WO2019061821A1 - 光源系统及应用所述光源系统的投影系统 - Google Patents

光源系统及应用所述光源系统的投影系统 Download PDF

Info

Publication number
WO2019061821A1
WO2019061821A1 PCT/CN2017/114751 CN2017114751W WO2019061821A1 WO 2019061821 A1 WO2019061821 A1 WO 2019061821A1 CN 2017114751 W CN2017114751 W CN 2017114751W WO 2019061821 A1 WO2019061821 A1 WO 2019061821A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
color
region
source system
Prior art date
Application number
PCT/CN2017/114751
Other languages
English (en)
French (fr)
Inventor
胡飞
郭祖强
杜鹏
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US16/650,854 priority Critical patent/US11067881B2/en
Publication of WO2019061821A1 publication Critical patent/WO2019061821A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to the field of projection display, and more particularly to a light source system and a projection system using the same.
  • Space light modulators are widely used in the field of projection display.
  • Space light modulators generally include LCD, LCOS, DMD, etc.
  • the monolithic spatial light modulator projection system realizes color projection display based on the base light of timing switching.
  • the structure is simple, the cost is low, and the like, and is widely used in the low-end market.
  • US Pat. No. 7,547,114 B2 provides a method for a semiconductor laser to excite different fluorescent pink segments on a color wheel to form different primary colors of light. The method has the advantages of high light efficiency and small optical expansion, and thus develops rapidly.
  • Ideal for projector light sources Since the laser-excited phosphor is subjected to a wide spectral bandwidth of the laser, a filter is usually added to the light source to intercept the desired wavelength band, such as intercepting green or red light from the yellow light.
  • FIG. 1 is a light source system with a two-color wheel (ie, color wheel + filter wheel), including an excitation light source 101 , a beam splitting lens 102 , a collecting system 103 , a fluorescent wheel 104 , and a filter wheel 105 .
  • the excitation light source 101 is generally a blue laser, and the emitted laser beam is transmitted at the spectroscopic lens 102.
  • the spectroscopic lens 102 is a blue-transflected dichroic film.
  • the laser collects and collects on the surface of the color wheel 104 through the collecting lens 103.
  • the phosphor on the excitation color wheel 104 is generated by the laser light and reflected in the form of light, is collected by the collecting lens 103, and then reflected at the spectroscopic lens 102, and then concentrated by the relay lens.
  • the filter wheel 105 performs color correction on the laser.
  • the structure of the color wheel 104 and the filter wheel 105 is as shown in FIG. 2, the fluorescent areas R, G, B of the color wheel 104 correspond to the filter areas R, G, B of the filter wheel 105, and the control device 107 is used for the color wheel.
  • the 104 is synchronized with the filter wheel 105.
  • the excitation light is transmitted through the region B in the color wheel 104, and the incident beam splitting lens 102 is relayed by the blue light relay system 106, and the light is transmitted through the splitting lens 102 and merged with the fluorescent light path into the light homogenizing rod 108, while filtering.
  • the area B in the wheel 105 is provided with a diffusing sheet to expand the angle of the blue light and to eliminate the coherence.
  • FIG. 3 is a light source system with a monochrome wheel, including an excitation light source 201 , a regional beam splitter 202 , a collection system 203 , a color wheel 204 , and a light homogenizing rod 205 .
  • the color wheel 204 is provided with the fluorescent region 2041 and the filter region 2042 at the same time, so that a device and a program for synchronous control are not required.
  • the B region in the fluorescent region 2041 is usually set as a scattering powder, and the excitation light is reflected by the scattering light in the form of Langbo light, and coincides with the fluorescent light path, but for the regional beam splitting sheet 202, the central region is coated with a blue anti-yellow coating. Outside the area is a full mirror, so the blue light reflected by the color wheel 204 has a loss of light efficiency through the area beam splitter 202.
  • the diameter of the color wheel 204 will be much larger than the diameter of the lens, so the overall volume of the light source is limited by the diameter of the color wheel 204, and cannot be achieved. Ultra-thin.
  • the elimination of the filter wheel on the basis of the prior art not only takes into account the color purity problem of the phosphor emission spectrum, but also considers the problem of increasing the amount of blue optical expansion and decoherence.
  • the present invention provides a light source system and projection system that eliminates the filter wheel.
  • the present invention provides a light source system including a first light source, a spectroscopic device, a wavelength conversion device, and a light guiding device, the first light source for emitting first light; and the wavelength conversion device comprising at least a first color light
  • the region and the second color light region are alternately cut into the exit path of the first light, and the first color light region is configured to generate the second light and emit the second light to the spectroscopic device under the excitation of the first light
  • the second color light region is for reflecting the first light to the light splitting device;
  • the light splitting device is for guiding the first light to a light path and guiding the second light to the light guiding device, or Light is directed onto the light path and directs first light to the light directing device;
  • the light directing device is configured to reflect the other of the first light and the second light to the light splitting device, and Directed to the light path via the spectroscopic device.
  • the present invention also provides a projection system including the above-described light source system, a spatial light modulator, and a projection lens, wherein the unitary spatial light modulator is configured to modulate a light beam emitted from the light source system into Image light carrying image information projected onto a screen via a projection lens.
  • the light source system and the projection system provided by the embodiments of the present invention have the advantages of avoiding the use of the filter wheel, and at a low power, the green phosphor and the red phosphor can obtain better color purity, and at a high At the power, by adding a red laser and a red light to mix light, and/or adding a green laser and a green light to mix light, a better color brightness requirement can still be achieved, and since the use of the filter wheel can be avoided, Structurally, the volume of the light source can be reduced, and it can be small, compact, and ultra-thin; in terms of the consistency of the light source, the filter itself used for the filter wheel has a coating tolerance (usually +/- 5).
  • the filter wheel can be used to greatly improve the color and brightness consistency of the light source, and the light source system can be reduced due to the filter coating tolerance.
  • the phenomenon of low yield reduces the difficulty of production of the light source system; in control, compared with the two-color wheel system of the fluorescent wheel + filter wheel, the color wheel is not required to be synchronously controlled, which reduces the difficulty.
  • FIG. 1 is a detailed structural diagram of a light source system with a two-color wheel in the prior art.
  • FIG. 2 is a schematic view showing the division of the color wheel and the filter wheel of the light source system shown in FIG. 1.
  • FIG. 3 is a detailed structural diagram of a light source system with a monochrome wheel in the prior art.
  • FIG. 4 is a schematic view showing the division of the color wheel of the light source system shown in FIG.
  • Figure 5 is a block schematic diagram of a light source system in accordance with a first embodiment of the present invention.
  • FIG. 6 is a structural diagram of a specific implementation of the light source system shown in FIG. 5.
  • Figure 7 is a schematic view showing the division of the fluorescent color wheel shown in Figure 5.
  • Figure 8 is a spectrum diagram of the green light emitted by the light source system of Figure 5 at low power.
  • Figure 9 is a spectrum diagram of the red light emitted by the light source system of Figure 5 at low power.
  • Figure 10 is a color gamut diagram of the light source of the light source system of Figure 5 at low power.
  • Figure 11 is a block schematic diagram of a light source system in accordance with a second embodiment of the present invention.
  • FIG. 12 is a structural diagram of a specific implementation of the light source system shown in FIG.
  • FIG. 13 is a block diagram showing another specific implementation of the light source system shown in FIG.
  • Figure 14 is a block schematic diagram of a projection system in accordance with one embodiment of the present invention.
  • FIG. 5 is a block diagram of a light source system according to a first embodiment of the present invention.
  • the light source system 30 includes a light source 301 , a light splitting device 303 , a wavelength conversion device 305 , a light guiding device 306 , and A homogenizing device 308.
  • the light source system 30 emits a first light A, and the first light A is guided to a wavelength conversion device 305 via a beam splitting device 303.
  • the wavelength conversion device 305 includes at least one first color light region and one second color light region. The one-color light region and the second color light region are controlled to alternately cut into the exit path of the first light A in a time sequence.
  • the first color light region After the first color light region enters the exit path of the first light A, the first color light region absorbs the first light A and The second light B is generated, and the second light B is emitted to the spectroscopic device 303 and guided to the optical path L by the spectroscopic device 303, and is emitted to the homogenizing device 308 via the optical path L.
  • the second color light region After the second color light region enters the exit path of the first light A, the second color light region reflects the first light A to the spectroscopic device 303, and is guided to the light guiding device 306 via the spectroscopic device 303, the light guiding device 306 A light A is reflected to the spectroscopic device 303 and guided by the spectroscopic device 303 onto the optical path L, and is emitted to the homogenizing device 308 via the optical path L.
  • the light homogenizing device 308 homogenizes and emits the received first light A and second light B.
  • the light source 301 is a blue laser light source 301 a that emits blue laser light
  • the light splitting device 303 is blue transparent.
  • the anti-yellow dichroic film that is, the blue anti-yellow film 303a
  • the wavelength conversion device 305 is a fluorescent color wheel 305a
  • the light guiding device 306 is a blue reflecting device 306a
  • the light homogenizing device 308 is A uniform light bar 308a.
  • the light source 30 further includes a light homogenizing device 302, a light collecting system 304 and a light reflecting device 307.
  • the light homogenizing device 302 is disposed between the blue laser light source 301a and the blue anti-yellow film 303a.
  • the light collecting system 304 is disposed between the blue anti-yellow film 303a and the fluorescent color wheel 305a.
  • the reflective device 307 Set on the light path L.
  • the blue laser light emitted from the blue laser light source 301a passes through the light homogenizing device 302 and is transmitted through the blue anti-yellow film 303a.
  • the transmitted blue laser light is concentrated by the light collecting system 304 on the surface of the fluorescent color wheel 305a.
  • the fluorescent color wheel 305a is divided into three color light regions along its circumferential direction, including a red light region R, a green light region G and a blue light region B, wherein the red light region R and the green light region are included.
  • G is set with red phosphor and filter phosphor
  • blue region B is provided with reflective fin.
  • the fluorescent color wheel 305a may be divided into more than one red light region R, more than one green light region G, and more than one blue light region B along its circumferential direction.
  • the fluorescent color wheel 305a is driven to rotate, so that the red light region R, the green light region G and the blue light region B are alternately cut into the exit path of the blue laser light in time series, and when the fluorescent color wheel 305a is turned to the red light region R, the blue laser light is excited.
  • the red phosphor of the red light region R generates red light fluorescence.
  • the blue light laser excites the green light phosphor of the green light region G to generate green light fluorescence, red light fluorescence and green light.
  • the fluorescence is reflected in the form of Lambertian light, collected by the light collecting system 304, reflected by the translucent anti-yellow film 303a to the retroreflective device 307, and concentrated by the retroreflective device 107 at the entrance of the homogenizing rod 308a.
  • the fluorescent color wheel 305a is turned to the blue light region B, the blue laser light is scattered by the diffusing plate of the blue light region B and decohered, and is reflected in a Gaussian light distribution, and the reflected blue laser light is collected by the light collecting system 304 and then transmitted through the blue.
  • the anti-yellow film 303a is transmitted to the blue light reflecting device 306a.
  • the blue light reflecting device 306a is a reflective convex lens.
  • the blue laser light is reflected by the blue light reflecting device 306a and then diffused at a certain angle, transmitted through the blue anti-yellow film 303a to the reflecting device 307, and then concentrated at the entrance of the light collecting rod 308a via the reflecting device 107. .
  • FIG. 10 is a color gamut diagram of the light source system 30, and b is a color gamut diagram defined by the international standard Rec. Since the green phosphor itself can provide an emission spectrum with a good color purity, the green fluorescence generated by the green phosphor that excites the fluorescent color wheel 305a can meet the specifications of most projection devices without filtering. Referring to FIG. 9 and FIG. 10, the red phosphor is not saturated under the condition of low excitation light power, and the red light efficiency obtained from the red phosphor is higher than that from the yellow phosphor at low excitation light power.
  • the diffusing plate provided in the blue region B of the fluorescent color wheel 305a can expand the amount of blue light and decoherence, and after passing through the blue reflecting device 306a, the angle is further enlarged, so that the blue light reaches the light collecting rod 308a.
  • the angle at the entrance can be matched with red and green light to achieve better uniformity. Therefore, compared with the existing monochromatic wheel light source system, the characteristics of the blue laser expanding amount are reasonably utilized, the blue light loss caused by the coating of the existing monochromatic wheel light source system region is avoided, and the uniformity of the light source is improved.
  • the color gamut of the light source system 30 at low excitation light power is close to the international standard Rec.709, which can meet the needs of many projection devices.
  • the spectroscopic device 303 may also be an anti-blue translucent dichroic film, and the red and green lights generated by the blue laser to excite the fluorescent color wheel 303a are The beam splitting device 303 is transmitted to the light guiding device 306, which reflects red and green light, so that the red and green light continues to be transmitted through the beam splitting device 303 and is finally directed to the light homogenizing device 308.
  • the light guiding device 306 can also be a reflective diffusing sheet or a single compound eye.
  • the light homogenizing device 302 can also be omitted.
  • FIG. 11 is a block diagram of a light source system according to a second embodiment of the present invention.
  • the light source system 40 is based on the light source system 30 , and an optical compensation device 41 is added.
  • the light compensation device 41 is added. Compensation light is provided to compensate for the lack of color and brightness of the second light B.
  • the light compensation device 41 is disposed on a side of the light guiding device 306 that faces away from the beam splitting device 303.
  • the second light B provided by the light compensation device 41 is concentrated by the light guiding device 306 and reaches the beam splitting device 306.
  • the device 306 is provided with a structure for transmitting the second light B corresponding to the position of the second light B provided by the optical compensation device 41, such as a diaphragm for allowing the second light B to pass through, so as to be provided by the optical compensation device 41.
  • the second light B passes through the spectroscopic device 303 and merges with the second light B generated by the wavelength conversion device 305, and finally converges to the entrance of the homogenizing device 308.
  • the same or similar components as those in the light source system 30 are denoted by the same reference numerals, and their functions will not be described again.
  • FIG. 12 it is a specific implementation architecture diagram of the light source system 40.
  • red light The saturation phenomenon of the phosphor is severe, so that the efficiency of the high-power excitation red phosphor is lowered, and the emission spectrum of the red phosphor shifts to a short wavelength band, which is disadvantageous for obtaining the desired red light brightness and color.
  • the light compensation device 41 is a red light compensation device 41a, and the red laser light provided by the red light compensation device 41 is incident on the blue anti-yellow film 303a through the light guiding device 306, and the blue anti-yellow film 303a
  • a yellow-transparent or red-transparent film is disposed at a position corresponding to the red laser light incident, so that the red laser light can pass through the blue anti-yellow film 303a at the position of the blue anti-yellow film 303a and is combined with the red fluorescent light. It eventually converges at the entrance of the homogenizing rod 308a.
  • the red light compensation device 41a includes a red laser light source 401, a scattering device 402, and converging lenses 403, 404.
  • the red laser light emitted by the red laser light source 401 is concentrated by the condensing lens 404 and then concentrated on the scattering device 402.
  • the scattering device 402 homogenizes and decoheres the red laser to expand the optical expansion of the red laser. It is better able to match red light fluorescence.
  • the scattering device 402 can be a scattering wheel.
  • the concentrating lens 403 converges the homogenized and de-coherent red laser light onto the light guiding device 306 at an angle, and the light guiding device 306 continues to converge the red laser to form a small spot of the red laser.
  • the area of the yellow-transparent or red-transparent film disposed on the blue anti-yellow film 303a is reduced, thereby reducing the loss of red fluorescence.
  • the light source system 40 further includes a control device 42 that controls the red light compensation device 41 to be turned on and off according to the rotation information of the fluorescent color wheel 305a. Further, the control device The red laser light source 401 is controlled to be turned on only when the fluorescent color wheel 305a is turned to the red light region R, and is turned off at other times.
  • red light laser light in red light fluorescence since the red light laser has good monochromaticity and color purity, the red light brightness at the time of high excitation light power and only red light fluorescence is compensated. Insufficient color.
  • the light compensation device 41 can simultaneously include the red compensation device 41a and the green compensation device 41b, as needed to enhance the color of the green light, as needed to achieve a wider color gamut, see
  • the green light compensating device 41b includes a green laser light source 405 that emits green laser light, and shares a scattering device 402 and converging lenses 403, 404 with the red light compensating device 41a.
  • the translucent anti-yellow film 303a is provided with a yellow-transparent film at a position corresponding to the incident of the red laser and the green laser to allow the red laser and the green laser to pass through the blue anti-yellow film 303a.
  • control device 42 is further configured to control the turning on and off of the green light compensating device 41b according to the rotation information of the fluorescent color wheel 305a. Further, the control device 42 controls the green light source 405 to turn only on the fluorescent color wheel 305a. Turns on when it is in the green area G, and turns off at other times.
  • the light compensation device 41 may only include the green light compensation device 41b as needed.
  • control device 42 can dynamically adjust the power of the red laser light emitted by the red laser light source 401 and/or the green laser light emitted from the green laser light source 405 according to the control command, thereby dynamically adjusting the light source system.
  • the control command may be an instruction input by a user or an instruction from another control device.
  • control device 42 can also be used to dynamically adjust the intensity of the first light A emitted by the light source 301 according to the control command, such as dynamically adjusting the power of the blue laser light emitted by the blue laser light source 301a according to the control command, thereby The color and brightness of the entire light source system 40 are adjusted as a whole.
  • the power of the on/off and exit lasers of the blue laser source 301a, the red laser source 401, and/or the green laser source 405 is simultaneously controlled by the same control device 42, it is understood that in some embodiments, the blue light
  • the power of the laser light source 301a, the red laser light source 401, and/or the green laser light source 405 for opening and closing and emitting laser light can be realized by different control devices.
  • FIG. 14 is a block diagram of a projection system according to an embodiment of the present invention.
  • the projection system 50 includes a light source system 51 , a spatial light modulator 52 and a projection lens 53 .
  • the light source system 51 may be the above. Any of the light source systems described in the embodiments may also be a light source system that is suitably modified without departing from the scope of the invention, the spatial light modulator 52 for the light source system 51.
  • the emitted light beam is modulated into image light carrying image information, which is projected onto a screen (not shown) via the projection lens 53.
  • the light source system and the projection system avoid the use of the filter wheel, and the green color phosphor and the red phosphor can obtain better color purity under low power.
  • the filter wheel can be avoided
  • Use in structure, can reduce the volume of the light source, can be small, compact, ultra-thin; in the consistency of the light source, because the filter used in the filter wheel itself has the tolerance of the coating (usually + / -5 ⁇ 8nm), which affects the brightness and color consistency.
  • the color wheel and the brightness uniformity of the light source are greatly improved by eliminating the filter wheel, and the light source system due to the coating tolerance of the filter can be reduced.
  • Exceeding the specifications and low yield the production difficulty of the light source system is reduced; in the control, compared with the two-color wheel system of the fluorescent wheel + the filter wheel, the color wheel is not required to be synchronously controlled, which reduces the difficulty.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源系统(30)与投影系统(50),光源系统(30)包括第一光源(301)、分光装置(303)、波长转换装置(305)及光引导装置(306),第一光源(301)出射第一光(A),波长转换装置(305)至少包括第一色光区域与第二色光区域按时序轮流切入第一光(A)的出射路径,第一色光区域在第一光(A)的激发下生成第二光(B)并出射第二光(B)至分光装置(303),第二色光区域反射第一光(A)至分光装置(303),分光装置(303)将第一光(A)引导至一光路径上及将第二光(B)引导至光引导装置(306)、或者将第二光(B)引导至光路径上并将第一光(A)引导至光引导装置(306),光引导装置(306)将第一光(A)或第二光(B)反射至分光装置(303),并由分光装置(303)引导至光路径,从而提高了光源的颜色与亮度且减少了光源体积。

Description

光源系统及应用所述光源系统的投影系统 技术领域
本发明涉及投影显示领域,尤其涉及一种光源系统及应用所述光源系统的投影系统。
背景技术
目前,空间光调制器在投影显示领域获得广泛应用,空间光调制器一般包括LCD、LCOS、DMD等,单片式空间光调制器投影系统基于时序切换的基色光来实现彩色投影显示,以其结构简单,成本较低等特点,在中低端市场被广泛应用。在投影系统的光源方面,美国专利US7547114B2提供了一种半导体激光器激发色轮上不同荧光粉色段以形成不同基色光的方法,该方法具有光效高,光学扩展量小的优势,因此发展迅速,成为投影仪光源的理想选择。由于激光激发荧光粉的受激光光谱带宽较宽,因此在光源中通常加入滤光片去截取需要的波段,如从黄光荧光中截取绿光或红光。
技术问题
随着激光荧光粉技术的快速发展,在荧光粉效率及色纯度上有了逐步的提高。常用的荧光粉有:黄光荧光粉、绿光荧光粉、红光荧光粉,其中黄光荧光粉和绿光荧光粉技术已经相对成熟,而红光荧光粉的饱和现象较为严重,即当激发光功率升高时,红光荧光粉激发效率降低,且发射谱漂移,颜色纯度下降。因此,目前红光常用的形式为从黄光荧光粉中通过滤光片截取红光段。
请参阅图1所示,为现有的一种带双色轮(即色轮+滤光轮)的光源系统,包括激发光源101、分光镜片102、收集系统103、荧光轮104、滤光轮105、蓝光中继透镜106、控制器件107以及匀光棒108。激发光源101一般为蓝光激光,发射激光束在分光镜片102处透射,分光镜片102为透蓝反黄的二向色膜片。激光经过收集透镜103收集汇聚于色轮104表面,激发色轮104上的荧光粉产生受激光并以郎伯光的形式反射,经过收集透镜103收集后在分光镜片102处反射,再经中继透镜汇聚于匀光棒108,滤光轮105对受激光进行修色。
色轮104与滤光轮105结构如图2所示,色轮104的荧光区域R、G、B与滤光轮105滤光区域R、G、B一致对应,控制器件107用于将色轮104与滤光轮105进行同步控制。
对于蓝光而言,激发光在色轮104中的区域B透射,经蓝光中继系统106中继入射分光镜片102,在分光镜片102透射与荧光光路合光进入匀光棒108,而在滤光轮105中的区域B则设置散射片,以扩大蓝光的角度,以及消相干。
请参阅图3所示,为现有的一种带单色轮的光源系统,包括激发光源201、区域分光片202、收集系统203、色轮204以及匀光棒205,色轮204结构如图4所示,与图1中采用双色轮不同的是,色轮204上同时设置有荧光区2041和滤光区2042,因此不需要进行同步控制的装置及程序。并且在荧光区2041中的B区域通常设置为散射粉,激发光经过其散射以郎伯光的形式反射,与荧光光路重合,但对于区域分光片202而言,其中心区域镀膜为透蓝反黄,区域外为全反镜,因此经色轮204反射的蓝光经区域分光片202处存在光效的损失。
在结构上,由于荧光区2041与滤光区2042均设在色轮204上,色轮204的直径将远大于透镜的直径,因此光源的整体体积会受到色轮204直径的限制,无法做到超薄。
综上所述,在现有技术的基础上取消滤光轮,不仅要考虑到荧光粉发射谱的色纯度问题,还要考虑到增大蓝光光学扩展量以及消相干的问题。
技术解决方案
鉴于上述状况,本发明提供一种取消滤光轮的光源系统与投影系统。
一方面,本发明提供一种光源系统,包括第一光源、分光装置、波长转换装置以及光引导装置,所述第一光源用于出射第一光;所述波长转换装置至少包括第一色光区域与第二色光区按时序轮流切入第一光的出射路径,所述第一色光区域用于在所述第一光的激发下生成第二光并出射第二光至所述分光装置,所述第二色光区域用于反射第一光至分光装置;所述分光装置用于将第一光引导至一光路径上及将第二光引导至所述光引导装置,或者,将第二光引导至所述光路径上及将第一光引导至所述光引导装置;所述光引导装置用于将第一光与第二光中的所述另一个反射至所述分光装置,并经由所述分光装置引导至所述光路径。
另一方面,本发明还提供一种投影系统,所述投影系统包括上述的光源系统、空间光调制器及投影镜头,所述单元式空间光调制器用于将所述光源系统出射的光束调制成携带图像信息的图像光,所述图像光经由投影镜头投影至一屏幕。
有益效果
本发明实施例提供的光源系统与投影系统的优点在于:避免了滤光轮的使用,在低功率下,用绿光荧光粉与红光荧光粉便能获得较好的颜色纯度,而在高功率下,通过加入红光激光与红光荧光混光,及/或加入绿光激光与绿光荧光混光,仍可实现较好的颜色亮度需求,且,由于可以避免滤光轮的使用,在结构上,可以减小光源的体积,可以做到小型、紧凑、超薄;在光源的一致性上,由于滤光轮所使用的滤光片本身存在镀膜的公差(通常为+/-5~8nm),其会影响亮度、颜色的一致性,因此取消滤光轮对光源的颜色、亮度一致性有很大的提升,可以减小因滤光片镀膜公差而带来的光源系统超出规格、良率低的现象,降低了光源系统的生产难度;在控制上,相对于荧光轮+滤光轮的双色轮系统,不需要对色轮进行同步控制,减小了难度。
附图说明
图1为现有技术中一带双色轮的光源系统的具体架构图。
图2为图1所示光源系统的色轮与滤光轮的分区示意图。
图3为现有技术中一带单色轮的光源系统的具体架构图。
图4为图3所示光源系统的色轮的分区示意图。
图5为本发明第一种实施方式的光源系统的方框示意图。
图6为图5所示光源系统的一种具体实施架构图。
图7为图5所示荧光色轮的分区示意图。
图8为图5所示光源系统低功率下出射绿光的光谱图。
图9为图5所示光源系统低功率下出射红光的光谱图。
图10为图5所示光源系统低功率下出射光的色域图。
图11为本发明第二种实施方式的光源系统的方框示意图。
图12为图11所示光源系统的一种具体实施架构图。
图13为图11所示光源系统的另一种具体实施架构图。
图14为本发明一种实施方式中的投影系统的方框示意图。
本发明的实施方式
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图5所示,为本发明第一种实施方式的光源系统的方框示意图,所述光源系统30包括一光源301、一分光装置303、一波长转换装置305、一光引导装置306以及一匀光装置308。所述光源系统30出射第一光A,所述第一光A经由分光装置303引导至波长转换装置305,所述波长转换装置305至少包括一个第一色光区域与一个第二色光区域,第一色光区域与第二色光区域被控制按时序轮流切入第一光A的出射路径,在第一色光区域进入第一光A的出射路径后,第一色光区域吸收第一光A并生成第二光B,第二光B出射至分光装置303并被分光装置303引导至一光路径L上,并经由光路径L出射至匀光装置308。在第二色光区域进入第一光A的出射路径后,第二色光区域反射第一光A至分光装置303,并经由分光装置303被引导至光引导装置306,所述光引导装置306将第一光A反射至分光装置303并被分光装置303引导至光路径L上,并经由光路径L出射至匀光装置308。所述匀光装置308将接收的所述第一光A与第二光B均匀化并出射。
请参阅图7所示,为光源系统30的一种具体实施架构图,在本具体实施例中,所述光源301为一发射蓝光激光的蓝光激光光源301a,所述分光装置303为一透蓝反黄的二向色膜片、即透蓝反黄膜片303a,所述波长转换装置305为一荧光色轮305a,所述光引导装置306为蓝光反射装置306a,所述匀光装置308为一匀光棒308a。另,所述光源30还包括一匀光器件302、一光收集系统304与一反光装置307。所述匀光器件302设置于蓝光激光光源301a透蓝反黄膜片303a之间,所述光收集系统304设置于透蓝反黄膜片303a与荧光色轮305a之间,所述反光装置307设置于光路径L上。
由蓝光激光光源301a出射的蓝光激光经过匀光器件302后、由透蓝反黄膜片303a透射。透射的蓝光激光经光收集系统304会聚于荧光色轮305a的表面。请参阅图8所示,荧光色轮305a沿其圆周方向被划分为三个色光区域,包括一红光区域R、一绿光区域G与一蓝光区域B,其中红光区域R和绿光区域G分别设置了红光荧光粉与滤光荧光粉,蓝光区域B设置了反射式散热片。可以理解,在其他实施方式中,荧光色轮305a沿其圆周方向可以被划分为多于一个的红光区域R、多于一个的绿光区域G与多于一个的蓝光区域B。
荧光色轮305a被驱动旋转,从而使红光区域R、绿光区域G与蓝光区域B按时序轮流切入蓝光激光的出射路径上,当荧光色轮305a转至红光区域R时,蓝光激光激发红光区域R的红光荧光粉产生红光荧光,当荧光色轮305a转至绿光区域G时,蓝光激光激发绿光区域G的绿光荧光粉产生绿光荧光,红光荧光与绿光荧光以朗伯光的形式反射,经光收集系统304收集后被透蓝反黄膜片303a反射至反光装置307,经由反光装置107会聚于匀光棒308a的入口。当荧光色轮305a转至蓝光区域B时,蓝光激光被蓝光区域B的散射片散射并消相干、并以高斯形式光分布被反射,被反射的蓝光激光经光收集系统304收集后被透蓝反黄膜片303a透射至蓝光反射装置306a。蓝光反射装置306a为反射式凸透镜,蓝光激光经过蓝光反射装置306a反射后以一定角度发散,经透蓝反黄膜片303a透射至反光装置307,再经由反光装置107会聚于匀光棒308a的入口。
请参阅图8与图10所示,其中图10中a为光源系统30的色域图,b为国际标准Rec.709所定义色域图。由于绿光荧光粉本身能够提供的发射谱颜色纯度较好,因此激发荧光色轮305a的绿光荧光粉产生的绿光荧光不需进行滤光就能满足大多数投影设备的规格要求。请参阅图9与图10所示,红光荧光粉在低激发光功率的条件下不会饱和,在低激发光功率下,从红光荧光粉获得的红光效率高于从黄色荧光粉中截取的红光效率,并且颜色纯度较好,因此,在低激发光功率条件下可以使用红光荧光粉而不需采用滤光片。在蓝光方面,荧光色轮305a的蓝光区域B设置的散射片既能扩大蓝光的扩展量又能消相干,且蓝光在经过蓝光反射装置306a后,角度被进一步扩大,使蓝光到达匀光棒308a入口处时的角度能够与红光、绿光相匹配,达到较好的均匀性。因此相对现有的单色轮光源系统,合理利用了蓝光激光扩展量小的特点,避免了现有单色轮光源系统区域镀膜造成的蓝光损失,提高了光源的均匀性。
请参阅图10所示,光源系统30在低激发光功率下的色域接近于国际标准Rec.709,可以满足很多投影设备的需求。
可以理解,在其他实施方式中,根据匀光装置308设置的位置的不同,分光装置303与匀光装置308之间可以采用其他导光装置来代替反光装置307。
可以理解,在其他实施方式中,根据光源301设置的位置的不同,分光装置303也可以为反蓝透黄二向色膜片,由蓝光激光激发荧光色轮303a产生的红光与绿光被分光装置303透射至光引导装置306,光引导装置306反射红光与绿光,使红光与绿光继续透射分光装置303并最终被引导至匀光装置308。
可以理解,在其他实施方式中,所述光引导装置306亦可为反射式的散射片或单复眼。
可以理解,在其他实施方式中,所述匀光器件302亦可省略。
请参阅图11所示,为本发明第二种实施方式的光源系统的方框示意图,所述光源系统40为在光源系统30的基础上,增加了光补偿装置41,所述光补偿装置41提供补偿光,以弥补第二光B在颜色与亮度方面的不足。在本实施方式中,所述光补偿装置41设置于光引导装置306背离分光装置303的一侧,光补偿装置41提供的第二光B被光引导装置306会聚后抵达分光装置306,在分光装置306对应光补偿装置41提供的第二光B的位置处设置了让第二光B透过的结构,如设置了让第二光B透过的膜片,以使光补偿装置41提供的第二光B透过分光装置303与由波长转换装置305生成的第二光B合光,并最终会聚至匀光装置308的入口。在本实施方式,与光源系统30中元器件相同或相似的部分采用相同的标号标示,其功能作用亦不再赘述。
请参阅图12所示,为光源系统40的一种具体实施架构图,由于在激发光功率增加的情况下,如应用到高亮度要求的投影装置时,在较高的功率条件下,红光荧光粉的饱和现象严重,使较高功率激发红光荧光粉的效率下降,红光荧光粉的发射谱向短波段漂移,不利于获得需要的红光亮度与颜色,因此在本实施方式中,所述光补偿装置41为一红光补偿装置41a,所述红光补偿装置41提供的红光激光通过光引导装置306入射至透蓝反黄膜片303a,所述透蓝反黄膜片303a在其对应红光激光入射处设置透黄或透红膜片,从而使红光激光能通过透蓝反黄膜片303a的该位置透过透蓝反黄膜片303a并与红光荧光合光并最终会聚于匀光棒308a的入口。
在本实施方式中,所述红光补偿装置41a包括红光激光光源401、散射器件402与会聚透镜403、404。其中红光激光光源401发射的红光激光经会聚透镜404后会聚于散射器件402,所述散射器件402将红光激光均匀化并消相干,以扩大所述红光激光的光学扩展量,使其能够更好地和红光荧光匹配。所述散射器件402可为一散射轮。所述会聚透镜403将经过均匀化与消相干的红光激光以一定角度会聚于光引导装置306上,光引导装置306对红光激光继续会聚,以使红光激光形成较小的光斑,从而减少透蓝反黄膜片303a设置上设置的透黄或透红膜片的面积,进而减少红光荧光的损失。
在本实施方式中,所述光源系统40进一步包括一控制装置42,所述控制装置42根据荧光色轮305a的旋转信息控制所述红光补偿装置41开启与关闭,进一步地,所述控制装置42控制所述红光激光光源401仅在荧光色轮305a转至红光区域R时开启,其他时间关闭。
本实施方式通过在红光荧光中混入红光激光,由于红光激光具有较好的单色性及色纯度,弥补了在在较高激发光功率条件下、仅有红光荧光时红光亮度与颜色的不足。
可以理解,在一些实施方式中,根据需要,如为实现更广的色域,提升绿光的颜色,所述光补偿装置41可以同时包括红光补偿装置41a与绿光补偿装置41b,请参阅图13所示,所述绿光补偿装置41b包括一绿光激光光源405发射绿光激光、并与红光补偿装置41a共用散射器件402与会聚透镜403、404。所述透蓝反黄膜片303a在其对应红光激光与绿光激光入射处设置透黄膜片,以允许红光激光与绿光激光透过透蓝反黄膜片303a。此外,控制装置42还进一步用于根据荧光色轮305a的旋转信息控制绿光补偿装置41b的开启与关闭,进一步地,所述控制装置42控制所述绿光光源405仅在荧光色轮305a转至绿光区域G时开启,其他时间关闭。
可以理解,在一些实施方式中,根据需要,所述光补偿装置41可以仅包括绿光补偿装置41b。
可以理解,在一些实施方式中,控制装置42还可以根据控制指令动态调节红光激光光源401出射的红光激光及/或绿光激光光源405出射的绿光激光的功率,从而动态调节光源系统40出射的红光及/或绿光的颜色与亮度。所述控制指令可以是用户输入的指令或者来自其他控制装置的指令。
可以理解,在一些实施方式中,控制装置42还可以用于根据控制指令动态调节光源301出射的第一光A的强度,如根据控制指令动态调节蓝光激光光源301a出射的蓝光激光的功率,从而整体调节整个光源系统40的颜色与亮度。
虽然上面介绍了利用同一个控制装置42同时控制蓝光激光光源301a、红光激光光源401及/或绿光激光光源405的启闭与出射激光的功率,然可以理解,在一些实施方式中,蓝光激光光源301a、红光激光光源401及/或绿光激光光源405的启闭与出射激光的功率可以通过不同的控制装置来实现。
请参阅图14所示,为本发明一实施方式中的投影系统的方框示意图,所述投影系统50包括光源系统51、空间光调制器52与投影镜头53,所述光源系统51可以是以上实施方式中介绍的任何光源系统,也可以是在上述光源系统的基础,经过适当改造但仍未脱离本发明范围而获得的光源系统,所述空间光调制器52用于将所述光源系统51出射的光束调制成携带图像信息的图像光,所述图像光经由投影镜头53投影至一屏幕(图未示)上。
综上所述,本发明实施方式提供的光源系统及投影系统,避免了滤光轮的使用,在低功率下,用绿光荧光粉与红光荧光粉便能获得较好的颜色纯度,而在高功率下,通过加入红光激光与红光荧光混光,及/或加入绿光激光与绿光荧光混光,仍可实现较好的颜色亮度需求,且,由于可以避免滤光轮的使用,在结构上,可以减小光源的体积,可以做到小型、紧凑、超薄;在光源的一致性上,由于滤光轮所使用的滤光片本身存在镀膜的公差(通常为+/-5~8nm),其会影响亮度、颜色的一致性,因此取消滤光轮对光源的颜色、亮度一致性有很大的提升,可以减小因滤光片镀膜公差而带来的光源系统超出规格、良率低的现象,降低了光源系统的生产难度;在控制上,相对于荧光轮+滤光轮的双色轮系统,不需要对色轮进行同步控制,减小了难度。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (10)

1.  一种光源系统,其特征在于,所述光源系统包括第一光源、分光装置、波长转换装置以及光引导装置,其中:
所述第一光源用于出射第一光;
所述波长转换装置至少包括第一色光区域与第二色光区域,所述第一色光区域与第二色光区域按时序轮流切入第一光的出射路径,所述第一色光区域用于在所述第一光的激发下生成第二光并出射第二光至所述分光装置,所述第二色光区域用于反射第一光至分光装置;
所述分光装置用于将第一光引导至一光路径上及将第二光引导至所述光引导装置,或者,将第二光引导至所述光路径上及将第一光引导至所述光引导装置;
所述光引导装置用于将第一光或第二光反射至所述分光装置,并经由所述分光装置引导至所述光路径。
2.  如权利要求1所述的光源系统,其特征在于,还包括光补偿装置,所述光补偿装置用于补偿第二光,所述光补偿装置包括第二光源,所述第二光源出射第二光,所述第二光源出射的第二光与所述第一色光区域生成的第二光合并后经由所述光路径进入所述匀光装置。
3.  如权利要求2所述的光源系统,其特征在于,所述第二光源出射的第二光经由所述光引导装置会聚至所述分光装置,所述分光装置对应所述第二光源出射的第二光的位置设有允许所述第二光透过的结构,所述第二光源出射的第二光透过所述分光装置后与所述波长转换装置生成的第二光合光。
4.  如权利要求2所述的光源系统,其特征在于,还包括控制装置,所述控制装置用于:
在所述第二色光区切入第一光的出射路径后控制所述第二光源开启,并在所述第二色光区离开第一光的出射路径后控制所述第二光源关闭;及/或,
根据用户输入的指令或来自其他控制装置的指令动态调节所述第二光源出射第二光的功率;及/或
根据用户输入的指令或来自其他控制装置的指令动态调节所述第一光源出射第一光的功率。
5.  如权利要求1所述的光源系统,其特征在于,所述波长转换装置还包括第三色光区域,所述第三色光区域与第一色光区域、第二色光区域按时序轮流切入第一光的出射路径,所述第三色光区域用于在所述第一光的激发下生成第三光并出射第三光至所述分光装置,所述分光装置将第一光引导至所述光路径上以及将第二光、第三光引导至所述光引导装置,所述光引导装置将第二光与第三光反射至所述分光装置,并经由所述分光装置引导至所述光路径,或者,所述分光装置将第二光、第三光引导至所述光路径上以及将第一光引导至所述光引导装置,所述光引导装置将第一光反射至所述分光装置,并经由所述分光装置引导至所述光路径,所述匀光装置时序接收从所述光路径过来的第一光、第二光与第三光并将第一光、第二光与第三光均匀化。
6.  如权利要求5所述的光源系统,其特征在于,所述第一光为蓝光、第二光为红光、第三光为绿光;或者,所述第一光为蓝光、第二光为绿光、第三光为红光。
7.  如权利要求6所述的光源系统,其特征在于,所述分光装置为透蓝反黄膜片,所述光引导装置为蓝光反射装置,所述波长转换装置为一荧光色轮。
8.  如权利要求7所述的光源系统,其特征在于,所述蓝光反射装置为反射式凸透镜、反射式散射片或单复眼。
9.  如权利要求1所述的光源系统,其特征在于,还包括一光收集系统,所述光收集系统用于收集所述波长转换装置产生的第二光与反射的第一光并传输给所述分光装置。
10.   一种投影系统,其特征在于,包括如权利要求1-9任一项所述的光源系统、空间光调制器及投影镜头,所述空间光调制器用于将所述光源系统出射的光束调制成携带图像信息的图像光,所述图像光经由投影镜头投影至一屏幕。
PCT/CN2017/114751 2017-09-26 2017-12-06 光源系统及应用所述光源系统的投影系统 WO2019061821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/650,854 US11067881B2 (en) 2017-09-26 2017-12-06 Light source system and projection system using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710881536.2A CN109557751B (zh) 2017-09-26 2017-09-26 光源系统及应用所述光源系统的投影系统
CN201710881536.2 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019061821A1 true WO2019061821A1 (zh) 2019-04-04

Family

ID=65863011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114751 WO2019061821A1 (zh) 2017-09-26 2017-12-06 光源系统及应用所述光源系统的投影系统

Country Status (3)

Country Link
US (1) US11067881B2 (zh)
CN (1) CN109557751B (zh)
WO (1) WO2019061821A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805415A (zh) * 2020-06-11 2021-12-17 中强光电股份有限公司 投影装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110874005B (zh) * 2018-09-03 2021-10-26 深圳光峰科技股份有限公司 光源系统、提高其光效的方法及显示设备
CN111856859B (zh) * 2019-04-24 2023-03-10 深圳光峰科技股份有限公司 光源系统及显示装置
CN111948887B (zh) * 2019-05-16 2022-06-03 无锡视美乐激光显示科技有限公司 投影显示光源控制系统
CN112114477B (zh) * 2019-06-19 2023-03-21 深圳光峰科技股份有限公司 发光装置及投影系统
CN112445052B (zh) * 2019-09-03 2022-04-29 美商晶典有限公司 激光投影光学光源架构
CN113132698A (zh) * 2019-12-31 2021-07-16 深圳光峰科技股份有限公司 光源装置和投影设备
CN114721161B (zh) * 2021-01-05 2024-04-05 台达电子工业股份有限公司 激光光斑消除装置及其操作方法
CN112859315A (zh) * 2021-01-11 2021-05-28 北京大学 一种多色双模式结构光照明显微成像系统及其成像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211169A1 (en) * 2013-01-28 2014-07-31 Panasonic Corporation Lighting device and image display device
CN104820334A (zh) * 2014-02-05 2015-08-05 欧司朗有限公司 具有波长转换装置的照明装置
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN105278226A (zh) * 2014-06-13 2016-01-27 中强光电股份有限公司 光源模块与投影装置
CN105652572A (zh) * 2014-06-23 2016-06-08 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN107037680A (zh) * 2017-05-08 2017-08-11 苏州佳世达光电有限公司 投影系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973962B2 (ja) * 2010-03-31 2012-07-11 カシオ計算機株式会社 光源装置及びプロジェクタ
DE102012211837A1 (de) * 2012-07-06 2014-01-09 Osram Gmbh Beleuchtungsvorrichtung mit Leuchstoffanordnung und Laser
CN104932186B (zh) * 2012-07-31 2017-04-05 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN204422962U (zh) * 2014-11-07 2015-06-24 深圳市绎立锐光科技开发有限公司 一种投影仪及其光源系统
CN105629645B (zh) * 2014-11-07 2018-08-28 深圳市光峰光电技术有限公司 一种投影仪及其光源系统
JP6492649B2 (ja) * 2014-12-26 2019-04-03 日亜化学工業株式会社 光源装置及び光源装置を備えたプロジェクタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211169A1 (en) * 2013-01-28 2014-07-31 Panasonic Corporation Lighting device and image display device
CN104820334A (zh) * 2014-02-05 2015-08-05 欧司朗有限公司 具有波长转换装置的照明装置
CN105278226A (zh) * 2014-06-13 2016-01-27 中强光电股份有限公司 光源模块与投影装置
CN105652572A (zh) * 2014-06-23 2016-06-08 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN107037680A (zh) * 2017-05-08 2017-08-11 苏州佳世达光电有限公司 投影系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805415A (zh) * 2020-06-11 2021-12-17 中强光电股份有限公司 投影装置

Also Published As

Publication number Publication date
CN109557751B (zh) 2021-07-23
CN109557751A (zh) 2019-04-02
US11067881B2 (en) 2021-07-20
US20200285137A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2019061821A1 (zh) 光源系统及应用所述光源系统的投影系统
CN105190432B (zh) 光源装置和投影型影像显示装置
WO2016161934A1 (zh) 一种投影系统及其色域控制方法
US20140211169A1 (en) Lighting device and image display device
TWI584049B (zh) 合光控制系統
WO2009070918A1 (fr) Source lumineuse pour système de projection et appareil d'affichage par projection
CN109765745B (zh) 光源装置及投影系统
WO2019061823A1 (zh) 光源系统及投影装置
CN110874004B (zh) 光源装置及显示设备
WO2020048124A1 (zh) 光源系统及投影系统
CN108535943B (zh) 一种光源装置及其投影显示系统
CN111077720B (zh) 光源系统及显示设备
WO2020057299A1 (zh) 光源系统及投影设备
WO2019134261A1 (zh) 色轮组件、光源装置及投影系统
WO2019144494A1 (zh) 投影装置及色域调整方法
US20180239230A1 (en) Spatial light modulator image display projector apparatus with solid state illumination light sources
CN110874005B (zh) 光源系统、提高其光效的方法及显示设备
CN109358467B (zh) 一种激光光源、光源模式切换方法及激光投影设备
CN112147836A (zh) 一种光源系统及显示设备
US11669001B2 (en) Projection display system
CN112424687B (zh) 照明装置和投影仪
JP2014186080A (ja) 光源装置および投写型映像表示装置
CN108628069B (zh) 投影系统
US11740544B2 (en) Projector
WO2022048325A1 (zh) 一种光源系统及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927716

Country of ref document: EP

Kind code of ref document: A1