WO2018227497A1 - 数据处理方法及相关产品 - Google Patents

数据处理方法及相关产品 Download PDF

Info

Publication number
WO2018227497A1
WO2018227497A1 PCT/CN2017/088510 CN2017088510W WO2018227497A1 WO 2018227497 A1 WO2018227497 A1 WO 2018227497A1 CN 2017088510 W CN2017088510 W CN 2017088510W WO 2018227497 A1 WO2018227497 A1 WO 2018227497A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcp
base station
renumbered
data
hfn
Prior art date
Application number
PCT/CN2017/088510
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201780052218.3A priority Critical patent/CN109644381B/zh
Priority to PCT/CN2017/088510 priority patent/WO2018227497A1/zh
Publication of WO2018227497A1 publication Critical patent/WO2018227497A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data processing method and related products.
  • MBMS Multimedia Broadcast Multicast Service
  • LTE Long Term Evolution
  • PDCP Packet Data Convergence Protocol
  • Each packet is assigned a 32-bit numeric number COUNT for integrity protection and encryption/decryption calculations.
  • RLC radio link control
  • Media media access control
  • the Access Control, MAC schedules and selects the appropriate time-frequency resources and sends them to the physical layer for transmission.
  • UE User Equipment
  • the COUNT includes a high-order Hyper Frame Number (HFN) and a low-order PDCP Sequence Number (SN), and each Radio Bearer (RB) maintains a COUNT sequence.
  • HFN Hyper Frame Number
  • SN Low-order PDCP Sequence Number
  • RB Radio Bearer
  • the upper bit of COUNT is taken from the HFN saved by the sender, and the lower bit is the number PDCP SN assigned by the sender to the packet.
  • the PDCP SN of the sender is incremented by 1.
  • the sender adds 1 to the HFN saved by itself.
  • the sender uses the COUNT value and other parameters corresponding to the data packet, encrypts/decrypts the data packet, and performs integrity protection.
  • the PDCP SN corresponding to the data packet is carried to the receiving end.
  • the receiving end After receiving the data packet, the receiving end unpacks the PDCP SN from the packet header, and together with the HFN stored by itself, it is combined into a 32-bit COUNT value to decrypt and decode the received data packet.
  • the HFN in the COUNT value is jointly saved by the transmitting end and the receiving end, and the PDCP SN is transmitted together with the data packet.
  • the HFN saved by the data packet transmitting end and the data packet receiving end must be the same.
  • the fifth-generation mobile communication technology (5th-Generation, 5G) NR is a newly proposed topic in the 3rd Generation Partnership Project (3GPP) organization.
  • 3GPP 3rd Generation Partnership Project
  • 4G 4th Generation mobile communication
  • the length of the PDCP serial number (SN) that the current LTE system can support includes 7bit, 12bit, 15bit, and 18bit
  • the PDCP SN that the 5G NR system can support includes 12bit and 18bit.
  • Embodiments of the present invention provide a data processing method and related products, so as to reduce a packet loss rate when a terminal performs handover between systems with different PDCP sequence number numbers.
  • an embodiment of the present invention provides a data processing method, including:
  • the renumbered PDCP data packet is sequentially transmitted according to the renumbered COUNT.
  • an embodiment of the present invention provides a data processing apparatus, where the apparatus includes a determining unit, a numbering unit, and a transmitting unit.
  • the determining unit is configured to determine a PDCP data packet to be renumbered when it is required to switch to a target base station with different packet data aggregation protocol PDCP digital number COUNT numbering manner;
  • the numbering unit is configured to renumber the PDCP data packets to be renumbered, so that the renumbered PDCP COUNT is within a range supported by the target base station;
  • the transmitting unit is configured to sequentially transmit the renumbered PDCP data packet according to the renumbered COUNT.
  • an embodiment of the present invention provides a user equipment, including a processor, a memory, a radio frequency chip, and a program, where the program is stored in the foregoing memory, and is configured to be executed by the processor, where the program includes An instruction of a step other than the steps performed by the source base station in any of the methods of the first aspect of the embodiments of the present invention.
  • an embodiment of the present invention provides a base station, where the base station is a source base station, including a processor, a memory, a communication interface, and a program, where the program is stored in the memory, and configured to be executed by the processor,
  • the program includes instructions for performing steps other than the steps performed by the user equipment in any of the methods of the first aspect of the embodiments of the present invention.
  • an embodiment of the present invention provides a computer storage medium, wherein the computer program causes the computer to perform the steps in any one of the first aspects of the embodiments of the present invention, where the computer includes a base station and a user equipment. .
  • an embodiment of the present invention provides a computer program product, comprising a computer program, the computer program being operative to cause a computer to perform the steps in any of the methods of the first aspect of the present invention, the computer comprising a base station and User equipment.
  • the base station or the user equipment in the 5G/NR system needs to switch to the target base station with different packet data aggregation protocol PDCP digital number COUNT numbering manner, first determine the PDCP data packet to be renumbered; Secondly, the renumbered PDCP data packets are renumbered so that the renumbered PDCP COUNT is within the range supported by the target base station; finally, the renumbered PDCP data packets are transmitted in order according to the renumbered COUNT.
  • the PDCP data packets to be renumbered can be de-recognized by the target base station, so that no packet loss is caused, which is beneficial to reducing the packet loss rate when the terminal switches between systems with different PDCP serial number numbers.
  • 1 is a possible network architecture of an example communication system according to an embodiment of the present invention.
  • 2A is a schematic diagram of communication of a data processing method according to an embodiment of the present invention.
  • 2B is a schematic diagram of communication of another data processing method according to an embodiment of the present invention.
  • 3A is a schematic flowchart of data processing performed by a 5G NR system according to an embodiment of the present invention
  • FIG. 3B is a diagram showing an example of renumbering a COUNT of a PDCP data packet according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a block diagram showing the functional units of a data processing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a possible network architecture of an exemplary communication system according to an embodiment of the present invention.
  • the example communication system can be, for example, a 5G/NR system and other such communication systems.
  • the example communication system specifically includes a base station and a user equipment. When the user equipment accesses the mobile communication network provided by the base station, the user equipment and the base station can be connected by using a wireless link, and the communication connection manner can be a single connection mode or a dual connection mode.
  • the base station when the communication connection mode is a single connection mode, the base station may be a gNB, and when the communication mode is the dual connection mode (specifically, it may be implemented by carrier aggregation CA technology or multiple network side devices), and the user equipment
  • the multiple base stations may be the primary base station MCG and the secondary base station SCG, and the base stations perform data backhaul through the backhaul link backhaul, and the primary base station and the secondary base station may be gNB base stations.
  • the terminal involved in the embodiments of the present invention may include various handheld devices, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (User Equipment). , UE), mobile station (MS), terminal device, and the like.
  • User Equipment User Equipment
  • UE user equipment
  • MS mobile station
  • terminal device and the like.
  • user devices The devices mentioned are collectively referred to as user devices.
  • FIG. 2A is a schematic flowchart of a data processing method according to an embodiment of the present disclosure, which is applied to a communication system including a user equipment and a base station, and the method includes:
  • the user equipment determines the PDCP data packet to be renumbered.
  • the target base station may be a base station gNB in the 5G/NR system, or may be an eNB base station in the LTE system, and is not limited herein.
  • the source base station's PDCP COUNT numbering mode is different from the target base station's PDCP COUNT numbering mode.
  • the target base station corresponds to a gNB.
  • the target base station is an eNB.
  • PDCP COUNT refers to the COUNT of the PDCP packet.
  • the user equipment renumbers the PDCP data packets to be renumbered, so that the renumbered PDCP COUNT is within the range supported by the target base station.
  • the user equipment sequentially transmits the renumbered PDCP data packet according to the renumbered COUNT.
  • the user equipment in the 5G/NR system needs to switch to the target base station with different packet data aggregation protocol PDCP digital number COUNT numbering manner, first determine the PDCP data packet to be renumbered; secondly, The renumbered PDCP data packets are renumbered so that the renumbered PDCP COUNT is within the range supported by the target base station; finally, the renumbered PDCP data packets are transmitted in order according to the renumbered COUNT.
  • the PDCP data packets to be renumbered can be de-recognized by the target base station, so that no packet loss is caused, which is beneficial to reducing the packet loss rate when the terminal switches between systems with different PDCP serial number numbers.
  • the COUNT includes a high-order superframe number HFN and a low-order PDCP sequence number SN;
  • the PDCP data packet is a PDCP service data unit SDU or a PDCP protocol data unit PDU.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is smaller than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station. Greater than a bit length of a PDCP SN supported by the source base station, and the target base station The total bit length of the supported HFN and PDCP SN is equal to the total bit length of the HFN and PDCP SN supported by the source base station.
  • the renumbering the PDCP data packets to be renumbered includes: combining partial data in the first HFN corresponding to the PDCP data packet to be renumbered with the first PDCP SN And using the merged data as the PDCP SN of the renumbered PDCP data packet, and using the data of the first HFN except the partial data as the HFN corresponding to the renumbered PDCP data packet, where An HFN is an HFN supported by the source base station, the first PDCP SN is a PDCP SN supported by the source base station, and the partial data is X bit data of a lower bit in the first HFN, where X is a relative bit length difference between the first PDCP SN and the PDCP SN of the renumbered PDCP packet.
  • the data of the original SN is retained by combining the lower-order X-bit data in the HFN of the PDCP data packet to form the SN of the bit length supported by the target base station, so that the data of the original SN is retained.
  • the partial data of the renumbered SN still has a one-to-one correspondence with the original SN, and since the total bit length of COUNT is unchanged, the data of each bit is not changed, so the renumbered COUNT and the original COUNT can still be guaranteed one by one.
  • this helps to reduce the complexity of renumbering as much as possible, thereby improving the numbering processing efficiency and reducing the processing delay and packet loss rate.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is greater than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station.
  • the bit length of the PDCP SN supported by the source base station is smaller, and the total bit length of the HFN and the PDCP SN supported by the target base station is equal to the total bit length of the HFN and the PDCP SN supported by the source base station.
  • the renumbering the PDCP data packets to be renumbered includes: combining the first HFN corresponding to the PDCP data packet to be renumbered and part of the data in the first PDCP SN And using the merged data as the HFN corresponding to the renumbered PDCP data packet, and using the data of the first PDCP SN except the partial data as the PDCP SN of the renumbered PDCP data packet,
  • the first HFN is an HFN supported by the source base station
  • the first PDCP SN is a PDCP SN supported by the source base station
  • the partial data is a high-order X-bit data in the first PDCP SN, X For the first PDCP SN and the renumbered PDCP data packet
  • the relative bit length difference between PDCP SNs The relative bit length difference between PDCP SNs.
  • the original HFN is retained by combining the upper X-bit data and the original HFN data in the SN of the PDCP packet to form the HFN of the bit length supported by the target base station.
  • the data of the re-numbered HFN still has a one-to-one correspondence with the original HFN, and since the total bit length of COUNT is unchanged, the data of each bit has not changed, so the renumbered COUNT and the original COUNT are still One-to-one correspondence can be guaranteed, which is beneficial to reduce the complexity of renumbering as much as possible, thereby improving the numbering processing efficiency and reducing the processing delay and packet loss rate.
  • the determining the PDCP data packet to be renumbered includes:
  • the user equipment uses the PDCP data packet that is not received by the local end as the PDCP data packet to be renumbered; or
  • the user equipment uses the PDCP data packet that has been sent but has not received the acknowledgement correctly received by the source base station as the PDCP data packet to be renumbered.
  • the method further includes:
  • the user equipment When the data transmission is downlink, the user equipment sends a reception status report of the PDCP data packet to the target base station, where the reception status report includes the reception status information of the renumbered PDCP SN; or
  • the user equipment When the data transmission is uplink, the user equipment receives a reception status report of the PDCP data packet sent by the target base station, where the reception status report includes the reception status information of the renumbered PDCP SN;
  • the reception status information of the PDCP data packet is used to indicate whether the PDCP data packet has been correctly received.
  • FIG. 2B is a schematic flowchart of a data processing method according to an embodiment of the present invention, which is applied to a communication system including a user equipment and a base station, and the method includes:
  • the source base station determines the PDCP data packet to be renumbered.
  • the source base station renumbers the PDCP data packets to be renumbered so that the renumbered PDCP COUNT is within the range supported by the target base station.
  • the source base station sequentially transmits the renumbered PDCP data packet according to the renumbered COUNT.
  • the source base station in the 5G/NR system needs to switch to the number of packets when needed.
  • the target base station with different PDCP digital number COUNT numbering methods the PDCP data packets to be renumbered are first determined; secondly, the renumbered PDCP data packets are renumbered so that the renumbered PDCP COUNT is supported by the target base station. In the range; finally, the renumbered PDCP packets are transmitted in order according to the renumbered COUNT.
  • the PDCP data packets to be renumbered can be de-recognized by the target base station, so that no packet loss is caused, which is beneficial to reducing the packet loss rate when the terminal switches between systems with different PDCP serial number numbers.
  • the COUNT includes a high-order superframe number HFN and a low-order PDCP sequence number SN;
  • the PDCP data packet is a PDCP service data unit SDU or a PDCP protocol data unit PDU.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is smaller than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station.
  • the bit length of the PDCP SN supported by the source base station is greater than the total bit length of the HFN and the PDCP SN supported by the target base station.
  • the renumbering the PDCP data packets to be renumbered includes: combining partial data in the first HFN corresponding to the PDCP data packet to be renumbered with the first PDCP SN And using the merged data as the PDCP SN of the renumbered PDCP data packet, and using the data of the first HFN except the partial data as the HFN corresponding to the renumbered PDCP data packet, where An HFN is an HFN supported by the source base station, the first PDCP SN is a PDCP SN supported by the source base station, and the partial data is X bit data of a lower bit in the first HFN, where X is a relative bit length difference between the first PDCP SN and the PDCP SN of the renumbered PDCP packet.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is greater than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station.
  • the bit length of the PDCP SN supported by the source base station is smaller, and the total bit length of the HFN and the PDCP SN supported by the target base station is equal to the total bit length of the HFN and the PDCP SN supported by the source base station.
  • the re-encoding the PDCP data packet to be renumbered And including: combining the first HFN corresponding to the PDCP data packet to be renumbered and the partial data in the first PDCP SN, and using the merged data as the HFN corresponding to the renumbered PDCP data packet,
  • the data of the first PDCP SN except the partial data is used as the PDCP SN of the renumbered PDCP data packet
  • the first HFN is an HFN supported by the source base station
  • the first PDCP SN is The PDCP SN supported by the source base station
  • the partial data is the upper X-bit data in the first PDCP SN
  • X is the PDCP SN of the first PDCP SN and the re-numbered PDCP data packet.
  • the relative bit length difference between the two is the relative bit length difference between the two.
  • the determining the PDCP data packet to be renumbered includes:
  • the source base station uses the PDCP data packet that has been sent but not received by the user equipment to be correctly acknowledged as the PDCP data packet to be renumbered; or
  • the source base station uses the PDCP data packet that is not correctly received by the local end station as the PDCP data packet to be renumbered.
  • the method further includes:
  • the source base station sends all the PDCP data packets to be renumbered together with the corresponding renumbered PDCP SN, that is, the corresponding HFN, to the target base station; or
  • the source base station sends part or all of the PDCP data packet to be renumbered and the corresponding renumbered PDCP SN, that is, the next PDCP SN to be allocated and the corresponding HFN value to the target base station.
  • the PDCP data packet to be renumbered includes PDCP data packet 1, and the original digital number COUNT1 of the PDCP data packet 1 in the source base station is 0123456789012345678901234 5678901, wherein the HFN part is 0123456789012345678901234234, and the SN part is 5678901, that is, the HFN supported by the source base station.
  • the bit length is 25 bits, and the supported SN has a bit length of 7 bits.
  • the bit length of the HFN in the COUNT supported by the target base station is 20 bits, and the supported SN has a bit length of 12 bits.
  • the data processing method adopted by the embodiment of the present invention includes the following steps:
  • section 301 when the user equipment needs to switch to the target base station with different packet data aggregation protocol PDCP digital number COUNT numbering manner, the PDCP data packet 1 to be renumbered is determined.
  • the user equipment combines the partial data in the first HFN and the first PDCP SN in the COUNT1 corresponding to the PDCP data packet 1 into 012345678901, and uses the merged data 012345678901 as the renumbered PDCP data packet 1 PDCP SN in COUNT2.
  • the user equipment uses the data 01234567890123456789 of the first HFN except the partial data as the HFN corresponding to the renumbered PDCP packet 1.
  • the user equipment sequentially transmits the renumbered PDCP data packet 1 according to the renumbered COUNT2 value 01234567890123456789 012345678901.
  • the COUNT1 of the PDCP data packet to be renumbered is renumbered as COUNT2, and can be non-destructively identified by the target base station, so that no packet loss is caused, which is beneficial to reducing the system in which the terminal is numbered differently in the PDCP serial number. Packet loss rate when switching between.
  • FIG. 4 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment includes a processor, a memory, and a radio frequency chip.
  • a program wherein the above program is stored in the above memory, and configured to be executed by the processor, the program including instructions for performing the following steps;
  • the renumbered PDCP data packet is sequentially transmitted according to the renumbered COUNT.
  • the user equipment in the 5G/NR system needs to switch to the target base station with different packet data aggregation protocol PDCP digital number COUNT numbering manner, first determine the PDCP data packet to be renumbered; secondly, The renumbered PDCP data packets are renumbered so that the renumbered PDCP COUNT is within the range supported by the target base station; finally, the renumbered PDCP data packets are transmitted in order according to the renumbered COUNT. It can be seen that after the renumbered PDCP data packet is renumbered, it can be non-destructively identified by the target base station, so that no packet loss is caused. It is beneficial to reduce the packet loss rate when the terminal switches between systems with different PDCP serial number numbers.
  • the COUNT includes a high-order superframe number HFN and a low-order PDCP sequence number SN;
  • the PDCP data packet is a PDCP service data unit SDU or a PDCP protocol data unit PDU.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is smaller than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station.
  • the bit length of the PDCP SN supported by the source base station is greater than the total bit length of the HFN and the PDCP SN supported by the target base station.
  • the PDCP data packets to be renumbered are renumbered, and the instructions in the program are specifically configured to perform the following steps: corresponding to the PDCP data packet to be renumbered Part of the data in an HFN is merged with the first PDCP SN, and the combined data is used as the PDCP SN of the renumbered PDCP data packet, and the data of the first HFN except the partial data is renumbered.
  • the HFN corresponding to the PDCP data packet the first HFN is an HFN supported by the source base station, the first PDCP SN is a PDCP SN supported by the source base station, and the partial data is the The lower order X bit data in an HFN, where X is the relative bit length difference between the first PDCP SN and the PDCP SN of the renumbered PDCP packet.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is greater than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station.
  • the bit length of the PDCP SN supported by the source base station is smaller, and the total bit length of the HFN and the PDCP SN supported by the target base station is equal to the total bit length of the HFN and the PDCP SN supported by the source base station.
  • the PDCP data packets to be renumbered are renumbered, and the instructions in the program are specifically configured to perform the following steps: corresponding to the PDCP data packet to be renumbered Combining a part of the data in the HFN and the first PDCP SN, and using the merged data as the HFN corresponding to the renumbered PDCP data packet, and using the data of the first PDCP SN except the partial data as a re a PDCP SN of the numbered PDCP data packet, the first HFN is an HFN supported by the source base station, and the first PDCP SN is a PDCP supported by the source base station SN, the partial data is the upper X-bit data in the first PDCP SN, and X is a relative bit length difference between the first PDCP SN and the PDCP SN of the renumbered PDCP packet .
  • the instructions in the program are specifically configured to perform the following steps:
  • the PDCP data packet that is not received by the local end is used as the PDCP data packet to be renumbered; or
  • the PDCP data packet that has been sent but has not received the acknowledgement correctly received by the source base station is used as the PDCP data packet to be renumbered.
  • the program further includes an instruction for performing: when the data transmission is downlink, the user equipment sends a reception status report of the PDCP data packet to the target base station, where the reception status report includes renumbering Receive status information of the PDCP SN; or,
  • the user equipment When the data transmission is uplink, the user equipment receives a reception status report of the PDCP data packet sent by the target base station, where the reception status report includes the reception status information of the renumbered PDCP SN;
  • the reception status information of the PDCP data packet is used to indicate whether the PDCP data packet has been correctly received.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes a processor, a memory, a communication interface, and a program.
  • said program is stored in said memory and configured to be executed by said processor, said program comprising instructions for performing the following steps;
  • the renumbered PDCP data packet is sequentially transmitted according to the renumbered COUNT.
  • the source base station in the 5G/NR system needs to switch to the target base station with different packet data aggregation protocol PDCP digital number COUNT numbering manner, first determine the PDCP data packet to be renumbered; secondly, The renumbered PDCP packets are renumbered so that the renumbered PDCP COUNT is within the range supported by the target base station; The newly numbered COUNT transmits the renumbered PDCP packets in order. It can be seen that the PDCP data packets to be renumbered can be de-recognized by the target base station, so that no packet loss is caused, which is beneficial to reducing the packet loss rate when the terminal switches between systems with different PDCP serial number numbers.
  • the COUNT includes a high-order superframe number HFN and a low-order PDCP sequence number SN;
  • the PDCP data packet is a PDCP service data unit SDU or a PDCP protocol data unit PDU.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is smaller than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station.
  • the bit length of the PDCP SN supported by the source base station is greater than the total bit length of the HFN and the PDCP SN supported by the target base station.
  • the PDCP data packets to be renumbered are renumbered, and the instructions in the program are specifically configured to perform the following steps: corresponding to the PDCP data packet to be renumbered Part of the data in an HFN is merged with the first PDCP SN, and the combined data is used as the PDCP SN of the renumbered PDCP data packet, and the data of the first HFN except the partial data is renumbered.
  • the HFN corresponding to the PDCP data packet the first HFN is an HFN supported by the source base station, the first PDCP SN is a PDCP SN supported by the source base station, and the partial data is the The lower order X bit data in an HFN, where X is the relative bit length difference between the first PDCP SN and the PDCP SN of the renumbered PDCP packet.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is greater than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station.
  • the bit length of the PDCP SN supported by the source base station is smaller, and the total bit length of the HFN and the PDCP SN supported by the target base station is equal to the total bit length of the HFN and the PDCP SN supported by the source base station.
  • the PDCP data packets to be renumbered are renumbered, and the instructions in the program are specifically configured to perform the following steps: corresponding to the PDCP data packet to be renumbered A part of the data in the HFN and the first PDCP SN is merged, and the combined data is As the HFN corresponding to the renumbered PDCP data packet, the data of the first PDCP SN except the partial data is used as the PDCP SN of the renumbered PDCP data packet, where the first HFN is the source The HFN supported by the base station, the first PDCP SN is a PDCP SN supported by the source base station, the partial data is the upper X-bit data in the first PDCP SN, and X is the first PDCP SN A relative bit length difference from the PDCP SN of the renumbered PDCP packet.
  • the instructions in the program are specifically configured to perform the following steps:
  • the PDCP data packet that has been sent but not correctly received by the user equipment is used as the PDCP data packet to be renumbered;
  • the PDCP data packet that is not correctly received by the local end is used as the PDCP data packet to be renumbered.
  • the program further includes instructions for performing the following steps:
  • the part or all of the PDCP data packet to be renumbered and the corresponding renumbered PDCP SN, that is, the next PDCP SN to be allocated and the corresponding HFN value are transmitted to the target base station.
  • the user equipment and the base station include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the user equipment and the base station may be divided into functional units according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software program module. It should be noted that the unit in the embodiment of the present invention The division is schematic, only for a logical function division, and there may be another division method in actual implementation.
  • FIG. 6 shows a block diagram of a possible functional unit of the data processing apparatus provided by the embodiment of the present invention, and the data processing apparatus is applied to the user equipment described above in the above embodiment.
  • the data processing device 600 includes: a determining unit 601, a numbering unit 602, and a transmitting unit 603, where
  • the determining unit 601 is configured to determine a PDCP data packet to be renumbered when it is required to switch to a target base station with different packet data aggregation protocol PDCP digital number COUNT numbering manner;
  • the numbering unit 602 is configured to renumber the PDCP data packets to be renumbered, so that the renumbered PDCP COUNT is within the range supported by the target base station;
  • the transmitting unit 603 is configured to sequentially transmit the renumbered PDCP data packet according to the renumbered COUNT.
  • the COUNT includes a high-order superframe number HFN and a low-order PDCP sequence number SN;
  • the PDCP data packet is a PDCP service data unit SDU or a PDCP protocol data unit PDU.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is smaller than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station.
  • the bit length of the PDCP SN supported by the source base station is greater than the total bit length of the HFN and the PDCP SN supported by the target base station.
  • the numbering unit 602 is specifically configured to: in the first HFN corresponding to the PDCP data packet to be renumbered The partial data is merged with the first PDCP SN, and the merged data is used as the PDCP SN of the renumbered PDCP data packet, and the data of the first HFN except the partial data is used as the renumbered PDCP.
  • the HFN corresponding to the data packet the first HFN is an HFN supported by the source base station
  • the first PDCP SN is a PDCP SN supported by the source base station
  • the partial data is in the first HFN
  • the lower X-bit data, X is the relative bit length difference between the first PDCP SN and the PDCP SN of the renumbered PDCP packet.
  • the PDCP COUNT numbering manner includes: the bit length of the HFN supported by the target base station is greater than the bit length of the HFN supported by the source base station, and the bit length of the PDCP SN supported by the target base station.
  • the bit length of the PDCP SN supported by the source base station is smaller, and the total bit length of the HFN and the PDCP SN supported by the target base station is equal to the total bit length of the HFN and the PDCP SN supported by the source base station.
  • the numbering unit 602 is specifically configured to: the first HFN corresponding to the PDCP data packet to be renumbered Part of the data in the first PDCP SN is merged, and the merged data is used as the HFN corresponding to the renumbered PDCP data packet, and the data of the first PDCP SN except the partial data is renumbered.
  • the first HFN is an HFN supported by the source base station
  • the first PDCP SN is a PDCP SN supported by the source base station
  • the partial data is the first PDCP SN
  • the upper-order X-bit data, X is the relative bit length difference between the first PDCP SN and the PDCP SN of the renumbered PDCP packet.
  • the numbering unit 602 is specifically configured to:
  • the PDCP data packet that is not received by the local end is used as the PDCP data packet to be renumbered; or
  • the PDCP data packet that has been sent but has not received the acknowledgement correctly received by the source base station is used as the PDCP data packet to be renumbered.
  • the data processing apparatus further includes a sending unit, where the sending unit is configured to send a receiving status report of the PDCP data packet to the target base station when the data transmission is downlink, where the receiving status report includes re Receive status information of the numbered PDCP SN; or,
  • the data processing apparatus further includes a receiving unit, configured to receive a reception status report of the PDCP data packet sent by the target base station when the data transmission is uplink, where the reception status report includes the renumbered PDCP SN Receiving status information;
  • the reception status information of the PDCP data packet is used to indicate whether the PDCP data packet has been correctly received.
  • the The determining unit 601 is specifically configured to: when the data transmission is downlink, the PDCP data packet that has been sent but not correctly received by the user equipment is used as the PDCP data packet to be renumbered; or, when the data transmission is uplink, The PDCP data packet that is not correctly received by the local end is used as the PDCP data packet to be renumbered.
  • the transmitting unit 603 is further configured to: send all the PDCP data packets to be renumbered together with the corresponding renumbered PDCP SN, that is, the corresponding HFN, to the target base station; or Part or all of the PDCP data packet to be renumbered and the corresponding renumbered PDCP SN, that is, the next PDCP SN to be allocated and the corresponding HFN value are transmitted to the target base station.
  • the determining unit 601 and the numbering unit 602 may be processors, and the transmitting unit 602 may be a radio frequency chip, a communication chip, or the like.
  • the data processing apparatus may be the user equipment shown in FIG. 4 or the base station shown in FIG. 5, and the base station is a source base station.
  • the embodiment of the present invention further provides a computer storage medium storing a computer program, wherein the computer program causes the computer to perform any of the steps described above in the embodiment of the present invention, the computer comprising a base station and a user equipment.
  • the embodiment of the present invention further provides a computer program product, comprising a computer program, the computer program being operative to cause a computer to perform any of the steps described above in the embodiment of the present invention, the computer comprising a base station and a user equipment.
  • the steps of the method or algorithm described in the embodiments of the present invention may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the media can be located in the ASIC. Additionally, the ASIC can be located in an access network device, a target network device, or a core network device. Of course, the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the embodiments of the present invention may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer storage medium or transferred from one computer storage medium to another computer storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (eg, coaxial Cable, fiber, Digital Subscriber Line (DSL) or wireless (eg infrared, wireless, microwave, etc.) to bear transfer to another website, computer, server or data center.
  • the computer storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)). )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据处理方法及相关产品,包括:当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,确定待重新编号的PDCP数据包;对待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在目标基站支持的范围内;根据重新编号后的COUNT,按序传输重新编号后的PDCP数据包。本发明实施例有利于降低终端在PDCP序列号编号方式不同的系统间进行切换时的丢包率,提升用户体验。

Description

数据处理方法及相关产品 技术领域
本发明涉及通信技术领域,尤其涉及一种数据处理方法及相关产品。
背景技术
长期演进(Long Term Evolution,LTE)系统中传输多媒体广播多播业务(MultimediaBroadcast Multicast Service,MBMS)数据时,数据在网络侧的分组数据会聚协议(Packet Data Convergence Protocol,PDCP)层完成头压缩,为每个数据包分配一个32位的数字编号COUNT,用于完整性保护和加密/解密计算,经无线链路控制(Radio Link Control,RLC)层分段级连后,再经过介质访问控制(Media Access Control,MAC)层调度、选择合适的时频资源,交给物理层发送。用户设备(User Equipment,UE)侧的数据处理和网络侧相反。其中,COUNT包括高位的超帧号(Hyper Frame Number,HFN)和低位的PDCP序列号(Sequence Number,SN),每个无线承载(Radio Bearer,RB)都维护一个COUNT序列。RB建立时,PDCP SN清零,而HFN的值由控制面信令配置,或者设为协议规定的值。通信双方在数据传送之前保存HFN。COUNT的高位取自发送端保存的HFN,低位则是发送端为该数据包分配的编号PDCP SN。每处理一个数据包,发送端的PDCP SN加1,如果PDCP SN达到最大值,发送端会将自身保存的HFN加1。发送端使用数据包对应的COUNT值和其他参数,对该数据包进行加密/解密,完整性保护等运算,最后在包头中,带上该数据包所对应的PDCP SN,传给接收端。接收端收到数据包后,从数据包头中解出PDCP SN,和自身所存储的HFN一起,拼成一个32位的COUNT值,对收到的数据包进行解密、解头压缩等操作。该处理流程中,COUNT值中的HFN由发送端和接收端共同保存,PDCP SN和数据包一起传输,为了保证数据包的正确解密,数据包发送端和数据包接收端保存的HFN必须相同。
第五代移动通信技术(5th-Generation,5G)NR是在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)组织中新近提出的一个课题。随着新一代5G技术的讨论逐渐深入,一方面,由于通信系统是后项兼容的,所以后来研发的新技术倾向于兼容之前已经标准化的技术;而另一方面,由于第四代移动通信技术(the 4th Generation mobile communication,4G)LTE已经存在了大量的现有设计,如果为了达到兼容,必然要牺牲掉5G的很多灵活度,从而降低性能。所以,目前在3GPP组织中两个方向并行研究,其中,不考虑后向兼容的技术讨论组,被称为5G NR。
目前的LTE系统所能够支持的PDCP序列号(Serial Number,SN)的长度包括7bit,12bit,15bit和18bit,而5G NR系统所能够支持的PDCP SN把包括12bit和18bit两种。当从LTE系统切换至5G NR系统,或者从5G NR系统切换至LTE系统时,会发生PDCP SN长度不一致的情况,即用户设备从源基站向目标基站的切换过程中,目标基站不能够识别源基站转发的包含目标基站不支持的位长的SN的数据包。源基站和目标基站配置不匹配会导致在切换过程中出现丢包现象。
发明内容
本发明的实施例提供一种数据处理方法及相关产品,以期降低终端在PDCP序列号编号方式不同的系统间进行切换时的丢包率。
第一方面,本发明实施例提供一种数据处理方法,包括:
当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,确定待重新编号的PDCP数据包;
对所述待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在所述目标基站支持的范围内;
根据所述重新编号后的COUNT,按序传输所述重新编号后的PDCP数据包。
第二方面,本发明实施例提供一种数据处理装置,上述装置包括确定单元、编号单元和传输单元,
所述确定单元,用于当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,确定待重新编号的PDCP数据包;
所述编号单元,用于对所述待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在所述目标基站支持的范围内;
所述传输单元,用于根据所述重新编号后的COUNT,按序传输所述重新编号后的PDCP数据包。
第三方面,本发明实施例提供一种用户设备,包括处理器、存储器、射频芯片,以及程序,上述程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行如本发明实施例第一方面任一方法中的除源基站所执行步骤之外的步骤的指令。
第四方面,本发明实施例提供一种基站,该基站为源基站,包括处理器、存储器、通信接口,以及程序,上述程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行如本发明实施例第一方面任一方法中除用户设备所执行步骤之外的步骤的指令。
第五方面,本发明实施例提供了一种计算机存储介质,存储计算机程序,其中,上述计算机程序使得计算机执行如本发明实施例第一方面任一方法中的步骤,上述计算机包括基站和用户设备。
第六方面,本发明实施例提供了一种计算机程序产品,包含计算机程序,上述计算机程序可操作来使计算机执行如如本发明实施例第一方面任一方法中的步骤,上述计算机包括基站和用户设备。
可以看出,本发明实施例中,5G/NR系统中的基站或用户设备当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,首先确定待重新编号的PDCP数据包;其次,对待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在目标基站支持的范围内;最后,根据重新编号后的COUNT,按序传输重新编号后的PDCP数据包。可见,待重新编号的PDCP数据包被重新编号后,能够被目标基站无损识别,从而不会造成丢包,有利于降低终端在PDCP序列号编号方式不同的系统间进行切换时的丢包率。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍.
图1是本发明实施例提供的一种示例通信系统的可能的网络架构;
图2A是本发明实施例提供的一种数据处理方法的通信示意图;
图2B是本发明实施例提供的另一种数据处理方法的通信示意图;
图3A是本发明实施例提供的一种5G NR系统实现数据处理的流程示意图;
图3B是本发明实施例提供的一种对PDCP数据包的COUNT进行重新编号的示例图;
图4是本发明实施例提供的一种用户设备的结构示意图;
图5是本发明实施例提供的一种基站的结构示意图;
图6是本发明实施例提供的一种数据处理装置的功能单元组成框图。
具体实施方式
请参阅图1,图1是本发明实施例提供的一种示例通信系统的可能的网络架构。该示例通信系统例如可以是5G/NR系统以及其他此类通信系统。该示例通信系统具体包括基站和用户设备,用户设备接入基站提供的移动通信网络时,用户设备与基站之间可以通过无线链路通信连接,该通信连接方式可以是单连接方式或者双连接方式或者多连接方式,当通信连接方式为单连接方式时,基站可以是gNB,当通信方式为双连接方式时(具体可以通过载波聚合CA技术实现,或者多个网络侧设备实现),且用户设备连接多个基站时,该多个基站可以是主基站MCG和辅基站SCG,基站之间通过回程链路backhaul进行数据回传,主基站和辅基站可以是gNB基站。
本发明实施例中,名词“网络”和“系统”经常交替使用,本领域技术人员可以理解其含义。本发明实施例所涉及到的终端可以包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面 提到的设备统称为用户设备。
下面将结合附图对本发明实施例中的技术方案进行详细描述。
请参阅图2A,图2A是本发明实施例提供的一种数据处理方法的流程示意图,应用于包括用户设备和基站的通信系统,该方法包括:
在2A01部分,当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,用户设备确定待重新编号的PDCP数据包。
其中,目标基站可以是5G/NR系统中的基站gNB,也可以是LTE系统中的eNB基站等,此处不做限定。源基站的PDCP COUNT编号方式不同于目标基站的PDCP COUNT编号方式,源基站为eNB时,目标基站对应为gNB,相反的,源基站为gNB时,目标基站为eNB。
其中,PDCP COUNT是指PDCP数据包的COUNT。
在2A02部分,上述用户设备对所述待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在所述目标基站支持的范围内。
在2A03部分,上述用户设备根据所述重新编号后的COUNT,按序传输所述重新编号后的PDCP数据包。
可以看出,本发明实施例中,5G/NR系统中的用户设备当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,首先确定待重新编号的PDCP数据包;其次,对待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在目标基站支持的范围内;最后,根据重新编号后的COUNT,按序传输重新编号后的PDCP数据包。可见,待重新编号的PDCP数据包被重新编号后,能够被目标基站无损识别,从而不会造成丢包,有利于降低终端在PDCP序列号编号方式不同的系统间进行切换时的丢包率。
在一个可能的示例中,所述COUNT包括高位的超帧号HFN和低位的PDCP序列号SN;所述PDCP数据包为PDCP业务数据单元SDU或者PDCP协议数据单元PDU。
在本可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长小于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长大于所述源基站所支持的PDCP SN的位长,且所述目标基站 所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在本可能的示例中,所述对所述待重新编号的PDCP数据包进行重新编号,包括:将所述待重新编号的PDCP数据包对应的第一HFN中的部分数据和第一PDCP SN合并,并将合并后的数据作为所述重新编号后的PDCP数据包的PDCP SN,将除所述部分数据之外的第一HFN的数据作为重新编号后的PDCP数据包对应的HFN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为为所述第一HFN中的低位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
可见,本示例中,对于SN的位长需要增加的情况,通过合并PDCP数据包的HFN中的低位的X位数据以形成目标基站所支持的位长的SN,保留原有SN的数据,使得重新编号后的SN的部分数据与原SN仍然一一对应,且由于COUNT的总位长不变,具体每一位的数据也未变更,故而重新编号后的COUNT和原COUNT仍然可以保证一一对应,这有利于尽可能降低重新编号的复杂度,从而提高编号处理效率,降低处理时延和丢包率。
在一个可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长大于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长小于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在本可能的示例中,所述对所述待重新编号的PDCP数据包进行重新编号,包括:将所述待重新编号的PDCP数据包对应的第一HFN和第一PDCP SN中的部分数据合并,并将合并后的数据作为所述重新编号后的PDCP数据包对应的HFN,将除所述部分数据之外的第一PDCP SN的数据作为重新编号后的PDCP数据包的PDCP SN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为所述第一PDCP SN中的高位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的 PDCP SN之间的相对位长差值。
可见,本示例中,对于SN的位长需要缩减的情况,通过合并PDCP数据包的SN中的高位的X位数据和原HFN数据以形成目标基站所支持的位长的HFN,保留原有HFN的数据,使得重新编号后的HFN的部分数据与原HFN仍然一一对应,且由于COUNT的总位长不变,具体每一位的数据也未变更,故而重新编号后的COUNT和原COUNT仍然可以保证一一对应,这有利于尽可能降低重新编号的复杂度,从而提高编号处理效率,降低处理时延和丢包率。
在一个可能的示例中,所述确定待重新编号的PDCP数据包,包括:
当数据传输为下行时,用户设备将本端未接收的PDCP数据包作为所述待重新编号的PDCP数据包;或者,
当数据传输为上行时,用户设备将已发送但未收到源基站正确接收确认的PDCP数据包作为所述待重新编号的PDCP数据包。
在一个可能的示例中,所述方法还包括:
当数据传输为下行时,用户设备向目标基站发送PDCP数据包的接收状态报告,所述接收状态报告包含重新编号后的PDCP SN的接收状态信息;或者,
当数据传输为上行时,用户设备接收来自目标基站发送的PDCP数据包的接收状态报告,所述接收状态报告包含重新编号后的PDCP SN的接收状态信息;
所述PDCP数据包的接收状态信息用于表示该PDCP数据包是否已经被正确接收。
与图2A一致的,请参阅图2B,图2B是本发明实施例提供的一种数据处理方法的流程示意图,应用于包括用户设备和基站的通信系统,该方法包括:
在2B01部分,当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,源基站确定待重新编号的PDCP数据包。
在2B02部分,源基站对所述待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在所述目标基站支持的范围内。
在2B03部分,源基站根据所述重新编号后的COUNT,按序传输所述重新编号后的PDCP数据包。
可以看出,本发明实施例中,5G/NR系统中的源基站当需要切换到分组数 据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,首先确定待重新编号的PDCP数据包;其次,对待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在目标基站支持的范围内;最后,根据重新编号后的COUNT,按序传输重新编号后的PDCP数据包。可见,待重新编号的PDCP数据包被重新编号后,能够被目标基站无损识别,从而不会造成丢包,有利于降低终端在PDCP序列号编号方式不同的系统间进行切换时的丢包率。
在一个可能的示例中,所述COUNT包括高位的超帧号HFN和低位的PDCP序列号SN;所述PDCP数据包为PDCP业务数据单元SDU或者PDCP协议数据单元PDU。
在一个可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长小于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长大于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在一个可能的示例中,所述对所述待重新编号的PDCP数据包进行重新编号,包括:将所述待重新编号的PDCP数据包对应的第一HFN中的部分数据和第一PDCP SN合并,并将合并后的数据作为所述重新编号后的PDCP数据包的PDCP SN,将除所述部分数据之外的第一HFN的数据作为重新编号后的PDCP数据包对应的HFN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为为所述第一HFN中的低位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
在一个可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长大于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长小于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在一个可能的示例中,所述对所述待重新编号的PDCP数据包进行重新编 号,包括:将所述待重新编号的PDCP数据包对应的第一HFN和第一PDCP SN中的部分数据合并,并将合并后的数据作为所述重新编号后的PDCP数据包对应的HFN,将除所述部分数据之外的第一PDCP SN的数据作为重新编号后的PDCP数据包的PDCP SN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为所述第一PDCP SN中的高位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
在一个可能的示例中,所述确定待重新编号的PDCP数据包,包括:
当数据传输为下行时,源基站将已发送但未收到用户设备正确确认的PDCP数据包作为所述待重新编号的PDCP数据包;或者,
当数据传输为上行时,源基站将本端未正确接收的PDCP数据包作为所述待重新编号的PDCP数据包。
在一个可能的示例中,所述方法还包括:
源基站将全部的所述待重新编号的PDCP数据包和对应的重新编号后的PDCP SN即对应的HFN一起发送给目标基站;或者,
源基站将部分或者全部的所述待重新编号的PDCP数据包和对应的重新编号后的PDCP SN即待分配的下一个PDCP SN和对应的HFN值发送给目标基站。
下面结合具体应用场景,对本发明实施例进行具体说明。
如图3AA和3B所示,假设用户设备为5G/NR系统中的智能手机,当前移动通信系统为5G/NR系统。待重新编号的PDCP数据包包括PDCP数据包1,该PDCP数据包1在源基站中的原数字编号COUNT1为0123456789012345678901234 5678901,其中,HFN部分为0123456789012345678901234,SN部分为5678901,即源基站所支持的HFN位长为25位,所支持SN的位长为7位,目标基站所支持的COUNT中的HFN的位长为20位,所支持的SN的位长为12位。则本发明实施例通过的数据处理方法包括以下步骤:
在301部分,用户设备当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,确定待重新编号的PDCP数据包1。
在302部分,用户设备将PDCP数据包1对应的COUNT1中的第一HFN中的部分数据和第一PDCP SN合并为012345678901,并将合并后的数据012345678901作为所述重新编号后的PDCP数据包1的COUNT2中的的PDCP SN。
在303部分,用户设备将除所述部分数据之外的第一HFN的数据01234567890123456789作为重新编号后的PDCP数据包1对应的HFN。
在304部分,用户设备根据所述重新编号后的COUNT2的值01234567890123456789 012345678901,按序传输所述重新编号后的PDCP数据包1。
可见,本场景示例中,待重新编号的PDCP数据包的COUNT1被重新编号为COUNT2后,能够被目标基站无损识别,从而不会造成丢包,有利于降低终端在PDCP序列号编号方式不同的系统间进行切换时的丢包率。
与上述图2A所示的实施例一致的,请参阅图4,图4是本发明实施例提供的一种用户设备的结构示意图,如图所示,该用户设备包括处理器、存储器、射频芯片以及程序,其中,上述程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行以下步骤的指令;
当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,确定待重新编号的PDCP数据包;
对所述待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在所述目标基站支持的范围内;
根据所述重新编号后的COUNT,按序传输所述重新编号后的PDCP数据包。
可以看出,本发明实施例中,5G/NR系统中的用户设备当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,首先确定待重新编号的PDCP数据包;其次,对待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在目标基站支持的范围内;最后,根据重新编号后的COUNT,按序传输重新编号后的PDCP数据包。可见,待重新编号的PDCP数据包被重新编号后,能够被目标基站无损识别,从而不会造成丢包, 有利于降低终端在PDCP序列号编号方式不同的系统间进行切换时的丢包率。
在一个可能的示例中,所述COUNT包括高位的超帧号HFN和低位的PDCP序列号SN;所述PDCP数据包为PDCP业务数据单元SDU或者PDCP协议数据单元PDU。
在一个可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长小于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长大于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在一个可能的示例中,在所述对所述待重新编号的PDCP数据包进行重新编号,所述程序中的指令具体用于执行以下步骤:将所述待重新编号的PDCP数据包对应的第一HFN中的部分数据和第一PDCP SN合并,并将合并后的数据作为所述重新编号后的PDCP数据包的PDCP SN,将除所述部分数据之外的第一HFN的数据作为重新编号后的PDCP数据包对应的HFN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为为所述第一HFN中的低位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
在一个可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长大于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长小于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在一个可能的示例中,在所述对所述待重新编号的PDCP数据包进行重新编号,所述程序中的指令具体用于执行以下步骤:将所述待重新编号的PDCP数据包对应的第一HFN和第一PDCP SN中的部分数据合并,并将合并后的数据作为所述重新编号后的PDCP数据包对应的HFN,将除所述部分数据之外的第一PDCP SN的数据作为重新编号后的PDCP数据包的PDCP SN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP  SN,所述部分数据为所述第一PDCP SN中的高位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
在一个可能的示例中,在所述确定待重新编号的PDCP数据包方面,所述程序中的指令具体用于执行以下步骤:
当数据传输为下行时,将本端未接收的PDCP数据包作为所述待重新编号的PDCP数据包;或者,
当数据传输为上行时,已发送但未收到源基站正确接收确认的PDCP数据包作为所述待重新编号的PDCP数据包。
在一个可能的示例中,所述程序中还包括用于执行以下步骤的指令:当数据传输为下行时,用户设备向目标基站发送PDCP数据包的接收状态报告,所述接收状态报告包含重新编号后的PDCP SN的接收状态信息;或者,
当数据传输为上行时,用户设备接收来自目标基站发送的PDCP数据包的接收状态报告,所述接收状态报告包含重新编号后的PDCP SN的接收状态信息;
所述PDCP数据包的接收状态信息用于表示该PDCP数据包是否已经被正确接收。
与上述图2A所示的实施例一致的,请参阅图5,图5是本发明实施例提供的一种基站的结构示意图,如图所示,该基站包括处理器、存储器、通信接口以及程序,其中,上述程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行以下步骤的指令;
当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,确定待重新编号的PDCP数据包;
对所述待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在所述目标基站支持的范围内;
根据所述重新编号后的COUNT,按序传输所述重新编号后的PDCP数据包。
可以看出,本发明实施例中,5G/NR系统中的源基站当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,首先确定待重新编号的PDCP数据包;其次,对待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在目标基站支持的范围内;最后,根据重 新编号后的COUNT,按序传输重新编号后的PDCP数据包。可见,待重新编号的PDCP数据包被重新编号后,能够被目标基站无损识别,从而不会造成丢包,有利于降低终端在PDCP序列号编号方式不同的系统间进行切换时的丢包率。
在一个可能的示例中,所述COUNT包括高位的超帧号HFN和低位的PDCP序列号SN;所述PDCP数据包为PDCP业务数据单元SDU或者PDCP协议数据单元PDU。
在一个可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长小于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长大于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在一个可能的示例中,在所述对所述待重新编号的PDCP数据包进行重新编号,所述程序中的指令具体用于执行以下步骤:将所述待重新编号的PDCP数据包对应的第一HFN中的部分数据和第一PDCP SN合并,并将合并后的数据作为所述重新编号后的PDCP数据包的PDCP SN,将除所述部分数据之外的第一HFN的数据作为重新编号后的PDCP数据包对应的HFN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为为所述第一HFN中的低位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
在一个可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长大于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长小于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在一个可能的示例中,在所述对所述待重新编号的PDCP数据包进行重新编号,所述程序中的指令具体用于执行以下步骤:将所述待重新编号的PDCP数据包对应的第一HFN和第一PDCP SN中的部分数据合并,并将合并后的数据 作为所述重新编号后的PDCP数据包对应的HFN,将除所述部分数据之外的第一PDCP SN的数据作为重新编号后的PDCP数据包的PDCP SN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为所述第一PDCP SN中的高位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
在一个可能的示例中,在所述确定待重新编号的PDCP数据包方面,所述程序中的指令具体用于执行以下步骤:
当数据传输为下行时,将已发送但未收到用户设备正确确认的PDCP数据包作为所述待重新编号的PDCP数据包;或者,
当数据传输为上行时,将本端未正确接收的PDCP数据包作为所述待重新编号的PDCP数据包。
在一个可能的示例中,所述程序中还包括用于执行以下步骤的指令:
将全部的所述待重新编号的PDCP数据包和对应的重新编号后的PDCP SN即对应的HFN一起发送给目标基站;或者,
将部分或者全部的所述待重新编号的PDCP数据包和对应的重新编号后的PDCP SN即待分配的下一个PDCP SN和对应的HFN值发送给目标基站。
上述主要从各个网元之间交互的角度对本发明实施例的方案进行了介绍。可以理解的是,用户设备和基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对用户设备和基站进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本发明实施例中对单元 的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图6示出了本发明实施例所提供的数据处理装置的一种可能的功能单元组成框图,该数据处理装置应用于上述实施例上述的用户设备。该数据处理装置600包括:确定单元601、编号单元602和传输单元603,其中,
上述确定单元601,用于当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,确定待重新编号的PDCP数据包;
上述编号单元602,用于对所述待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在所述目标基站支持的范围内;
上述传输单元603,用于根据所述重新编号后的COUNT,按序传输所述重新编号后的PDCP数据包。
在一个可能的示例中,所述COUNT包括高位的超帧号HFN和低位的PDCP序列号SN;所述PDCP数据包为PDCP业务数据单元SDU或者PDCP协议数据单元PDU。
在一个可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长小于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长大于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在一个可能的示例中,在所述对所述待重新编号的PDCP数据包进行重新编号方面,所述编号单元602具体用于:将所述待重新编号的PDCP数据包对应的第一HFN中的部分数据和第一PDCP SN合并,并将合并后的数据作为所述重新编号后的PDCP数据包的PDCP SN,将除所述部分数据之外的第一HFN的数据作为重新编号后的PDCP数据包对应的HFN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为为所述第一HFN中的低位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
在一个可能的示例中,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长大于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长小于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
在一个可能的示例中,在所述对所述待重新编号的PDCP数据包进行重新编号方面,所述编号单元602具体用于:将所述待重新编号的PDCP数据包对应的第一HFN和第一PDCP SN中的部分数据合并,并将合并后的数据作为所述重新编号后的PDCP数据包对应的HFN,将除所述部分数据之外的第一PDCP SN的数据作为重新编号后的PDCP数据包的PDCP SN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为所述第一PDCP SN中的高位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
在一个可能的示例中,在所述确定待重新编号的PDCP数据包方面,所述编号单元602具体用于:
当数据传输为下行时,将本端未接收的PDCP数据包作为所述待重新编号的PDCP数据包;或者,
当数据传输为上行时,将已发送但未收到源基站正确接收确认的PDCP数据包作为所述待重新编号的PDCP数据包。
在一个可能的示例中,所述数据处理装置还包括发送单元;所述发送单元,用于当数据传输为下行时,向目标基站发送PDCP数据包的接收状态报告,所述接收状态报告包含重新编号后的PDCP SN的接收状态信息;或者,
所述数据处理装置还包括接收单元;所述接收单元,用于当数据传输为上行时,接收来自目标基站发送的PDCP数据包的接收状态报告,所述接收状态报告包含重新编号后的PDCP SN的接收状态信息;
所述PDCP数据包的接收状态信息用于表示该PDCP数据包是否已经被正确接收。
在一个可能的示例中,在所述确定待重新编号的PDCP数据包方面,所述 确定单元601具体用于:当数据传输为下行时,将已发送但未收到用户设备正确确认的PDCP数据包作为所述待重新编号的PDCP数据包;或者,当数据传输为上行时,将本端未正确接收的PDCP数据包作为所述待重新编号的PDCP数据包。
在一个可能的示例中,所述传输单元603还用于:将全部的所述待重新编号的PDCP数据包和对应的重新编号后的PDCP SN即对应的HFN一起发送给目标基站;或者,将部分或者全部的所述待重新编号的PDCP数据包和对应的重新编号后的PDCP SN即待分配的下一个PDCP SN和对应的HFN值发送给目标基站。
其中,确定单元601和编号单元602可以是处理器,传输单元602可以是射频芯片、通信芯片等。
本发明实施例所涉及的数据处理装置可以为图4所示的用户设备或图5所示的基站,所述基站为源基站。
本发明实施例还提供了一种计算机存储介质,存储计算机程序,其中,上述计算机程序使得计算机执行如本发明实施例中上述的任一步骤,上述计算机包括基站和用户设备。
本发明实施例还提供了一种计算机程序产品,包含计算机程序,上述计算机程序可操作来使计算机执行如本发明实施例中上述的任一步骤,上述计算机包括基站和用户设备。
本发明实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储 介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机存储介质中,或者从一个计算机存储介质向另一个计算机存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行承载传输。所述计算机存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (20)

  1. 一种数据处理方法,其特征在于,包括:
    当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,确定待重新编号的PDCP数据包;
    对所述待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在所述目标基站支持的范围内;
    根据所述重新编号后的COUNT,按序传输所述重新编号后的PDCP数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述COUNT包括高位的超帧号HFN和低位的PDCP序列号SN;所述PDCP数据包为PDCP业务数据单元SDU或者PDCP协议数据单元PDU。
  3. 根据权利要求2所述的方法,其特征在于,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长小于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长大于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
  4. 根据权利要求3所述的方法,其特征在于,所述对所述待重新编号的PDCP数据包进行重新编号,包括:
    将所述待重新编号的PDCP数据包对应的第一HFN中的部分数据和第一PDCP SN合并,并将合并后的数据作为所述重新编号后的PDCP数据包的PDCP SN,将除所述部分数据之外的第一HFN的数据作为重新编号后的PDCP数据包对应的HFN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为为所述第一HFN中的低位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
  5. 根据权利要求2所述的方法,其特征在于,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长大于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长小于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所 支持的HFN和PDCP SN的总位长。
  6. 根据权利要求5所述的方法,其特征在于,所述对所述待重新编号的PDCP数据包进行重新编号,包括:
    将所述待重新编号的PDCP数据包对应的第一HFN和第一PDCP SN中的部分数据合并,并将合并后的数据作为所述重新编号后的PDCP数据包对应的HFN,将除所述部分数据之外的第一PDCP SN的数据作为重新编号后的PDCP数据包的PDCP SN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为所述第一PDCP SN中的高位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述确定待重新编号的PDCP数据包,包括:
    当数据传输为下行时,用户设备将本端未接收的PDCP数据包作为所述待重新编号的PDCP数据包;或者,
    当数据传输为上行时,用户设备将已发送但未收到源基站正确接收确认的PDCP数据包作为所述待重新编号的PDCP数据包。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    当数据传输为下行时,用户设备向目标基站发送PDCP数据包的接收状态报告,所述接收状态报告包含重新编号后的PDCP SN的接收状态信息;或者,
    当数据传输为上行时,用户设备接收来自目标基站发送的PDCP数据包的接收状态报告,所述接收状态报告包含重新编号后的PDCP SN的接收状态信息;
    所述PDCP数据包的接收状态信息用于表示该PDCP数据包是否已经被正确接收。
  9. 根据权利要求1-6任一项所述的方法,其特征在于,所述确定待重新编号的PDCP数据包,包括:
    当数据传输为下行时,源基站将已发送但未收到用户设备正确确认的PDCP数据包作为所述待重新编号的PDCP数据包;或者,
    当数据传输为上行时,源基站将本端未正确接收的PDCP数据包作为所述 待重新编号的PDCP数据包。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    源基站将全部的所述待重新编号的PDCP数据包和对应的重新编号后的PDCP SN即对应的HFN一起发送给目标基站;或者,
    源基站将部分或者全部的所述待重新编号的PDCP数据包和对应的重新编号后的PDCP SN即待分配的下一个PDCP SN和对应的HFN值发送给目标基站。
  11. 一种数据处理装置,其特征在于,包括确定单元、编号单元和传输单元,
    所述确定单元,用于当需要切换到分组数据汇聚协议PDCP数字编号COUNT编号方式不同的目标基站时,确定待重新编号的PDCP数据包;
    所述编号单元,用于对所述待重新编号的PDCP数据包进行重新编号,使重新编号后的PDCP COUNT在所述目标基站支持的范围内;
    所述传输单元,用于根据所述重新编号后的COUNT,按序传输所述重新编号后的PDCP数据包。
  12. 根据权利要求11所述的数据处理装置,其特征在于,所述COUNT包括高位的超帧号HFN和低位的PDCP序列号SN;所述PDCP数据包为PDCP业务数据单元SDU或者PDCP协议数据单元PDU。
  13. 根据权利要求12所述的数据处理装置,其特征在于,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长小于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长大于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
  14. 根据权利要求13所述的数据处理装置,其特征在于,在所述对所述待重新编号的PDCP数据包进行重新编号方面,所述编号单元具体用于:将所述待重新编号的PDCP数据包对应的第一HFN中的部分数据和第一PDCP SN合并,并将合并后的数据作为所述重新编号后的PDCP数据包的PDCP SN,将除所述部分数据之外的第一HFN的数据作为重新编号后的PDCP数据包对应的HFN, 所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为为所述第一HFN中的低位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
  15. 根据权利要求12所述的数据处理装置,其特征在于,所述PDCP COUNT编号方式不同包括:所述目标基站所支持的HFN的位长大于源基站所支持的HFN的位长,所述目标基站所支持的PDCP SN的位长小于所述源基站所支持的PDCP SN的位长,且所述目标基站所支持的HFN和PDCP SN的总位长等于所述源基站所支持的HFN和PDCP SN的总位长。
  16. 根据权利要求15所述的数据处理装置,其特征在于,在所述对所述待重新编号的PDCP数据包进行重新编号方面,所述编号单元具体用于:将所述待重新编号的PDCP数据包对应的第一HFN和第一PDCP SN中的部分数据合并,并将合并后的数据作为所述重新编号后的PDCP数据包对应的HFN,将除所述部分数据之外的第一PDCP SN的数据作为重新编号后的PDCP数据包的PDCP SN,所述第一HFN为所述源基站所支持的HFN,所述第一PDCP SN为所述源基站所支持的PDCP SN,所述部分数据为所述第一PDCP SN中的高位的X位数据,X为所述第一PDCP SN与所述重新编号后的PDCP数据包的PDCP SN之间的相对位长差值。
  17. 根据权利要求11-16任一项所述的数据处理装置,其特征在于,在所述确定待重新编号的PDCP数据包方面,所述编号单元具体用于:
    当数据传输为下行时,将本端未接收的PDCP数据包作为所述待重新编号的PDCP数据包;或者,
    当数据传输为上行时,将已发送但未收到源基站正确接收确认的PDCP数据包作为所述待重新编号的PDCP数据包。
  18. 一种用户设备,其特征在于,包括处理器、存储器、射频芯片,以及程序,所述程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-8任一项所述的方法中的步骤的指令。
  19. 一种基站,其特征在于,所述基站为源基站,所述基站包括处理器、存储器、通信接口,以及程序,所述程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-6和权利要求9和10任一项所述的方法中的步骤的指令。
  20. 一种计算机存储介质,其特征在于,存储计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-10任一项所述的方法,所述计算机包括基站和用户设备。
PCT/CN2017/088510 2017-06-15 2017-06-15 数据处理方法及相关产品 WO2018227497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780052218.3A CN109644381B (zh) 2017-06-15 2017-06-15 数据处理方法及相关产品
PCT/CN2017/088510 WO2018227497A1 (zh) 2017-06-15 2017-06-15 数据处理方法及相关产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/088510 WO2018227497A1 (zh) 2017-06-15 2017-06-15 数据处理方法及相关产品

Publications (1)

Publication Number Publication Date
WO2018227497A1 true WO2018227497A1 (zh) 2018-12-20

Family

ID=64659617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088510 WO2018227497A1 (zh) 2017-06-15 2017-06-15 数据处理方法及相关产品

Country Status (2)

Country Link
CN (1) CN109644381B (zh)
WO (1) WO2018227497A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138801A1 (zh) * 2020-01-07 2021-07-15 Oppo广东移动通信有限公司 一种业务安全传输方法及装置、终端设备、网络设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114615657B (zh) * 2022-02-21 2023-12-22 翱捷科技股份有限公司 一种5g通信中的数据分段解密方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026279A (zh) * 2009-09-23 2011-04-20 中兴通讯股份有限公司 一种数据反传的方法和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208498B2 (en) * 2007-10-30 2012-06-26 Qualcomm Incorporated Methods and systems for HFN handling at inter-base station handover in mobile communication networks
CN101686494B (zh) * 2008-09-22 2012-07-04 电信科学技术研究院 一种分组数据汇聚协议层处理数据包的方法和装置
KR20120130419A (ko) * 2011-05-23 2012-12-03 삼성전자주식회사 이동통신 시스템에서 오류 보정 암호화를 위한 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026279A (zh) * 2009-09-23 2011-04-20 中兴通讯股份有限公司 一种数据反传的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "R2-1704369, Lossless PDCP SN reconfiguration at HO", 3GPP TSG - RAN WG2 #98, 6 May 2017 (2017-05-06), XP051264383 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138801A1 (zh) * 2020-01-07 2021-07-15 Oppo广东移动通信有限公司 一种业务安全传输方法及装置、终端设备、网络设备
CN114600507A (zh) * 2020-01-07 2022-06-07 Oppo广东移动通信有限公司 一种业务安全传输方法及装置、终端设备、网络设备
CN114600507B (zh) * 2020-01-07 2023-08-29 Oppo广东移动通信有限公司 一种业务安全传输方法及装置、终端设备、网络设备

Also Published As

Publication number Publication date
CN109644381A (zh) 2019-04-16
CN109644381B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
KR102410216B1 (ko) 무선 통신 시스템에서 pdcp 리오더링 타이머를 재설정하는 방법 및 그 장치
WO2019129117A1 (zh) 通信方法和装置
US8619760B2 (en) Method of providing circuit switched (SC) service using high-speed downlink packet access (HSDPA) or high-speed uplink packet access (HSUPA)
WO2018228578A1 (zh) 一种通信方法及其装置
WO2019057154A1 (zh) 数据传输方法、终端设备和网络设备
JP2008289159A (ja) 無線通信システムにおいてパケットヘッダを設定する方法及び装置
WO2020073756A1 (zh) 通信方法、装置、计算机可读介质及电子设备
WO2019024032A1 (zh) 数据传输方法、相关设备及通信系统
JP2020532159A (ja) データ処理の方法及び装置
US20220368782A1 (en) Baseband chip and method for layer 2 downlink data processing
US11968573B2 (en) Handover method and device in mobile communication system
WO2018227497A1 (zh) 数据处理方法及相关产品
TWI797414B (zh) 用於行動性增強之方法及其使用者設備
US20230199600A1 (en) Method and communications apparatus for configuring assistance information
US20230189300A1 (en) Communication control method
WO2022152092A1 (zh) 数据传输控制方法和装置
JP5275355B2 (ja) Hsdpa又はhsupaを用いたcsサービス提供方法
JP6389126B2 (ja) 無線通信装置及び送信フレーム制御方法
WO2020103714A1 (zh) 一种缓存管理的方法及相应设备
JP2008148314A (ja) 無線通信システムにおいてリオーダーを処理する方法及び装置
WO2020082344A1 (zh) 一种区分数据格式的方法及装置、通信设备
WO2018058444A1 (zh) 一种数据加密的方法及装置
US20230345323A1 (en) Data transmission method and apparatus
WO2023082948A1 (zh) 数据传输方法及通信装置
JP4662498B2 (ja) 無線通信システムにおいて送信効率を向上させる方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914082

Country of ref document: EP

Kind code of ref document: A1