WO2018225980A1 - 아산화질소 함유 기체화합물의 고주파 유도 열분해 장치 - Google Patents

아산화질소 함유 기체화합물의 고주파 유도 열분해 장치 Download PDF

Info

Publication number
WO2018225980A1
WO2018225980A1 PCT/KR2018/006233 KR2018006233W WO2018225980A1 WO 2018225980 A1 WO2018225980 A1 WO 2018225980A1 KR 2018006233 W KR2018006233 W KR 2018006233W WO 2018225980 A1 WO2018225980 A1 WO 2018225980A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
frequency induction
induction heating
nitrous oxide
pyrolysis
Prior art date
Application number
PCT/KR2018/006233
Other languages
English (en)
French (fr)
Inventor
이수복
이상구
박인준
하종욱
이광원
육신홍
장세훈
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2018225980A1 publication Critical patent/WO2018225980A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the present invention relates to an apparatus for treating nitrous oxide (N 2 O) -containing gas mixture discharged from chemical processes such as adipic acid production process, nitric acid production process, caprolactam production process and nitrous oxide production process.
  • the present invention relates to a high frequency induction heating pyrolysis apparatus for decomposing nitrous oxide causing global warming into nitrogen and oxygen.
  • Nitrous oxide is a greenhouse gas with a global warming index of more than 300 times that of nitrous oxide. To protect the global environment, nitrous oxide emitted from chemical processes should be decomposed and treated. Nitrous oxide-containing gas mixtures from industry should be reduced as much as possible.
  • nitrous oxide begins to decompose above about 800 ° C. As the temperature increases, the rate of decomposition of nitrous oxide into nitrogen and oxygen increases, but the production of nitrogen monoxide (NO) increases above 1,000 ° C. Nitrogen monoxide decomposes into nitrogen and oxygen above about 1,500 ° C. This requires precise temperature control after the reaction has started. In particular, when the concentration of nitrous oxide is high, temperature control is more important because of the large amount of heat generated. Special care is needed to regulate the production of environmentally tightly regulated NO x during the pyrolysis of nitrous oxide.
  • NO nitrogen monoxide
  • the pyrolysis apparatus of nitrous oxide is composed of two stage combustion furnaces of the first pyrolysis furnace 101 and the second pyrolysis furnace 102 of FIG. 1.
  • a nitrous oxide-containing gas mixture, a natural gas fuel, and air are supplied to the first pyrolysis furnace 101 of FIG. 1 to decompose nitrous oxide at a high temperature obtained by combustion heat generated while burning natural gas.
  • the reaction equation of the pyrolysis is as follows. Nitrous oxide is combusted to produce carbon dioxide (CO 2 ) and water (H 2 O).
  • the temperature of the first pyrolysis furnace 101 of FIG. 1 is about 1,300 ° C. and natural gas in order to minimize the generation of unwanted by-product gases such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) while promoting complete decomposition of nitrous oxide. Is supplied in excess. Incomplete oxidation of natural gas results in byproducts of carbon monoxide (CO) and hydrogen (H 2 ).
  • air is supplied to the gas mixture from the first pyrolysis furnace 101 of FIG. 1 to obtain carbon monoxide and hydrogen by-produced in the first pyrolysis furnace of FIG. 1 at a temperature of about 950 ° C. Burn completely.
  • the pyrolysis device currently used in the adipic acid production process is a complicated device requiring two stages of pyrolysis furnace and additional supply of natural gas fuel and ammonia.
  • it is an energy consumption process using natural gas fuel and there is a disadvantage in that carbon dioxide, which is a greenhouse gas, is additionally generated during the pyrolysis process.
  • the catalytic decomposition device of the nitrous oxide-containing gas mixture used in the exhaust gas treatment of the nitric acid process and the caprolactam production process uses a tube-type reactor filled with a catalyst. Unlike pyrolysis, the catalytic cracker is equipped with an electric heater to heat up to the decomposition temperature. Catalytic cracking devices are mainly used for the decomposition of low concentration gas mixtures with a concentration of nitrous oxide of about 1%. In the nitric acid and caprolactam production process, a low concentration gas mixture with a nitrous oxide concentration of about 1% is generated, and a catalytic cracking device is used for the treatment thereof.
  • Catalytic decomposition has a decomposition temperature of 400 to 600 ° C., which is lower than pyrolysis without a catalyst.
  • catalytic decomposition has a disadvantage in that activity is inferior due to poisoning of the catalyst even when impurities are present in the concentration of ppm unit in the gas to be treated. Therefore, in catalytic cracking, the impurity composition of the nitrous oxide-containing gas mixture supplied must be maintained to meet certain standards.
  • the decomposition of nitrous oxide is a strong exothermic reaction, the severe change in the concentration of nitrous oxide in the gas mixture supplied to the catalytic cracking device leads to the occurrence of severe hot spots inside the catalytic cracking reactor, resulting in partial damage of the catalyst. Brings about.
  • catalytic cracking has a disadvantage of increasing the generated nitride oxides (NO x) to promote nitride oxides (NO x) decomposition of nitrous oxide.
  • NO x nitride oxides
  • catalytic decomposition is less stable over time, so pyrolysis without a catalyst for nitrous oxide decomposition is more preferred.
  • the conventional pyrolysis method and the catalytic decomposition method each have disadvantages. Therefore, there is a need for a new pyrolysis apparatus and method that can improve this.
  • Patent Document 1 DE 4,116,950
  • Patent Document 2 US 6,723,295
  • the pyrolysis device currently used in the chemical process is composed of a first pyrolysis furnace operated at 1,300 ° C. and a second pyrolysis furnace operated at 950 ° C., and is a complex device that requires additional supply of natural gas fuel and ammonia.
  • it is an energy-consuming device using natural gas fuel and has a disadvantage in that carbon dioxide, which is a greenhouse gas, is additionally generated during the pyrolysis process.
  • the present invention can improve the complexity and energy consumption of the process, which is a disadvantage of the conventional pyrolysis apparatus, and to improve the instability of the catalyst and the process, which is a disadvantage of the catalytic cracking apparatus.
  • the present inventors have led to the present invention by devising a new pyrolysis device that can perform the in-depth study to improve the disadvantages of the existing pyrolysis device and catalytic decomposition device.
  • the present invention provides a novel high frequency induction heating pyrolysis apparatus for treating nitrous oxide containing gaseous compounds.
  • a high frequency induction heating pyrolysis apparatus of a nitrous oxide-containing gas mixture comprising: a high frequency induction heating pyrolysis reaction system including a pyrolysis reactor filled with a filling material and a high frequency induction coil mounted around the pyrolysis reactor; A high frequency generator generating a high frequency and supplying the high frequency to the high frequency induction coil; A cooling system for cooling the high frequency generator and the high frequency induction coil; And a temperature control system for controlling the temperature inside the high frequency induction heating pyrolysis reactor.
  • the high frequency induction coil mounted on the high frequency induction heating reaction system may be a copper tube, in which a cooling water is supplied to the inside of the tube, and the high frequency is supplied to the tube wall.
  • the high frequency generated by the high frequency generator may be in the range of 3 ⁇ 30MHz.
  • the pyrolysis reactor may be prepared using a metal material that can be used at a high temperature of 1,000 °C or more.
  • the pyrolysis reactor may be manufactured using an Inconel material.
  • a filling material is filled in the high frequency induction heating pyrolysis reactor, and the filling material may be made of at least one of metal, ceramic, and aluminum nitride.
  • the diameter of the filling material may be 3 to 30mm.
  • the filling material is made of a metal
  • the metal used may include Inconel.
  • the diameter (D) of the high frequency induction heating pyrolysis reactor may be 0.5 to 20cm, the length (L) may satisfy that the L / D value is 5 to 100.
  • the high frequency induction heating pyrolysis apparatus of the present invention can solve the problem of inhomogeneous heating and temperature control which is a problem in a pyrolysis apparatus equipped with a high temperature furnace pyrolysis apparatus and an electric heater. By keeping the heating power and time constant, heating can be performed uniformly at all times.
  • heat is generated within a short time and heating is instantaneously, and no preheating or cooling is required. This may increase production time and improve productivity.
  • the high frequency induction heating pyrolysis apparatus of the present invention directly heats the pyrolysis reactor, and thus has a very good thermal efficiency compared to other heating apparatuses.
  • the thermal efficiency of a general electric heater is about 45%
  • the high frequency induction heating pyrolysis apparatus of the present invention has a thermal efficiency of 90% or more, thereby significantly saving energy.
  • FIG. 1 shows a schematic diagram of a pyrolysis apparatus of a nitrous oxide-containing gas mixture used in a conventional adipic acid production process.
  • Figure 2 shows a schematic diagram of a high frequency induction heating pyrolysis apparatus of the nitrous oxide containing gas compound of the present invention.
  • the temperature of the first pyrolysis furnace 101 of FIG. 1 is about 1,300 ° C. and natural gas in order to minimize the generation of unwanted by-product gases such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) while promoting complete decomposition of nitrous oxide. Is supplied in excess. Incomplete oxidation of natural gas results in byproducts of carbon monoxide (CO) and hydrogen (H 2 ).
  • the carbon monoxide by-produced in the first pyrolysis furnace 101 of FIG. 1 at a temperature of about 950 ° C.
  • the schematic diagram of the high frequency induction heating pyrolysis apparatus of the nitrous oxide-containing gaseous compound of the present invention is shown in FIG. 2, and the high frequency induction heating pyrolysis apparatus of the present invention is a high frequency induction heating pyrolysis apparatus of a nitrous oxide-containing gas mixture.
  • a high frequency induction heating pyrolysis reaction system including an advanced pyrolysis reactor and a high frequency induction coil mounted around the pyrolysis reactor; A high frequency generator generating a high frequency and supplying the high frequency to the high frequency induction coil; A cooling system for cooling the high frequency generator and the high frequency induction coil; And a temperature control system for controlling the temperature inside the high frequency induction heating pyrolysis reactor.
  • the high frequency induction heating pyrolysis reaction system 203 includes a pyrolysis reactor 207, a high frequency induction coil 204, a filler 205, a filler support 206, a temperature indicator 208, a temperature indicator 209 and a temperature indicator. Controller 210.
  • the nitrous oxide containing gas mixture is supplied to the high frequency induction heating pyrolysis reactor 207.
  • the high frequency generated by the high frequency generator 202 is supplied to the high frequency induction coil 204 mounted around the pyrolysis reactor 203 to generate an induction current, thereby generating heat to heat the pyrolysis reactor 207.
  • Cooling water is supplied into the high frequency generator 202 and the high frequency induction coil 204 by the cooling system 201 to cool the high frequency generator 202 and the high frequency induction coil 204.
  • the pyrolysis reactor 207 is equipped with temperature indicators 208 and 209 for measuring the internal temperature and a temperature controller 210 for controlling the internal temperature.
  • the internal temperature of the pyrolysis reactor 207 is controlled by the temperature control system 211 based on the temperature of the temperature controller 210.
  • the main features of the high frequency induction heating pyrolysis apparatus of the nitrous oxide containing gas mixture of the present invention include the following.
  • the high frequency induction coil mounted on the high frequency induction heating reaction system may be a copper tube, in which a coolant is supplied and cooled, and a high frequency is supplied to the tube wall.
  • the high frequency induction coil is mounted outside the pyrolysis reactor of the high frequency induction heating apparatus of the present invention.
  • the high frequency induction coil is a copper tube, and cooling water is supplied inside the tube to cool the high frequency.
  • the high frequency generated by the high frequency generator may range from 3 to 30 MHz.
  • the high frequency induction heating system of the high frequency induction heating apparatus of the present invention comprises a high frequency generator, a high frequency generator and a cooling system for cooling the high frequency induction coating, and a temperature control system for controlling the temperature of the reactor.
  • the range of 3-30 MHz is preferred.
  • the pyrolysis reactor may be manufactured using a metal material that can be used at a high temperature of 1,000 ° C. or higher.
  • the high frequency induction heating pyrolysis reactor of the high frequency induction heating apparatus of the present invention is made of a metal material having excellent durability at a high temperature of 1,000 ° C. or higher.
  • Inconel which is an alloy containing 15% of chromium, 6-7% of iron, 2.5% of titanium, 1% of aluminum, manganese, and silicon mainly based on nickel.
  • Filling material is filled in the high frequency induction heating pyrolysis reactor, the filling material may be made of at least one of metal, ceramic and aluminum nitride.
  • the filling material is filled in the high frequency induction heating pyrolysis reactor of the high frequency induction heating apparatus of the present invention.
  • the filling material is to increase the contact area and the heat transfer area of the nitrous oxide gas for efficient pyrolysis.
  • the filling material is preferably made of a material such as metal, ceramic or aluminum nitride.
  • the diameter of the filler material may be 3 to 30mm.
  • the size of the filling material increases depending on the diameter of the reactor, preferably 3 to 30 mm in diameter.
  • the metal it is preferable to use a metal having excellent durability at a high temperature of 1,000 ° C. or higher, and particularly, an Inconel metal material.
  • the diameter (D) of the high frequency induction heating pyrolysis reactor may be 0.5 to 20 cm, and the length (L) may satisfy that the L / D value is 5 to 100.
  • the diameter (D) of the high frequency induction heating pyrolysis reactor of the high frequency induction heating apparatus of the present invention is preferably 0.5 to 20 cm. Especially 1-10 cm is the most preferable. Since the decomposition reaction of nitrous oxide is an exothermic reaction, the larger the diameter of the pyrolysis reactor, the more difficult it is to maintain a uniform temperature inside the pyrolysis reactor.
  • the length (L) of the high frequency induction heating pyrolysis reactor is preferably 5 to 100 based on L / D. Especially 10-50 (L / D) is the most preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 아디핀산 생산공정, 질산 생산공정과 카프로락탐 생산공정 및 아산화질소 생산공정 등에서 배출되는 아산화질소 함유 기체혼합물 배기가스를 처리하기 위한 장치로서 아산화질소를 질소와 산소로 분해하기 위한 고주파 유도 가열 열분해 장치에 관한 것이다. 본 발명의 고주파 유도 가열 열분해 장치는 금속 또는 세라믹 또는 질화 알루미늄 등으로 제조된 충진물질이 충진된 금속 재질의 열분해 반응기와 열분해 반응기 주위에 장착된 고주파 유도 코일로 구성되는 고주파 유도 가열 열분해 반응시스템을 비롯하여 3~30MHz 범위의 고주파를 발생하는 고주파 발생기, 고주파 발생기와 고주파 유도 코일을 냉각시키기 위한 냉각시스템 및 열분해 반응기 내부의 온도를 제어하기 위한 온도조절시스템으로 구성된다. 본 발명의 고주파 유도 가열 열분해 장치에서 아산화질소는 질소와 산소로 분해된다.

Description

아산화질소 함유 기체화합물의 고주파 유도 열분해 장치
본 발명은 아디핀산 생산공정, 질산 생산공정, 카프로락탐 생산공정 및 아산화질소 생산공정 등의 화학공정에서 배출되는 아산화질소(N2O) 함유 기체혼합물을 처리하기 위한 장치에 관한 것이다. 구체적으로, 지구온난화를 유발하는 아산화질소를 질소와 산소로 분해하기 위한 고주파 유도 가열 열분해 장치에 관한 것이다.
아디핀산, 질산과 카프로락탐 생산공정 등의 화학공정에서 아산화질소를 함유하는 기체혼합물이 배기가스로 배출된다. 아산화질소는 아산화탄소의 300배 이상의 지구온난화지수를 갖는 온실가스이다. 지구환경보호를 위하여 화학공정에서 배출되는 아산화질소를 분해하여 처리해야 한다. 산업에서 발생하는 아산화질소 함유 기체혼합물은 가능한 한 감축해야 한다.
촉매를 사용하지 않는 경우에 아산화질소는 약 800℃ 이상에서 분해가 시작된다. 온도가 증가할수록 아산화질소가 질소와 산소로 분해되는 속도가 증가하지만, 1,000℃ 이상에서는 일산화질소(NO)의 생성이 증가한다. 일산화질소는 약 1,500℃ 이상에서 질소와 산소로 분해된다. 이로 인하여 반응이 시작된 이후에는 정밀한 온도 제어가 요구된다. 특히 아산화질소의 농도가 높은 경우에는 발열량이 크기 때문에 온도 제어는 더욱 중요하다. 아산화질소의 열분해 과정에서 환경적으로 엄격하게 규제되는 NOx의 생성을 조절하기 위하여 특별한 주의가 요구된다.
화학공정에서 발생하는 아산화질소를 감축시키는 방법으로 여러 가지가 제안되어 있다. 대부분의 제안된 방법은 아산화질소를 질소와 산소로 분해하는 방법에 관한 것이다. 이들 방법은 크게 촉매를 사용하지 않고 열에 의하여 분해하는 열분해 방법(DE 4,116,950)과 촉매를 사용하는 촉매분해 방법(US 6,723,295)의 2가지로 구분할 수 있다. 현재 사용하고 있는 열분해 방법과 촉매분해 방법의 열분해 장치에 대하여 아래에 기술한다.
아디핀산 생산공정에서 배출되는 30~50% 정도의 고농도 아산화질소 함유 배기가스 처리에 현재 사용하고 있는 열분해 장치의 개요를 도 1에 나타내었다. 아산화질소의 열분해 장치는 도 1의 제1열분해로(101)과 제2열분해로(102)의 2단계 연소로로 구성된다. 도 1의 제1열분해로(101)에 아산화질소 함유 기체혼합물과 천연가스 연료와 공기를 공급하여 천연가스를 연소시키면서 발생되는 연소열에 의하여 얻어지는 고온에서 아산화질소를 분해시킨다. 이 열분해의 반응식은 다음과 같으며, 아산화질소가 연소되어 이산화탄소(CO2)와 물(H2O)이 부생된다.
CH4 + 4N2O → CO2 + 2H2O + 4N2
도 1의 제1열분해로(101)의 온도는 약 1,300℃이고 아산화질소의 완전 분해를 촉진하면서 일산화질소(NO)와 이산화질소(NO2)와 같은 원하지 않는 부생가스의 생성을 최소화하기 위하여 천연가스가 과잉 상태로 공급된다. 천연가스의 불완전한 산화에 의하여 일산화탄소(CO)와 수소(H2)가 부생된다. 도 1의 제2열분해로(102)에서는 도 1의 제1열분해로(101)에서 나오는 기체혼합물에 공기를 공급하여 약 950℃의 온도에서 도 1의 제1열분해로에서 부생된 일산화탄소와 수소를 완전히 연소시킨다. 이 과정에서 발생되는 질화산화물(NOx)를 제거하기 위하여 도 1의 제2열분해(102) 후단에 암모니아를 공급한다. 이와 같이 현재 아디핀산 생산공정에서 사용하고 있는 열분해 장치는 2단의 열분해로가 필요하며 천연가스 연료와 암모나아가 추가로 공급되어야 하는 등 복잡한 장치이다. 또한, 천연가스 연료를 사용하는 에너지 다소비 공정이며 열분해 과정에서 온실가스인 이산화탄소가 추가로 발생하는 단점이 있다.
현재 질산공정과 카프로락탐 생산공정의 배기가스 처리에 사용되고 있는 아산화질소 함유 기체혼합물의 촉매분해 장치는 촉매가 충진된 튜브형태의 반응기가 사용된다. 촉매분해 장치에는 열분해와 달리 전기가열기가 장착되어 분해온도까지 가열한다. 촉매분해 장치는 주로 아산화질소의 농도가 1% 정도의 저농도 기체혼합물의 분해에 사용되고 있다. 질산과 카프로락탐 생산공정에서 아산화질소의 농도가 1% 정도의 저농도 기체혼합물이 발생하는데, 이의 처리에 촉매분해 장치가 사용되고 있다. 촉매분해는 분해온도가 400~600℃로 촉매를 사용하지 않은 열분해보다 낮다. 그러나 촉매분해는 처리하려는 기체에 불순물이 ppm 단위의 농도로 존재해도 촉매가 피독되어 활성이 떨어지는 단점이 있다. 따라서 촉매분해에서는 공급되는 아산화질소 함유 기체혼합물의 불순물 조성을 일정한 규격에 맞도록 유지해야 한다. 게다가 아산화질소의 분해는 강한 발열반응이기 때문에 촉매분해 장치에 공급하는 기체혼합물의 아산화질소의 농도의 심한 변화는 촉매분해 반응기의 내부에 심한 고온 지점(hot spot)의 발생을 유도하여 촉매의 부분 손상을 초래한다. 심한 발열반응으로 반응기 내부의 온도는 크게 상승하고, 이 온도 상승은 촉매와 촉매 지지체의 손상을 유발하여 촉매 활성과 수명을 저하시킨다. 또한 촉매분해는 아산화질소의 질화산화물(NOx) 분해를 촉진하여 질화산화물(NOx) 생성을 증가시키는 단점이 있다. 일반적으로 촉매분해는 시간에 따른 안정성이 떨어지므로 아산화질소 분해에 촉매를 사용하지 않는 열분해를 더욱 선호한다.
상기한 바와 같이 기존 열분해 방법과 촉매분해 방법은 각각 단점을 가지고 있다. 따라서 이를 개선할 수 있는 새로운 열분해 장치와 방법이 요구되고 있다.
<선행기술문헌>
<특허문헌>
(특허문헌 1) DE 4,116,950
(특허문헌 2) US 6,723,295
현재 화학공정에서 사용하고 있는 열분해 장치는 1,300℃에서 운전되는 제1열분해로와 950℃에서 운전되는 제2열분해로로 구성되고, 천연가스 연료와 암모나아가 추가로 공급되어야 하는 등 복잡한 장치이다. 또한, 천연가스 연료를 사용하는 에너지 다소비 장치이며 열분해 과정에서 온실가스인 이산화탄소가 추가로 발생하는 단점이 있다. 본 발명은 기존 열분해 장치의 단점인 공정의 복잡성과 에너지 다소비를 개선할 수 있으며 촉매분해 장치의 단점인 촉매 및 공정의 불안정성을 개선하기 위한 것이다.
본 발명자들은 심도있는 연구를 수행하여 기존 열분해 장치와 촉매분해 장치의 단점을 개선할 수 있는 새로운 열분해 장치를 고안하여 본 발명에 이르게 되었다. 본 발명은 아산화질소 함유 기체화합물을 처리하기 위한 새로운 고주파 유도 가열 열분해 장치를 제공한다.
본 발명의 고주파 유도 가열 열분해 장치는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치에 있어서, 충진물질이 충진된 열분해 반응기 및 열분해 반응기 주위에 장착된 고주파 유도 코일을 포함하는 고주파 유도 가열 열분해 반응시스템; 고주파를 발생하고 상기 고주파 유도 코일에 상기 고주파를 공급하는 고주파 발생기; 상기 고주파 발생기 및 고주파 유도 코일을 냉각시키기 위한 냉각시스템; 및 고주파 유도 가열 열분해 반응기 내부의 온도를 제어하기 위한 온도조절시스템;을 포함한다.
또한, 상기 고주파 유도 가열 반응시스템에 장착되는 고주파 유도 코일은 구리 재질의 튜브 형태로서 튜브 내부에 냉각수가 공급되어 냉각되고 튜브 벽으로 고주파가 공급되는 것일 수 있다.
또한, 상기 고주파 발생기에서 발생되는 고주파는 3~30MHz 범위일 수 있다.
또한, 상기 열분해 반응기는 1,000℃ 이상의 고온에서 사용할 수 있는 금속 재질을 사용하여 제조할 수 있다.
또한, 상기 열분해 반응기는 인코넬(Inconel) 재질을 사용하여 제조할 수 있다.
또한, 상기 고주파 유도 가열 열분해 반응기 내부에 충진물질이 충진되어 있으며, 상기 충진물질은 금속, 세라믹 및 질화 알루미늄 중 적어도 하나로 만들어질 수 있다.
또한, 상기 충진물질의 직경은 3 내지 30mm 일 수 있다.
또한, 상기 충진물질이 금속으로 만들어진 경우 상기 사용하는 금속은 인코넬(Inconel)을 포함할 수 있다.
또한, 상기 고주파 유도 가열 열분해 반응기의 직경(D)은 0.5 내지 20cm이고, 길이(L)는 L/D 값이 5 내지 100인 것을 만족할 수 있다.
본 발명의 고주파 유도 가열 열분해 장치는 고온 연소로(furnace) 열분해 장치와 전기가열기(electric heater) 장착 열분해 장치에서 문제가 되는 불균일 가열과 온도 조절의 부정확성 문제를 해결할 수 있다. 가열전력 및 시간을 일정하게 유지함으로써, 항상 균일하게 가열이 가능하다. 본 발명의 고주파 유도 가열 열분해 장치는 열이 단시간 내에 발생하여 가열이 순간적으로 이루어지며 예열 또는 냉각이 필요하지 않다. 이로 인하여 생산시간이 증가하여 생산성이 개선될 수 있다. 본 발명의 고주파 유도 가열 열분해 장치는 열분해 반응기를 직접 가열하므로 다른 가열 장치에 비해 열효율이 매우 좋다. 더욱이, 예열이나 냉각이 필요하지 않고 가열시간이 짧아 열소모를 줄일 수 있다. 일반적인 전기가열기(electric heater)의 열효율이 45% 정도인데, 본 발명의 고주파 유도 가열 열분해 장치는 열효율이 90% 이상이어서 에너지를 대폭적으로 절약할 수 있다.
도 1은 종래의 아디핀산 생산공정에서 사용하고 있는 아산화질소 함유 기체혼합물의 열분해 장치의 개략도를 나타낸 것이다.
도 2는 본 발명의 아산화질소 함유 기체화합물의 고주파 유도 가열 열분해 장치의 개략도를 나타낸 것이다.
도 1에 현재 아디핀산 생산공정에서 사용하고 있는 아산화질소 함유 기체혼합물의 열분해 장치를 나타내었다. 도 1의 제1열분해로(101)의 온도는 약 1,300℃이고 아산화질소의 완전 분해를 촉진하면서 일산화질소(NO)와 이산화질소(NO2)와 같은 원하지 않는 부생가스의 생성을 최소화하기 위하여 천연가스가 과잉 상태로 공급된다. 천연가스의 불완전한 산화에 의하여 일산화탄소(CO)와 수소(H2)가 부생된다. 도1 의 제2열분해로(102)에서는 도 1의 제1열분해로(101)에서 나오는 기체혼합물에 공기를 공급하여 약 950℃의 온도에서 도 1의 제1열분해로(101)에서 부생된 일산화탄소와 수소를 완전히 연소시킨다. 이 과정에서 발생되는 질화산화물(NOx)을 제거하기 위하여 도 1의 제2열분해로(102) 후단에 암모니아를 공급한다.
본 발명의 아산화질소 함유 기체화합물의 고주파 유도 가열 열분해 장치의 개략도를 도 2에 나타내었고, 본 발명의 고주파 유도 가열 열분해 장치는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치에 있어서, 충진물질이 충진된 열분해 반응기 및 열분해 반응기 주위에 장착된 고주파 유도 코일을 포함하는 고주파 유도 가열 열분해 반응시스템; 고주파를 발생하고 상기 고주파 유도 코일에 상기 고주파를 공급하는 고주파 발생기; 상기 고주파 발생기 및 고주파 유도 코일을 냉각시키기 위한 냉각시스템; 및 고주파 유도 가열 열분해 반응기 내부의 온도를 제어하기 위한 온도조절시스템;을 포함한다.
고주파 유도 가열 열분해 반응 시스템(203)은 열분해 반응기(207), 고주파 유도 코일(204), 충진물질(205), 충진물질 지지체(206), 온도지시계(208), 온도지시계(209) 및 온도지시조절계(210)로 구성된다. 아산화질소 함유 기체혼합물은 고주파 유도 가열 열분해 반응기(207)에 공급된다. 고주파 발생기(202)에서 발생한 고주파가 열분해 반응기(203) 주위에 장착된 고주파 유도 코일(204)에 공급되어 유도 전류가 발생하고 이로 인하여 열이 발생하여 열분해 반응기(207)을 가열시킨다. 고주파 발생기(202)와 고주파 유도 코일(204)을 냉각시키기 위하여 냉각시스템(201)에 의하여 고주파 발생기(202)와 고주파 유도 코일(204) 내부로 냉각수가 공급된다. 열분해 반응기(207)에는 내부의 온도를 측정하기 위한 온도지시계(208)과 (209) 및 내부 온도를 제어하기 위한 온도조절계(210)가 장착된다. 온도조절계 (210)의 온도를 기준으로 열분해 반응기(207)의 내부 온도를 온도조절시스템(211)으로 조절한다.
본 발명의 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치의 주요 특징은 다음을 포함한다.
상기 고주파 유도 가열 반응시스템에 장착되는 고주파 유도 코일은 구리 재질의 튜브 형태로서 튜브 내부에 냉각수가 공급되어 냉각되고 튜브 벽으로 고주파가 공급되는 것일 수 있다.
본 발명의 고주파 유도 가열 장치의 열분해 반응기의 외부에 고주파 유도 코일이 장착되어 있다. 고주파 유도 코일은 구리 재질의 튜브 형태로서 튜브 내부에 냉각수가 공급되어 냉각되고 튜브 벽으로 고주파가 공급된다.
상기 고주파 발생기에서 발생되는 고주파는 3~30MHz 범위일 수 있다.
본 발명의 고주파 유도 가열 장치의 고주파 유도 가열 시스템은 고주파 발생기, 고주파 발생기와 고주파 유도 코팅을 냉각하기 위한 냉각시스템, 반응기의 온도를 조절하기 위한 온도조절시스템으로 구성되며, 고주파 발생기에서 발생하는 고주파는 3~30MHz 범위가 바람직하다.
상기 열분해 반응기는 1,000℃ 이상의 고온에서 사용할 수 있는 금속 재질을 사용하여 제조할 수 있다.
본 발명의 고주파 유도 가열 장치의 고주파 유도 가열 열분해 반응기는 1,000℃ 이상의 고온에서 내구성이 우수한 금속 재질로 제조한다. 특히 니켈을 주체로 하여 15%의 크롬과 6~7%의 철, 2.5%의 티타늄, 1% 이하의 알루미늄, 망간, 규소를 첨가한 합금인 인코넬(Inconel) 재질을 사용하는 것이 바람직하다.
상기 고주파 유도 가열 열분해 반응기 내부에 충진물질이 충진되어 있으며, 상기 충진물질은 금속, 세라믹 및 질화 알루미늄 중 적어도 하나로 만들어질 수 있다.
본 발명의 고주파 유도 가열 장치의 고주파 유도 가열 열분해 반응기 내부에는 충진물질이 충진되어 있다. 충진물질은 아산화질소 기체의 접촉면적과 열전달면적을 증가시켜 열분해를 효율적으로 하기 위한 것이다. 충진물질은 금속이나 세라믹이나 질화 알루미늄 등의 재질로 만들어진 것을 사용하는 것이 바람직하다.
상기 충진물질의 직경은 3 내지 30mm 일 수 있다.
충진 물질의 크기는 반응기의 직경에 따라 커지는데 직경 3~30mm가 바람직하다. 충진물질로 금속을 사용하는 경우에 1,000℃ 이상의 고온에서 내구성이 우수한 금속을 사용하는 것이 바람직한데, 특히 인코넬(Inconel) 금속 재질을 사용하는 것이 바람직하다.
상기 고주파 유도 가열 열분해 반응기의 직경(D)은 0.5 내지 20cm이고, 길이(L)는 L/D 값이 5 내지 100인 것을 만족할 수 있다.
본 발명의 고주파 유도 가열 장치의 고주파 유도 가열 열분해 반응기의 직경(D)은 0.5~20cm가 바람직하다. 특히 1~10cm가 가장 바람직하다. 아산화질소의 분해 반응이 발열반응이므로 열분해 반응기의 직경이 클수록 열분해 반응기 내부의 온도를 균일하게 유지하기 어렵다. 고주파 유도 가열 열분해 반응기의 길이(L)는 L/D를 기준으로 나타내면 5~100이 바람직하다. 특히 10~50(L/D)이 가장 바람직하다.
<부호의 설명>
101: 제1열분해로
102: 제2열분해로
201: 냉각시스템
202: 고주파 발생기
203: 고주파 가열 열분해 반응 시스템
204: 고주파 유도 코일
205: 충진물질
206: 충진물 지지체
207: 열분해 반응기
208: 온도지시계
209: 온도지시계
210: 온도지시조절계
211: 온도조절시스템
212: 냉각수 공급
213: 냉각수 회수

Claims (9)

  1. 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치에 있어서,
    충진물질이 충진된 열분해 반응기 및 열분해 반응기 주위에 장착된 고주파 유도 코일을 포함하는 고주파 유도 가열 열분해 반응시스템;
    고주파를 발생하고 상기 고주파 유도 코일에 상기 고주파를 공급하는 고주파 발생기;
    상기 고주파 발생기 및 고주파 유도 코일을 냉각시키기 위한 냉각시스템; 및
    고주파 유도 가열 열분해 반응기 내부의 온도를 제어하기 위한 온도조절시스템;을 포함하는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치.
  2. 제1항에 있어서,
    상기 고주파 유도 가열 반응시스템에 장착되는 고주파 유도 코일은 구리 재질의 튜브 형태로서 튜브 내부에 냉각수가 공급되어 냉각되고 튜브 벽으로 고주파가 공급되는 것을 특징으로 하는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치.
  3. 제1항에 있어서,
    상기 고주파 발생기에서 발생되는 고주파는 3~30MHz 범위인 것을 특징으로 하는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치.
  4. 제1항에 있어서,
    상기 열분해 반응기는 1,000℃ 이상의 고온에서 사용할 수 있는 금속 재질을 사용하여 제조되는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치.
  5. 제4항에 있어서,
    상기 열분해 반응기는 인코넬(Inconel) 재질을 사용하여 제조되는 것을 특징으로 하는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치.
  6. 제1항에 있어서,
    상기 고주파 유도 가열 열분해 반응기 내부에 충진물질이 충진되어 있으며, 상기 충진물질은 금속, 세라믹 및 질화 알루미늄 중 적어도 하나로 만들어진 것을 특징으로 하는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치.
  7. 제6항에 있어서,
    상기 충진물질의 직경은 3 내지 30mm 인 것을 특징으로 하는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치.
  8. 제6항에 있어서,
    상기 충진물질이 금속으로 만들어진 경우 상기 사용하는 금속은 인코넬(Inconel) 재질을 포함하는 것을 특징으로 하는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치.
  9. 제1항에 있어서,
    상기 고주파 유도 가열 열분해 반응기의 직경(D)은 0.5 내지 20cm이고, 길이(L)는 L/D 값이 5 내지 100 인 것을 만족하는 아산화질소 함유 기체혼합물의 고주파 유도 가열 열분해 장치.
PCT/KR2018/006233 2017-06-09 2018-05-31 아산화질소 함유 기체화합물의 고주파 유도 열분해 장치 WO2018225980A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170072408A KR101897802B1 (ko) 2017-06-09 2017-06-09 아산화질소 함유 기체화합물의 고주파 유도 열분해 장치
KR10-2017-0072408 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225980A1 true WO2018225980A1 (ko) 2018-12-13

Family

ID=63593478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006233 WO2018225980A1 (ko) 2017-06-09 2018-05-31 아산화질소 함유 기체화합물의 고주파 유도 열분해 장치

Country Status (2)

Country Link
KR (1) KR101897802B1 (ko)
WO (1) WO2018225980A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768505A (zh) * 2022-04-11 2022-07-22 桂林医学院第二附属医院 一种麻醉科用气体净化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290029A (ja) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd 排ガス処理方法及び排ガス処理装置
JPH1176740A (ja) * 1997-09-05 1999-03-23 Mitsui Chem Inc 有機フッ素系排ガスの分解処理方法及び分解処理装置
JP2004008893A (ja) * 2002-06-05 2004-01-15 Pearl Kogyo Kk 排ガス分解処理用プラズマ発生装置
KR101092866B1 (ko) * 2010-05-07 2011-12-14 한국과학기술연구원 고농축 함불소가스 열분해를 위한 고효율 열플라즈마 반응기
JP2014105143A (ja) * 2012-11-29 2014-06-09 Hino Motors Ltd アンモニア発生装置及びそれを用いた排気浄化装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4116950A1 (de) 1991-05-24 1992-11-26 Bayer Ag Verfahren und vorrichtung zur minderung der no(pfeil abwaerts)x(pfeil abwaerts)-emission
DE19848595A1 (de) 1998-10-21 2000-04-27 Basf Ag Hochtemperaturstabile Katalysatoren zur Zersetzung von N¶2¶0

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290029A (ja) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd 排ガス処理方法及び排ガス処理装置
JPH1176740A (ja) * 1997-09-05 1999-03-23 Mitsui Chem Inc 有機フッ素系排ガスの分解処理方法及び分解処理装置
JP2004008893A (ja) * 2002-06-05 2004-01-15 Pearl Kogyo Kk 排ガス分解処理用プラズマ発生装置
KR101092866B1 (ko) * 2010-05-07 2011-12-14 한국과학기술연구원 고농축 함불소가스 열분해를 위한 고효율 열플라즈마 반응기
JP2014105143A (ja) * 2012-11-29 2014-06-09 Hino Motors Ltd アンモニア発生装置及びそれを用いた排気浄化装置

Also Published As

Publication number Publication date
KR101897802B1 (ko) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2019190244A1 (ko) 가역적 산화-환원 변환제를 사용하여 이산화탄소 및 물로부터 일산화탄소와 수소를 생산하는 시스템 및 그 방법
ES2356889T3 (es) Procedimiento para la pirólisis directa de metano.
US20110214425A1 (en) Energy-efficient system for generating carbon black, preferably in energetic cooperation with systems for generating silicon dioxide and/or silicon
WO2013035998A2 (ko) 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 그의 제조방법
JPS58194712A (ja) 二酸化炭素排気より酸素を再生する方法
WO2010150966A1 (ko) 폐가스에 포함된 암모니아를 제거하기 위한 가스 스크러버
WO2018225980A1 (ko) 아산화질소 함유 기체화합물의 고주파 유도 열분해 장치
WO2017111415A1 (ko) 열풍로를 이용한 이산화탄소 분해 및 재활용 방법
WO2016117736A1 (ko) 난분해성 유해가스의 처리공정 시스템
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
KR100330824B1 (ko) N20로부터 no를 제조하는 방법
JPS5736784A (en) Method of effectively utilizing exhaust gas in fuel-cell power generation device, and system for that
NO308398B1 (no) Fremgangsmate for utforelse av katalytiske eller ikke-katalytiske prosesser hvori oksygen er ±n av reaktantene
RU2394758C2 (ru) Способ получения чистого графита
WO2018225979A1 (ko) 아산화질소 함유 기체화합물의 고주파 유도 가열 열분해 공정
WO2013183854A1 (ko) 연료전지와 보일러의 복합 시스템
WO2022191632A1 (ko) 디젤을 전자파 플라스마 토치로 개질 하여 합성가스를 생산하는 장치와 방법
WO2019103483A1 (ko) 가스 처리 장치
SU878774A1 (ru) Способ газификации твердого углеродсодержащего топлива
JP3971843B2 (ja) 半導体製造排ガスの除害装置及び除害方法
WO2023054752A1 (ko) 액체금속을 이용한 온실가스 저감 장치 및 이의 작동방법
JP2000096133A (ja) 熱処理装置および熱処理方法
JP2006003024A (ja) 排ガスの燃焼除害装置
SU740711A1 (ru) Способ получени восстановительного газа
JP2009102184A (ja) 3極バーナーを使用した酸水素炎による炭化水素改質法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812962

Country of ref document: EP

Kind code of ref document: A1