirror 272, and then reflected by the second mirror 272 to the third mirror 273, and finally
  • the triple mirror 273 is reflected to the second surface 222a of the anti-blue translucent film 22a.
  • the spectroscopic wheel 21a is disposed substantially parallel to the anti-blue transparent film 22a, and the first light path L1a and the fluorescent color wheel 23a are located in different dimensions, so as to avoid the fluorescent color wheel 23a and the setting.
  • the optical instrument between the fluorescent color wheel 23a and the anti-blue transparent film 22a occludes or otherwise affects the light beam on the second light path L2a, and the guiding system 27 and the second light path L2a surround the fluorescent color wheel 23a and An optical device disposed between the fluorescent color wheel 23a and the anti-blue transparent film 22a, that is, the fluorescent color wheel 23a and an optical device disposed between the fluorescent color wheel 23a and the anti-blue transparent film 22a are disposed on The guiding system 27 is inside the second light path L2a.
  • the fluorescent color wheel 23a is driven to rotate about its rotational axis by a driving device 230a.
  • a driving device 230a During the rotation of the fluorescent color wheel 23a, the blue laser light reflected from the reverse blue translucent film 22a to the fluorescent color wheel 23a is projected to different positions of the fluorescent color wheel 23a, thereby improving the efficiency of the fluorescent color wheel 23a, and further, Further improving the efficiency of the fluorescent color wheel 23a, in the present embodiment, a collecting system 27 is provided between the fluorescent color wheel 23a and the anti-blue transparent yellow film 22a to shape and homogenize the light beam incident on the fluorescent color wheel 23a.
  • the collection system 27 is a lens group in this embodiment.
  • the blue laser beam that has reached the anti-blue transparent yellow film 22a from the first light path L1a is reflected by the first surface 221a of the anti-blue transparent film 22a to the fluorescent color wheel 23a, and the fluorescent color wheel 23a is excited to generate yellow.
  • the yellow light is returned to the anti-blue transparent film 22a via the lens group 27, and transmitted to the color wheel 24a via the anti-blue transparent film 22a.
  • the blue laser beam that has reached the anti-blue transparent yellow film 22a by the second light path L2a is reflected by the second surface 222a of the anti-blue transparent film 22a to the color wheel 24a.
  • the color wheel 24a is described, and the color wheel 24a finally emits a plurality of beams of the set color to the spatial light modulator 3.
  • the color correction wheel 24a is driven to rotate about its rotation axis by a driving device 240a.
  • the color correction wheel 24a rotates in synchronization with the light separating wheel 21a.
  • the color wheel 24a is divided into a plurality of color light regions along its rotation direction. In the present embodiment, it is a red light region R, a yellow light region Y, a green light region G, and a blue light region B.
  • the red light region R, the yellow light region Y and the green light region G correspond to the transmissive region 211a on the splitter wheel 21a
  • the blue light region B corresponds to the reflective region 212a on the splitter wheel 21a.
  • the color wheel 24a rotates synchronously so that the yellow light generated by the fluorescent color wheel 23a sequentially reaches the red light region R, the yellow light region Y, and the green light region.
  • the red light region R divides the yellow light into red light and green light, wherein the green light is reflected off, the red light is transmitted into the light channel 25, and the yellow light region Y transmits the yellow light to enter
  • the green light region G divides the yellow light into red light and green light, wherein the red light is reflected off, and the green light is transmitted into the light channel 25.
  • the color wheel 24a rotates synchronously so that the blue laser light passes through the blue light area B, and the blue light area B transmits blue light into the light path 25.
  • a astigmatism sheet (not shown) is disposed on the blue light region B.
  • the astigmatism sheet is used to adjust the angle of the incident laser light to make the angle of the outgoing blue laser light more uniform.
  • the astigmatism sheet also decoheres the incident laser light. It can be understood that in another embodiment, a astigmatism sheet may also be disposed on the yellow light region Y.
  • the anti-blue transparent film 22a is disposed substantially in parallel with the spectroscopic wheel 21a.
  • the anti-blue translucent film 22a and the spectroscopic wheel 21a may also be substantially Arranged perpendicularly to each other, the blue laser light transmitted by the spectroscopic wheel 21a is reflected by the anti-blue translucent film 22a onto the color correction wheel 24a, and the blue laser light reflected by the spectroscopic wheel 21a is reflected by the anti-blue transparent film. 22a is reflected to the fluorescent color wheel 23a.
  • other optical components may be adjusted accordingly.
  • the relay system 26 may be disposed on the second optical path L2a between the guiding system 27 and the anti-blue transparent film 22a. Further, the ratio of the transmissive area 211a to the reflective area 212a on the spectroscopic wheel 21a may also vary accordingly.
  • the fluorescent color wheel 23a may rotate in synchronization with the light separating wheel 21a and the color changing wheel 24a, or may not rotate in synchronization with the light separating wheel 21a and the color changing wheel 24a.
  • the plurality of transmissive regions 211a and the plurality of reflective regions 212a may be disposed on the dichroic wheel 21a, and the transmissive regions 211a and the reflective regions 212a are spaced apart.
  • a plurality of red regions R, yellow regions Y, green regions G, and blue regions B may be disposed on the color wheel 24a, and the regions are arranged in a regular arrangement.
  • the light channel 25 can be a light homogenizing rod. In one embodiment, the light channel 25 is a light homogenizing rod.
  • the light emitting unit 20 is a combined light source 20b, and the combined light source 20b periodically emits red laser light and blue.
  • the color laser includes a blue laser module 200b that emits a blue laser and a red laser module 201b that emits a red laser.
  • the optical path switching unit 21 is a light splitting wheel 21b, and the first light splitting unit 22 is an anti-blue transparent.
  • the yellow film 22b, the wavelength conversion unit 23 is a fluorescent color wheel 23b, more specifically, a yellow fluorescent color wheel, and the second light separating unit 24 is a color modifying wheel 24b.
  • the light splitting wheel 21b includes a transmissive area (not shown) and a reflective area (not shown), and the transmissive area is sequentially transmitted through the red laser and the blue laser emitted by the combined light source 20b to make the red laser and the blue
  • the laser timing enters the first light path L1b, which reflects the blue laser light emitted by the combined light source 20b, causing the blue laser light to enter the second light path L2b.
  • the dichroic wheel 21b is turned to the front portion of the transmissive area, and the red laser light reaches the first surface 221b of the anti-blue translucent yellow film 22b via the first optical path L1b, and is inverted blue
  • the first surface 221b of the yellow translucent sheet 22b is reflected to the fluorescent color wheel 23b.
  • a region on the first surface 221b of the anti-blue transparent film 22b corresponding to the incident direction of the red laser is provided with a reverse red film, and the anti-red film reflects the incident red laser to the fluorescent color wheel 23b.
  • the anti-red film may also be replaced by an anti-red coating.
  • the red laser light is de-cohered by the fluorescent color wheel 23b, and then reflected to the anti-blue translucent yellow film 22b, and then transmitted to the color-reducing wheel 24b by the anti-blue translucent film 22b.
  • the splitter wheel 21 In the timing at which the combined light source 20b emits the blue laser light, the splitter wheel 21 is turned to the rear portion of the transparent region and continues to the reflective region, and therefore, the blue laser light emitted by the combined light source 20b in the preceding portion timing passes through the first light.
  • the path L1b reaches the first side of the anti-blue translucent film 22b and is reflected by the first surface 221b of the anti-blue translucent film 22b to the fluorescent color wheel 23b.
  • the blue laser light emitted by the combined light source 20b in the latter portion of the sequence reaches the second surface 222b of the anti-blue transparent film 22b via the second light path L2b, and is reflected by the second surface 222b of the anti-blue transparent film 22b.
  • the color correction wheel 24b In the timing at which the combined light source 20b emits the blue laser light, the splitter wheel 21 is turned to the rear portion of the transparent region and continues to the reflective region, and therefore, the blue laser light e
  • the color wheel 24b includes a red light region R, a green light region G and a blue light region B.
  • the color wheel 24b rotates to make the red light region R, the green light region G and the blue light.
  • the region B alternately cuts the light path of the outgoing light beam of the anti-blue translucent yellow film 22b.
  • the red region R of the color correction wheel 24b is cut into the anti-blue transparent yellow.
  • the diaphragm 22b emits a light path of the light beam, and red light transmitted from the anti-blue translucent film 22b is transmitted into the optical channel 25 by the red light region R.
  • the green light region G of the color correction wheel 24b cuts into the light path of the light beam emitted from the anti-blue transparent film 22b, and the yellow light transmitted from the anti-blue transparent film 22b.
  • Light is split into red and green light by the green light region G, wherein red light is reflected off, and green light is transmitted into the light tunnel 25.
  • the blue region B of the color correction wheel 24b cuts into the light path of the light beam emitted from the anti-blue transparent film 22b, and the blue light reflected from the anti-blue transparent film 22b is The blue light region B is transmitted into the light tunnel 25.
  • the second light path L2b and the fluorescent color wheel 23b are respectively located in two intersecting two-dimensional planes, and the second light path L2b is also surrounding the fluorescent color wheel 23b and the setting.
  • a red laser light having a smaller amount of expansion is used instead of the blue laser light to obtain red light required for imaging, so that the red light portion is higher efficiency.
  • the combined light source 20b can always emit blue laser light, but only cuts in the red region R of the color correction wheel 24b.
  • the combined light source 20b turns on the red laser light.
  • the red light region R of the color correction wheel 24b cuts into the light path of the light beam emitted from the anti-blue yellow film 22b, on the one hand,
  • the blue laser light reaches the fluorescent color wheel 23b via the anti-blue transparent red film 22b, and the excitation fluorescent color wheel 23b generates yellow light, and the yellow light is transmitted to the red light region R of the color correction wheel 24b via the anti-blue transparent yellow film 22b, and is red.
  • the light region R is divided into red light and green light, wherein red light is transmitted into the light channel 25, and the green light is reflected off.
  • the red laser light reaches the fluorescent color wheel 23b via the anti-blue transparent film 22b, after decoherence
  • the red light region R is transmitted to the red light region R of the color wheel 24b via the anti-blue transparent film 22b, and is further transmitted into the light channel 25 by the red light region R, thereby supplementing the red light separated by the yellow light to further enhance the red color.
  • the efficiency of the light part is the efficiency of the light part.
  • a relay system 26b is disposed on the first optical path L1b, and a spot relay system 261b, a diffusing sheet 262b, a light homogenizing rod 263b, and a converging lens 264b are disposed on the relay system 26b, wherein the anti-blue transparent yellow
  • the diaphragm 22b is disposed at the focus position of the condensing lens 264b, so that the area of the anti-blue transparent film 22b where the anti-red film is to be disposed is minimized, which is more favorable for the yellow light generated by the blue laser excitation fluorescent color wheel 23b and / or the red light reflected by the fluorescent color wheel 23b reaches the red light region of the color correction wheel 24b through the anti-blue transparent film 22b, further improving the efficiency
  • the light emitting unit 20 is a combined light source 20c, and the combined light source 20c includes a blue emitting light.
  • the light path switching unit 21 is a light splitting wheel 21c
  • the first light splitting unit 22 is an anti-blue transparent yellow film 22c.
  • the wavelength conversion unit 23 is a fluorescent color wheel 23c, more specifically, a yellow fluorescent color wheel
  • the second light separating unit 24 is a color modifying wheel 24c.
  • the working principle of the combined light source 20c, the splitter wheel 21c, the anti-blue transparent film 22c, the fluorescent wheel 23c, and the color correction wheel 24c may be substantially the same as that of the corresponding components in the second embodiment, the combined light source 20c
  • the red laser and the blue laser may be sequentially emitted, or the combined light source 20c continuously emits the blue laser during the continuous rotation of the color wheel 24c, and enters the anti-blue transparent film 22c in the red region of the color wheel 24c.
  • a red laser is emitted, and no further description is made here.
  • the most different from the second embodiment is that the second light path L2c and the fluorescent color wheel 23c in the present embodiment are respectively located in two parallel two-dimensional planes, thereby making the first embodiment
  • the two light path L2c can be disposed between the fluorescent color wheel 23c and the anti-blue transparent yellow film 22c, and the second light path L2c passes between the fluorescent color wheel 23c and the anti-blue transparent yellow film 22c, and the second optical path L2c is
  • the height in at least one dimension direction is lower than the height of the fluorescent color wheel 23c in the dimension direction, that is, the height direction of the fluorescent color wheel 23c is multiplexed, thereby reducing the volume of the light source system 2, reducing the light source system 2 Structural design difficulty.
  • FIG. 9 is a block diagram showing a second embodiment of the projection system of the present invention.
  • the projection system comprises a light source system 5, a spatial light modulator 6 and a projection lens 7.
  • the light beam emitted from the light source system 5 is modulated by the spatial light modulator 6 into image light carrying image information, and then projected onto a screen (not shown) via the projection lens 7 to form an image for display to the user.
  • the light source system 5 includes a light emitting unit 50, an optical path switching unit 51, a first beam splitting unit 52, a wavelength converting unit 53, and a second beam splitting unit 54.
  • the light path switching unit 51 switches the light beam emitted by the light emitting unit 50 into the first light path L3 or the second light path L4, and the light beams emitted by the first light path L3 and the second light path L4 reach the first beam splitting unit 52.
  • the first beam splitting unit 52 respectively directs the incident light beam to the wavelength converting unit 53 or the second beam splitting unit 54 according to the difference of the incident beam light paths.
  • the light beam emitted by the light emitting unit 50 also reaches the first beam splitting unit 52 via the third light path L5, and is guided by the first beam splitting unit 52 to the wavelength converting unit 53.
  • the light beam that has been wavelength-converted via the wavelength conversion unit 53 is further guided to the second beam splitting unit 54 via the first beam splitting unit 52.
  • the second beam splitting unit 54 After the light beam is split by the second beam splitting unit 54, a plurality of light beams of a set color are formed, and the light beam is sequentially emitted into the light channel 55 disposed behind the second beam splitting unit 54, and is sequentially outputted through the light channel 55 to Spatial light modulator 6.
  • the light emitting unit 50 is a combined light source 50a, and the combined light source 50a includes a blue emitting light.
  • the laser blue laser module 500a and a red laser module 501a that emits red laser light.
  • the blue laser light emitted by the blue laser module 500a sequentially enters the first light path L3 and the second light path L4 via the light path switching unit 51, and the red laser light emitted by the red laser module 501a enters the third light path L5.
  • the light path switching unit 51 is a light splitting wheel 51a
  • the first light splitting unit is an anti-blue transparent yellow film 52a
  • the wavelength converting unit 53 is a fluorescent color wheel 53a, more specifically, a yellow fluorescent light.
  • the color wheel, the second beam splitting unit 54 is a color wheel 54a.
  • the structure of the combined light source 50a, the splitter wheel 51a, the anti-blue transparent film 52a, the fluorescent wheel 53a, and the color-reducing wheel 54a and the working principle are the same as or similar to the other embodiments described above, and are not fully described, but only Mainly introduce the differences from the above embodiments.
  • the third embodiment of the present embodiment is different from the third embodiment of the light source system 2 in that, in the third embodiment of the light source system 2, the red laser light emitted by the red laser module 201c enters the first light path L1c via the splitter wheel 21c.
  • the red laser light emitted by the red laser module 501a enters the first optical path L3 without passing through the splitter wheel 51a, but directly enters the third optical path L5.
  • a relay system 56 is disposed on the first optical path L3, and the relay system 56 includes a light homogenizing rod 561.
  • the third light path L5 is provided with a converging lens 57 and an anti-blue transparent film 58.
  • the red laser passes through the converging lens 57 and the anti-blue transparent film 58 and enters the anti-blue transparent film 52a.
  • the blue translucent yellow film 52a is reflected to the fluorescent color wheel 53a. Since the red laser does not need to be homogenized by the homogenizing rod, it is more advantageous to reduce the optical expansion of the red portion and to improve the efficiency of the red portion.
  • the red laser is focused by the condensing lens 57 and enters the anti-blue transparent film 52a.
  • the anti-blue transparent film 52a is disposed at the focus position of the condensing lens 57, so that the anti-blue transparent film 52a needs to be provided with anti-red
  • the area of the diaphragm is minimized, and it is more advantageous for the yellow light generated by the blue laser light to excite the fluorescent color wheel 53a and/or the red light reflected by the fluorescent color wheel 53a to reach the red color of the color correction wheel 54a through the anti-blue transparent yellow film 52a.
  • the light area (not shown) further enhances the efficiency of the red portion.
  • a mirror 59 is further disposed on the first optical path L3, and the mirror 59 reflects the blue laser light passing through the relay system 56 onto the anti-blue transparent film 58 through the anti-blue transparent film 58. It is reflected on the anti-blue transparent yellow film 52a, and then reflected on the fluorescent color wheel 53a via the anti-blue transparent yellow film, thereby exciting the fluorescent color wheel 53a to generate yellow light, and the generated yellow light is transmitted through the anti-blue transparent yellow film. 52a reaches the green light area (not shown) of the color wheel 54a.
  • the arrangement of the second light path L4 in the present embodiment is similar to the arrangement of the second light path L1c in the third embodiment of the light source system 2, that is, the second light path L4 is disposed on the fluorescent color wheel 53a and the anti-blue transparent yellow film. Between 52a, the second light path L4 passes between the fluorescent color wheel 53a and the anti-blue transparent yellow film 52a, and the height of the second light path L4 in at least one dimension direction is lower than that of the fluorescent color wheel 53a in the dimension direction.
  • the height, that is, the height direction of the fluorescent color wheel 53a is multiplexed, thereby reducing the volume of the light source system 5, and reducing the structural design difficulty of the light source system 5.
  • the light source system and the projection system used by the embodiments of the present invention use the yellow light to separate the red light, and the light of the projection system using the monolithic spatial light modulator is improved due to the arrangement of the overall structure. Energy efficiency, thereby increasing the display brightness of the projection system; on the other hand, in some embodiments, a light path is multiplexed into one dimension of the fluorescent color wheel by a suitable arrangement of the optical elements, so that the light source system and the use of the light source
  • the projection system of the light source system has a more compact structure and reduces the difficulty in designing the light source system structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源系统(2,5)与投影系统(1),光源系统(2,5)包括发光单元(20,50)、光路径切换单元(21,51)、波长转换单元(23,53)、第一分光单元(22,52)、第二分光单元(24,54),其中,发光单元(20,50)发射光束,光路径切换单元(21,51)将发光单元(20,50)发射的光束切换进入一第一光路径(L1,L3)或一第二光路径(L2,L4),第一分光单元(22,52)设置于第一光路径(L1,L3)与第二光路径(L2,L4)末端,用于分别将入射光束引导至波长转换单元(23,53)或第二分光单元(24,54),第一分光单元(22,52)还用于将波长转换单元(23,53)进行波长转换后出射的光束引导至第二分光单元(24,54),第二分光单元(24,54)用于将入射的光束进行分光后时序出射,第二光路径(L2,L4)从波长转换单元(23,53)与第一分光单元(22,52)之间通过,第二光路径(L2,L4)在至少一个维度方向的高度低于波长转换单元(23,53)在维度方向的高度。

Description

光源系统及应用所述光源系统的投影系统 技术领域
本发明涉及投影显示领域,尤其涉及一种光源系统及应用所述光源系统的投影系统。
背景技术
目前的采用单片式空间光调制器的投影系统一般采用激发光源照射到转动的色轮上以形成时序出射的红、绿、蓝三基色光,并将时序出射的红、绿、蓝三基色光投射至空间光调制器上进行调制,调制得到的单色光图像在屏幕上快速交替切换,进而利用人眼的视觉残留效应将各时序的单色光图像混合在一起而形成彩色图像。色轮上涂覆着红、绿、蓝三种颜色的荧光粉以获得红、绿、蓝三基色光,但是,红色荧光粉的光转换效率较低,致使采用单片式空间光调制的投影系统红光部分的图像亮度较低,从而影响到整体的图像显示效果。
技术问题
由于单片式的空间光调制器的亮度较低,目前,光通量20000流明以上的工程投影都由3片式空间光调制器来实现,然采用3片式空间光调制器的投影系统体积庞大,需要投影镜头的后焦距较长,对镜头的要求高、价格昂贵。
技术解决方案
鉴于上述状况,本发明提供一种光能利用率高以及结构紧凑的光源系统与投影系统。
一方面,本发明提供一种光源系统,包括发光单元、光路径切换单元、第一分光单元、波长转换单元与第二分光单元,其中,所述发光单元发射光束,所述光路径切换单元用于将所述发光单元发射的光束切换进入一第一光路径或一第二光路径,所述第一分光单元设置于第一光路径与第二光路径末端,用于将从第一光路径与第二光路径入射的光束,分别引导至波长转换单元或第二分光单元,所述第一分光单元还用于将波长转换单元进行波长转换后出射的光束引导至第二分光单元,所述第二分光单元用于将入射的光束进行分光后时序出射,所述第二光路径从所述波长转换单元与所述第一分光单元之间通过,所述第二光路径在至少一个维度方向的高度低于所述波长转换单元在该维度方向的高度。
另一方面,本发明还提供一种投影系统,所述投影系统包括上述的光源系统以及一空间光调制器,所述单元式空间光调制器用于将所述光源系统出射的光束调制成携带图像信息的图像光。
有益效果
本发明实施例提供的光源系统与投影系统的优点在于:由于光源系统利用黄光来分离得到红光,且由于整体结构的排布,提升了光能利用率;另一方面,在一些实施方式中,通过光学元件的合适排布将一光路径复用荧光色轮的一个维度方向,使光源系统及使用该光源系统的投影系统的结构更紧凑,且降低了光源系统结构设计的难度。
附图说明
图1为本发明第一种实施方式的投影系统的方框示意图。
图2为图1所示投影系统的光源系统的第一种具体架构图。
图3为图2所示光源系统的分光轮的一种实施方式示意图。
图4是图2所示光源系统的修色轮的一种实施方式示意图。
图5是图1所示投影系统的光源系统的第二种具体架构图。
图6是图5所示光源系统的修色轮的一种实施方式示意图。
图7是图1所示投影系统的光源系统的第三种具体架构图的正视图。
图8是图7所示光源系统的俯视图。
图9是本发明第二种实施方式的投影系统的方框示意图。
图10是图9所示投影系统的光源系统的第一种具体架构图的立体视图。
图11是图10所示光源系统的正视图。
图12是图10所示光源系统的俯视图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1所示,为本发明投影系统的第一种实施方式的方框示意图。所述投影系统1包括光源系统2、空间光调制器3与投影镜头4。从所述光源系统2出射的光束被空间光调制器3调制成携带图像信息的图像光,再经投影镜头4投射至一屏幕(图未示)形成图像显示给用户。
在本实施方式中,所述光源系统2包括发光单元20、光路径切换单元21、第一分光单元22、波长转换单元23以及第二分光单元24。所述光路径切换单元21将发光单元20发射的光束切换进入第一光路径L1或第二光路径L2,第一分光单元22设置于第一光路径L1与第二光路径L2末端,由第一光路径L1、第二光路径L2出射的光束均达到第一分光单元22,第一分光单元22根据入射光束光路径的不同,分别将入射光束引导至波长转换单元23或第二分光单元24,例如,第一分光单元22将来自第一光路径L1的光束导至波长转换单元23以及将来自第二光路径L2的光束导至第二分光单元24。或者,在另一种实施方式中,所述第一分光单元22将来自第一光路径L1的光束导至第二分光单元24以及将来自第二光路径L2的光束导至波长转换单元23。此外,经由波长转换单元23进行波长转换后的光束再经由第一分光单元22导至第二分光单元24。光束在经过第二分光单元24进行分光后,形成多种设定颜色的光束,所述光束时序出射至设置于所述第二分光单元24后的光通道25中,经由光通道25时序出射至空间光调制器3。
请参阅图2所示,为光源系统2的第一种实施方式的具体架构图,在本实施方式中,所述发光单元20为一发射蓝色激光的蓝激光模组20a,所述光路径切换单元21为一分光轮21a,所述第一分光单元22为一反蓝透黄膜片22a,所述波长转换单元23为一荧光色轮23a,更具体地,为一黄荧光色轮,所述第二分光单元24为一修色轮24a。以下具体描述各个部件的结构与功能。
所述分光轮21a通过透射或反射蓝激光模组20a发射的蓝色激光从而使蓝色激光进入第一光路径L1a或进入第二光路径L2a。分光轮21a由一驱动装置210a驱动绕其旋转轴旋转,请参阅图3所示,分光轮21a沿其旋转方向分为透射区域211a与反射区域212a,在分光轮21a旋转时,透射区域211a与反射区域211b轮流切入蓝色激光的传播路径,从而使蓝色激光时序进入第一光路径L1a与第二光路径L2a。在本实施方式中,由于由空间光调制器3合成白光仅需少量的蓝光,因此反射区域212a占比较透射区域211a小。
在本实施方式中,第一光路径L1a上还设置有一中继系统26,其中,所述中继系统26包括沿第一光路径L1a依次设置的光斑中继系统261、散光片262、匀光棒263以及会聚透镜264。所述光斑中继系统261用于将进入第一光路径L1a的蓝色激光光斑焦点中继至匀光棒263的入口,在本实施方式中,为减少分光轮21a上轮辐区对入射光斑的影响,入射至分光轮21a的激光光斑被控制为尽量小。其中,所述轮辐区是指分光轮21a上透射区域211a与反射区域212a之间的交界处及交界处两侧区域,蓝色激光在经过交界处及交界处两侧区域时,其光斑会同时覆上透射区域211a与反射区域212a,从而使光斑一部分被透射另一部分被反射,从而导致修色轮24a上出射的光束可能为混色光。所述匀光棒263用于将入射的光束进行均匀化,所述匀光棒263可为一匀光方棒。所述散光片262设置于匀光棒263的入口处,用于将即将进入匀光棒263的光束进行扩散,以进一步提高匀光棒263出射激光的均匀化。所述会聚透镜264用于将从匀光棒263出射的蓝色激光会聚中继至所述反蓝透黄膜片22a。所述反蓝透黄膜片22a包括相背的第一面221a与第二面222a,由第一光路径L1a入射的蓝色激光光束被导至反蓝透黄膜片22a的第一面221a,并被所述反蓝透黄膜片22a的第一面221a反射至所述荧光色轮23a,蓝色激光被荧光色轮23a上黄色荧光粉吸收并激发黄色荧光粉产生黄光。
在本实施方式中,第二光路径L2a上还设置有导向系统27,所述导向系统27用于将被所述分光轮21a反射的蓝色激光光束引导至所述反蓝透黄膜片22a的第二面222a。所述导向系统27在本实施方式中为一反光镜系统,依次包括第一反光镜271、第二反光镜272以及第三反光镜273。所述第一反光镜271面向所述分光轮21a、与所述分光轮21a大致呈平行设置,所述第三反光镜273面向所述反蓝透黄膜片22a的第二面222a、与所述第二面222a大致呈平行设置,所述第二反光镜272设置于所述第一反光镜271与第三反光镜273之间,与所述第一反光镜271、第三反光镜273均大致垂直设置,从所述分光轮21a反射的蓝色激光光束被第一反光镜271反射至第二反光镜272上,再被第二反光镜272反射至第三反光镜273上,最终由第三反光镜273反射至反蓝透黄膜片22a的第二面222a。
在本实施方式中,所述分光轮21a与所述反蓝透黄膜片22a大致平行设置,第一光路径L1a与荧光色轮23a位于不同维度上,如此为避开荧光色轮23a以及设置于荧光色轮23a与反蓝透黄膜片22a之间的光学仪器对第二光路径L2a上光束的遮挡或其他影响,导向系统27与第二光路径L2a为环绕所述荧光色轮23a以及设置于荧光色轮23a与反蓝透黄膜片22a之间的光学仪器设置,即所述荧光色轮23a以及设置于荧光色轮23a与反蓝透黄膜片22a之间的光学仪器设置于所述导向系统27与第二光路径L2a内侧。
在本实施方式中,荧光色轮23a由一驱动装置230a驱动绕其旋转轴旋转。在荧光色轮23a旋转的过程中,由反蓝透黄膜片22a反射至荧光色轮23a的蓝色激光投射至荧光色轮23a的不同位置,从而提高荧光色轮23a的效率,此外,为进一步提高荧光色轮23a的效率,本实施方式中在荧光色轮23a与反蓝透黄膜片22a之间还设置了一收集系统27对入射至荧光色轮23a的光束进行整形以及均匀化,所述收集系统27在本实施方式中为一透镜组。
由第一光路径L1a到达反蓝透黄膜片22a的蓝色激光光束被反蓝透黄膜片22a的第一面221a反射至所述荧光色轮23a,激发所述荧光色轮23a产生黄光,所述黄光经所述透镜组27返回至所述反蓝透黄膜片22a,并经由反蓝透黄膜片22a透射至所述修色轮24a。另一方面,由第二光路径L2a到达反蓝透黄膜片22a的蓝色激光光束被所述反蓝透黄膜片22a的第二面222a反射至所述修色轮24a。因此,由分光轮21a时序出射至第一光路径L1a与第二光路径L2a的蓝色激光光束中,其中一束被转换成黄光,另一束仍为蓝光,两束光束时序入射至所述修色轮24a,所述修色轮24a最终时序出射多束设定颜色的光束至空间光调制器3中。
所述修色轮24a由一驱动装置240a驱动绕其旋转轴旋转,在本实施方式中,修色轮24a与分光轮21a同步转动。请参阅图4所示,修色轮24a沿其旋转方向分为多个色光区,在本实施方式中为红光区域R、黄光区域Y、绿光区域G以及蓝光区域B。其中,红光区域R、黄光区域Y与绿光区域G对应分光轮21a上的透射区域211a,蓝光区域B对应分光轮21a上的反射区域212a。也就是说,在分光轮21a旋转使蓝色激光透过透射区域211a时,修色轮24a同步旋转使荧光色轮23a产生的黄光依次到达红光区域R、黄光区域Y与绿光区域G,所述红光区域R将黄光分为红光与绿光,其中绿光被反射掉,红光被透射进入所述光通道25中,所述黄光区域Y透射黄光使其进入所述光通道25中,所述绿光区域G将黄光分为红光与绿光,其中红光被反射掉,绿光被透射进入所述光通道25中。在分光轮21a旋转使蓝色激光被反射区域212a反射时,修色轮24a同步旋转使蓝色激光经过蓝光区域B,蓝光区域B透射蓝光使其进入所述光通道25中。在本实施方式中,蓝光区域B上设置有散光片(图未示)。所述散光片用于对入射激光的角度进行调整,使出射蓝色激光的角度更均匀化,另一方面,散光片还对入射激光进行消相干。可以理解,在另一种实施方式中,所述黄光区域Y上亦可设置散光片。
在上述实施方式中,所述反蓝透黄膜片22a与所述分光轮21a大致平行设置,然在其他实施方式中,所述反蓝透黄膜片22a与所述分光轮21a亦可大致相互垂直设置,由分光轮21a透射的蓝色激光被所述反蓝透黄膜片22a反射至修色轮24a上,而由分光轮21a反射的蓝色激光被所述反蓝透黄膜片22a反射至荧光色轮23a。此外,其他光学元器件亦可进行相应调整,例如,所述中继系统26可以设置于第二光路径L2a上,位于导向系统27与反蓝透黄膜片22a之间。此外,分光轮21a上透射区域211a与反射区域212a的比例也可相应变化。
可以理解,在其他实施方式中,荧光色轮23a既可以与分光轮21a、修色轮24a同步转动,也可以不与分光轮21a、修色轮24a同步转动。
可以理解,在其他实施方式中,分光轮21a上可以设置多处透射区域211a与多处反射区域212a,透射区域211a与反射区域212a间隔设置。
可以理解,在其他实施方式中,修色轮24a上可以设置多个红色区域R、黄色区域Y、绿色区域G与蓝色区域B,这些区域按一定规则排列设置。
所述光通道25可以为一匀光棒,在一种实施方式中,所述光通道25为一匀光方棒。
请参阅图5所示,为光源系统2的第二种实施方式的具体架构图,在本实施方式中,所述发光单元20为一组合光源20b,所述组合光源20b时序发射红色激光与蓝色激光、包括发射蓝色激光的蓝激光模组200b与发射红色激光的红激光模组201b,所述光路径切换单元21为一分光轮21b,所述第一分光单元22为一反蓝透黄膜片22b,所述波长转换单元23为一荧光色轮23b,更具体地,为一黄荧光色轮,所述第二分光单元24为一修色轮24b。
所述分光轮21b包括一透射区域(图未示)与一反射区域(图未示),所述透射区域时序透射所述组合光源20b发射的红色激光与蓝色激光,使红色激光与蓝色激光时序进入第一光路径L1b,所述反射区域反射所述组合光源20b发射的蓝色激光,使蓝色激光进入第二光路径L2b。
在组合光源20b发射红色激光的时序内,分光轮21b转至透射区域的前部分,红色激光经由第一光路径L1b到达反蓝透黄膜片22b的第一面221b,并被所述反蓝透黄膜片22b的第一面221b反射至所述荧光色轮23b。在本实施方式中,所述反蓝透黄膜片22b的第一面221b上对应红色激光入射的区域设置有一反红膜片,所述反红膜片反射入射的红色激光至荧光色轮23b。在其他实施方式中,所述反红膜片也可由反红涂层代替。所述红色激光被荧光色轮23b消相干后被反射至反蓝透黄膜片22b,再由反蓝透黄膜片22b透射至所述修色轮24b。
在组合光源20b发射蓝色激光的时序内,所述分光轮21转至透明区域的后部分并继续转至反射区域,因此,组合光源20b在前部分时序内发射的蓝色激光经由第一光路径L1b到达反蓝透黄膜片22b的第一面,并被所述反蓝透黄膜片22b的第一面221b反射至所述荧光色轮23b。组合光源20b在后部分时序内发射的蓝色激光经由第二光路径L2b到达反蓝透黄膜片22b的第二面222b,被所述反蓝透黄膜片22b的第二面222b反射至所述修色轮24b。
请参阅图6所示,所述修色轮24b包括一红光区域R、一绿光区域G与一蓝光区域B,所述修色轮24b旋转使红光区域R、绿光区域G与蓝光区域B轮流切入反蓝透黄膜片22b出射光束的光路径,在本实施方式中,在组合光源20b发射红色激光的时序内,所述修色轮24b的红光区域R切入反蓝透黄膜片22b出射光束的光路径,从反蓝透黄膜片22b透射的红光被所述红光区域R透射进入所述光通道25。在组合光源20b发射蓝色激光的前部分时序内,所述修色轮24b的绿光区域G切入反蓝透黄膜片22b出射光束的光路径,从反蓝透黄膜片22b透射的黄光被所述绿光区域G分成红光与绿光,其中红光被反射掉,绿光被透射进入所述光通道25。在组合光源20b发射蓝色激光的后部分时序内,所述修色轮24b的蓝光区域B切入反蓝透黄膜片22b出射光束的光路径,从反蓝透黄膜片22b反射的蓝光被所述蓝光区域B透射进入所述光通道25。
在本实施方式中,与第一种实施方式相同,第二光路径L2b与荧光色轮23b分别位于两相交的二维平面内,第二光路径L2b亦为环绕所述荧光色轮23b以及设置于荧光色轮23b与反蓝透黄膜片22b之间的光学仪器设置。即所述荧光色轮23b以及设置于荧光色轮23b与反蓝透黄膜片22b之间的光学仪器设置于第二光路径L2b内侧。
在本实施方式中,与第一种实施方式不同的是,在红光部分,由于采用了扩展量更小的红色激光代替了蓝色激光来获得成像所需的红光,使红光部分的效率更高。
可以理解,在另一种实施方式中,在修色轮24b持续旋转的过程中,所述组合光源20b可一直发射蓝色激光,而仅是在修色轮24b的红光区域R切入反蓝透黄膜片22b出射光束的光路径时,组合光源20b开启发射红色激光,因此,在修色轮24b的红光区域R切入反蓝透黄膜片22b出射光束的光路径后,一方面,蓝色激光经由反蓝透红膜片22b到达荧光色轮23b,激发荧光色轮23b产生黄光,黄光经由反蓝透黄膜片22b透射至修色轮24b的红光区域R,被红光区域R分成红光与绿光,其中红光被透射进入光通道25,绿光被反射掉,另一方面,红色激光经由反蓝透黄膜片22b到达荧光色轮23b,在消相干后经由反蓝透黄膜片22b透射至修色轮24b的红光区域R,并进一步被红光区域R透射进入光通道25,从而对由黄光分出的红光起增补作用,进一步增强红光部分的效率。
本实施方式中光源系统2的其它结构不做详细描述,其可以与第一实施方式中的相应结构相同,也可在第一实施方式中的相应结构的基础上做适当改变,例如,在本实施方式中,在第一光路径L1b上设置了中继系统26b,在中继系统26b上设置了光斑中继系统261b、散光片262b、匀光棒263b以及会聚透镜264b,其中反蓝透黄膜片22b设置于会聚透镜264b的焦点位置,如此可使反蓝透黄膜片22b上需设置反红膜片的区域最小化,更有利于蓝色激光激发荧光色轮23b产生的黄光及/或由荧光色轮23b反射的红光通过反蓝透黄膜片22b到达修色轮24b的红光区域,进一步提升红光部分的效率。
请参阅图7与图8所示,为光源系统2的第三种实施方式的具体架构图,在本实施方式中,所述发光单元20为一组合光源20c,所述组合光源20c包括发射蓝色激光的蓝激光模组200c与发射红色激光的红激光模组201c,所述光路径切换单元21为一分光轮21c,所述第一分光单元22为一反蓝透黄膜片22c,所述波长转换单元23为一荧光色轮23c,更具体地,为一黄荧光色轮,所述第二分光单元24为一修色轮24c。
所述组合光源20c、分光轮21c、反蓝透黄膜片22c、荧光轮23c以及修色轮24c的工作原理可以大致与第二实施方式中的相应部件的工作原理相同,所述组合光源20c可以时序发射红色激光与蓝色激光,或者,在修色轮24c持续旋转的过程中,组合光源20c持续发射蓝色激光,在修色轮24c的红光区域进入了反蓝透黄膜片22c的出射光路径时,发射红色激光,在此不作赘述。
在本实施方式中,与第二种实施方式最大的不同在于,本实施方式中的第二光路径L2c与荧光色轮23c分别位于两平行的二维平面内,从而使本实施方式中的第二光路径L2c可设置于荧光色轮23c与反蓝透黄膜片22c之间,第二光路径L2c从荧光色轮23c与反蓝透黄膜片22c之间通过,且第二光路L2c径在至少一个维度方向的高度低于荧光色轮23c在该维度方向的高度,也就是说,荧光色轮23c的高度方向被复用,从而缩小了光源系统2的体积,降低了光源系统2的结构设计难度。
请参阅图9所示,为本发明投影系统的第二种实施方式的方框示意图。所述投影系统包括光源系统5、空间光调制器6与投影镜头7。从所述光源系统5出射的光束被空间光调制器6调制成携带图像信息的图像光,再经投影镜头7投射至一屏幕(图未示),形成图像显示给用户。
在本实施方式中,所述光源系统5包括发光单元50、光路径切换单元51、第一分光单元52、波长转换单元53以及第二分光单元54。所述光路径切换单元51将发光单元50发射的光束切换进入第一光路径L3或第二光路径L4,由第一光路径L3、第二光路径L4出射的光束均达到第一分光单元52,第一分光单元52根据入射光束光路径的不同,分别将入射光束引导至波长转换单元53或第二分光单元54。所述发光单元50发射的光束还经由第三光路径L5到达第一分光单元52,由所述第一分光单元52引导至波长转换单元53。经由波长转换单元53进行波长转换后的光束再经由第一分光单元52导至第二分光单元54。光束在经过第二分光单元54的分光后,形成多种设定颜色的光束,所述光束时序出射至设置于所述第二分光单元54后的光通道55中,经由光通道55时序出射至空间光调制器6。
请参阅图10-12所示,为光源系统5的一种实施方式的具体架构图,在本实施方式中,所述发光单元50为一组合光源50a,所述组合光源50a包括一发射蓝色激光的蓝激光模组500a与一发射红色激光的红激光模组501a。所述蓝激光模组500a发射的蓝色激光经由光路径切换单元51时序进入第一光路径L3与第二光路径L4,所述红激光模组501a发射的红色激光进入第三光路径L5。所述光路径切换单元51为一分光轮51a,所述第一分光单元为一反蓝透黄膜片52a,所述波长转换单元53为一荧光色轮53a,更具体地,为一黄荧光色轮,所述第二分光单元54为一修色轮54a。
所述组合光源50a、分光轮51a、反蓝透黄膜片52a、荧光轮53a以及修色轮54a结构与工作原理与以上介绍的其他实施方式相同或相似的地方不再做完整介绍,而仅主要介绍与以上实施方式的不同之处。
本实施方式与光源系统2的第三种实施方式的主要不同在于,在光源系统2的第三种实施方式中,红激光模组201c发射的红色激光经由分光轮21c进入第一光路径L1c,然在本实施方式中,红激光模组501a发射的红色激光不经分光轮51a进入第一光路径L3,而是直接进入第三光路径L5。第一光路径L3上设置了中继系统56,所述中继系统56包括一匀光棒561。第三光路径L5上设置了一会聚透镜57以及一反蓝透红膜片58,所述红色激光经过会聚透镜57以及反蓝透红膜片58后进入反蓝透黄膜片52a,由反蓝透黄膜片52a反射至荧光色轮53a。由于红色激光不需经过匀光棒的匀光,因此更有利于减小红光部分的光学扩展量,有利于提高红光部分的效率。此外,红色激光经过会聚透镜57聚焦后进入反蓝透黄膜片52a,反蓝透黄膜片52a设置于会聚透镜57的焦点位置,从而可使反蓝透黄膜片52a上需设置反红膜片的区域最小化,更有利于由蓝色激光激发荧光色轮53a产生的黄光及/或由荧光色轮53a反射的红光通过反蓝透黄膜片52a到达修色轮54a的红光区域(图未示),进一步提升红光部分的效率。
所述第一光路径L3上还设置了一反光镜59,所述反光镜59将经过中继系统56的蓝色激光反射至反蓝透红膜片58上,经由反蓝透红膜片58反射至反蓝透黄膜片52a上,再经由反蓝透黄膜片反射至荧光色轮53a上,从而激发荧光色轮53a产生黄光,所产生的黄光透过反蓝透黄膜片52a到达修色轮54a的绿光区域(图未示)。
本实施方式中第二光路径L4的设置与光源系统2的第三实施方式中的第二光路径L1c的设置类似,即第二光路径L4设置于荧光色轮53a与反蓝透黄膜片52a之间,第二光路径L4从荧光色轮53a与反蓝透黄膜片52a之间通过,且第二光路径L4在至少一个维度方向的高度低于荧光色轮53a在该维度方向的高度,也就是说,荧光色轮53a的高度方向被复用,从而缩小了光源系统5的体积,降低了光源系统5的结构设计难度。
综上所述,本发明实施方式提供的光源系统及投影系统,由于光源系统利用黄光来分离得到红光,且由于整体结构的排布,提升了采用单片式空间光调制器的投影系统的光能利用率,从而提升了投影系统的显示亮度;另一方面,在一些实施方式中,通过光学元件的合适排布将一光路径复用荧光色轮的一个维度方向,使光源系统及使用该光源系统的投影系统的结构更紧凑,且降低了光源系统结构设计的难度。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (17)

1. 一种光源系统,其特征在于,包括发光单元、光路径切换单元、第一分光单元、波长转换单元与第二分光单元,其中,所述发光单元发射光束,所述光路径切换单元用于将所述发光单元发射的光束切换进入一第一光路径或一第二光路径,所述第一分光单元设置于第一光路径与第二光路径末端,用于将从第一光路径与第二光路径入射的光束分别引导至波长转换单元或第二分光单元,所述第一分光单元还用于将波长转换单元进行波长转换后出射的光束引导至第二分光单元,所述第二分光单元用于将入射的光束进行分光后时序出射,所述第二光路径从所述波长转换单元与所述第一分光单元之间通过,所述第二光路径在至少一个维度方向的高度低于所述波长转换单元在该维度方向的高度。
2.如权利要求1所述的光源系统,其特征在于,还包括一光通道设置于所述第二分光单元之后,用于将从所述第二分光单元出射的光束引导至一空间光调制器上。
3.如权利要求1所述的光源系统,其特征在于,所述第一分光单元用于将从所述第一光路径入射的光束引导至波长转换单元以及将从所述第二光路径入射的光束引导至第二分光单元,或者,所述第一分光单元将从所述第一光路径入射的光束引导至第二分光单元以及将从所述第二光路径入射的光束引导至波长转换单元。
4.如权利要求3所述的光源系统,其特征在于,所述第一光路径上设置了一中继系统,所述中继系统包括一匀光棒、一散光片、一光斑中继系统及一会聚透镜,所述匀光棒用于将入射的光束均匀化,所述散光片设置于所述匀光棒的入口处,用于将即将进入匀光棒的光束进行扩散,所述光斑中继系统用于将进入所述第一光路径的光束光斑中继至所述匀光棒的入口处,所述会聚透镜用于将从所述匀光棒出射的光束会聚中继至所述第一分光单元上。
5.如权利要求3所述的光源系统,其特征在于,所述第二光路径上设置了反光镜系统,所述反光镜系统用于将进入第二光路径的光束引导至所述第一分光单元。
6.如权利要求5所述的光源系统,其特征在于,所述第二光路径上还设置了一中继系统,所述中继系统设置于所述反光镜系统之后,所述中继系统包括一匀光棒,所述匀光棒用于将入射的光束均匀化。
7.如权利要求1所述的光源系统,其特征在于,所述光路径切换单元通过透射与反射的方式将所述发光单元发射的光束时序切入所述第一光路径与第二光路径。
8.如权利要求1所述的光源系统,其特征在于,所述发光单元发射蓝色激光或者发射蓝色激光与红色激光。
9.如权利要求8所述的光源系统,其特征在于,所述第一分光单元为一反蓝透黄膜片,所述反蓝透黄膜片用于将入射的蓝色激光反射至波长转换单元或第二分光单元、以及将入射的黄光及/或从波长转换单元出射的红光透射至第二分光单元。
10.如权利要求9所述的光源系统,其特征在于,所述反蓝透黄膜片面向红色激光入射的区域设置了一反红膜片或者反红涂层,所述反红膜片或者反红涂层用于将入射的红色激光反射至所述波长转换单元。
11.如权利要求10所述的光源系统,其特征在于,所述波长转换单元为一黄荧光色轮,所述黄荧光色轮用于吸收由反蓝透黄膜片反射的蓝色激光并产生黄光,第二分光单元为一修色轮,所述修色轮包括多个色光区,所述色光区时序切入所述反蓝透黄膜片的出射光路径,从而使修色轮时序出射设定颜色的光束至一空间光调制器。
12.如权利要求11所述的光源系统,其特征在于,所述修色轮的色光区包括一红光区域、一绿光区域与一蓝光区域,所述红光区域用于将入射的黄光分成红光与绿光及出射红光至所述空间光调制器,所述绿光区域用于将入射的黄光分成红光与绿光及出射绿光至所述空间光调制器,所述蓝光区域用于将入射的蓝色激光出射至所述空间光调制器。
13.如权利要求12所述的光源系统,其特征在于,所述蓝光区域设置有散光片。
14.如权利要求12所述的光源系统,其特征在于,所述色光区还包括一黄光区域,所述黄光区域用于将入射的黄光出射至所述空间光调制器。
15.如权利要求8所述的光源系统,其特征在于,所述发光单元发射的红色激光经由一第三光路径入射至所述第一分光单元,所述发光单元发射的蓝色激光经由所述第一光路径与第二光路径时序入射至所述第一分光单元。
16.如权利要求15所述的光源系统,其特征在于,所述第三光路径上设置了一反蓝透红膜片,所述第一光路径上设置了一中继系统以及置于所述中继系统后的反光镜,所述中继系统包括一匀光棒,所述反光镜将进入所述第一光路径的蓝色激光反射至所述反蓝透红膜片,并通过所述反蓝透黄膜片反射至所述第一分光单元,所述红色激光经由所述反蓝透红膜片透射至所述第一分光单元。
17.一种投影系统,其特征在于,包括如权利要求1-16任一项所述的光源系统以及一空间光调制器,所述单元式空间光调制器用于将所述光源系统出射的光束调制成携带图像信息的图像光。
PCT/CN2017/100575 2017-06-15 2017-09-05 光源系统及应用所述光源系统的投影系统 WO2018227786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710453858.7 2017-06-15
CN201710453858.7A CN109143744B (zh) 2017-06-15 2017-06-15 光源系统及应用所述光源系统的投影系统

Publications (1)

Publication Number Publication Date
WO2018227786A1 true WO2018227786A1 (zh) 2018-12-20

Family

ID=64659771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100575 WO2018227786A1 (zh) 2017-06-15 2017-09-05 光源系统及应用所述光源系统的投影系统

Country Status (2)

Country Link
CN (1) CN109143744B (zh)
WO (1) WO2018227786A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112445052B (zh) * 2019-09-03 2022-04-29 美商晶典有限公司 激光投影光学光源架构
CN110716380B (zh) 2019-11-25 2021-05-18 成都极米科技股份有限公司 一种光源系统及投影机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993010A (en) * 1997-08-05 1999-11-30 Minolta Co., Ltd. Two-dimensional illumination optical system and liquid crystal projector using same
EP1139014A2 (en) * 2000-03-31 2001-10-04 Seiko Epson Corporation Light source device, and illuminating optical system and projector including the same
CN102662301A (zh) * 2012-03-11 2012-09-12 深圳市光峰光电技术有限公司 光源系统及相关投影系统
CN103376634A (zh) * 2012-04-24 2013-10-30 中强光电股份有限公司 光源模组与投影装置
CN106444253A (zh) * 2016-12-05 2017-02-22 明基电通有限公司 激光投影机的光源系统
CN206863466U (zh) * 2017-06-15 2018-01-09 深圳市光峰光电技术有限公司 光源系统及应用所述光源系统的投影系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203160B1 (en) * 1999-10-12 2001-03-20 Industrial Technology Research Institute High efficiency liquid crystal display projection system
JP2013041170A (ja) * 2011-08-18 2013-02-28 Seiko Epson Corp 光源装置及びプロジェクター
JP6233572B2 (ja) * 2013-11-05 2017-11-22 パナソニックIpマネジメント株式会社 照明装置
JP6350013B2 (ja) * 2014-06-23 2018-07-04 株式会社リコー 照明光源装置及び画像投影装置
CN204422962U (zh) * 2014-11-07 2015-06-24 深圳市绎立锐光科技开发有限公司 一种投影仪及其光源系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993010A (en) * 1997-08-05 1999-11-30 Minolta Co., Ltd. Two-dimensional illumination optical system and liquid crystal projector using same
EP1139014A2 (en) * 2000-03-31 2001-10-04 Seiko Epson Corporation Light source device, and illuminating optical system and projector including the same
CN102662301A (zh) * 2012-03-11 2012-09-12 深圳市光峰光电技术有限公司 光源系统及相关投影系统
CN103376634A (zh) * 2012-04-24 2013-10-30 中强光电股份有限公司 光源模组与投影装置
CN106444253A (zh) * 2016-12-05 2017-02-22 明基电通有限公司 激光投影机的光源系统
CN206863466U (zh) * 2017-06-15 2018-01-09 深圳市光峰光电技术有限公司 光源系统及应用所述光源系统的投影系统

Also Published As

Publication number Publication date
CN109143744A (zh) 2019-01-04
CN109143744B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2015149700A1 (zh) 一种光源系统及投影系统
WO2018209723A1 (zh) 一种投影照明光路及其投影装置
WO2019061821A1 (zh) 光源系统及应用所述光源系统的投影系统
WO2020259615A1 (zh) 一种光源系统及显示设备
WO2020216263A1 (zh) 光源系统和显示设备
WO2018010487A1 (zh) 光源及投影仪
JP4183663B2 (ja) 照明装置及び投写型映像表示装置
JP2017015993A (ja) 光源装置及びこれを用いた照明装置、投射型表示装置
WO2018227786A1 (zh) 光源系统及应用所述光源系统的投影系统
WO2019037329A1 (zh) 投影系统
WO2021259276A1 (zh) 光源组件和投影设备
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
TW201935085A (zh) 照明系統與投影裝置
JP2007065412A (ja) 照明装置及び投写型映像表示装置
CN206863466U (zh) 光源系统及应用所述光源系统的投影系统
WO2018010486A1 (zh) 光源结构及投影系统
CN211318969U (zh) 光源模块以及投影装置
JP2001005097A (ja) 反射型カラープロジェクター
CN115793369A (zh) 一种混合光源装置及投影显示系统
WO2021259274A1 (zh) 光源组件和投影设备
CN113219773B (zh) 光源模块以及投影装置
CN112213908B (zh) 光源系统与显示设备
CN113900335A (zh) 光源组件和投影设备
WO2018196318A1 (zh) 光源系统及应用所述光源系统的投影系统
WO2021259282A1 (zh) 光源组件和投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914021

Country of ref document: EP

Kind code of ref document: A1