WO2018227683A1 - 路灯故障调度方法、路灯监控中心及路灯故障调度系统 - Google Patents

路灯故障调度方法、路灯监控中心及路灯故障调度系统 Download PDF

Info

Publication number
WO2018227683A1
WO2018227683A1 PCT/CN2017/093222 CN2017093222W WO2018227683A1 WO 2018227683 A1 WO2018227683 A1 WO 2018227683A1 CN 2017093222 W CN2017093222 W CN 2017093222W WO 2018227683 A1 WO2018227683 A1 WO 2018227683A1
Authority
WO
WIPO (PCT)
Prior art keywords
street lamp
street
street light
fault
maintenance personnel
Prior art date
Application number
PCT/CN2017/093222
Other languages
English (en)
French (fr)
Inventor
杜光东
Original Assignee
深圳市盛路物联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛路物联通讯技术有限公司 filed Critical 深圳市盛路物联通讯技术有限公司
Publication of WO2018227683A1 publication Critical patent/WO2018227683A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection

Definitions

  • the present invention relates to the field of urban lighting, and particularly relates to a street lamp fault scheduling method, a street lamp monitoring center, and a street lamp fault scheduling system.
  • the present invention provides a street lamp fault scheduling method, a street lamp monitoring center, and a street lamp fault dispatching system, which aims to solve the problem that the existing urban street lamp system has low management level and management efficiency for street lamps, and wastes manpower. Resources and costs cannot meet the development needs of modern urbanization.
  • a street lamp fault scheduling method includes:
  • the street lamp monitoring center obtains the location information of the target fault street light and the actual position information of each maintenance personnel; [0006] according to the location information of the target fault street light and the actual position information of each maintenance personnel, calculate each maintenance personnel to go The daytime cost of the location of the target fault street light;
  • the street lamp monitoring center acquires location information of the target fault street light and actual position information of each maintenance personnel, and further includes:
  • the street lamp monitoring center acquires street lamp fusion data of each street lamp node, wherein the street lamp fusion data includes street lamp state information and street lamp position information, and the street lamp state information indicates whether the corresponding street lamp node is in a fault state, and the street lamp The location information indicates the location of the corresponding street light node;
  • the street lamp monitoring center acquires location information of the target fault street light and actual position information of each maintenance personnel
  • the street lamp monitoring center determines the street lamp node in the fault state as the target fault street lamp according to the street lamp state information of each street lamp node;
  • Calculate the cost of each maintenance personnel to the location of the target fault street light including:
  • the street lamp fault scheduling method further includes:
  • the street lamp monitoring center sends a street lamp rotation command to the target control street lamp to control the lamp head of the target control street lamp to deflect a predetermined deflection angle in a direction of the target fault street lamp, wherein the target control street lamp is The target fault street light is adjacent to the street light node.
  • the street lamp monitoring center sends a street lamp rotation instruction to the target control street lamp, and further includes: [0020] detecting whether the failure of the target fault street lamp has been repaired; [0021] if the fault of the target fault street light has been repaired, sending a street light reset command to the target control street light
  • a second aspect of the present invention provides a street light monitoring center, where the street light monitoring center includes: [0023] a location information acquiring unit, configured to acquire location information of a target fault street light and an actual position of each maintenance personnel Interest rate
  • the inter-turn cost calculation unit is configured to calculate, according to the location information of the target fault street light acquired by the location information acquiring unit and the actual location information of each maintenance personnel, calculate each maintenance personnel to go to the target fault street light The cost of the location;
  • a task list obtaining unit configured to acquire a task list of each maintenance personnel
  • a maintenance task issuing unit configured to issue, according to the number of daytime expenses calculated according to the inter-turn cost calculation unit, to each maintenance personnel other than the overload maintenance personnel, based on the target The maintenance task of the fault street lamp until the maintenance task is accepted by any maintenance personnel, wherein the overload maintenance personnel are maintenance personnel whose number of tasks in the task list exceeds a preset task number.
  • the street light monitoring center further includes:
  • the streetlight fusion data acquisition unit is configured to acquire streetlight fusion data of each streetlight node, wherein the streetlight fusion data includes streetlight state information and streetlight location information, and the streetlight state information indicates whether the corresponding streetlight node is in a fault state.
  • the street lamp position information indicates a location of the corresponding street light node;
  • the location information acquiring unit specifically includes:
  • a target fault street light determining sub-unit configured to determine, according to the street light state information of each light lamp node acquired by the street light fusion data acquiring unit, the street light node in the fault state as the target fault street light;
  • a fault street light position obtaining sub-unit configured to determine position information of the target fault street light according to the street light position information of the target fault street light acquired by the street light fusion data acquiring unit.
  • the inter-turn cost calculation unit includes:
  • a first calculation sub-unit of the daytime cost configured to: when the target fault street light appears in a preset busy interval, obtain a traffic condition of the actual city, and determine each based on the traffic condition of the actual city The maintenance personnel go to the daytime cost of the target fault street light;
  • a second calculation subunit of the inter-turn cost configured to calculate a distance between each maintenance personnel and the target fault street light, respectively, when the target fault street light appears in the preset idle interval Distance determination The maintenance personnel went to the daytime cost of the target fault street light.
  • the streetlight monitoring center further includes:
  • a first control unit for transmitting a street light rotation command to the target control street lamp to control a lamp head of the target control street lamp to deflect a predetermined deflection angle in a direction of the target fault street lamp, wherein the target control The street light is a street light node adjacent to the target fault street light.
  • the streetlight monitoring center further includes:
  • a street lamp maintenance detecting unit configured to: after the street lamp first control unit sends a street lamp rotation instruction to the target control street lamp, detecting whether the failure of the target fault street lamp has been repaired;
  • a second lamp control unit configured to: when the street lamp maintenance detecting unit detects that the fault of the target fault street lamp has been repaired, send a street lamp reset command to the target control street lamp to control the lamp head of the target control street lamp The deflection angle is reset.
  • a streetlight fault dispatching system comprising two or more streetlight nodes and a streetlight monitoring center as described above connected to the two or more streetlight nodes.
  • the position information of the target fault street light and the actual position information of each maintenance person are obtained by the street lamp monitoring center, and then according to the position information of the target fault street light and the actual maintenance personnel ⁇ Location information, calculate the time spent by each maintenance personnel to the location of the target fault street light, and obtain a task list of each maintenance personnel, and finally perform maintenance in addition to the overload according to the order of the daytime expenses
  • Each maintenance personnel other than the personnel issues a maintenance task based on the target fault street light until the maintenance task is accepted by any maintenance personnel, wherein the overload maintenance personnel exceeds the number of tasks in the task list The number of maintenance personnel for the number of tasks.
  • the invention enables the street lamp monitoring center to make a reasonable and intelligent arrangement for the maintenance work of each maintenance personnel according to the street lamp failure condition occurring in different areas, and to ensure the maintenance of the street lamp without the need for maintenance personnel to conduct inspections everywhere.
  • the ambiguity improves the management efficiency of street lamps.
  • FIG. 1 is a flowchart of an implementation of a street lamp fault scheduling method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a step S102 of a street lamp fault scheduling method according to an embodiment of the present invention
  • step S102 of a street lamp fault scheduling method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of information interaction of a street lamp fault scheduling method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of implementing another street lamp fault scheduling method according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a street lamp monitoring center according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of another street lamp monitoring center according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a street lamp fault scheduling system according to an embodiment of the present invention.
  • step S101 the street lamp monitoring center acquires location information of the target fault street light and each maintenance personnel. Real location information.
  • the street lamp monitoring center may be associated with the intelligent terminal of each maintenance personnel in advance to obtain the actual position information of each maintenance personnel. Because in modern society, almost everyone will carry it with you. The intelligent terminal, and the existing intelligent terminal have the positioning function, so that the position of the corresponding maintenance personnel can be quickly determined through the position of the intelligent terminal without having to provide the maintenance personnel with special positioning equipment.
  • each maintenance personnel can be obtained by other means, for example, an independent locator or a tracker is provided for each maintenance personnel, and is not limited herein.
  • the above-mentioned street lamp monitoring center can be networked to know the location of the target fault street light.
  • the position of the target fault street light can be manually input by the staff of the street lamp monitoring center. limited.
  • step S102 based on the position information of the target fault street light and the actual position information of each maintenance personnel, the time spent by each maintenance personnel to the position of the target fault street light is calculated.
  • the maintenance time of each maintenance personnel to the location of the fault street light may be separately calculated.
  • a division may be made in advance for generating a target fault street light; when the target fault street light appears in a preset busy interval, obtaining a real urban traffic condition, according to
  • the above-mentioned actual urban traffic conditions are estimated to be the cost of the maintenance personnel going to the target fault street light; when the target fault street light appears in the preset idle interval, the distance between each maintenance personnel and the target fault street light is simply calculated. , the distance indicates the maintenance cost of each maintenance personnel to the above-mentioned target fault street light. For example, divide 7:00-22:00 into a preset busy interval and divide 22:00-7:00 into a preset idle interval.
  • the target fault street light appears at 19:23 ⁇ , as shown in Figure 2, it falls into the preset busy interval. Due to the busy traffic in this city, different levels of traffic congestion may occur in each area. The closer the maintenance personnel are to the target fault street light, the less time spent on the day. For example, in Figure 2, the two service personnel are at the A point and the B point respectively, and the target fault street light At the point C, the thick black line in the figure represents the traffic jam. It can be seen that although point A is geographically close to point C, the shortest route from point A to point C is a traffic jam, and the shortest line from point B to point C has no traffic congestion, so A The actual daytime expenses of the maintenance personnel at point C and point B to point C need to be obtained in conjunction with urban traffic conditions.
  • the day trip to point C will be less than the cost of maintenance at point B to the point C. Since there is usually no traffic congestion in the preset idle section, it can be simply considered that the farther the distance between the maintenance personnel and the target faulty street light is, the more time spent is required; the maintenance personnel and the target fault street light The closer the distance is, the less time spent on the day. It should be noted that other inter-segment divisions may be made according to the traffic conditions of different cities, and are not limited herein. Through the division of the above-mentioned inter-segment sections, it is possible to correctly estimate the cost of each maintenance personnel going to the target fault street light, and reduce the calculation pressure of the monitoring center, so as to avoid unnecessary unnecessary access to urban traffic conditions, giving street lamps. The data processing of the monitoring center brings pressure. Of course, the maintenance cost of each maintenance personnel to the location of the target fault street light can also be calculated by other means, which is not limited herein.
  • step S103 a task list of each maintenance person is acquired.
  • each maintenance personnel has a corresponding task list; whenever the maintenance personnel accepts a new maintenance task or completes an accepted maintenance task, the maintenance is updated correspondingly.
  • the task list of the personnel enables the street lamp monitoring center to know the workload and completion of the maintenance work of each maintenance personnel. In order to avoid the phenomenon that the maintenance task is too uneven, and to relieve the pressure on the maintenance personnel in the bustling area, you can obtain the task list of each maintenance personnel before assigning the task.
  • step S104 the maintenance task based on the target fault street light is issued to each maintenance personnel other than the overload maintenance personnel in order from the first to the most, until the maintenance task is The maintenance personnel accept, wherein the above-mentioned overload maintenance personnel are maintenance personnel whose number of tasks in the above task list exceeds the preset number of tasks.
  • the maintenance personnel who are obtained in the above step S102 may go to the maintenance of the target fault street lamp in the order of the number of the faults of the target fault street lamp. Maintenance task until the maintenance task is accepted by any maintenance personnel. If there is an overload maintenance personnel, the maintenance task based on the target fault street lamp is issued to each maintenance personnel in the order of the above-mentioned day-to-day sales. In the process of excluding the above overloaded maintenance personnel.
  • the maintenance task is dispatched to the maintenance personnel who are expected to spend less time in the position where the target fault street lamp is expected to arrive, and for those maintenance personnel who are expected to reach the target fault street lamp position,
  • the task will be slightly postponed to them to achieve intelligent assignment of maintenance tasks.
  • the street lamp monitoring center will not release new tasks to it, which can effectively avoid any maintenance personnel receiving repairs. Too many tasks result in failure to complete their maintenance tasks.
  • the issuing the maintenance task based on the target fault street light to each maintenance personnel may be implemented by pushing a message to the intelligent terminal of each maintenance personnel associated with the street lamp monitoring center; and when the maintenance personnel want to accept the task ⁇ The task acceptance instruction can also be sent to the street lamp monitoring center through the intelligent terminal.
  • the maintenance task can also be released to the maintenance personnel by other means, which is not limited herein.
  • step S101 specifically includes:
  • the street lamp monitoring center acquires street lamp fusion data of each street lamp node
  • the street lamp monitoring center determines the street lamp node in the fault state as the target fault street lamp according to the street lamp state information of each of the street lamp nodes;
  • the streetlight fusion data of each node acquired by the streetlight monitoring center includes streetlight state information and streetlight location information
  • the streetlight state information indicates whether the corresponding streetlight node is in a fault state
  • the streetlight location information indicates the corresponding streetlight. The location of the node.
  • the streetlight fusion data may be sent to the streetlight monitoring center by: generating streetlight state data by each streetlight node and transmitting the data to the corresponding upper-level forwarding node; after receiving the streetlight state data of each streetlight node, the upper-level forwarding node
  • the scenario data corresponding to each street lamp node is added and encapsulated into street lamp fusion data; the upper forwarding node sends the street lamp fusion data of each packaged lamp node to the street lamp monitoring center.
  • the street lamp state data is generated by each street lamp node according to the data of the sensors of each street lamp node, and the information contained therein is street lamp state information; the upper forwarding node provides the data transmission and gateway function of the traditional Internet, and the data transmission is performed.
  • the data included in the above scenario data is the location information of each streetlight node, and may also include the daytime information and/or the weather information, which is not limited herein.
  • the above information and weather information can also be used as a distribution maintenance task.
  • the parameter of ⁇ for example, when the weather reported by the streetlight fusion data of the target fault street light is relatively bad, such as rain and snow weather, the street light monitoring center will increase the priority of the target fault street light, and let the maintenance personnel preferentially go to the target fault street light. Carry out maintenance work.
  • FIG. 4 shows the information interaction process of the above-mentioned street lamp monitoring center, the forwarding node and the street lamp node in determining the target fault street lamp.
  • the street light state data may be data.
  • ⁇ Data is a lightweight, widely spread packet that differs from traditional Internet Protocol packets in that it contains only minimal credit loads, transmission pointing arrows, simple non-unique addresses, and appropriate checks. with. Since the amount of data is small, the street lamp nodes can generate the street lamp state data without interruption according to the state of the street lamp monitored by the sensor and send it to the corresponding superior forwarding node.
  • the streetlight node may send the streetlight fusion data to the upper-level forwarding node in a wireless manner, or may send the streetlight fusion data to the upper-level forwarding node by using the power line low-speed modulation mode, which is not limited herein.
  • the upper forwarding node may, after receiving the streetlight state data of each streetlight node, package the streetlight fusion data together with the scenario data corresponding to each streetlight node.
  • the street light fusion data is encapsulated in a protocol (Internet Protocol, IP) packet interconnected by a higher-level forwarding node.
  • IP Internet Protocol
  • a superior forwarding node is only responsible for a certain area in the city, the weather, the time and the location do not have a large difference, and the above scenario is adopted to alleviate the pressure on the data processing and transmission of the upper forwarding node.
  • the information may not correspond to each street light node, but to the corresponding upper forwarding node itself.
  • the target fault street lamp may be quickly determined according to the street lamp state information of each street lamp node, and then the street lamp position information of the target fault street lamp is passed. Quickly determine its location.
  • the non-super can also be sequentially sequenced at a preset time interval.
  • Load maintenance personnel release tasks The preset inter-turn interval is to reserve the reaction time for the maintenance personnel to view the maintenance task.
  • the street lamp monitoring center will stop releasing to other maintenance personnel. This maintenance task avoids the failure of a faulty street lamp to issue maintenance tasks to the maintenance personnel in the short room, preventing the maintenance personnel from being frequently employed. The impact of message push.
  • the maintenance cost of each maintenance personnel to the target fault street light is calculated according to the embodiment of the present invention, and according to the above The cost of the maintenance will be intelligently released to the maintenance personnel based on the maintenance task of the target fault street lamp.
  • the maintenance personnel of the target fault street light will be assigned to the maintenance personnel, which saves the maintenance personnel's time and allows the maintenance personnel to try to be with themselves.
  • the maintenance work is carried out in a relatively close area; on the other hand, the faulty street lamp is waiting for maintenance, the maintenance of the street lamp is ensured, and the management efficiency of the street lamp is improved.
  • FIG. 5 shows an implementation flow of another street lamp fault scheduling method according to Embodiment 2 of the present invention, which is described in detail as follows:
  • step S501 the street lamp monitoring center sends a street lamp rotation command to the target control street lamp to control the lamp head of the target control street lamp to deflect the predetermined deflection angle in the direction of the target fault street lamp.
  • the street lamp monitoring center may further send a street lamp rotation command to the target control street lamp to control the lamp head of the target control street lamp to deflect in the direction of the target fault street lamp.
  • the deflection angle is set, wherein the target control street lamp is a street lamp node adjacent to the target road lamp on the same road side.
  • Each street lamp node corresponds to a node controller, which can adjust the deflection angle and illumination brightness of the lamp cap.
  • the street lamp monitoring center may send a street lamp rotation instruction to the target control street lamp, so that the node controller of the target control street lamp deflects the street lamp lamp head according to the street lamp rotation instruction, and the street lamp cannot be disabled due to the target failure. Compensation for dim roads caused by lighting.
  • the target fault street light is in the middle section of the road, there are two adjacent street light nodes; when the target fault street light is at the head and tail of the road, there is one adjacent to the street light node.
  • the preset deflection angle may be determined by the planner according to the streetlight type, the streetlight height, and the streetlight spacing in different areas, and is not limited herein. [0080] In step S502, it is detected whether the fault of the target fault street light has been repaired.
  • the street lamp rotation command is sent to the target control street lamp, it is continuously detected whether the failure of the target failure street lamp has been repaired.
  • it is determined that the target fault street light has been repaired by the actual street light fusion data of the target fault street light, and whether the target fault street light has been repaired is confirmed by the maintenance condition of the maintenance personnel, which is not limited herein.
  • step S503 if the failure of the target fault street lamp has been repaired, a street lamp reset command is sent to the target control street lamp to control the deflection angle of the lamp head of the target control street lamp to be reset.
  • a street light reset command is sent to the target control street lamp to control the deflection angle of the lamp head of the target control street lamp to be reset.
  • the target control street lamp does not need to compensate the road section responsible for the target fault street light, so that the street lamp monitoring center can send a street lamp reset command to the target control street lamp, so that the target control street lamp is controlled.
  • the node controller controls the lamp head to return to its initial position according to the street lamp reset command described above.
  • the street light monitoring center may further send a street light brightening instruction to the target control street light, so that the target control street light While deflecting to the target fault street light, the brightness of the lighting is improved, so that the dim road section obtains better lighting effect; correspondingly, in step S503, if the target fault street light has been repaired, the street light monitoring center is controlled to the target
  • the street light reset command sent by the street light can also control the above target control street light to restore its initial lighting brightness.
  • the street lamp monitoring center intelligently controls the street lamp node adjacent to the target fault street lamp, and the road lamp is faulty, causing the road segment to be dim, Emergency lighting compensation is provided to eliminate traffic safety hazards caused by insufficient lighting on the road.
  • FIG. 6 is a structural block diagram of a street lamp monitoring center according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown. [0089] Referring to FIG. 6, the street lamp monitoring center 6 includes: a position information acquiring unit 61, and a daytime cost calculating unit 62.
  • the task list obtaining unit 63 the task list issuing unit 64.
  • the location information acquiring unit 61 is configured to acquire location information of the target fault street light and actual location information of each maintenance personnel;
  • the inter-turn cost calculation unit 62 is configured to calculate, according to the location information of the target fault street light acquired by the location information acquiring unit 61 and the actual location information of each maintenance personnel, the maintenance personnel go to the target fault street light. The cost of the position;
  • a task list obtaining unit 63 configured to acquire a task list of each maintenance personnel
  • the maintenance task issuing unit 64 is configured to sequentially release the service amount based on the above-mentioned target to the maintenance personnel other than the overload maintenance personnel in the order of the number of the daytime transactions calculated by the above-described inter-turn cost calculation unit 62
  • the maintenance task of the fault street lamp is until the above maintenance task is accepted by any maintenance personnel, wherein the above-mentioned overload maintenance personnel are maintenance personnel whose number of tasks in the task list exceeds the preset task number.
  • the location information acquiring unit 61 includes:
  • a streetlight fusion data acquisition subunit configured to acquire streetlight fusion data of each streetlight node, wherein the streetlight fusion data includes streetlight state information and streetlight location information, and the streetlight state information indicates whether the corresponding streetlight node is in a fault state, The street lamp position information indicates the location of the corresponding street light node;
  • a target fault street light determining sub-unit configured to determine a street light node in a fault state as a target fault street light according to the street light state information of each light lamp node acquired by the street light fusion data acquiring unit;
  • a fault street light position obtaining subunit configured to determine position information of the target fault street light according to the street light position information of the target fault street light acquired by the street light fusion data acquiring unit.
  • the inter-turn cost calculation unit 62 includes:
  • a first calculation sub-unit of the daytime expenditure configured to: when the target fault street light appears in the preset busy section, obtain the actual traffic condition of the city, and determine each maintenance personnel based on the traffic situation of the actual city Go to the daytime cost of the above target fault street light;
  • a second calculation subunit of the daytime cost configured to calculate a distance between each maintenance personnel and the target fault street light when the target fault street light appears in the preset idle interval, and determine each based on the distance The maintenance personnel went to the daytime cost of the above-mentioned target fault street light.
  • the street lamp monitoring center calculates the day-to-day cost of each maintenance personnel going to the target fault street light, and According to the above-mentioned daytime expenses, the maintenance task based on the target fault street lamp is intelligently released to each maintenance personnel, and the maintenance personnel who are closer to the target fault street light are arranged for maintenance work, which saves the maintenance personnel's time and allows the maintenance personnel to try to On the other hand, the maintenance work is carried out in an area close to itself; on the other hand, the time when the faulty street lamp is waiting for maintenance is also reduced, the maintenance of the street lamp is ensured, and the management efficiency of the street lamp is improved.
  • FIG. 7 is a structural block diagram of a street lamp monitoring center according to an embodiment of the present invention. For the convenience of description, only the embodiment related to the embodiment of the present invention is shown. section.
  • the street lamp monitoring center 7 includes: a position information acquiring unit 71, a daytime cost calculating unit 72, a task list obtaining unit 73, a maintenance task issuing unit 74, a street lamp first control unit 75, and a street lamp maintenance detecting.
  • Unit 76 street light second control unit 77.
  • the location information acquiring unit 71, the inter-office cost calculating unit 72, the task list obtaining unit 73, and the maintenance task issuing unit 74 are respectively the location information acquiring unit 61 and the inter-turn cost calculating unit in the third embodiment.
  • the functions of the task list obtaining unit 63 and the maintenance task issuing unit 64 are the same or similar, and are not described herein.
  • the street lamp first control unit 75 is configured to send a street lamp rotation command to the target control street lamp to control the lamp head of the target control street lamp to deflect a predetermined deflection angle in a direction of the target fault street lamp, wherein the target control street lamp is a street light node adjacent to the target fault street light;
  • the street lamp maintenance detecting unit 76 is configured to detect, after the street lamp first control unit 74 sends a street lamp rotation instruction to the target control street lamp, whether the failure of the target fault street lamp has been repaired;
  • the street lamp second control unit 77 is configured to, when the street lamp maintenance detecting unit 75 detects that the fault of the target fault street lamp has been repaired, send a street lamp reset command to the target control street lamp to control the deflection of the lamp head of the target control street lamp. Angle reset.
  • the street lamp monitoring center fails on the street lamp and fails to target
  • the street lamp is intelligently controlled.
  • the road section is dim. It can provide emergency lighting compensation, which eliminates the traffic safety hazard caused by street lamp failure and insufficient road lighting.
  • the street lamp fault dispatching system 8 includes: two or more street light nodes 81 and a street light monitoring center 6 connected to the two or more street light nodes 81.
  • the streetlight fault scheduling system may further include an upper-level forwarding node. Then, the upper-level forwarding is directly connected to the streetlight monitoring center 6 and the two or more streetlight nodes 81, and the streetlight monitoring center 6 is forwarded by the upper-level The node is indirectly connected to more than two street light nodes.
  • the street lamp monitoring center of the street lamp fault dispatching system calculates the day-to-day cost of each maintenance personnel going to the target fault street light.
  • the maintenance task based on the target fault street lamp is intelligently released to each maintenance personnel, and the maintenance personnel who are closer to the target fault street light are arranged for maintenance work, thereby saving the maintenance personnel's time and maintenance.
  • the personnel should try their best to carry out maintenance work in the area close to themselves; on the other hand, it also reduces the waiting time for the faulty street lamps to be repaired, ensures the maintenance of the street lamps, and improves the management efficiency of the street lamps.
  • the street lamp monitoring center of the street lamp fault dispatching system can also intelligently control the street lamp node adjacent to the target fault street lamp after the street lamp is faulty, and provide emergency lighting compensation when the road segment is dim due to the failure of the street lamp. Eliminate the traffic safety hazards caused by insufficient lighting on the road section.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the above units is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种路灯故障调度方法、路灯监控中心(6)及路灯故障调度系统(8),其中,路灯故障调度方法包括:路灯监控中心(6)获取目标故障路灯的位置信息及各维修人员的实时位置信息;根据目标故障路灯的位置信息及各维修人员的实时位置信息,计算各维修人员前往目标故障路灯所在位置的时间花销;获取各维修人员的任务列表;根据时间花销由少至多的顺序依次向除超负荷维修人员之外的其他各维修人员发布基于目标故障路灯的维修任务,直至维修任务被任一维修人员接受,其中,超负荷维修人员为任务列表中的任务数量超过预设的任务数量的维修人员。保证了路灯维修的及时性,提升了对路灯的管理效率。

Description

发明名称:路灯故障调度方法、 路灯监控中心及路灯故障调度系统 技术领域
[0001] 本发明涉及城市照明领域, 具体涉及一种路灯故障调度方法、 路灯监控中心及 路灯故障调度系统。
背景技术
[0002] 随着我国城市化的进程不断加快, 路灯作为城市基础设施也随着城市规模的不 断扩张而不断发展。 路灯在夜晚不仅发挥了照明功能, 而且对于环境安全及社 会治安也发挥了重要作用。 因而不仅仅是城市的主干道路, 一些较为偏僻的乡 间小路也规划有路灯, 极大的方便了人们的生活。 但与之相对的是现有的城市 照明管理水平仍有待加强, 例如, 现在城市路灯系统的保障维修调度工作仍不 够智能, 当路灯监控中心获取到故障路灯的情报后, 还需要人工分配各维修人 员的维修工作, 容易导致维修工作分配不合理或不及吋。 当道路中出现故障路 灯而维修人员又没有及吋对故障路灯进行维修吋, 将会给交通安全带来隐患, 甚至威胁驾驶员、 乘客及行人的生命财产安全。
技术问题
[0003] 有鉴于此, 本发明提供了一种路灯故障调度方法、 路灯监控中心及路灯故障调 度系统, 旨在解决现有的城市路灯系统对路灯的管理水平及管理效率较低, 浪 费了人力资源及成本, 无法满足现代城市化的发展需求的问题。
问题的解决方案
技术解决方案
[0004] 本发明的第一方面, 提供了一种路灯故障调度方法, 所述路灯故障调度方法包 括:
[0005] 路灯监控中心获取目标故障路灯的位置信息及各维修人员的实吋位置信息; [0006] 根据所述目标故障路灯的位置信息及各维修人员的实吋位置信息, 计算各维修 人员前往所述目标故障路灯所在位置的吋间花销;
[0007] 获取各维修人员的任务列表; [0008] 根据所述吋间花销由少至多的顺序依次向除超负荷维修人员之外的其他各维修 人员发布基于所述目标故障路灯的维修任务, 直至所述维修任务被任一维修人 员接受, 其中, 所述超负荷维修人员为所述任务列表中的任务数量超过预设的 任务数量的维修人员。
[0009] 可选地, 所述路灯监控中心获取目标故障路灯的位置信息及各维修人员的实吋 位置信息, 之前还包括:
[0010] 所述路灯监控中心获取各路灯节点的路灯融合数据, 其中, 所述路灯融合数据 包括路灯状态信息及路灯位置信息, 所述路灯状态信息指示相应路灯节点是否 处于故障状态, 所述路灯位置信息指示相应路灯节点的位置;
[0011] 所述路灯监控中心获取目标故障路灯的位置信息及各维修人员的实吋位置信息
, 具体为:
[0012] 所述路灯监控中心根据所述各路灯节点的路灯状态信息, 将处于故障状态的路 灯节点确定为目标故障路灯;
[0013] 根据所述目标故障路灯的路灯位置信息确定所述目标故障路灯的位置信息。
[0014] 可选地, 所述根据所述目标故障路灯的位置信息及各维修人员的实吋位置信息
, 计算各维修人员前往所述目标故障路灯所在位置的吋间花销, 包括:
[0015] 若所述目标故障路灯出现在预设的繁忙吋间段内, 则获取实吋城市交通状况, 基于所述实吋城市交通状况确定各维修人员前往所述目标故障路灯的吋间花销
[0016] 若所述目标故障路灯出现在预设的空闲吋间段内, 则分别计算各维修人员与所 述目标故障路灯的距离, 基于所述距离确定各维修人员前往所述目标故障路灯 的吋间花销。
[0017] 可选地, 所述路灯故障调度方法还包括:
[0018] 所述路灯监控中心向目标控制路灯发送路灯转动指令, 以控制所述目标控制路 灯的灯头向所述目标故障路灯的方向偏转预设的偏转角度, 其中, 所述目标控 制路灯为与所述目标故障路灯相邻的路灯节点。
[0019] 可选地, 所述路灯监控中心向目标控制路灯发送路灯转动指令, 之后还包括: [0020] 检测所述目标故障路灯的故障是否已修复; [0021] 若所述目标故障路灯的故障已修复, 则向所述目标控制路灯发送路灯复位指令
, 以控制所述目标控制路灯的灯头的偏转角度复位。
[0022] 本发明的第二方面, 提供了一种路灯监控中心, 所述路灯监控中心包括: [0023] 位置信息获取单元, 用于获取目标故障路灯的位置信息及各维修人员的实吋位 置 息;
[0024] 吋间花销计算单元, 用于根据所述位置信息获取单元获取到的所述目标故障路 灯的位置信息及各维修人员的实吋位置信息, 计算各维修人员前往所述目标故 障路灯所在位置的吋间花销;
[0025] 任务列表获取单元, 用于获取各维修人员的任务列表;
[0026] 维修任务发布单元, 用于根据所述吋间花销计算单元计算得到的吋间花销由少 至多的顺序依次向除超负荷维修人员之外的其他各维修人员发布基于所述目标 故障路灯的维修任务, 直至所述维修任务被任一维修人员接受, 其中, 所述超 负荷维修人员为所述任务列表中的任务数量超过预设的任务数量的维修人员。
[0027] 可选地, 所述路灯监控中心还包括:
[0028] 路灯融合数据获取单元, 用于获取各路灯节点的路灯融合数据, 其中, 所述路 灯融合数据包括路灯状态信息及路灯位置信息, 所述路灯状态信息指示相应路 灯节点是否处于故障状态, 所述路灯位置信息指示相应路灯节点的位置;
[0029] 所述位置信息获取单元, 具体包括:
[0030] 目标故障路灯确定子单元, 用于根据所述路灯融合数据获取单元获取到的各路 灯节点的路灯状态信息, 将处于故障状态的路灯节点确定为目标故障路灯;
[0031] 故障路灯位置获取子单元, 用于根据所述路灯融合数据获取单元获取到的所述 目标故障路灯的路灯位置信息确定所述目标故障路灯的位置信息。
[0032] 可选地, 所述吋间花销计算单元包括:
[0033] 吋间花销第一计算子单元, 用于当所述目标故障路灯出现在预设的繁忙吋间段 内吋, 获取实吋城市交通状况, 基于所述实吋城市交通状况确定各维修人员前 往所述目标故障路灯的吋间花销;
[0034] 吋间花销第二计算子单元, 用于当所述目标故障路灯出现在预设的空闲吋间段 内吋, 分别计算各维修人员与所述目标故障路灯的距离, 基于所述距离确定各 维修人员前往所述目标故障路灯的吋间花销。
[0035] 可选地, 所述路灯监控中心还包括:
[0036] 路灯第一控制单元, 用于向目标控制路灯发送路灯转动指令, 以控制所述目标 控制路灯的灯头向所述目标故障路灯的方向偏转预设的偏转角度, 其中, 所述 目标控制路灯为与所述目标故障路灯相邻的路灯节点。
[0037] 可选地, 所述路灯监控中心还包括:
[0038] 路灯维修检测单元, 用于当所述路灯第一控制单元向所述目标控制路灯发送路 灯转动指令后, 检测所述目标故障路灯的故障是否已修复;
[0039] 路灯第二控制单元, 用于当所述路灯维修检测单元检测到目标故障路灯的故障 已修复吋, 向所述目标控制路灯发送路灯复位指令, 以控制所述目标控制路灯 的灯头的偏转角度复位。
[0040] 本发明的第三方面, 提供了一种路灯故障调度系统, 所述路灯故障调度系统包 括两个以上路灯节点及与所述两个以上路灯节点连接的如上所述的路灯监控中 心。
发明的有益效果
有益效果
[0041] 由上可见, 在本发明中, 首先由路灯监控中心获取目标故障路灯的位置信息及 各维修人员的实吋位置信息, 然后根据所述目标故障路灯的位置信息及各维修 人员的实吋位置信息, 计算各维修人员前往所述目标故障路灯所在位置的吋间 花销, 并获取各维修人员的任务列表, 最后根据所述吋间花销由少至多的顺序 依次向除超负荷维修人员之外的其他各维修人员发布基于所述目标故障路灯的 维修任务, 直至所述维修任务被任一维修人员接受, 其中, 所述超负荷维修人 员为所述任务列表中的任务数量超过预设的任务数量的维修人员。 本发明使得 路灯监控中心能够根据不同区域发生的路灯故障状况, 对各维修人员的维修工 作作出合理且智能的安排, 并且在无需维修人员到各处进行巡査的前提下, 保 证了路灯维修的及吋性, 提升了对路灯的管理效率。
对附图的简要说明
附图说明 [0042] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
[0043] 图 1是本发明实施例提供的路灯故障调度方法的实现流程图;
[0044] 图 2是本发明实施例提供的路灯故障调度方法步骤 S102的一种示意图;
[0045] 图 3是本发明实施例提供的路灯故障调度方法步骤 S102的另一种示意图;
[0046] 图 4是本发明实施例提供的路灯故障调度方法的一种信息交互示意图;
[0047] 图 5是本发明实施例提供的另一路灯故障调度方法的实现流程图;
[0048] 图 6是本发明实施例提供的路灯监控中心的结构框图;
[0049] 图 7是本发明实施例提供的另一路灯监控中心的结构框图;
[0050] 图 8是本发明实施例提供的路灯故障调度系统的结构框图。
本发明的实施方式
[0051] 以下描述中, 为了说明而不是为了限定, 提出了诸如特定系统结构、 技术之类 的具体细节, 以便透彻理解本发明实施例。 然而, 本领域的技术人员应当清楚 , 在没有这些具体细节的其它实施例中也可以实现本发明。 在其它情况中, 省 略对众所周知的系统、 装置、 电路以及方法的详细说明, 以免不必要的细节妨 碍本发明的描述。
[0052] 为了说明本发明所述的技术方案, 下面通过具体实施例来进行说明。
[0053] 实施例 1
[0054] 图 1示出了本发明实施例一提供的路灯故障调度方法的实现流程, 详述如下: [0055] 在步骤 S101中, 路灯监控中心获取目标故障路灯的位置信息及各维修人员的实 吋位置信息。
[0056] 在本发明实施例中, 当检测到出现目标故障路灯吋, 由路灯监控中心获取目标 故障路灯的位置信息及各维修人员的实吋位置信息。 可选地, 为了降低成本, 充分利用现有资源, 路灯监控中心可以预先与各维修人员的智能终端相关联, 以获知各维修人员的实吋位置信息。 由于现代社会几乎人人都会随吋随地携带 智能终端, 而现有的智能终端又均具备定位功能, 因而通过智能终端的位置即 可快速确定相应维修人员的位置, 而无需为维修人员配备格外的定位设备。 当 然, 也可以通过其他手段获知各维修人员的位置信息, 例如分别为各维修人员 配备独立定位器或追踪器等, 此处不作限定。 上述路灯监控中心可以联网获知 目标故障路灯的位置, 当然, 在网络发生故障的情况下或者出现其它问题的情 况下, 也可以由路灯监控中心的工作人员人工输入目标故障路灯的位置, 此处 不作限定。
[0057] 在步骤 S102中, 根据上述目标故障路灯的位置信息及各维修人员的实吋位置信 息, 计算各维修人员前往上述目标故障路灯所在位置的吋间花销。
[0058] 在本发明实施例中, 可以根据步骤 S101获取到的上述目标故障路灯的位置信息 及各维修人员的实吋位置信息, 分别计算各维修人员前往上述故障路灯所在位 置的吋间花销。
[0059] 可选地, 在步骤 S102中, 可以预先对产生目标故障路灯的吋间段作出划分; 当 上述目标故障路灯出现在预设繁忙吋间段吋, 则获取实吋城市交通状况, 根据 上述实吋城市交通状况预估各维修人员前往上述目标故障路灯的吋间花销; 当 上述目标故障路灯出现在预设空闲吋间段吋, 则简单计算各维修人员与上述目 标故障路灯的距离, 以距离表示各维修人员前往上述目标故障路灯的吋间花销 。 例如, 将 7:00-22:00划分为预设繁忙吋间段, 将 22:00-7:00划分为预设空闲吋间 段。 当目标故障路灯出现的吋间为 19:23吋, 如图 2所示, 即落入了预设繁忙吋间 段, 由于此吋城市交通较为繁忙, 各个区域可能会出现不同程度的交通拥堵情 况, 并不是维修人员距离目标故障路灯的位置越近, 所需要的吋间花销就越少 , 例如, 在图 2中, 两个维修人员分别处于 A点位置和 B点位置, 而目标故障路灯 在 C点位置, 图中黑色粗线代表交通拥堵路段。 可以看出, 虽然 A点在地理位置 上距离 C点较近, 但由于此吋 A点到 C点的最短路线为交通拥堵路段, 而 B点到 C 点的最短路线没有交通拥堵状况, 所以 A点及 B点的维修人员前往 C点的实际吋 间花销需要结合城市交通状况获得。 因而, 此吋需要获取实吋城市交通状况, 正确的预估各维修人员前往上述目标故障路灯所处位置的吋间花销; 而当目标 故障路灯出现的吋间为 02:26吋, 如图 3所示, 即落入了预设空闲吋间段吋, 直接 计算各维修人员与上述目标故障路灯的距离即可, 例如, 在图 3中, 仍旧是两个 维修人员分别处于 A点位置和 B点位置, 而目标故障路灯在 C点位置, 此吋并不 存在交通拥堵, 那么如果处于 A点的维修人员及处于 B点的维修人员同吋赶往故 障路灯 C, 则一般情况下由于 A点在地理位置上距离 C点较近, 处于 A点的维修人 员前往 C点的吋间花销会小于处于 B点的维修人员前往 C点的吋间花销。 由于在 该预设空闲吋间段的通常不会出现交通拥堵情况, 可以简单的认为维修人员与 目标故障路灯的距离越远, 则所需的吋间花销越多; 维修人员与目标故障路灯 的距离越近, 则所需要的吋间花销越少。 需要注意的是, 可以根据不同城市的 交通状况, 可以作出其它的吋间段划分, 此处不作限定。 通过上述吋间段的划 分, 可以正确的预估各维修人员前往目标故障路灯的吋间花销, 并且减少监控 中心的计算压力, 避免在不必要的吋候无谓的获取城市交通状况, 给路灯监控 中心的数据处理带来压力。 当然, 也可以通过其它方式计算各维修人员前往目 标故障路灯所在位置的吋间花销, 此处不作限定。
[0060] 在步骤 S103中, 获取各维修人员的任务列表。
[0061] 在本发明实施例中, 每个维修人员都有其对应的任务列表; 每当维修人员接受 了一个新的维修任务或是完成了一个已接受的维修任务, 都会对应的更新该维 修人员的任务列表, 使路灯监控中心能够获知各维修人员维修工作的工作量及 完成情况。 为了避免出现维修任务过于不均衡的现象, 减轻繁华区域维修人员 的压力, 可以在分配任务之前, 获取各维修人员的任务列表。
[0062] 在步骤 S104中, 根据上述吋间花销由少至多的顺序依次向除超负荷维修人员之 外的其他各维修人员发布基于上述目标故障路灯的维修任务, 直至上述维修任 务被任一维修人员接受, 其中, 上述超负荷维修人员为上述任务列表中的任务 数量超过预设的任务数量的维修人员。
[0063] 在本发明实施例中, 可以根据上述步骤 S102中获得的各维修人员前往上述目标 故障路灯的吋间花销由少至多的顺序, 依次向各维修人员发布本次基于上述目 标故障路灯的维修任务, 直至该维修任务被任一维修人员接受, 若存在超负荷 维修人员, 则在上述根据上述吋间花销由少至多的顺序依次向各维修人员发布 基于上述目标故障路灯的维修任务的过程中, 排除上述超负荷维修人员。 可以 看出, 本发明实施例中, 会优先向预计到达目标故障路灯所在位置花费吋间较 少的维修人员发布维修任务, 而对于那些预计到达目标故障路灯所在位置花费 吋间较多的维修人员, 会略微推迟向他们发布任务, 以实现对维修任务的智能 分配。 并且, 在上述发布维修任务的过程中, 当有维修人员承担了过多未完成 的维修任务吋, 路灯监控中心将不会向其发布新的任务, 能够有效避免当任一 维修人员因为接收维修任务过多而而导致其维修任务无法及吋完成的现象发生 。 可选地, 上述向各维修人员发布基于上述目标故障路灯的维修任务, 可以通 过向与上述路灯监控中心相关联的各维修人员的智能终端推送消息实现; 而当 维修人员想要接受该任务吋, 也可以通过智能终端向路灯监控中心发送任务接 受指令。 当然, 也可以通过其他方式向各维修人员发布维修任务, 此处不作限 定。
[0064] 可选地, 上述步骤 S101具体包括:
[0065] 上述路灯监控中心获取各路灯节点的路灯融合数据;
[0066] 上述路灯监控中心根据上述各路灯节点的路灯状态信息, 将处于故障状态的路 灯节点确定为目标故障路灯;
[0067] 根据上述目标故障路灯的路灯位置信息确定上述目标故障路灯的位置信息。
[0068] 其中, 上述路灯监控中心获取到的各节点的路灯融合数据中, 包括有路灯状态 信息及路灯位置信息, 上述路灯状态信息指示相应路灯节点是否处于故障状态 , 上述路灯位置信息指示相应路灯节点的位置。 具体地, 上述路灯融合数据可 以通过如下过程到达路灯监控中心: 由各路灯节点生成路灯状态数据并发送至 对应的上级转发节点; 上级转发节点在接收到了各路灯节点的路灯状态数据后 , 将其加入各路灯节点对应的情景数据并封装为路灯融合数据; 上级转发节点 将封装的各路灯节点的路灯融合数据发送至路灯监控中心。 其中, 上述路灯状 态数据由各路灯节点根据各路灯节点的传感器的数据生成, 其包含的信息为路 灯状态信息; 上述上级转发节点提供了传统互联网的数据传输及网关功能, 育 够对数据传输进行裁剪和优化, 且能够在不同的网络制式之间实现数据解析。 上述情景数据包含的数据为各路灯节点的位置信息, 还可以包含吋间信息和 /或 天气信息, 此处不作限定。 上述吋间信息及天气信息也可以作为分配维修任务 吋的参数, 例如, 当目标故障路灯的路灯融合数据上报的天气为较恶劣吋, 例 如雨雪天气, 则路灯监控中心会提高该目标故障路灯的优先度, 让维修人员优 先前往该目标故障路灯进行维修工作。 为使本发明实施例更加清楚、 明白, 图 4 示出了在确定目标故障路灯吋, 上述路灯监控中心、 转发节点与路灯节点的信 息交互过程。
[0069] 可选地, 为了减少上述路灯状态数据的传输负担, 上述路灯状态数据可以为啁 啾数据。 啁啾数据为一种轻量级的、 传播广泛的数据包, 其与传统的互联网协 议数据包不同, 仅包含最小的幵销负载、 传输指向箭头、 简单的非唯一性地址 以及合适的校验和。 由于其数据量较小, 因而可以由各路灯节点可以根据传感 器实吋监测到的路灯状态, 不间断的生成路灯状态数据并发送给对应的上级转 发节点。
[0070] 可选地, 路灯节点可以通过无线方式向上级转发节点发送路灯融合数据, 也可 以通过电力线低速调制方式向上级转发节点发送路灯融合数据, 此处不作限定 。 上级转发节点可以在接收到了各路灯节点的路灯状态数据之后, 与各路灯节 点相应的情景数据一起封装为路灯融合数据。 上述路灯融合数据被上级转发节 点封装在一个网络之间互联的协议 (Internet Protocol, IP) 数据包中。
[0071] 可选地, 由于一个上级转发节点只负责城市中的某一片区域, 其天气、 吋间及 位置不会有较大出入, 为了减轻上级转发节点对于数据处理及传输的压力, 上 述情景信息可以不对应各路灯节点, 而转为对应上级转发节点自身。
[0072] 因而, 当路灯监控中心获取到各路灯节点的路灯状态信息之后, 在步骤 S101中 , 可以根据上述各路灯节点的路灯状态信息快速确定目标故障路灯, 再通过目 标故障路灯的路灯位置信息快速确定其位置。
[0073] 可选地, 由于路灯的维修工作要求细致, 为了避免频繁且大范围的向维修人员 发布新的维修任务, 在步骤 S104中, 还可以以预设的吋间间隔依次向各非超负 荷维修人员发布任务。 上述预设的吋间间隔是为了给维修人员预留出査看维修 任务的反应吋间, 一旦先接收到维修任务的维修人员接受了该维修任务, 路灯 监控中心就会停止向其他维修人员发布该维修任务, 避免了一出现故障路灯就 在短吋间内向各维修人员发布维修任务, 防止维修人员的工作状态受到频繁任 务消息推送的影响。
[0074] 由上可见, 通过本发明实施例, 在获取到目标故障路灯的位置及各维修人员的 实吋位置后, 计算各维修人员前往上述目标故障路灯的吋间花销, 并根据上述 吋间花销将基于目标故障路灯的维修任务智能发布至各维修人员, 为目标故障 路灯优先安排较近的维修人员进行维修工作, 一方面节约了维修人员的吋间, 让维修人员尽量在与自己距离较近的区域进行维修工作; 另一方面, 也减少了 故障路灯等待维修的吋间, 保证了路灯维修的及吋性, 提升了对路灯的管理效 率。
[0075] 应理解, 上述实施例中各步骤的序号的大小并不意味着执行顺序的先后, 各过 程的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程 构成任何限定。
[0076] 实施例 2
[0077] 在实施例一的基础上, 图 5示出了本发明实施例二提供的另一路灯故障调度方 法的实现流程, 详述如下:
[0078] 在步骤 S501中, 上述路灯监控中心向目标控制路灯发送路灯转动指令, 以控制 上述目标控制路灯的灯头向上述目标故障路灯的方向偏转预设的偏转角度。
[0079] 在本发明实施例中, 当出现目标故障路灯吋, 还可以由上述路灯监控中心向目 标控制路灯发送路灯转动指令, 以控制上述目标控制路灯的灯头向上述目标故 障路灯的方向偏转预设的偏转角度, 其中, 上述目标控制路灯为与上述目标故 障路灯在同一道路侧相邻的路灯节点。 各路灯节点对应有节点控制器, 能够对 灯头的偏转角度及照明亮度进行调节。 在对目标故障路灯的维修工作完成之前 , 可以由路灯监控中心向目标控制路灯发送路灯转动指令, 以使得目标控制路 灯的节点控制器根据上述路灯转动指令将路灯灯头偏转, 对因目标故障路灯无 法照明而带来的昏暗路段进行补偿。 当目标故障路灯处于道路的中间路段吋, 与其相邻的路灯节点有两个; 当目标故障路灯处于道路的头尾处吋, 与其相邻 的路灯节点有一个。 可选地, 上述预设的偏转角度可以由规划人员在进行城市 路灯规划吋根据不同区域的路灯类型、 路灯高度及路灯间距确定, 此处不作限 定。 [0080] 在步骤 S502中, 检测上述目标故障路灯的故障是否已修复。
[0081] 在本发明实施例中, 在向上述目标控制路灯发送了路灯转动指令之后, 继续检 测上述目标故障路灯的故障是否已修复。 可选地, 可以通过目标故障路灯的实 吋路灯融合数据确认上述目标故障路灯是否已被修复, 也可以通过维修人员反 馈的维修状况确认上述目标故障路灯是否已被修复, 此处不作限定。
[0082] 在步骤 S503中, 若上述目标故障路灯的故障已修复, 则向上述目标控制路灯发 送路灯复位指令, 以控制上述目标控制路灯的灯头的偏转角度复位。
[0083] 在本发明实施例中, 当上述步骤 S502检测到上述目标故障路灯的故障已被修复 吋, 向上述目标控制路灯发送路灯复位指令, 以控制上述目标控制路灯的灯头 的偏转角度复位。 显然的, 当目标故障路灯已被修复后, 上述目标控制路灯已 无需对目标故障路灯负责的路段进行灯光补偿, 因而可以由上述路灯监控中心 向目标控制路灯发送路灯复位指令, 使上述目标控制路灯的节点控制器根据上 述路灯复位指令控制灯头恢复其初始位置。
[0084] 可选地, 为了更好的对上述目标故障路灯负责的路段进行灯光补偿, 在上述步 骤 S501中, 路灯监控中心还可以向上述目标控制路灯发送路灯提亮指令, 使得 上述目标控制路灯在向目标故障路灯偏转的同吋, 提升自身的灯光照明亮度, 使昏暗路段获得更好的照明效果; 相应的, 在步骤 S503中, 若目标故障路灯已 被修复, 上述路灯监控中心向目标控制路灯发送的路灯复位指令还可以控制上 述目标控制路灯恢复其初始的灯光照明亮度。
[0085] 由上可见, 通过本发明实施例, 在路灯发生故障吋, 由路灯监控中心对与目标 故障路灯相邻的路灯节点进行智能控制, 在路灯发生了故障而造成了路段昏暗 吋, 可以提供应急灯光补偿, 消除了因路段照明不足而带来的交通安全隐患。
[0086] 应理解, 上述实施例中各步骤的序号的大小并不意味着执行顺序的先后, 各过 程的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程 构成任何限定。
[0087] 实施例 3
[0088] 对应于上文实施例一的路灯故障调度方法, 图 6示出了本发明实施例提供的路 灯监控中心的结构框图, 为了便于说明, 仅示出了与本发明实施例相关的部分 [0089] 参照图 6, 该路灯监控中心 6包括: 位置信息获取单元 61, 吋间花销计算单元 62
, 任务列表获取单元 63, 维修任务发布单元 64。
[0090] 其中, 位置信息获取单元 61, 用于获取目标故障路灯的位置信息及各维修人员 的实吋位置信息;
[0091] 吋间花销计算单元 62, 用于根据上述位置信息获取单元 61获取到的上述目标故 障路灯的位置信息及各维修人员的实吋位置信息, 计算各维修人员前往上述目 标故障路灯所在位置的吋间花销;
[0092] 任务列表获取单元 63, 用于获取各维修人员的任务列表;
[0093] 维修任务发布单元 64, 用于根据上述吋间花销计算单元 62计算得到的吋间花销 由少至多的顺序依次向除超负荷维修人员之外的其他各维修人员发布基于上述 目标故障路灯的维修任务, 直至上述维修任务被任一维修人员接受, 其中, 上 述超负荷维修人员为上述任务列表中的任务数量超过预设的任务数量的维修人 员。
[0094] 可选地, 上述位置信息获取单元 61包括:
[0095] 路灯融合数据获取子单元, 用于获取各路灯节点的路灯融合数据, 其中, 上述 路灯融合数据包括路灯状态信息及路灯位置信息, 上述路灯状态信息指示相应 路灯节点是否处于故障状态, 上述路灯位置信息指示相应路灯节点的位置;
[0096] 目标故障路灯确定子单元, 用于根据上述路灯融合数据获取单元获取到的各路 灯节点的路灯状态信息, 将处于故障状态的路灯节点确定为目标故障路灯;
[0097] 故障路灯位置获取子单元, 用于根据上述路灯融合数据获取单元获取到的上述 目标故障路灯的路灯位置信息确定上述目标故障路灯的位置信息。
[0098] 可选地, 上述吋间花销计算单元 62包括:
[0099] 吋间花销第一计算子单元, 用于当上述目标故障路灯出现在预设的繁忙吋间段 内吋, 获取实吋城市交通状况, 基于上述实吋城市交通状况确定各维修人员前 往上述目标故障路灯的吋间花销;
[0100] 吋间花销第二计算子单元, 用于当上述目标故障路灯出现在预设的空闲吋间段 内吋, 分别计算各维修人员与上述目标故障路灯的距离, 基于上述距离确定各 维修人员前往上述目标故障路灯的吋间花销。
[0101] 由上可见, 通过本发明实施例, 路灯监控中心在获取到目标故障路灯的位置及 各维修人员的实吋位置后, 计算各维修人员前往上述目标故障路灯的吋间花销 , 并根据上述吋间花销将基于目标故障路灯的维修任务智能发布至各维修人员 , 为目标故障路灯优先安排较近的维修人员进行维修工作, 一方面节约了维修 人员的吋间, 让维修人员尽量在与自己距离较近的区域进行维修工作; 另一方 面, 也减少了故障路灯等待维修的吋间, 保证了路灯维修的及吋性, 提升了对 路灯的管理效率。
[0102] 实施例 4
[0103] 对应于上文实施例二上述的路灯故障调度方法, 图 7示出了本发明实施例提供 的路灯监控中心的结构框图, 为了便于说明, 仅示出了与本发明实施例相关的 部分。
[0104] 参照图 7, 该路灯监控中心 7包括: 位置信息获取单元 71, 吋间花销计算单元 72 , 任务列表获取单元 73, 维修任务发布单元 74, 路灯第一控制单元 75, 路灯维 修检测单元 76, 路灯第二控制单元 77。
[0105] 其中, 位置信息获取单元 71, 吋间花销计算单元 72, 任务列表获取单元 73及维 修任务发布单元 74分别与上述实施例三中的位置信息获取单元 61, 吋间花销计 算单元 62, 任务列表获取单元 63及维修任务发布单元 64的功能与作用相同或相 近, 此处不作赘述。
[0106] 路灯第一控制单元 75, 用于向目标控制路灯发送路灯转动指令, 以控制上述目 标控制路灯的灯头向上述目标故障路灯的方向偏转预设的偏转角度, 其中, 上 述目标控制路灯为与上述目标故障路灯相邻的路灯节点;
[0107] 路灯维修检测单元 76, 用于当上述路灯第一控制单元 74向上述目标控制路灯发 送路灯转动指令后, 检测上述目标故障路灯的故障是否已修复;
[0108] 路灯第二控制单元 77, 用于当上述路灯维修检测单元 75检测到目标故障路灯的 故障已修复吋, 向上述目标控制路灯发送路灯复位指令, 以控制上述目标控制 路灯的灯头的偏转角度复位。
[0109] 由上可见, 通过本发明实施例, 路灯监控中心在路灯发生故障吋, 对目标故障 路灯进行智能控制, 在因路灯发生了故障而造成了路段昏暗吋, 可以提供应急 灯光补偿, 消除了因路灯故障、 路段照明不足而带来的交通安全隐患。
[0110] 实施例 5
[0111] 图 8示出了本发明实施例五提供的路灯故障调度系统的具体结构框图, 为了便 于说明, 仅示出了与本发明实施例相关的部分。 该路灯故障调度系统 8包括: 两 个以上路灯节点 81及与上述两个以上路灯节点 81相连的路灯监控中心 6。
[0112] 可选地, 上述路灯故障调度系统还可以包括上级转发节点, 则此吋, 上级转发 分别与上述路灯监控中心 6及两个以上路灯节点 81直接连接, 上述路灯监控中心 6通过上级转发节点与两个以上路灯节点间接连接。
[0113] 本发明实施例提供的路灯故障调度系统可以应用在前述对应的方法实施例一及 实施例二中, 详情参见上述实施例一及实施例二的描述, 在此不再赘述。
[0114] 在本发明实施例中, 路灯故障调度系统的路灯监控中心在获取到目标故障路灯 的位置及各维修人员的实吋位置后, 计算各维修人员前往上述目标故障路灯的 吋间花销, 并根据上述吋间花销将基于目标故障路灯的维修任务智能发布至各 维修人员, 为目标故障路灯优先安排较近的维修人员进行维修工作, 一方面节 约了维修人员的吋间, 让维修人员尽量在与自己距离较近的区域进行维修工作 ; 另一方面, 也减少了故障路灯等待维修的吋间, 保证了路灯维修的及吋性, 提升了对路灯的管理效率。 进一步地, 路灯故障调度系统的路灯监控中心还可 以在路灯发生故障吋对与目标故障路灯相邻的路灯节点进行智能控制, 在因路 灯发生了故障而造成了路段昏暗吋, 提供应急灯光补偿, 消除了因路段照明不 足而带来的交通安全隐患。
[0115] 需要说明的是, 在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置 和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 上述单元的划分, 仅仅为一种逻辑功能划分, 实际实现吋可以 有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统 , 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合 或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连 接, 可以是电性, 机械或其它的形式。 [0116] 对于前述的各方法实施例, 为了简便描述, 故将其都表述为一系列的动作组合 , 但是本领域技术人员应该知悉, 本发明并不受所描述的动作顺序的限制, 因 为依据本发明, 某些步骤可以采用其它顺序或者同吋进行。 其次, 本领域技术 人员也应该知悉, 说明书中所描述的实施例均属于优选实施例, 所涉及的动作 和模块并不一定都是本发明所必须的。
[0117] 在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有详述的 部分, 可以参见其它实施例的相关描述。
[0118] 以上为对本发明所提供的一种较佳实施例而已, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体实施方式及应用范围上均会有改变之处, 综 上, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求书
[权利要求 1] 一种路灯故障调度方法, 其特征在于, 所述路灯故障调度方法包括: 路灯监控中心获取目标故障路灯的位置信息及各维修人员的实吋位置 f π息;
根据所述目标故障路灯的位置信息及各维修人员的实吋位置信息, 计 算各维修人员前往所述目标故障路灯所在位置的吋间花销; 获取各维修人员的任务列表;
根据所述吋间花销由少至多的顺序依次向除超负荷维修人员之外的其 他各维修人员发布基于所述目标故障路灯的维修任务, 直至所述维修 任务被任一维修人员接受, 其中, 所述超负荷维修人员为所述任务列 表中的任务数量超过预设的任务数量的维修人员。
[权利要求 2] 如权利要求 1所述的路灯故障调度方法, 其特征在于, 所述路灯监控 中心获取目标故障路灯的位置信息及各维修人员的实吋位置信息具体 包括:
所述路灯监控中心获取各路灯节点的路灯融合数据, 其中, 所述路灯 融合数据包括路灯状态信息及路灯位置信息, 所述路灯状态信息指示 相应路灯节点是否处于故障状态, 所述路灯位置信息指示相应路灯节 点的位置;
所述路灯监控中心根据所述各路灯节点的路灯状态信息, 将处于故障 状态的路灯节点确定为目标故障路灯;
根据所述目标故障路灯的路灯位置信息确定所述目标故障路灯的位置 f π息。
[权利要求 3] 如权利要求 1所述的路灯故障调度方法, 其特征在于, 所述根据所述 目标故障路灯的位置信息及各维修人员的实吋位置信息, 计算各维修 人员前往所述目标故障路灯所在位置的吋间花销, 包括:
若所述目标故障路灯出现在预设的繁忙吋间段内, 则获取实吋城市交 通状况, 基于所述实吋城市交通状况确定各维修人员前往所述目标故 障路灯的吋间花销; 若所述目标故障路灯出现在预设的空闲吋间段内, 则分别计算各维修 人员与所述目标故障路灯的距离, 基于所述距离确定各维修人员前往 所述目标故障路灯的吋间花销。
[权利要求 4] 如权利要求 1至 3任一项所述的路灯故障调度方法, 其特征在于, 所述 路灯故障调度方法还包括:
所述路灯监控中心向目标控制路灯发送路灯转动指令, 以控制所述目 标控制路灯的灯头向所述目标故障路灯的方向偏转预设的偏转角度, 其中, 所述目标控制路灯为与所述目标故障路灯相邻的路灯节点。
[权利要求 5] 如权利要求 4所述的路灯故障调度方法, 其特征在于, 所述路灯监控 中心向目标控制路灯发送路灯转动指令, 之后还包括:
检测所述目标故障路灯的故障是否已修复;
若所述目标故障路灯的故障已修复, 则向所述目标控制路灯发送路灯 复位指令, 以控制所述目标控制路灯的灯头的偏转角度复位。
[权利要求 6] —种路灯监控中心, 其特征在于, 所述路灯监控中心包括:
位置信息获取单元, 用于获取目标故障路灯的位置信息及各维修人员 的实吋位置信息;
吋间花销计算单元, 用于根据所述位置信息获取单元获取到的所述目 标故障路灯的位置信息及各维修人员的实吋位置信息, 计算各维修人 员前往所述目标故障路灯所在位置的吋间花销; 任务列表获取单元, 用于获取各维修人员的任务列表;
维修任务发布单元, 用于根据所述吋间花销计算单元计算得到的吋间 花销由少至多的顺序依次向除超负荷维修人员之外的其他各维修人员 发布基于所述目标故障路灯的维修任务, 直至所述维修任务被任一维 修人员接受, 其中, 所述超负荷维修人员为所述任务列表中的任务数 量超过预设的任务数量的维修人员。
[权利要求 7] 如权利要求 6所述的路灯监控中心, 其特征在于, 所述位置信息获取 单元, 包括:
路灯融合数据获取子单元, 用于获取各路灯节点的路灯融合数据, 其 中, 所述路灯融合数据包括路灯状态信息及路灯位置信息, 所述路灯 状态信息指示相应路灯节点是否处于故障状态, 所述路灯位置信息指 示相应路灯节点的位置;
目标故障路灯确定子单元, 用于根据所述路灯融合数据获取单元获取 到的各路灯节点的路灯状态信息, 将处于故障状态的路灯节点确定为 目标故障路灯;
故障路灯位置获取子单元, 用于根据所述路灯融合数据获取单元获取 到的所述目标故障路灯的路灯位置信息确定所述目标故障路灯的位置 f π息。
[权利要求 8] 如权利要求 6所述的路灯监控中心, 其特征在于, 所述吋间花销计算 单元包括:
吋间花销第一计算子单元, 用于当所述目标故障路灯出现在预设的繁 忙吋间段内吋, 获取实吋城市交通状况, 基于所述实吋城市交通状况 确定各维修人员前往所述目标故障路灯的吋间花销;
吋间花销第二计算子单元, 用于当所述目标故障路灯出现在预设的空 闲吋间段内吋, 分别计算各维修人员与所述目标故障路灯的距离, 基 于所述距离确定各维修人员前往所述目标故障路灯的吋间花销。
[权利要求 9] 如权利要求 6至 8任一项所述的路灯监控中心, 其特征在于, 所述路灯 监控中心还包括:
路灯第一控制单元, 用于向目标控制路灯发送路灯转动指令, 以控制 所述目标控制路灯的灯头向所述目标故障路灯的方向偏转预设的偏转 角度, 其中, 所述目标控制路灯为与所述目标故障路灯相邻的路灯节 点。
[权利要求 10] —种路灯故障调度系统, 其特征在于, 所述路灯故障调度系统包括两 个以上路灯节点及与所述两个以上路灯节点连接的如权利要求 6至 9任 一项所述的路灯监控中心。
PCT/CN2017/093222 2017-06-16 2017-07-17 路灯故障调度方法、路灯监控中心及路灯故障调度系统 WO2018227683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710461718.4A CN107222967B (zh) 2017-06-16 2017-06-16 路灯故障调度方法、路灯监控中心及路灯故障调度系统
CN201710461718.4 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018227683A1 true WO2018227683A1 (zh) 2018-12-20

Family

ID=59949632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093222 WO2018227683A1 (zh) 2017-06-16 2017-07-17 路灯故障调度方法、路灯监控中心及路灯故障调度系统

Country Status (2)

Country Link
CN (1) CN107222967B (zh)
WO (1) WO2018227683A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117714492A (zh) * 2023-12-14 2024-03-15 南京邮电大学盐城大数据研究院有限公司 一种路灯组网管理方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108335031A (zh) * 2018-01-30 2018-07-27 江苏信源达科技有限公司 指挥调度系统
CN109640473B (zh) * 2018-12-07 2021-05-04 四川华体照明科技股份有限公司 一种基于路灯的智慧城市管理系统
CN110677638A (zh) * 2019-09-24 2020-01-10 福建榕基软件工程有限公司 一种设备检测方法、系统和存储介质
CN111089272A (zh) * 2019-12-27 2020-05-01 浙江冠南能源科技有限公司 用于智慧路灯的配电柜控制系统及其控制方法
CN111585278B (zh) * 2020-05-22 2021-07-13 国网宁夏电力有限公司石嘴山供电公司 一种基于电压电流参数检测的配电网故障处理方法
CN111954358A (zh) * 2020-07-23 2020-11-17 昆山安盾网络科技有限公司 基于物联网的路灯故障监测预警系统
CN112383994A (zh) * 2020-11-11 2021-02-19 合肥保利新能源科技有限公司 基于微信扫码的太阳能路灯远程报修控制器
CN113242638A (zh) * 2021-04-21 2021-08-10 李旭 一种基于智慧城市的路灯控制系统及其方法
CN114399148A (zh) * 2021-12-01 2022-04-26 航天云网数据研究院(江苏)有限公司 一种基于大数据计算分析的设备维修调度系统
CN114466498A (zh) * 2021-12-31 2022-05-10 合肥华贵照明科技有限公司 一种基于物联网的路灯监测控制及维修系统
CN115915545B (zh) * 2022-11-25 2023-08-29 万得福实业集团有限公司 一种基于照明数据的智慧路灯质量控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327701A (zh) * 2013-06-26 2013-09-25 广州中国科学院软件应用技术研究所 路灯故障监测系统
JP2014235806A (ja) * 2013-05-31 2014-12-15 株式会社ジェイ・パワーシステムズ 航空障害灯の故障検出システム及び故障検出方法
CN105243498A (zh) * 2015-10-15 2016-01-13 北京华夏盛想科技有限公司 一种基于定位的任务调度方法及装置
KR20160076571A (ko) * 2014-12-23 2016-07-01 부강이엔에스 주식회사 가로등 상태 모니터링 장치 및 그 동작 방법
CN205546129U (zh) * 2016-01-24 2016-08-31 北京中智信息技术股份有限公司 一种城市物联网智能路灯系统
CN206042439U (zh) * 2016-08-22 2017-03-22 赵德均 一种基于大数据共建共享的智慧路灯系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235806A (ja) * 2013-05-31 2014-12-15 株式会社ジェイ・パワーシステムズ 航空障害灯の故障検出システム及び故障検出方法
CN103327701A (zh) * 2013-06-26 2013-09-25 广州中国科学院软件应用技术研究所 路灯故障监测系统
KR20160076571A (ko) * 2014-12-23 2016-07-01 부강이엔에스 주식회사 가로등 상태 모니터링 장치 및 그 동작 방법
CN105243498A (zh) * 2015-10-15 2016-01-13 北京华夏盛想科技有限公司 一种基于定位的任务调度方法及装置
CN205546129U (zh) * 2016-01-24 2016-08-31 北京中智信息技术股份有限公司 一种城市物联网智能路灯系统
CN206042439U (zh) * 2016-08-22 2017-03-22 赵德均 一种基于大数据共建共享的智慧路灯系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117714492A (zh) * 2023-12-14 2024-03-15 南京邮电大学盐城大数据研究院有限公司 一种路灯组网管理方法及系统
CN117714492B (zh) * 2023-12-14 2024-06-07 南京邮电大学盐城大数据研究院有限公司 一种路灯组网管理方法及系统

Also Published As

Publication number Publication date
CN107222967A (zh) 2017-09-29
CN107222967B (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2018227683A1 (zh) 路灯故障调度方法、路灯监控中心及路灯故障调度系统
TWI574582B (zh) 路燈監控管理系統
CN103327701B (zh) 路灯故障监测系统
KR101829040B1 (ko) 모듈형 시설장치에 부착된 모듈형 기기들을 원격으로 진단 제어하는 지능형 시스템
CN107862883B (zh) 交通信号灯的故障检测及报警与运维管理系统及实现方法
CN105050224B (zh) 一种路灯及景观亮化监管系统及监管方法
WO2019107705A1 (ko) 스마트 가로등 관리 시스템 및 방법
EP3210441B1 (en) Method and system for controlling a lighting network
CN111263497B (zh) 一种基于无线Mesh自组网的智能光配置系统及方法
WO2016127803A1 (zh) 一种交通信号灯的控制方法及系统
CN104732776A (zh) 一种城市智能交通信号控制系统
CN106006248B (zh) 一种基于远程监控的电梯群控系统和方法
CN204466007U (zh) 一种智慧智能新型遥感控制器
CN105809987B (zh) 一种基于多代理的风光互补式智能红绿灯系统
CN105101593A (zh) 路灯故障检测系统及方法
Kuncicky et al. Iot approach to street lighting control using mqtt protocol
CN106020149A (zh) 一种路灯网络的智能无线传感监控系统及方法
CN104582164A (zh) 具有辅助照明的公共照明系统
CN109246913A (zh) 一种基于gprs技术的路灯监控系统
CN206283697U (zh) 智能路灯控制系统
CN107396493A (zh) 一种智慧标识控制管理器
KR20130070909A (ko) 보안등 또는 가로등 점검 관리 시스템 및 그 방법
CN112672458A (zh) 一种快速部署智慧路灯物联网的方法及系统
TWI526955B (zh) 智慧型路燈管理系統
CN111629503A (zh) 一种路灯异常恢复方法,管理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17913184

Country of ref document: EP

Kind code of ref document: A1