WO2020048124A1 - 光源系统及投影系统 - Google Patents

光源系统及投影系统 Download PDF

Info

Publication number
WO2020048124A1
WO2020048124A1 PCT/CN2019/081648 CN2019081648W WO2020048124A1 WO 2020048124 A1 WO2020048124 A1 WO 2020048124A1 CN 2019081648 W CN2019081648 W CN 2019081648W WO 2020048124 A1 WO2020048124 A1 WO 2020048124A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
laser
supplementary
guiding component
Prior art date
Application number
PCT/CN2019/081648
Other languages
English (en)
French (fr)
Inventor
郭祖强
杜鹏
王则钦
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020048124A1 publication Critical patent/WO2020048124A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Definitions

  • the present invention relates to a light source system, and more particularly, to a light source system and a projection system using the light source system.
  • lasers are favored by people because of their high brightness and good color, but lasers are expensive, especially red and green lasers have low electro-optical conversion efficiency, so relatively more lasers are needed.
  • the cost of a laser is not only its own price.
  • the output power of the laser depends on better heat dissipation conditions, and the heat dissipation cost is also relatively high.
  • laser is a kind of coherent light, and its display screen has a serious speckle problem. In order to eliminate speckle, more decoherent optical elements must be introduced. These optical elements usually have higher prices. Therefore, pure laser display technology is rarely used in consumer products.
  • the laser phosphor light source technology is a technology that uses laser light as excitation light to excite the phosphor to generate laser light.
  • blue laser light is used as the excitation light.
  • the phosphor can be a yellow phosphor, a green phosphor, or a red phosphor.
  • the cost of the blue laser is relatively low, the electro-optical conversion efficiency is high, and the excitation efficiency of the phosphor is high.
  • the fluorescence spectrum is wide and the color purity is low, so it cannot directly meet the requirements of a wide color gamut.
  • a filter is usually used to filter it, but this method will cause a large light loss.
  • the present invention provides a light source system and a projection system to solve the above problems.
  • the present invention provides a light source system including: an excitation light source that emits excitation light; a supplementary light source that emits supplemental light; a wavelength conversion device that is excited by the excitation light A laser receiving light is generated, and the optical expansion amount of the laser receiving light is greater than the supplementary light; a light combining device that combines the laser receiving light and the complementary light; a first light guide component, the first light A guide component is disposed between the excitation light source and the wavelength conversion device, and is used to guide the excitation light to the wavelength conversion device; a second light guide component, the second light guide component is disposed on the wavelength conversion device And the light combining device for guiding the laser light to the light combining device; and a third light guiding component, the third light guiding component is placed between the supplementary light source and the light combining device For guiding supplementary light to the light combining device; wherein the laser beam spot on the wavelength conversion device forms an intermediate image through the second light guiding component, and the supplementary light and the stimulated light The intermediate
  • an optical expansion amount of the laser receiving light is greater than the supplementary light
  • the light combining device combines the receiving laser light and the supplemental light to expand the combined light, and supplements the supplementary light at the intermediate image position.
  • the angle of the light matches the angle of the laser beam.
  • the present invention also provides a projection system, which includes a spatial light modulator and the above-mentioned light source system.
  • the spatial light modulator is configured to modulate a light beam emitted by the light source system into an image carrying image information. Light.
  • An advantage of the lighting device provided by the embodiment of the present invention is that the intermediate image of a laser beam such as a fluorescent spot is used to combine the complementary light such as the laser beam and the laser beam at the intermediate image. Since the laser beam spot is small, fluorescence loss can be caused. Less, which improves the utilization efficiency of the laser.
  • the light combining device expands the combined amount of the received laser light and the supplementary light, and the angular distribution of the received laser light is consistent with the angular distribution of the supplementary light, which can make the light energy efficiency high and the loss low, which can achieve the wide color gamut color display, and Can achieve consistent picture uniformity.
  • FIG. 1 is a schematic diagram of a light path structure of a first embodiment of a light source system according to the present invention.
  • FIG. 2 is a schematic diagram of an integrated structure of a wavelength conversion device and a filter wheel of the light source system shown in FIG. 1.
  • FIG. 3 is a schematic diagram of a light combining device of the light source system shown in FIG. 1.
  • FIG. 4 is a schematic diagram of a light path structure of a second embodiment of a light source system according to the present invention.
  • FIG. 5 is a schematic diagram of a light path structure of a third embodiment of a light source system according to the present invention.
  • FIG. 6 is a schematic diagram of a light path structure of a fourth embodiment of a light source system according to the present invention.
  • FIG. 7 is a schematic diagram of a light combining device of the light source system shown in FIG. 6.
  • FIG. 8 is a schematic structural diagram of an embodiment of a projection system according to the present invention.
  • An embodiment of the present invention provides a light source system.
  • the light source system includes at least two light sources, a wavelength conversion device, a light combining device, a first light guide component, a second light guide component, a third light guide component, and a fourth light guide. Components and light channels.
  • the at least two light sources include an excitation light source and a supplementary light source, the excitation light source emits excitation light, the supplemental light source emits supplemental light, and the first light guiding component guides the excitation light emitted by the excitation light source to the wavelength A conversion device, the wavelength conversion device generates a laser beam under the excitation of the excitation light, the optical expansion amount of the laser beam is greater than the optical expansion amount of the supplemental light, and the second light guide component guides the laser beam to In the light combining device, the supplementary light emitted by the supplemental light source is also guided to the light combining device via the third light guide assembly, and the supplementary light and the received laser light are combined by the amount of expansion through the light combining device. After the light is combined, it is guided to the light channel through the fourth light guiding component, and is emitted from the light channel.
  • the light spot of the laser receiving light on the wavelength conversion device forms an intermediate image through a second light guiding component, and the supplementary light and the laser receiving light are combined at the intermediate image position.
  • An embodiment of the present invention further provides a projection system, which includes the light source system as described above.
  • the light source system 20 includes at least two light sources, namely an excitation light source and a supplementary light source.
  • the excitation light source is a blue light laser 201a, and the excitation light source emits blue laser light as excitation light.
  • the supplementary light source is a red-green laser 201b, and the red-green laser 201b emits red laser light and green laser light as supplementary light at a specific timing.
  • the light source system 20 further includes a first light guiding component 210, a wavelength conversion device 220, a second light guiding component 230, a third light guiding component 240, a light combining device 250, a fourth light guiding component 260, and a light channel 270.
  • the first light guiding component 210 guides the blue laser light to the wavelength conversion device 220 to generate the received laser light
  • the second light guiding component 230 guides the laser light to the light combining device 250
  • the third light guiding component 240 guides the red and green laser light to the combining light
  • the red-green laser light and the received laser light are combined by the light combining device 250 and then guided to the light channel 270 through the fourth light guiding component 260.
  • the wavelength conversion device 220 is a reflective color wheel, and the wavelength conversion device 220 is provided with a wavelength conversion material, including a red light phosphor material and a green light phosphor material, or yellow light fluorescence is used. Powder material, under the excitation of the excitation light, the wavelength conversion device 220 generates laser light, which is red fluorescence and green fluorescence when the laser light is received, or yellow fluorescence when the laser light is received. The yellow fluorescence filters out the required red fluorescence and Green fluorescence.
  • a wavelength conversion material including a red light phosphor material and a green light phosphor material, or yellow light fluorescence is used.
  • Powder material under the excitation of the excitation light, the wavelength conversion device 220 generates laser light, which is red fluorescence and green fluorescence when the laser light is received, or yellow fluorescence when the laser light is received.
  • the yellow fluorescence filters out the required red fluorescence and Green fluorescence.
  • a ring-shaped filter wheel can be provided on the outer or inner periphery of the color wheel, that is, the reflective color wheel and the filter wheel are integrated into one structure, as shown in FIG. 2.
  • the filter device is disposed on the periphery of the color wheel.
  • the color wheel includes a red light conversion area R, a green light conversion area G, and a blue light area B.
  • the color wheel rotates to make the red light conversion area R, the green light conversion area G, and the blue light area.
  • the three B are alternately cut into the optical path path of the light emitted by the first light guiding component 210 alternately, thereby performing wavelength conversion to generate red-green fluorescence or scattered blue laser light.
  • the filter wheel includes a red filter region R ', a green filter region G', and a blue filter region B '. Following the color wheel rotation, the red filter region R', the green filter region G ', and the blue filter The three light regions B 'alternately cut into the optical path of the light emitted by the fourth light guide component 260 in turn, and filter the red-green fluorescence and blue laser light of the incident light channel 270 to improve its color purity.
  • the first light guide assembly 210 includes a light splitting device 211, a light uniforming device 212 provided between the light splitting device 211 and the blue laser 201 a, and a light collection system 213 provided between the light splitting device 211 and the wavelength conversion device 220.
  • the light splitting device 211 and the light combining device 250 are disposed at a different 45-degree angle with respect to the wavelength conversion device 220, and the second light guide component 230 reuses the light collection system in the first light guide component 210 213 and the light splitting device 211.
  • the second light guide assembly 230 further includes an optical relay system 231 provided between the light splitting device 211 and the light combining device 250.
  • the spectroscopic device 211 is an area spectroscope that is plated with a blue anti-yellow film in the central area and a full-reflection film in the surrounding area.
  • the blue laser 201a emits the blue laser light through the homogenizing device 212 and is uniformized in the central area of the spectroscopic device 211. Transmits and converges on the surface of the wavelength conversion device 220 under the action of the light collection system 213 and excites the wavelength conversion device 220 to generate red-green fluorescence or scattered blue light laser light.
  • the light combining device 250 is located at an in-focus position (image plane) of the second light guide assembly 230. Specifically, the light combining device 250 is located at an in-focus position of the optical relay system 231.
  • the excitation light converging on the surface of the wavelength conversion device 220 excites the phosphor on the surface of the wavelength conversion device 220 to generate a laser beam, and the laser beam is reflected in the form of Lambertian light.
  • the reflected received laser light is collected by the light collection system 213 and emitted to the spectroscopic device 211. After being reflected by the spectroscopic device 211 and after passing through the optical relay system 231, the middle of the laser spot on the surface of the wavelength conversion device 220 is formed at the light combining device 250.
  • the light combining device 250 and the intermediate image m are also on the object plane of the fourth light guide component 260, and the entrance of the light channel 270 is on the image plane of the fourth light guide component 260. Therefore, the intermediate image m is imaged on the fourth light guide component 260 on Entrance to light channel 270.
  • the fourth light guiding component 260 includes an optical relay system 261.
  • the light combining device 250 is an area light combining mirror, including a first surface S1 and a second surface S2 opposite to the first surface S1.
  • the first surface S1 faces the optical relay system 231 and the fourth light.
  • the guide assembly 260 has a second surface S2 facing the third light guide assembly 240.
  • the central area S11 of the first surface S1 is a red, green, and blue coating.
  • the red and green laser light is transmitted in this area, and the surrounding area S12 is a full-reflection coating.
  • the red and green fluorescence and blue laser light are reflected in this area.
  • the surface of the second surface S2 is It is a scattering plane that scatters the transmitted red-green laser to eliminate the coherence of the red-green laser.
  • the red-green laser 201b emits red-green laser light through the third light guide assembly 240 to converge on the central area S11 of the light combining device 250 and transmits through the central area S11, and red-green fluorescence and blue laser light are reflected at the light combining device 250.
  • Red fluorescence and red laser light and green fluorescence and green laser light combine to expand the spot surface distribution at the intermediate image m.
  • the red laser angle at the intermediate image m and the red fluorescence angle can be matched, and the green laser light can be matched.
  • the angle matches the angle of green fluorescence, so that the angle at which the red laser light emitted by the red-green laser 201b enters the optical channel 270 matches the red fluorescence, and the angle at which the green laser enters the light channel 270 matches the green fluorescence to improve the red-green fluorescence.
  • the red and green fluorescence will have a certain loss when transmitting through the central area S11 of the light combining device 250, but the angular distribution is continuous after combining with the red and green laser light, so no light channel 270 exit will be generated.
  • the problem of uniformity In this embodiment, the light channel 270 is a uniform light square rod 271.
  • the third light guide assembly 240 includes a condenser lens 241 for improving the utilization rate of supplementary light.
  • the narrow bandwidth of the laser can be used to target the red-green laser band (such as G: 515nm-525nm) on the light combining device 250. , R: 633nm-643nm) coating the band-pass transmission film system to reduce the loss of red-green fluorescence in other bands.
  • the red-green laser light emitted by the red-green laser 201b can be used as polarized light, so that the polarization state of the red-green laser light can be transmitted in the central region S11 of the light combining device 250, and the red-green fluorescence is circularly polarized light, so only 1 is lost here. / 2 light effect.
  • the wavelength conversion device 220 may also be a transmissive type, and the first light guide component 210 and the second light guide component 230 may not share optical elements, and the wavelength conversion device 220 may also be used with a filter.
  • the light device is provided separately. According to different requirements for the color of the emitted light, the structures of the wavelength conversion device 220 and the filter device may be changed accordingly.
  • the spectroscopic device 211 may also be plated with a full-reflection film in the center region, and a yellow anti-blue film in the surrounding region.
  • the color of the supplementary light emitted by the supplementary light source can be set according to the different requirements of the received laser. For example, when the red light in the received laser is insufficient and the green light meets the requirements, the supplementary light source can only emit red light or other red light. Solid-state light source.
  • the received laser light is, for example, fluorescence generated by excitation of a wavelength conversion material
  • the supplemental light is laser light
  • the spectra of the laser light and the fluorescence overlap, but the optical expansion of the laser light is less than that of the fluorescence light.
  • the combined amount of the two is expanded by the light combining device, so that a higher fill light efficiency can be obtained, and when the light source system is used in a projection system, the projection system can output a better image quality.
  • the optical expansion amount in this embodiment refers to a product of a cross-sectional area of a light beam and a projection of a spatial solid angle surrounded by the light beam on a normal to a cross section.
  • Combining optical expansion amounts refers to the use of the difference between the two types of optical expansion amounts.
  • a suitable optical element such as a light combining device is used to guide a light beam with a small expansion amount into a light beam with a large expansion amount, so that the exit directions of the two are consistent.
  • FIG. 4 is a schematic diagram of an optical path of a light source system in a second embodiment of the present invention.
  • the light path structure of the light source system 30 in this embodiment is substantially the same as that of the light source system 20 in the first embodiment, and also includes a blue laser 201a as an excitation light source, a red and green laser 201b as a supplementary light source, and a first light.
  • the difference between the light source system 30 and the light source system 20 is that the light is combined by changing the optical parameters or positions of one or more related elements in the second light guide assembly 230, such as changing the optical parameters or positions of the optical relay system 231.
  • the device 250 is in the defocus position of the optical relay system 231, that is, the light combining device 250 is not on the image plane of the optical relay system 231, and the intermediate image m formed by the surface spot of the wavelength conversion device 220 via the optical relay system 231 is not It falls on the light combining device 250. In this way, the red-green fluorescence generated by the wavelength conversion device 220 is incident on the light combining device 250 with a larger fluorescent spot.
  • the ratio of the area of the central area S11 of the light combining device 250 to the incident fluorescent spot is proportional.
  • the reduction, that is, the proportion of fluorescence loss is reduced, so the light source system 30 in this embodiment has higher brightness than the light source system 20.
  • the intermediate image m is on the object plane of the fourth light guide module 260, and the entrance of the light channel 270 is on the image plane of the fourth light guide module 260. Therefore, the light spot on the surface of the wavelength conversion device 220 is finally imaged at the entrance of the light channel 270 via the fourth light guiding component 260. Since the position of the light combining device 250 and the intermediate image m do not coincide, the red-green laser light emitted by the red-green light laser 201b is converged by the third light guiding component 240 to the light combining device 250, and then is combined by the fourth light guiding component 260.
  • the imaging is performed in front of the entrance of the optical channel 270 or inside the optical channel 270, so that the red-green laser light emitted by the red-green laser 201b further fills the entrance of the optical channel 270, thereby improving the uniformity of the illumination at the exit of the optical channel 270.
  • FIG. 5 is a schematic diagram of an optical path of a light source system in a third embodiment of the present invention.
  • the optical path structure of the light source system 40 in this embodiment is substantially the same as the optical path structure of the light source system 30 in the second embodiment. It also includes a blue light laser 201a as an excitation light source, a red and green light laser 201b as a supplementary light source, a first light guiding component 210, a wavelength conversion device 220, a second light guiding component 230, a light combining device 250, and a fourth light guiding component. 260 and light channel 270.
  • the third light guiding component 240 a in the light source system 40 further includes a scattering device 242 and a laser relay system 243 disposed behind the condenser lens 241. .
  • the scattering device 242 includes a scattering sheet 242a and a driving device 242b that drives the scattering sheet 242a to rotate.
  • the red or green laser light emitted by the red-green laser 201b passes through the condenser lens 241 and the third light guiding component 240a is converged on the scattering sheet 242a.
  • the scattering sheet 242a gives the red or green laser light a small increment in the exit angle, but The laser spot size at the scattering sheet 242a is not increased.
  • the driving device 242b drives the scattering sheet 242a to rotate at a high speed, the scattering of the red and green laser light by the scattering sheet 242a is further integrated in time, and the coherence of the red and green laser light is better eliminated.
  • the red-green laser light emitted from the diffusion sheet 242a is converged into the central area S11 of the light combining device 250 through the laser relay system 243, and then is combined with red-green fluorescence at the center image m.
  • FIG. 6 is a schematic diagram of an optical path of a light source system according to a fourth embodiment of the present invention.
  • the light source system 50 in this embodiment also includes a blue light laser 201a as an excitation light source, a red-green light laser 201b as a supplementary light source, a first light guide assembly 210, a wavelength conversion device 220, a second light guide assembly 230, and a third light The guide assembly 280 and the light channel 270.
  • the difference between the light source system 50 and the light source system 30 is that the light combining device 250 a in the light source system 50 is an area combining mirror that reflects supplementary light and transmits laser light and blue laser light.
  • the fourth light guiding component 260 a in the light source system 50 further includes A reflecting member 262 is provided substantially parallel to the light combining device.
  • the light combining device 250 a is at a defocused position of the optical relay system 231.
  • the light combining device 250 a includes a first surface S3 facing the second light guide assembly 230 and a second surface S4 opposite to the first surface S3.
  • the first surface S3 is coated with an antireflection coating
  • the second The central area S41 of the surface S4 is plated with a blue anti-yellow dichroic film
  • the surrounding area S42 of the second surface S4 is plated with an antireflection film.
  • the surface spot of the wavelength conversion device 220 is imaged at the image plane M of the optical relay system 231 through the optical relay system 231, and the intermediate image m is imaged at the entrance of the optical channel 270 through the fourth light guide assembly 260 .
  • the red-green fluorescence transmission combining device 250a, the red-green laser beam emitted by the red-green laser 101b is converged on the scattering device 242 by the third light guide assembly 240, and is scattered by the laser relay system 243 after being scattered by the scattering device 242 and converged on the combined light
  • the central area S41 of the second surface S4 of the device 250a is reflected there, it is combined with the red and green fluorescent light beams at the intermediate image m position to expand the light.
  • the red-green fluorescence is mixed with the red-green laser light and reflected at the reflector 262, and finally passes through the optical relay system 261 and enters the entrance of the light channel 270.
  • the projection system 100 includes a light source system 20, 30, 40, or 50 and a spatial light modulator 90.
  • the spatial light modulator may be a single
  • the chip-type or multi-chip spatial light modulator 90 modulates a light beam emitted from the light source system 20, 30, 40, or 50 into image light carrying image information.
  • the embodiment of the present invention provides a light source system that utilizes the feature that the optical expansion amount of the supplementary light is less than the optical expansion amount of the laser beam, and combines the expansion amounts by using a light combining device with different films arranged in different regions.
  • the light spot on the wavelength conversion device receiving the laser light is imaged on the image plane of the second light guiding component to form an intermediate image, and the intermediate image is also located on the object of the fourth light guiding component.
  • the intermediate image is finally imaged at the entrance of the light channel through the fourth light guide component, and the supplementary light is combined with the laser beam at the intermediate image position, and finally coupled to the light channel through the fourth light guide component.
  • the supplementary light is laser light
  • the received laser light is fluorescence. Because the amount of laser expansion is small, when the fluorescence intermediate image is combined with the fluorescence through the light combining device, the laser light spot is smaller, resulting in less fluorescence loss. The laser utilization efficiency is high. In addition, after the laser and the fluorescence are combined, the angular distribution is continuous. Therefore, the light energy efficiency can be made high, and the loss is small. It can achieve the wide color gamut color display and uniform image uniformity.

Abstract

一种光源系统(20,30,40,50),包括:激发光源(201a),激发光源(201a)发出激发光;补充光源(201b),补充光源(201b)发出补充光;波长转换装置(220),波长转换装置(220)被激发光激发产生受激光,受激光的光学扩展量大于补充光;合光装置(250),合光装置(250)将受激光与补充光进行合光;第一光引导组件(210)用于将激发光引导至波长转换装置(220);第二光引导组件(230)用于将受激光引导至合光装置(250);及第三光引导组件(240)用于将补充光引导至合光装置(250),其中,波长转换装置(220)上的受激光光斑经由第二光引导组件(230)形成一中间像(m),补充光与受激光在中间像(m)的位置合光。还提供一种投影系统(100)。提升了光能利用效率,提高了画面均匀性。

Description

光源系统及投影系统 技术领域
本发明涉及光源系统,尤其涉及光源系统及使用所述光源系统的投影系统。
背景技术
在激光光源技术领域,激光由于亮度高、颜色好而受到人们的青睐,但激光器价格昂贵,特别是红光和绿光激光器的电光转换效率低,因此相对而言需要更多数量的激光器。而激光器的成本不仅在于其本身的价格,激光器输出功率需要依赖于较好的散热条件,散热成本也比较高。另外激光是一种相干光,其显示画面存在很严重的散斑问题,为了消除散斑就必须引入较多的消相干的光学元件,这些光学元件通常具有较高的价格。因此纯激光的显示技术极少用于消费类产品中。
激光荧光粉光源技术是利用激光做为激发光激发荧光粉产生受激光的技术,通常使用蓝激光作为激发光,荧光粉可以是黄光荧光粉、绿光荧光粉或红光荧光粉等,而蓝激光的成本相对较低,电光转化效率高,荧光粉的激发效率高。但荧光光谱较宽,色纯度低,因此不能直接满足于广色域的要求,为了提高颜色纯度,通常使用滤光片对其进行滤光,但这种方式会造成较大的光损失。
在此基础上,利用荧光和激光的混合光源既能获得较好的色纯度,又能利用两者混光消相干,维持一个可接受的成本。但与此同时也给光学设计带来一些难题,由于荧光光谱与激光光谱存在重叠的波段,将两者合光将无法避免地造成一些光效的损失,同时还有产生颜色不均匀的问题。
发明内容
鉴于上述状况,本发明提供一种光源系统及投影系统,以解决上述问题。
一方面,本发明提供一种光源系统,包括:激发光源,所述激发光源发出激发光;补充光源,所述补充光源发出补充光;波长转换装置,所述波长转换装置被所述激发光激发产生受激光,所述受激光的光学扩展量大于所述补充光;合光装置,所述合光装置将所述受激光与补充光进行合光;第一光引导组件,所述第一光引导组件置于所述激发光源与所述波长转换装置之间、用于将激发光引导至所述波长转换装置;第二光引导组件,所述第二光引导组件置于所述波长转换装置与所述合光装置之间、用于将受激光引导至所述合光装置;及第三光引导组件,所述第三光引导组件置于所述补充光源与所述合光装置之间、用于将补充光引导至所述合光装置;其中,所述波长转换装置上的受激光光斑经由所述第二光引导组件形成一中间像,所述补充光与所述受激光在所述中间像的位置合光。
在至少一个实施方式中,所述受激光的光学扩展量大于所述补充光,所述合光装置将所述受激光与补充光进行扩展量合光,在所述中间像位置处所述补充光的角度与所述受激光的角度相匹配。
另一方面,本发明还提供一种投影系统,所述投影系统包括空间光调制器以及上述的光源系统,所述空间光调制器用于将所述光源系统出射的光束调制成携带图像信息的图像光。
本发明实施例提供的照明装置的优点在于:利用受激光如荧光光斑的中间像,将补充光如激光与受激光在中间像的位置进行合光,由于激光的光斑较小,可以使得荧光损失较少,提高了激光的利用效率。合光装置将受激光与补充光进行扩展量合光,且受激光的角度分布与补充光的角度分布一致,可以使得光能效率高、损失少,既能实现广色域的色彩显示,又能实现一致的画面均匀性。
附图说明
图1为本发明光源系统的第一种实施方式的光路结构示意图。
图2为图1所示光源系统的波长转换装置与滤光轮为一体结构的示意图。
图3为图1所示光源系统的合光装置的示意图。
图4为本发明光源系统的第二种实施方式的光路结构示意图。
图5为本发明光源系统的第三种实施方式的光路结构示意图。
图6为本发明光源系统的第四种实施方式的光路结构示意图。
图7为图6所示光源系统的合光装置的示意图。
图8为本发明投影系统一种实施方式中的组成示意图。
具体实施方式
本发明实施例提供一种光源系统,所述光源系统包括至少两个光源、波长转换装置、合光装置、第一光引导组件、第二光引导组件、第三光引导组件、第四光引导组件以及光通道。所述至少两个光源包括激发光源与补充光源,所述激发光源发出激发光,所述补充光源发出补充光,所述第一光引导组件将所述激发光源发出的激发光引导至所述波长转换装置,所述波长转换装置在所述激发光的激发下产生受激光,所述受激光的光学扩展量大于补充光的光学扩展量,所述第二光引导组件将所述受激光引导至所述合光装置,所述补充光源发出的补充光亦经由所述第三光引导组件引导至所述合光装置,所述补充光与受激光经由所述合光装置进行扩展量合光,合光后经由所述第四光引导组件引导至光通道,由光通道出射。
进一步地,所述受激光位于波长转换装置上的光斑经由第二光引导组件形成一中间像,所述补充光与受激光在所述中间像位置合光。
本发明实施方式还提供一种投影系统,所述投影系统包括如上所述的光源系统。
以上是本发明的核心思想,为使本发明的上述目的、特征和优 点能够更明显易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,为使描述简要清晰,同一元件或相似元件在以下不同实施方式中采用相同编号。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1-3所示,为本发明第一种实施方式的光源系统的光路结构示意图,所述光源系统20包括至少两个光源,分别为激发光源和补充光源,在本实施方式中,所述激发光源为蓝光激光器201a,所述激发光源发射蓝激光作为激发光。所述补充光源为红绿光激光器201b,红绿激光器201b按特定时序发射红激光与绿激光作为补充光。所述光源系统20还包括第一光引导组件210、波长转换装置220、第二光引导组件230、第三光引导组件240、合光装置250、第四光引导组件260以及光通道270。第一光引导组件210将蓝激光引导至波长转换装置220上产生受激光,第二光引导组件230将受激光引导至合光装置250,第三光引导组件240将红绿激光引导至合光装置250,红绿激光与受激光经由合光装置250合光后经由第四光引导组件260引导至光通道270。
在本实施方式中,所述波长转换装置220为一反射式色轮,所述波长转换装置220上设置有波长转换材料,包括红光荧光粉材料与绿光荧光粉材料,或者采用黄光荧光粉材料,在激发光的激发下,波长转换装置220生成受激光,受激光为红荧光与绿荧光,或者受激光为黄荧光,黄荧光在滤光片的作用下滤出所需要的红荧光与绿荧光。为提高受激光与补充光的光纯度,可以在色轮外周或内周设置环形滤光轮,也就是说,反射式色轮与滤光轮为一体结构,请参阅图2所示,本实施方式中,滤光装置设置于色轮外周,色轮包括红光转换区R、绿光转换区G与蓝光区B,色轮转动,使红光转换区R、绿光转换区G与蓝光区B三者轮流交替切入第一光引导组件 210出射光的光路路径上,从而进行波长转换产生红绿荧光或散射蓝激光。滤光轮包括红光滤光区R’、绿光滤光区G’与蓝光滤光区B’,跟随色轮转动,红光滤光区R’、绿光滤光区G’与蓝光滤光区B’三者轮流交替切入第四光引导组件260出射光的光路路径上,对入射光通道270的红绿荧光与蓝激光进行滤光,以提高其色纯度。
所述第一光引导组件210包括分光装置211、设置于分光装置211与蓝光激光器201a之间的匀光器件212、以及设置于分光装置211与波长转换装置220之间的光收集系统213。所述分光装置211与所述合光装置250相对于所述波长转换装置220成相异的45度角设置,所述第二光引导组件230复用第一光引导组件210中的光收集系统213与分光装置211,此外,第二光引导组件230还包括设置于分光装置211与合光装置250之间的光中继系统231。
在本实施方式中,分光装置211为中心区域镀透蓝反黄膜、周围区域镀全反膜的区域分光镜,蓝光激光器201a发射蓝光激光经过匀光器件212均匀化后在分光装置211中心区域透射,并在光收集系统213的作用下会聚于波长转换装置220的表面并激发波长转换装置220产生红绿荧光或散射蓝光激光。
合光装置250处于第二光引导组件230的对焦位置(像平面),具体地,合光装置250处于光中继系统231的对焦位置。会聚于波长转换装置220表面的激发光激发波长转换装置220表面的荧光粉,产生受激光,受激光以郎伯光的形式反射。反射的受激光经过光收集系统213收集后出射至分光装置211,经分光装置211反射,并经过光中继系统231后,在合光装置250处形成波长转换装置220表面的受激光光斑的中间像m。合光装置250和中间像m还处于第四光引导组件260的物平面上,光通道270入口处于第四光引导组件260的像平面上,因此中间像m经过第四光引导组件260成像于光通道270的入口。在本实施方式中,第四光引导组件260包括一光中继系统261。
如图3所示,合光装置250为一区域合光镜、包括第一面S1和与第一面S1相背的第二面S2,第一面S1朝向光中继系统231与第四光引导组件260,第二面S2朝向第三光引导组件240。第一面 S1的中心区域S11为透红绿反蓝的镀膜,红绿激光在此区域透射,周围区域S12为全反镀膜,红绿荧光及蓝激光在此区域反射;第二面S2表面则为散射平面,其对透射的红绿激光进行散射以消除红绿激光的相干性。因此红绿光激光器201b发射红绿激光经第三光引导组件240会聚于合光装置250的中心区域S11,并从该中心区域S11透射,红绿荧光与蓝光激光在合光装置250处反射。红荧光与红激光以及绿荧光与绿激光在中间像m处进行光斑面分布的扩展量合光。
在本实施方式中,通过控制优化第三光引导组件240的焦距及合光装置250的第二面S2的散射程度,可以使中间像m处的红激光角度与红荧光角度相匹配、绿激光角度与绿荧光角度相匹配,进而使红绿光激光器201b发射的红激光进入光通道270的角度与红荧光相匹配、绿激光进入光通道270的角度与绿荧光相匹配,以提高红绿荧光与红绿激光混合后在光通道270出口的照度均匀性。
在本实施例中,红绿荧光在透射合光装置250中心区域S11时会有一定的损失,但其与红绿激光合光后在角度分布上是连续的,因此不会产生光通道270出口均匀性的问题。在本实施方式中,光通道270为一匀光方棒271。第三光引导组件240包括聚光镜241,用以提高补充光的利用率。
可以理解,为了提高合光装置250中心区域荧光的利用率,在其他实施方式中,可以利用激光带宽较窄的特点,在合光装置250上针对红绿激光的波段(如G:515nm-525nm,R:633nm-643nm)镀带通透射的膜系,减少其他波段红绿荧光的损失。或者,可以利用红绿光激光器201b发射的红绿激光为偏振光,使合光装置250中心区域S11对红绿激光的偏振态透射,红绿荧光为圆偏振光,因此在此处只损失1/2的光效。
可以理解,在其他实施方式中,所述波长转换装置220亦可为透射式,第一光引导组件210与第二光引导组件230亦可不共用光学元件,所述波长转换装置220亦可与滤光装置分开设置。根据对出射光颜色的不同需求,波长转换装置220与滤光装置的结构亦可相应变化。
可以理解,根据实际光路设计,分光装置211亦可是中心区域镀全反膜,周围区域镀透黄反蓝膜。
可以理解,补充光源发出的补充光的颜色可根据对受激光的不同要求进行设置,如当受激光中红光不足而绿光满足要求时,补充光源可以仅为红光激光器或其他发出红光的固态光源。
可以理解,在上述实施方式中,由于受激光为例如由波长转换材料受激所产生的荧光,而补充光为激光,激光与荧光的光谱有重叠,然激光的光学扩展量小于荧光,因此可以通过合光装置对二者进行扩展量合光,从而能获得更高的补光效率,而当光源系统应用于投影系统中时,能使投影系统输出更好的图像质量。
可以理解,本实施方式中光学扩展量指光束的截面积与光束所围成的空间立体角在截面法线上的投影的乘积。光学扩展量合光是指利用两种光光学扩展量的不同,通过合适的光学元件例如合光装置引导扩展量小的光束加入扩展量大的光束中,使二者出射方向一致。
请参阅图4所示,是本发明第二种实施方式中的光源系统的光路示意图。本实施方式中的光源系统30光路结构与第一种实施方式中的光源系统20的光路结构大体相同,亦包括作为激发光源的蓝光激光器201a、作为补充光源的红绿光激光器201b、第一光引导组件210、波长转换装置220、第二光引导组件230、第三光引导组件240、合光装置250、第四光引导组件260以及光通道270。光源系统30与光源系统20的不同主要在于,通过改变第二光引导组件230中相关的一或多个元件的光学参数或位置,例如改变光中继系统231的光学参数或位置,使合光装置250处于光中继系统231的离焦位置,即合光装置250不处于光中继系统231的像平面上,波长转换装置220的表面光斑经光中继系统231所成的中间像m不落在合光装置250处,如此,波长转换装置220上产生的红绿荧光入射至合光装置250上的荧光光斑更大,此时合光装置250中心区域S11的面积相对入射的荧光光斑比例减少,即荧光损失的占比减少,因此相比光源系统20,本实施方式中的光源系统30亮度更高。
另外,中间像m处于第四光引导组件260的物平面上,光通道 270的入口处于第四光引导组件260的像平面上。因此经由第四光引导组件260,波长转换装置220表面光斑最终成像于光通道270的入口。而由于合光装置250与中间像m的位置不重合,因此,红绿光激光器201b发射的红绿激光经第三光引导组件240会聚于合光装置250后,将被第四光引导组件260成像于光通道270的入口前或光通道270的内部,使得红绿光激光器201b发射的红绿激光进一步填充光通道270的入口,从而提高光通道270出口的照度均匀性。
由于红绿光激光器201b发射的红绿激光相干性较强,通过合光装置250中的第二面S2的散射作用不能很好地消除激光散斑,因此,进一步提出本发明的第三种实施方式。
请参阅图5所示,是本发明第三种实施方式中的光源系统的光路示意图,本实施方式中的光源系统40的光路结构与第二种实施方式中的光源系统30的光路结构大体相同,亦包括作为激发光源的蓝光激光器201a、作为补充光源的红绿光激光器201b、第一光引导组件210、波长转换装置220、第二光引导组件230、合光装置250、第四光引导组件260以及光通道270。光源系统40与光源系统30的不同在于:为获得更好的补充光的出光效果,光源系统40中的第三光引导组件240a还包括设置于聚光镜241之后的散射器件242与激光中继系统243。
在本实施方式中,散射器件242包括散射片242a与驱动散射片242a转动的驱动装置242b。红绿光激光器201b发射的红激光或绿激光经过聚光镜241第三光引导组件240a会聚于散射片242a上,此时散射片242a给予红激光或绿激光出射角度上一个较小的增量,但并不会增大散射片242a处的激光光斑尺寸。由于驱动装置242b驱动散射片242a高速转动,散射片242a对红绿激光的散射进一步在时间上进行积分,较好地消除了红绿激光的相干性。从散射片242a出射的红绿激光经激光中继系统243会聚进入合光装置250的中心区域S11,之后在中心像m处与红绿荧光合光。
请参阅图6所示,为本发明第四种实施方式中的光源系统的光路示意图。本实施方式中的光源系统50亦包括作为激发光源的蓝光激光器201a、作为补充光源的红绿光激光器201b、第一光引导组件 210、波长转换装置220、第二光引导组件230、第三光引导组件280以及光通道270。光源系统50与光源系统30的不同在于:光源系统50中的合光装置250a为反射补充光、透射受激光与蓝激光的区域合光镜,光源系统50中的第四光引导组件260a还包括与合光装置大致成平行设置的反射件262。
在本实施方式中,合光装置250a处于光中继系统231的离焦位置。请参阅图7所示,合光装置250a包括面向第二光引导组件230的第一面S3及与第一面S3相背的第二面S4,其中第一面S3镀增透膜,第二面S4的中心区域S41镀透蓝反黄的二向色膜,第二面S4的周围区域S42镀增透膜。
在本实施方式中,波长转换装置220的表面光斑经过光中继系统231成像于光中继系统231的像平面M处,中间像m再经过第四光引导组件260成像于光通道270入口处。红绿荧光透射合光装置250a,红绿光激光器101b发射的红绿激光光束经第三光引导组件240会聚于散射器件242处,经过散射器件242散射后经过激光中继系统243会聚于合光装置250a的第二面S4的中心区域S41,并在该处被反射后,在中间像m位置处与红绿荧光光束进行扩展量合光。红绿荧光与红绿激光混合后在反射件262处反射,最终经过光中继系统261入射光通道270入口。
请参阅图8所示,为本发明一种实施方式中的投影系统,所述投影系统100包括光源系统20、30、40或50以及空间光调制器90,所述空间光调制器可以是单片式或多片式空间光调制器90,所述空间光调制器90将所述光源系统20、30、40或50出射的光束调制成携带图像信息的图像光。
综上所述,本发明实施方式中提供光源系统,利用补充光光学扩展量小于受激光光学扩展量这一特点,通过分区域设置不同膜片的合光装置进行扩展量合光。进一步地,本发明实施方式提供的光源系统,受激光位于波长转换装置上的光斑被成像于第二光引导组件的像平面上,形成中间像,而中间像亦处于第四光引导组件的物平面上,因此中间像最终经第四光引导组件成像于光通道的入口,而补充光与受激光于中间像位置进行合光,最终经第四光引导组件 耦合至光通道。
在一种具体实施中,补充光为激光,受激光为荧光,由于激光扩展量较小,在荧光中间像通过合光装置与荧光合光时,激光的光斑较小,使得荧光损失较小,激光利用效率较高,另外,激光与荧光合光后,角度分布连续,因此,可以使得光能效率高、损失少,既能实现广色域的色彩显示,又能实现一致的画面均匀性。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (13)

  1. 一种光源系统,其特征在于,包括:
    激发光源,所述激发光源发出激发光;
    补充光源,所述补充光源发出补充光;
    波长转换装置,所述波长转换装置将所述激发光转换成受激光;
    合光装置,所述合光装置将所述受激光与补充光进行合光;
    第一光引导组件,置于所述激发光源与所述波长转换装置之间,所述第一光引导组件用于将激发光引导至所述波长转换装置;
    第二光引导组件,置于所述波长转换装置与所述合光装置之间,所述第二光引导组件用于将受激光引导至所述合光装置;及
    第三光引导组件,置于所述补充光源与所述合光装置之间,所述第三光引导组件用于将补充光引导至所述合光装置;
    其中,所述波长转换装置上的受激光光斑经由所述第二光引导组件形成一中间像,所述补充光与所述受激光在所述中间像的位置合光。
  2. 如权利要求1所述的光源系统,其特征在于,还包括一第四光引导组件和一光通道,所述第四光引导组件置于所述合光装置与所述光通道之间,用于将合光后的光束引导至所述光通道。
  3. 如权利要求2所述的光源系统,其特征在于,所述受激光的光学扩展量大于所述补充光,所述合光装置将所述受激光与补充光进行扩展量合光,在所述中间像位置处所述补充光的角度与所述受激光的角度相匹配。
  4. 如权利要求3所述的光源系统,其特征在于,所述合光装置设置于所述第二光引导组件的对焦位置,或者,所述合光装置设置于所述第二光引导组件的离焦位置。
  5. 如权利要求3所述的光源系统,其特征在于,所述中间像的位置位于所述第四光引导组件的物平面。
  6. 如权利要求5所述的光源系统,其特征在于,所述光通道的入 口位于所述第四光引导组件的像平面。
  7. 如权利要求6所述的光源系统,其特征在于,所述第二光引导组件包括一第一光中继系统,所述波长转换装置上的受激光光斑经由所述第一光中继系统形成所述中间像,所述第四光引导组件包括一第二光中继系统,所述第四光引导组件的物平面即为所述第二光中继系统的物平面,所述第四光引导组件的像平面即为所述第二光中继系统的像平面。
  8. 如权利要求2所述的光源系统,其特征在于,所述合光装置为区域合光镜,包括第一区域与第二区域,所述第一区域用于引导受激光至所述第四光引导组件,所述第二区域用于引导补充光至所述第四光引导组件。
  9. 如权利要求8所述的光源系统,其特征在于,所述第一区域设置于所述第二区域外侧且环绕所述第二区域。
  10. 如权利要求8所述的光源系统,其特征在于,所述第二区域面向所述第三光引导组件的一面为散射平面,所述散射平面对经过的补充光进行消相干。
  11. 如权利要求1所述的光源系统,其特征在于,所述第三光引导组件包括散射器件,所述散射器件对所述补充光进行消相干。
  12. 如权利要求11所述的光源系统,其特征在于,所述散射器件包括散射片以及驱动所述散射片旋转的驱动装置。
  13. 一种投影系统,其特征在于,包括如权利要求1-12任一项所述的光源系统以及空间光调制器,所述空间光调制器用于将所述光源系统出射的光束调制成携带图像信息的图像光。
PCT/CN2019/081648 2018-09-07 2019-04-08 光源系统及投影系统 WO2020048124A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811044431.2 2018-09-07
CN201811044431.2A CN110888290B (zh) 2018-09-07 2018-09-07 光源系统及投影系统

Publications (1)

Publication Number Publication Date
WO2020048124A1 true WO2020048124A1 (zh) 2020-03-12

Family

ID=69722415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081648 WO2020048124A1 (zh) 2018-09-07 2019-04-08 光源系统及投影系统

Country Status (2)

Country Link
CN (1) CN110888290B (zh)
WO (1) WO2020048124A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885285A (zh) * 2021-09-27 2022-01-04 青岛海信激光显示股份有限公司 光源组件与投影设备
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源系统及投影设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820870B (zh) * 2020-06-19 2024-03-29 三赢科技(深圳)有限公司 投影模组、成像模组及电子装置
CN113970871A (zh) * 2020-07-22 2022-01-25 深圳光峰科技股份有限公司 一种光源系统及投影系统
CN114280733B (zh) * 2020-09-27 2023-08-08 青岛海信宽带多媒体技术有限公司 一种光模块
CN115951552B (zh) * 2023-03-09 2023-06-02 深圳市橙子数字科技有限公司 一种发光装置及光源系统
CN116794919B (zh) * 2023-08-28 2023-12-12 宜宾市极米光电有限公司 一种光源系统及投影设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151885A (ja) * 2008-12-24 2010-07-08 Seiko Epson Corp プロジェクタ
CN102854592A (zh) * 2011-07-27 2013-01-02 深圳市绎立锐光科技开发有限公司 色轮同步信号获取装置及方法、色轮的探测单元及方法以及投影装置
CN104020633A (zh) * 2013-02-28 2014-09-03 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN104980721A (zh) * 2014-04-02 2015-10-14 深圳市绎立锐光科技开发有限公司 一种光源系统及投影系统
CN105204279A (zh) * 2014-06-23 2015-12-30 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN106444246A (zh) * 2016-09-06 2017-02-22 海信集团有限公司 一种消散斑部件、激光光源及激光投影设备
CN106662800A (zh) * 2014-07-23 2017-05-10 大日本印刷株式会社 投射装置和照明装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327960A (ja) * 1995-05-30 1996-12-13 Sony Corp 画像投影装置
JP2003337301A (ja) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd 投写型表示装置
CN101135860B (zh) * 2007-09-04 2010-05-19 上海微电子装备有限公司 一种光刻装置和用于光刻装置的对准系统及对准方法
CN101713908B (zh) * 2008-10-06 2011-08-24 鸿富锦精密工业(深圳)有限公司 投影机
US8740406B2 (en) * 2011-08-25 2014-06-03 Appotronics Corporation Limited Method and apparatus for solid state illumination
JP5793038B2 (ja) * 2011-09-13 2015-10-14 キヤノン株式会社 投射型画像表示装置
JP6573352B2 (ja) * 2013-09-18 2019-09-11 キヤノン株式会社 結像光学系および画像投射装置
DE102014202090B4 (de) * 2014-02-05 2024-02-22 Coretronic Corporation Beleuchtungsvorrichtung mit einer Wellenlängenkonversionsanordnung
CN105204278B (zh) * 2014-05-26 2017-05-10 台达电子工业股份有限公司 光源系统及其适用的投影设备
WO2017197271A1 (en) * 2016-05-12 2017-11-16 Bd Biosciences Fluorescence imaging flow cytometry with enhanced image resolution
CN205992115U (zh) * 2016-08-09 2017-03-01 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN108169990A (zh) * 2016-12-07 2018-06-15 中航国画(上海)激光显示科技有限公司 一种双色激光光源投影机及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151885A (ja) * 2008-12-24 2010-07-08 Seiko Epson Corp プロジェクタ
CN102854592A (zh) * 2011-07-27 2013-01-02 深圳市绎立锐光科技开发有限公司 色轮同步信号获取装置及方法、色轮的探测单元及方法以及投影装置
CN104020633A (zh) * 2013-02-28 2014-09-03 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN104980721A (zh) * 2014-04-02 2015-10-14 深圳市绎立锐光科技开发有限公司 一种光源系统及投影系统
CN105204279A (zh) * 2014-06-23 2015-12-30 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN106662800A (zh) * 2014-07-23 2017-05-10 大日本印刷株式会社 投射装置和照明装置
CN106444246A (zh) * 2016-09-06 2017-02-22 海信集团有限公司 一种消散斑部件、激光光源及激光投影设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885285A (zh) * 2021-09-27 2022-01-04 青岛海信激光显示股份有限公司 光源组件与投影设备
CN113885285B (zh) * 2021-09-27 2023-09-08 青岛海信激光显示股份有限公司 光源组件与投影设备
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源系统及投影设备
CN116430662B (zh) * 2023-06-13 2023-08-15 宜宾市极米光电有限公司 一种光源系统及投影设备

Also Published As

Publication number Publication date
CN110888290B (zh) 2022-03-04
CN110888290A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2020048124A1 (zh) 光源系统及投影系统
US11048157B2 (en) Light-source system and projection device
JP2020024429A (ja) 発光装置及び投影表示デバイス
US11067881B2 (en) Light source system and projection system using same
US10073330B2 (en) Illumination apparatus and projection type display apparatus
JP2020154024A (ja) 光源光学系、光源装置及び画像投射装置
US10509303B2 (en) Laser projection device with reflective component and 1/4 wave plate
CN112147836B (zh) 一种光源系统及显示设备
US20150215569A1 (en) Projector with light source including laser, phosphor, and led
CN110874005B (zh) 光源系统、提高其光效的方法及显示设备
JP2020052236A (ja) 光源装置およびそれを用いた画像投射装置
WO2020216263A1 (zh) 光源系统和显示设备
CN219533606U (zh) 光源模组和投影设备
US20190331993A1 (en) Wavelength conversion element, light source apparatus, and image projection apparatus
CN115903359A (zh) 光源装置、图像投影装置以及显示装置
JP2021015247A (ja) 光源装置およびこれを備える画像投射装置
CN213182296U (zh) 一种激光光源合光装置及投影显示系统
JP2020052341A (ja) 光源装置およびこれを用いた画像投射装置
WO2021143438A1 (zh) 波长转换装置、光源装置及投影系统
JP2023024245A (ja) 波長変換プレート、光源装置および画像投射装置
WO2021008332A1 (zh) 光源系统与显示设备
CN113885285A (zh) 光源组件与投影设备
CN114967308A (zh) 一种光源系统与投影显示系统
JP2021086135A (ja) 光源光学系、光源装置及び画像表示装置
JP6711705B2 (ja) 照明装置およびこれを用いた投射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857027

Country of ref document: EP

Kind code of ref document: A1