WO2018225855A1 - 半導体層、発振素子及び半導体層の製造方法 - Google Patents

半導体層、発振素子及び半導体層の製造方法 Download PDF

Info

Publication number
WO2018225855A1
WO2018225855A1 PCT/JP2018/022013 JP2018022013W WO2018225855A1 WO 2018225855 A1 WO2018225855 A1 WO 2018225855A1 JP 2018022013 W JP2018022013 W JP 2018022013W WO 2018225855 A1 WO2018225855 A1 WO 2018225855A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
aluminum oxide
semiconductor layer
probe
type semiconductor
Prior art date
Application number
PCT/JP2018/022013
Other languages
English (en)
French (fr)
Inventor
公一 芦澤
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to EP18813187.4A priority Critical patent/EP3637476A4/en
Priority to JP2019523991A priority patent/JP7282029B2/ja
Priority to US16/620,221 priority patent/US10930522B2/en
Priority to KR1020207000475A priority patent/KR102263151B1/ko
Priority to CN201880037796.4A priority patent/CN110741479B/zh
Publication of WO2018225855A1 publication Critical patent/WO2018225855A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/479Application of electric currents or fields, e.g. for electroforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/242AIBVI or AIBVII compounds, e.g. Cu2O, Cu I
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/247Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Definitions

  • the present invention relates to a semiconductor layer, an oscillation element, and a method for manufacturing the semiconductor layer.
  • the semiconductor field high power, high withstand voltage, high temperature operation and high frequency are required.
  • high withstand voltage is important, and for this reason, a wide band gap semiconductor having a larger band gap than conventional Si-based semiconductors is desired.
  • the band gap of Si is 1.12 eV
  • the band gap of SiC which is attracting attention as a wide band gap semiconductor, is 2.20 to 3.02 eV
  • the band gap of GaN is 3.39 eV
  • the band gap is Development of larger wide bandgap semiconductors is ongoing.
  • the present inventor has made a detailed study on an oscillation element using a semiconductor layer based on aluminum oxide and a method for manufacturing the oscillation element.
  • diamond having a band gap of 5.47 eV is attracting attention as a wide band gap semiconductor material.
  • diamond is not a semiconductor, it is necessary to form donor levels and acceptor levels by ion implantation.
  • diamond ion implantation requires high temperature and pressure and cannot be performed easily.
  • the band gap of aluminum oxide is 8.8 eV, and it would be attractive if it could be a wide band gap semiconductor material, but it has been difficult to form donor levels and acceptor levels in the band gap so far. It was. In particular, it was difficult to form acceptor levels. For this reason, although aluminum oxide has obtained high reliability as an extremely excellent insulator, it has been difficult to form a p-type semiconductor and a pn junction using aluminum oxide.
  • the present inventor has succeeded in producing a semiconductor layer having a Schottky junction using aluminum oxide as a base material. Further, the present inventors have found that in this semiconductor layer, the depletion layer thickness is made extremely thin, a tunnel current is passed, and a voltage is applied in the reverse bias direction, whereby oscillation is seen in the current. It was confirmed that current oscillation appears at a predetermined high current density or less.
  • an inverter that uses direct current, such as a battery
  • using an oscillation element invented by the present inventor for example, by applying a wide bias voltage including a zero bias voltage from the forward bias voltage side to the reverse bias voltage side. It is desirable to oscillate current.
  • One embodiment of the present invention has been newly conceived based on further research by the present inventor, and an object thereof is to realize a semiconductor layer, an oscillation element, and a method for manufacturing the semiconductor layer, which are superior in performance to those of the prior art.
  • a semiconductor layer according to one embodiment of the present invention includes an n-type semiconductor in which an aluminum oxide film contains an excessive amount of aluminum and donor levels are formed, and the aluminum oxide film contains excess oxygen. It includes a pn junction in which a p-type semiconductor in which an acceptor level is formed is joined.
  • the semiconductor layer according to another embodiment of the present invention includes a p-type semiconductor in which an acceptor level is formed by excessively containing oxygen in an aluminum oxide film.
  • metal aluminum is brought into contact with one surface of an aluminum oxide film, and a probe is brought into contact with the other surface of the aluminum oxide film.
  • oxygen gas a voltage that causes dielectric breakdown of the aluminum oxide film is applied between the metal aluminum as an anode and the probe as a cathode to melt the aluminum oxide film, and during the melting,
  • a molten salt electrolysis reaction in the aluminum oxide film and cooling an n-type semiconductor layer is formed on the metal aluminum side of the aluminum oxide film, and a p-type semiconductor layer is formed on the probe side of the aluminum oxide film, respectively.
  • the n-type semiconductor layer and the p-type semiconductor layer are joined.
  • metal aluminum is brought into contact with one surface of an aluminum oxide film, and a probe is brought into contact with the other surface of the aluminum oxide film, so that the air, gas, or vacuum is used.
  • the aluminum oxide film is melted by applying a voltage that causes dielectric breakdown of the aluminum oxide film between the metal aluminum as the cathode and the probe as the anode, and the aluminum oxide film is melted during the melting.
  • a molten salt electrolysis reaction is generated in the film and cooled to generate a p-type semiconductor layer on the metal aluminum side of the aluminum oxide film and an n-type semiconductor layer on the probe side of the aluminum oxide film, In addition, the n-type semiconductor layer and the p-type semiconductor layer are joined.
  • the donor concentration of the n-type semiconductor or the acceptor concentration of the p-type semiconductor can be controlled by adjusting the amount of electricity that causes the molten salt electrolysis reaction. It is preferable.
  • the probe When the molten salt electrolysis reaction is caused in the aluminum oxide film, the probe is preferably moved while being in contact with the aluminum oxide film.
  • the applied voltage is (1) continuously changed, (2) discontinuously changed, and (3) polarity is changed in one direction or both directions. Alternatively, it is preferable to change the combination of (1) to (3).
  • An oscillation element includes an n-type semiconductor in which a donor level is formed by excessively containing aluminum in an aluminum oxide film, and an acceptor level in which oxygen is excessively contained in the aluminum oxide film. It includes a pn junction joined to a p-type semiconductor in which a position is formed.
  • metal aluminum is brought into contact with one surface of an aluminum oxide film and a probe is brought into contact with the other surface of the aluminum oxide film, and the atmosphere, oxygen-containing gas, or In oxygen gas, a voltage that causes dielectric breakdown of the aluminum oxide film is applied between the metal aluminum as an anode and the probe as a cathode to melt the aluminum oxide film, and during the melting,
  • a molten salt electrolysis reaction in the aluminum oxide film and cooling an n-type semiconductor layer is formed on the metal aluminum side of the aluminum oxide film, and a p-type semiconductor layer is formed on the probe side of the aluminum oxide film, respectively.
  • a thickness of a depletion layer formed by joining the n-type semiconductor layer and the p-type semiconductor layer It is 1nm or less.
  • metal aluminum is brought into contact with one surface of an aluminum oxide film, and a probe is brought into contact with the other surface of the aluminum oxide film.
  • the aluminum oxide film is melted by applying a voltage that causes dielectric breakdown of the aluminum oxide film between the metal aluminum as the cathode and the probe as the anode, and the aluminum oxide film is melted during the melting.
  • a molten salt electrolysis reaction is generated in the film and cooled to generate a p-type semiconductor layer on the metal aluminum side of the aluminum oxide film and an n-type semiconductor layer on the probe side of the aluminum oxide film,
  • the n-type semiconductor layer and the p-type semiconductor layer are bonded together, and the thickness of the depletion layer formed by the bonding is 1 nm. It is below.
  • the probe When the molten salt electrolysis reaction is caused in the aluminum oxide film, the probe is preferably moved while being in contact with the aluminum oxide film.
  • FIG. 10 is a schematic diagram showing a reaction in the semiconductor layer when the temperature of the semiconductor layer in FIG. 9 drops slightly below the melting point. It is a schematic diagram which shows the structure of a semiconductor layer when the semiconductor layer of FIG. 10 falls to room temperature. It is a schematic diagram showing a configuration of a pn junction diode formed by spark using metal aluminum as an anode and a probe as a cathode. It is a schematic diagram which shows the structure of the pn junction contained in the semiconductor layer of FIG. It is a schematic diagram showing a reaction in a semiconductor layer when metal aluminum is used as a cathode and a probe is used as an anode when it is melted at a high temperature by spark.
  • FIG. 16 is a schematic diagram illustrating a configuration of a semiconductor layer when the temperature of the semiconductor layer in FIG. 15 is lowered to room temperature. It is a schematic diagram showing a configuration of a pn junction diode formed by sparking with metallic aluminum as a cathode and a probe as an anode. It is a figure explaining the method to produce
  • the film for forming the semiconductor layer by the spark method can be any metal compound that has a higher ionic bond than a covalent bond and is an insulator or a substance having extremely low conductivity.
  • metal oxides such as aluminum oxide and titanium oxide, metal hydroxides such as aluminum hydroxide, metal nitrides such as aluminum nitride, and the like can be used.
  • a compound that contains water molecules in aluminum oxide, such as boehmite can be used.
  • the metal ion species in the film for forming the semiconductor layer by the spark method may not be the same as the metal of the substrate.
  • a film formed by sputtering zirconium oxide on metal aluminum or a film formed by chemical conversion treatment on the surface of metal aluminum is also possible.
  • an aluminum alloy can be used as the metallic aluminum. That is, in addition to 4N or higher purity aluminum and pure aluminum (1000 series), Al—Mn alloy (3000 series), Al—Si alloy (4000 series), Al—Mg alloy (5000 series), Al— Any of a Cu—Mg alloy (2000 series), an Al—Mg—Si alloy (6000 series), and an Al—Zn—Mg alloy (7000 series) can be used.
  • the material of the film is a metal oxide
  • many of them are transparent oxides. Even if the semiconductor is formed by the spark method, if the band gap is large, the energy is not absorbed in the visible light region, so that it becomes a transparent oxide semiconductor.
  • a substance having good conductivity such as platinum, stainless steel, copper, or carbon can be used as a probe material for bringing the above-mentioned film material into contact and causing sparking.
  • a material having high heat resistance is preferred because the temperature is increased by the spark.
  • Platinum is an excellent material but expensive. It is possible to use a material in which the outermost surface is platinum-plated on a Si core material.
  • Embodiment 1 of the present invention will be described below with reference to FIGS.
  • the same portions are denoted by the same reference numerals, and those having the same reference numerals in the drawings will not be described again as appropriate.
  • the dimensions, materials, shapes, relative arrangements, processing methods, and the like of the configurations described in each embodiment are merely examples, and the technical scope of the present invention should not be construed as being limited by these descriptions.
  • the drawings are schematic, and the ratio and shape of dimensions may be different from actual ones.
  • the semiconductor layer according to the first embodiment will be described.
  • the semiconductor layer according to Embodiment 1 is formed by a method of sparking an aluminum oxide film. An example is shown below.
  • Example and equipment As shown in FIG. 1, a sample in which the surface of a metal aluminum 103 is covered with an aluminum oxide film 102 is prepared.
  • the natural oxide film there are dispersed current passing points having a diameter of about 100 nm. For this reason, when a high voltage is applied to the sample in which the probe 101 is in contact with the natural oxide film, a short-circuit current flows through the current passing point, and no spark is generated even when a high applied voltage is applied. Cannot be formed. Therefore, an aluminum oxide film 102 is coated on the surface of the metal aluminum 103 in advance. Examples of the method for coating the aluminum oxide film 102 include sputtering, anodic oxidation, atmospheric heating, and boehmite treatment.
  • the coated aluminum oxide film 102 contains water and may not be pure aluminum oxide.
  • molecular formula of boehmite is Al 2 O 3 ⁇ H 2 O , containing one molecule of water.
  • the film thickness of the aluminum oxide film 102 is 5 to 100 nm.
  • a manual prober 20 was prepared, and a probe 101 having the configuration shown in FIG. 1 was attached.
  • the probe tip 101a of a platinum wire (H material) having a diameter of 0.2 mm was shaved so that the diameter of the contact surface of the probe tip 101a with the sample was 0.02 mm.
  • the base of the probe is wound in a coil shape, so that the tip of the probe can be brought into contact with the sample at a low pressure by a spring action.
  • the metal aluminum side is made to be the anode (plus).
  • the metal aluminum side is the cathode (minus)
  • the polarity of the DC stabilized power source may be reversed.
  • the positive side of the switch box 13 (with built-in reed relay) is connected to the metal aluminum side attached to the manual prober 20 via the current limiting resistor 15, and the negative side of the switch box 13 is connected to the current side.
  • the probe was connected to the probe through a measurement shunt resistor 14. By switching the switch 22, the metal aluminum side and the probe are connected to the IV measuring instrument 23, and the IV characteristics of the sample are measured. The voltage applied to the sample and the current flowing through the sample were measured using a high voltage / floating input oscilloscope 12.
  • 1085 materials (12 mm ⁇ 30 mm, thickness 20 ⁇ m) were used as metallic aluminum, and the sample surface was subjected to boehmite treatment.
  • the boehmite treatment was performed by immersing the sample in 95 ° C. pure water for 30 s, washing with water, and drying. Since the boehmite film is insulative, a part of the sample is rubbed to remove the boehmite film so that it can be energized.
  • a sample was set on the manual prober 20 shown in FIG. 2 using the probe shown in FIG. 1, and the prober tip position was adjusted by the manipulator 21 so that the tip contacted the boehmite-treated film. A force of about 0.01 N was applied to the boehmite film at the probe tip.
  • the current limiting resistor 15 in FIG. 2 was set to 100 ⁇
  • the shunt resistor 14 was set to 100 ⁇
  • the output of the current direct current stabilized power supply was set to 36V
  • the switch of the switch box 13 was closed. Sparking occurred between the probe tip and metal aluminum.
  • a semiconductor layer having a thickness of about 30 nm was formed at the portion where the probe tip was in contact. The voltage applied to the sample at this time and the current flowing through the sample were measured with an oscilloscope 12. The result is shown in FIG.
  • the timing when the switch was closed was -0.28 ⁇ s, but since the trigger was actually applied when the current value exceeded 0.05 A, the time when the trigger was applied was set to 0 ⁇ s. Since a general-purpose DC power supply was used, the power supply was in a standby state between ⁇ 0.28 and 0 ⁇ s. Therefore, during this period, the output did not reach 36 V set as an output, and a voltage of about 20 V was output. At a voltage of 20V, there was no spark and almost no current flowed.
  • IV measurement result The IV measurement of the semiconductor layer thus obtained was performed. The result is shown in FIG. A voltage range of ⁇ 0.6 to 1.0 V was scanned at a speed of 0.1 V / s. A nearly linear relationship was obtained between ⁇ 0.55 and + 0.2V. In this voltage range, it is considered that a tunnel current or a current due to metallization of the electronic state of the film flowed between the metal aluminum and the probe. A large current flowed out of the linear relationship at ⁇ 0.55 V or less and +0.2 V to +0.55 V. Also, almost no current flowed between +0.55 and + 1.0V.
  • the current limiting resistor 15 shown in FIG. 2 is changed from 100 ⁇ to 1 k ⁇ , the probe tip is moved, the probe tip is brought into contact with the boehmite treatment film at another location of the same sample, and the semiconductor layer is sparked by the same method as described above. Formed.
  • the voltage and current of the sample at this time behaved almost the same as in FIG. 3, but the electrolysis time of the molten salt decreased to about 30 ns and the current decreased to about 0.03 A.
  • the amount of electricity required for the reaction of molten salt electrolysis was about 1/100 of the above example.
  • FIG. 5 shows the IV characteristics of the semiconductor layer generated here.
  • molten salt is used in the following broad sense. That is, the movement (electrophoresis) of aluminum ions and oxygen ions by electrolysis is possible even in a solid-liquid mixture in which the solid state is mixed even if it is not a complete molten salt. Therefore, even in a solid-liquid mixed state, the expression is “molten salt”.
  • the carrier concentration of the semiconductor layer increases, and the thickness of the depletion layer formed at the pn junction decreases, and the tunnel current or the electron of the film Current flows due to the metallization of the state, the carrier concentration of the semiconductor layer decreases when the amount of electricity applied to the molten salt electrolysis by spark is small, and the thickness of the depletion layer formed at the pn junction increases. is there.
  • the above description shows a method of forming a semiconductor layer by sparking an aluminum oxide film with the metal aluminum side as the anode (plus side) and the probe side as the cathode (minus side), and as a result, the metal of the aluminum oxide film It was shown that the aluminum side becomes an n-type semiconductor and the probe side of the aluminum oxide film becomes a p-type semiconductor layer.
  • the semiconductor layer can also be formed by sparking the aluminum oxide film with the metal aluminum side as the cathode (minus side) and the probe side as the anode (plus side).
  • the metal aluminum side of the aluminum oxide film is a p-type semiconductor
  • the probe side of the aluminum oxide film is an n-type semiconductor layer.
  • the semiconductor layer according to an embodiment of the present invention is formed by dielectric breakdown of the aluminum oxide film by spark.
  • cross-sectional TEM (transmission electron microscope) imaging and EDS analysis (elemental analysis) of the semiconductor layer were performed.
  • TEM imaging a cross section of the semiconductor layer was thinned with FIB (focused ion beam) to prepare a sample.
  • AA is a line of natural oxide film of metal aluminum
  • the lower side of the line is the structure of metal aluminum
  • the upper side of the line is the filler used for preparing the TEM observation sample.
  • the central portion of the portion surrounded by the dotted line is a semiconductor layer.
  • Metal aluminum has a large depression, and the upper layer along the depression is a semiconductor layer.
  • the thickness is 5 to 100 nm, and the upper side of the maximum thickness portion is the position of the probe tip.
  • FIG. 7 shows the result of EDS analysis of the thickest part of the semiconductor layer surrounded by the dotted line in FIG. 6 and its periphery.
  • the semiconductor layer At the center of the BF (bright field image) is the semiconductor layer, and the top of the Mt. Fuji type portion is the probe tip position.
  • the lower side of the semiconductor layer is metallic aluminum, and the upper side is a filler used when preparing the sample.
  • the other 5 sheets are EDS analysis results of Al, O, Pt, C, and Ga.
  • the rightmost diagram is a schematic diagram showing the material structure of the semiconductor layer by enlarging the square frame portion of each EDS analysis result.
  • Al has a high concentration on the lower metal aluminum side
  • O has a high concentration on the upper filler side (atmosphere side before making the analysis sample).
  • the thick Al portion is approximately 15 nm thick and exists in a strip shape along the Al metal surface. This portion is considered to be a portion where Al 3+ is excessively present due to a deficiency of O 2 ⁇ of Al 2 O 3 non-stoichiometrically (N ++ ).
  • N ++ deficiency of O 2 ⁇ of Al 2 O 3 non-stoichiometrically
  • the portion where the O is deep has a thickness of about 15 nm and exists in a band shape along the surface of the semiconductor layer film. This part is considered to be a part (P ++ ) in which Al 3+ of Al 2 O 3 is deficient in a non-stoichiometric manner and O 2 ⁇ is excessively present.
  • the left side of FIG. 8 is obtained by adding a probe tip (Pt) to the schematic configuration diagram of the semiconductor layer of FIG. FIG. 8 on the right side of FIG. 8 shows that there are three types of semiconductor layer configurations due to differences in current paths passing through the semiconductor layers.
  • the cross section of aa including the thick part (about 70 nm) of the semiconductor layer has a stoichiometric or near stoichiometric composition between N ++ (Al3 + excess part) and P ++ (O2 - excess part). Of Al 2 O 3 is considered to exist. Since Al 2 O 3 has no new energy level, it is not conductive.
  • the cross section of ab is a portion where N ++ and P ++ are close to each other, and it is considered that a depletion layer is formed in this portion and a pn junction is formed as described later. Furthermore, in the cross section of ac, it is considered that N ++ and P ++ cross and are mixed. The Al 3+ excess portion and the O 2 ⁇ excess portion cause ionic bonds, and it is considered that Al 2 O 3 having a stoichiometric or near stoichiometric composition exists. Therefore, this cross section is not conductive like the aa cross section.
  • the semiconductor layer formed by the spark method is an aluminum oxide film, but Al is segregated on the metal aluminum side, O is segregated on the semiconductor layer surface side, and the pn junction is It was found to exist in a very limited part.
  • the cross-sectional area of the ab is small, but it always exists in a crossed portion of P ++ and N ++ , so that it is a highly reproducible manufacturing method.
  • the structure of the semiconductor layer obtained by one embodiment of the present invention is considered to be amorphous. This is because it is considered that the aluminum oxide layer is difficult to crystallize because the time from the melting of the aluminum oxide layer by the spark to the solidification by cooling is extremely short.
  • Covalent semiconductors such as Si semiconductors have directionality in the size of the bonds, so a carrier conduction path cannot be obtained without crystallinity.
  • semiconductors with strong ion bonding properties such as aluminum oxide are not bonded. Since there is no directionality in the size, a carrier conduction path can be secured even with amorphous. As a result, semiconductor characteristics can be obtained even in an amorphous state.
  • FIG. 9 shows a state in which the aluminum oxide film that is an insulator is melted by the spark.
  • a spark current flows for a short time.
  • the aluminum oxide film becomes a molten salt at a temperature higher than the melting point and becomes a molten salt.
  • the melting point of the aluminum oxide film is 2072 ° C.
  • Molten salt electrolysis occurs according to the formulas (1) and (2) at a temperature equal to or higher than the melting point, and Al 3+ and O 2 ⁇ accumulate as shown in the formula (3), resulting in a thick semiconductor layer.
  • Al 3+ ions are excessive on the metal aluminum side of the semiconductor layer, but a new donor level is formed in the semiconductor layer to maintain electrical neutrality.
  • O 2 ⁇ ions are excessive on the probe side, a new acceptor level is formed in the semiconductor layer in order to maintain electrical neutrality.
  • a semiconductor layer having the structure shown in FIG. 11 is formed.
  • the metal aluminum side of the semiconductor layer becomes an n-type semiconductor with excessive Al concentration
  • the probe side (Pt side) becomes a p-type semiconductor with excessive O concentration. Both become pn junctions, and a depletion layer is formed at the joint.
  • the thickness of the depletion layer is determined by the newly generated carrier concentration of the donor level and the carrier concentration of the acceptor level, but the maximum value of the carrier concentration is extremely high (10 27 based on the cross-sectional EDS analysis result of the semiconductor layer). ⁇ 10 29 / m 3 ), the thickness of the depletion layer is 1 nm or less, and a tunnel current easily flows.
  • the carrier concentration is extremely high, the electronic state of the film is metalized and high conductivity is obtained.
  • FIG. 12 shows an example of a pn junction diode formed by spark using metal aluminum as an anode and a probe as a cathode.
  • FIG. Aa has an Al 2 O 3 layer in the middle, but the carrier concentration in this part is low, and it is considered that there is little or no conductivity.
  • ab is a state in which the above-described pn junction is formed.
  • ac it is considered that Al 3+ excess part and O 2 ⁇ excess part are mixed, and these are reacted to form ionic bonds to produce Al 2 O 3 .
  • the carrier concentration in this part is low, and it is considered that there is little or no conductivity. It is assumed that the actual semiconductor element operates in the part ab.
  • FIG. 14 shows a state in which the aluminum oxide film is thick on the metal aluminum as far as it can be sparked, and the aluminum oxide film as an insulator is melted by the spark.
  • a spark current flows for a short time.
  • the aluminum oxide film becomes a molten salt at a temperature higher than the melting point.
  • Molten salt electrolysis occurs according to the equations (4) and (5) at a temperature equal to or higher than the melting point, and Al 3+ and O 2 ⁇ are consumed as shown in the equation (6) to become metallic aluminum and oxygen, and the semiconductor layer becomes thin.
  • a semiconductor layer having the structure shown in FIG. 16 is formed.
  • the metal aluminum side of the semiconductor layer becomes a p-type semiconductor with an excessive O (oxygen) concentration
  • the probe side (Pt side) becomes an n-type semiconductor with an excessive Al concentration. Both become pn junctions, and a depletion layer is formed at the joint.
  • the thickness of the depletion layer is determined by the newly generated carrier concentration of the donor level and the carrier concentration of the acceptor level, the maximum value of the carrier concentration of the semiconductor layer is extremely high (10 27 to 10 29 / m 2. 3 ), the thickness of the depletion layer is 1 nm or less, and a tunnel current easily flows.
  • the carrier concentration is extremely high, the electronic state of the film is metalized and high conductivity is obtained.
  • FIG. 17 shows an example of a pn junction diode formed in a spark using metallic aluminum as a cathode and a probe as an anode. The description of the semiconductor layer cross section is omitted.
  • Embodiment 2 Scaling-up of semiconductor layers by scanning method
  • N AO ⁇ A v / M (10), where Avogadro's number is A v (6.022 ⁇ 10 23 pieces / mol). It is.
  • n it / (6F c ) (13)
  • ⁇ N AO A v n / V m (14) It is.
  • FIG. 18 shows a semiconductor layer (semiconductor layer 202 being produced and produced) formed by scanning a probe with the aluminum oxide film surface 201 on the metal aluminum and using the metal aluminum side as an anode according to the reaction formula (7).
  • the conceptual diagram of the semiconductor layer 203) is shown. Although the actual contact area with the aluminum oxide film surface 201 is smaller than the area of the probe tip, it is assumed here that the contact is made in a rectangular region of u 1 (m) ⁇ u 2 (m).
  • a spark current i (A) between the metal aluminum and the probe While flowing a spark current i (A) between the metal aluminum and the probe, the probe is scanned in the direction of the arrow at a constant speed v (m / s) to generate a semiconductor layer.
  • the thickness of the semiconductor layer increases due to the spark and grows to h (m).
  • a rectangular semiconductor layer having a width u 2 (m) and a thickness h (m) is formed.
  • the spark current i is considered to be stabilized at a substantially constant value while fluctuating because the scanning is performed with the applied voltage being constant in actual operation.
  • the width of the probe tip contact surface perpendicular to the scanning direction (u 2 ) is 10 ⁇ m
  • the scanning speed (v) is 14.6 ⁇ m
  • the thickness (h) of the generated semiconductor layer is 50 nm.
  • u 2 1.0 ⁇ 10 -5 ( m)
  • v 14.6 ⁇ 10 -6 (m / s)
  • h 5.0 ⁇ 10 -8 to (m) (21) formula, i ⁇ 1.7 ⁇ 10 - 7 (A), and a spark current value of 0.17 ⁇ A is required.
  • FIG. 19 shows a semiconductor layer (the semiconductor layer 302 being decomposed and decomposed) formed by contacting the probe with the surface 301 of the aluminum oxide film on the metal aluminum and scanning the metal aluminum side as a cathode according to the reaction formula (8).
  • the conceptual diagram of the semiconductor layer 303) is shown. In this case, since the semiconductor layer is formed by the decomposition of the aluminum oxide film, the aluminum oxide film is depressed by scanning. The semiconductor layer is formed from the remaining aluminum oxide film. Therefore, it is necessary to select the production conditions so that the thickness of the aluminum oxide film on the metal aluminum is thicker than the height of the recess formed by scanning.
  • the detailed description of FIG. 19 is the same if all the “generation” in the detailed description of FIG.
  • FIG. 1 An example of the scanning pattern is shown in FIG.
  • the semiconductor layer is formed in an area of a (m) ⁇ b (m) by scanning with the probe in contact with the aluminum oxide film.
  • the region U formed by the semiconductor layer at a certain moment is the above-described u 1 ⁇ u 2 where the tip of the probe contacts the aluminum oxide film and the spark current flows through the entire portion.
  • the probe tip is scanned in the a ⁇ b region while flowing a spark current i as indicated by an arrow at a speed v.
  • the probe In the first scanning, the probe is moved to the start point in FIG. 20, the tip of the probe is brought into contact with the sample, a spark voltage V is applied, i is turned on, and immediately moved from left to right along the uppermost line m 1 . Is the action. V is set to zero at the right end, the probe is once separated from the sample, i is turned OFF, the line is moved to the lower line at line feed r 1 and moved to the left end of the second line.
  • Second scanning is an operation of moving from left to right immediately along the second line m 2 ON the i by applying a voltage V to the probe tip is again brought into contact with the sample at the left end of the second line.
  • V is set to zero, the probe is moved away from the sample, i is turned off, and the line moves to the lower line at line feed r 2 to the left end of the third line.
  • the carrier concentration has a donor density that increases with the concentration of the excessively injected Al 3+ ions and an acceptor density that increases with the concentration of the excessively injected O 2 ⁇ ions.
  • the calculation is made by taking the donor density, that is, the Al 3+ ion concentration as an example.
  • the Al 3+ ion concentration C Al (pieces / m 3 ) is a value obtained by multiplying the generation or decomposition concentration ⁇ N Al (pieces / m 3 ) by the efficiency ⁇ Al by the spark of the aluminum oxide film, the equation (16) Is as follows.
  • This device can scan with a constant voltage applied between the probe and the sample, but cannot scan with constant current.
  • the maximum current can be set by setting the measurement current range.
  • Probe tip width U 2 is 1 ⁇ 10 6 m (1.0 ⁇ m), semiconductor layer formation height h is 2 ⁇ 10 ⁇ 8 m (20 nm), scan speed v is 1.46 ⁇ 10 ⁇ 5 m / s (14.6 ⁇ m / s) )
  • ⁇ Al the carrier generation efficiency
  • i 1.4 ⁇ 10 ⁇ 8 (A)
  • a semiconductor layer can be formed although C Al is slightly lowered.
  • the semiconductor layer shown so far has produced a p-type semiconductor and an n-type semiconductor simultaneously by a spark method, and formed a pn junction. In actuality, these methods are not necessarily suitable for mass production in order to make semiconductor elements such as diodes and transistors and oscillation elements.
  • this semiconductor element it is desirable to be able to form a thin film by sputtering, which is an existing semiconductor manufacturing technique, and to form an element structure by photolithography and etching. Therefore, a method for obtaining the semiconductor layer of the present invention by sputtering will be described.
  • the outermost surface of the semiconductor layer formed by the spark method is a p-type semiconductor layer in which O 2 ⁇ is excessive.
  • a part other than this part (surface) is masked and a target material is sputtered to form a semiconductor element.
  • the sputtering is performed until the n-type semiconductor layer is extracted, or the anode and cathode are switched by reversing the current direction during sparking.
  • the surface can be an n-type semiconductor layer, which can be used as a target material.
  • the above-described scanning can be performed to increase the area of the target material.
  • an n-type semiconductor thin film is formed on an aluminum substrate (also serving as a cathode current collector) by sputtering using an Al 3 + -excess semiconductor layer as a target material, Next, it is possible to form a p-type semiconductor thin film by sputtering on the n-type semiconductor thin film using a semiconductor layer containing excess O 2 ⁇ as a target material, and attach a cathode terminal to the p-type semiconductor layer.
  • semiconductor elements such as MOS-FETs can be manufactured by repeating sputtering, photolithography and etching using other materials.
  • FIG. 21 is a cross-sectional view schematically showing a main part structure of the oscillation element of the present embodiment.
  • the structure of the oscillation element is the same as that of the pn junction diode formed by the spark method shown in FIG.
  • the structure of the depletion layer is shown in FIG.
  • O is deficient from Al 2 O 3 and Al is excessive, and Al 3+ cations and electrons for maintaining electrical neutrality are present.
  • Al is depleted from Al 2 O 3 , O becomes excessive, and there are holes for maintaining electrical neutrality with an anion of O 2 ⁇ .
  • the electrons of the n-type semiconductor and the holes of the p-type semiconductor are bonded and disappeared, and a portion where neither electrons nor holes are present is generated, but this portion is a depletion layer.
  • An oscillation element can be formed by making the depletion layer extremely thin.
  • the thickness needs to be 1 nm or less.
  • the size of one molecule of Al 2 O 3 is calculated.
  • the Avogadro number is 6.022 ⁇ 10 23 (1 / mol)
  • the molecular weight of Al 2 O 3 is 101.96 (g / mol)
  • the density is 4.0 ⁇ 10 3 (kg / m 3 ). 4.23 ⁇ 10 ⁇ 29 (m 3 ).
  • this provisionally calculates the length d m of approximately one side as a cube 3.5 ⁇ 10 -10 (m) i.e. d m becomes 0.35 nm.
  • Conditions for oscillation are considered to depletion of thickness x dep is not more than 3 times the d m. Therefore, the thickness x dep of the depletion layer is desirably 1 nm or less.
  • Thinning the empty layer can be realized by increasing the carrier concentration of p-type semiconductor carriers (holes), n-type semiconductor carriers, or both p-type and n-type semiconductors.
  • the acceptor concentration N A, the donor concentration N D, the depletion layer thickness X n of the p-side of the depletion layer thickness X p and n-side can be calculated by the following equation.
  • the carrier concentration is high, the error is considered to be large, and is only a guide and is not a strict calculation formula.
  • V bi built-in potential (V)
  • n i intrinsic semiconductor carrier concentration (m ⁇ 3 )
  • X p depletion layer width (m) in p-type region
  • X n depletion layer width in n-type region (m)
  • k B Boltzmann constant (1.38 ⁇ 10 -23 (J / K))
  • T temperature (K)
  • q elementary charge 1.602 ⁇ 10 -19 (C)
  • ⁇ r relative permittivity
  • ⁇ 0 Vacuum dielectric constant (8.854 ⁇ 10 ⁇ 12 (F / m)).
  • the thickness x dep of the entire depletion layer is expressed as follows.
  • N 2.6 ⁇ 10 27 (m ⁇ 3 ).
  • the carrier concentration is increased by an ion implantation method, the high carrier concentration often indicates 1 ⁇ 10 27 (m ⁇ 3 ) or more. Therefore, it can be said that the value of N is also a high carrier concentration.
  • FIGS. 24 (a) and 24 (b) Examples of IV characteristics during oscillation are shown in FIGS. 24 (a) and 24 (b).
  • the negative region of the bias voltage indicates the forward bias side
  • the positive region indicates the reverse bias side.
  • Current oscillation occurred when the bias voltage was between -0.1V and + 0.1V in (a) and between -0.2 and + 0.17V in (b).
  • the oscillation waveform in (a) is shown in FIG.
  • the oscillation current was generated with an amplitude of about -0.4 to +0.4 ⁇ A. Even at a bias voltage of 0 V, an oscillation current was generated with a similar amplitude.
  • the frequency was about 3.4kHz.
  • FIG. 26 shows the electric field in the depletion layer when the carrier concentration is relatively low.
  • the first E a is attracted by the force of f a due to the electric field applied to the portion of the a depletion layer in which the cation and anion surfaces face each other.
  • the distance between the cation and the anion is considered to be about 0.35 nm between the central portions.
  • the second E b is attracted by the force of f b due to the electric field applied to the electron surface (n-type semiconductor side) and the hole surface (p-type semiconductor side) existing outside the depletion layer.
  • the distance is about several nm. Since E a and E b have opposite directions and E a >> E b , f a >> f b , which is substantially the electrostatic force between the innermost cations.
  • FIG. 27 shows the case where the carrier concentration is very high and the distance between the depletion layers is about 0.35 nm.
  • E a E b
  • the force acting between the innermost ions (cation and anion) is equal to the force acting between the innermost electrons and holes. That is, the innermost cation and anion are released from the electrostatic force, and only attractive force acts between them.
  • This attractive force is considered to be a force such as van der Waals force.
  • the innermost cation and anion oscillate according to Newton's equation of motion. This oscillation occurs even when the bias voltage is 0V.
  • Example 1 First, an aluminum plate (1085 material, 12 ⁇ 30 mm, thickness 0.2 mm) was prepared. This sample was immersed in pure water heated to 95 ° C. to form a boehmite film having a thickness of about 20 nm on the aluminum plate. Next, a manual prober 20 was prepared. The probe used was a platinum wire (H material) with a diameter of 0.2 mm, with a tip of 0.02 mm in diameter, and the base of the platinum wire wound in a coil shape. An apparatus 10 shown in FIG. 2 was prepared and connected.
  • H material platinum wire
  • An apparatus 10 shown in FIG. 2 was prepared and connected.
  • the current limiting resistor 15 was 100 ⁇
  • the shunt resistor 14 was 100 ⁇
  • the output of the current direct current stabilized power supply was 36V
  • the switch of the switch box 13 was closed after contacting the tip of the probe in the air with the sample. Sparking occurred between the probe tip and the aluminum plate.
  • a semiconductor layer having a thickness of about 30 nm was formed at the portion where the probe tip was in contact.
  • the voltage applied to the sample at this time and the change in current flowing through the sample were measured with an oscilloscope 12.
  • 36 V was applied to the sample for a moment, but the voltage immediately dropped to about 10 V.
  • the current was about 0.1A. This state continued for 0.3 ⁇ s.
  • Example 2 Similar to Example 1, an aluminum plate (1085 material, 20 ⁇ 60 mm, thickness 0.18 mm) was prepared. This sample was immersed in pure water heated to 95 ° C. to form a boehmite film having a thickness of about 20 nm on the aluminum plate.
  • the current limiting resistor 15 shown in FIG. 2 was changed from 100 ⁇ to 1 k ⁇ , the probe tip was brought into contact with the boehmite-treated film, and a semiconductor layer was formed by sparking in the same manner as described above.
  • the voltage and current of the sample at this time behaved in the same manner as in FIG. 3, but the electrolysis time of the molten salt decreased to about 30 ns and the current decreased to about 0.03 A.
  • the quantity of electricity related to the reaction of molten salt electrolysis was about 1/100 of the above example.
  • FIG. 5 shows the IV characteristics of the semiconductor layer generated here.
  • a negative current flowed at a voltage of -0.6V or less, but no current flowed at a voltage higher than that, indicating rectification characteristics.
  • a pn junction was formed in the semiconductor layer, and a pn junction diode in which the aluminum plate side of the semiconductor layer was an n-type semiconductor and the probe side was a p-type semiconductor was formed.
  • Example 3 First, the following samples were prepared. Sputtering is performed for about 40 minutes under the conditions of Ar + O 2 gas, total pressure 0.4Pa, using 5N aluminum Al ( ⁇ 76 ⁇ 6mm thickness) made by Furuuchi Chemical as a substrate with an aluminum plate (24 ⁇ 24mm, thickness 0.1mm) An aluminum oxide film of about 30 nm was applied on the aluminum plate. As a sputtering apparatus, SPC-350 type made by Nidec Anelva was used.
  • a semiconductor layer was formed by a scanning method using JSPM-5200.
  • a probe having a tip width of 1.0 ⁇ m was prepared, and scanning was performed at a scanning speed of 14.6 ⁇ m / s and a current value of 10 nA to form an element having a size of 25 ⁇ 25 ⁇ m.
  • the IV probe was measured by bringing the same probe as in Example 1 into contact with the surface of the element fabricated by sputtering. A linear relationship was obtained between -0.5 and + 0.5V. In this voltage range, it is considered that a tunnel current or a current due to metallization of the electronic state of the film flowed between the aluminum plate and the probe. Almost no current flowed below -0.5V and above + 0.5V. Although there was no rectifying action, IV characteristics specific to this semiconductor device were obtained when the carrier concentration was high.
  • Example 4 The following samples were prepared. Sputtering is performed for about 40 minutes under the conditions of Ar + O 2 gas, total pressure 0.4Pa, using 5N aluminum Al ( ⁇ 76 ⁇ 6mm thickness) made by Furuuchi Chemical as a substrate with an aluminum plate (24 ⁇ 24mm, thickness 0.1mm) An aluminum oxide thin film of about 30 nm was applied on the aluminum plate. As a sputtering apparatus, SPC-350 type made by Nidec Anelva was used.
  • the current limiting resistor 15 was 100 ⁇
  • the shunt resistor 14 was 100 ⁇
  • the output of the current direct current stabilized power supply was 60V
  • the switch of the switch box 13 was closed after contacting the tip of the probe in the air with the sample. Sparking occurred between the probe tip and the aluminum plate.
  • a semiconductor layer having a thickness of about 50 nm was formed at the portion where the probe tip was in contact.
  • the voltage applied to the sample at this time and the change in current flowing through the sample were measured with an oscilloscope 12. Immediately after energization, 60 V was applied to the sample for a moment, but the voltage immediately dropped to about 10 V. The current was about 0.2A. This state continued for 0.3 ⁇ s.
  • FIG. 1 An example of IV characteristics is shown in FIG.
  • the negative region of the bias voltage indicates the forward bias side
  • the positive region indicates the reverse bias side.
  • Current oscillation occurred when the bias voltage was between -0.1V and + 0.1V.
  • the oscillation waveform is shown in FIG.
  • the oscillation current was generated with an amplitude of about -0.4 to +0.4 ⁇ A. Even at a bias voltage of 0 V, an oscillation current was generated with a similar amplitude.
  • the frequency was about 3.4kHz.
  • the carrier concentration of each of the p-type semiconductor layer and the n-type semiconductor layer is adjusted to ⁇ 10 27 / m 3 and a pn junction is formed, a diode is obtained.
  • a semiconductor element such as a transistor or a thyristor can be obtained by three-dimensionally combining a p-type semiconductor layer and an n-type semiconductor layer with appropriately adjusted carrier concentrations and an insulator such as stoichiometric aluminum oxide. These can be expected to be used as wide band gap power semiconductors. Furthermore, if the characteristics of the transparent oxide semiconductor are combined, it can be applied to a constituent material of a solar cell and a display panel.
  • each carrier concentration of the p-type semiconductor layer and the n-type semiconductor layer is set to 10 28 to 10 29 / m 3 and a pn junction is formed, it can be used for an inverter that becomes an oscillation element and converts a direct current into an alternating current.
  • Combining the characteristics of a transparent oxide semiconductor and a light emitting diode in the ultraviolet region with this oscillating element makes it a frequency variable type inverter and can expand the applicable range of the inverter.
  • the electronic state of the semiconductor layer is metallized at such a high carrier concentration, extremely good conductivity can be obtained and it can be expected as a high performance conductor.
  • it combines the characteristics of a transparent oxide semiconductor, it can be used as a transparent conductor.
  • the p-type semiconductor layer and the n-type semiconductor layer according to the present invention are extremely high oxidizing agents or reducing agents, they are promising as new chemical substances. If the characteristics of transparent oxide semiconductors are combined, there is a possibility that they can be used for fuel cell electrode materials and photosynthetic electrodes. Furthermore, it can be expected to be used as a semiconductor target material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

酸化アルミニウム膜(Al2O3)にアルミニウム(Al)を過剰に含有させることによりドナー準位を形成したn型半導体(Al2O3(n型))と、酸化アルミニウム膜(Al2O3)に酸素(O)を過剰に含有させることによりアクセプタ準位を形成したp型半導体(Al2O3(p型))とを接合したpn接合を含む半導体層である。

Description

半導体層、発振素子及び半導体層の製造方法
 本発明は、半導体層、発振素子及び半導体層の製造方法に関する。
 半導体分野においては、高パワー化、高耐電圧化、高温動作及び高周波化が求められている。特に、高耐電圧化が重要であり、このため、従来のSi系半導体よりもバンドギャップが大きいワイドバンドギャップ半導体が要望されている。Siのバンドギャップが1.12eVであるのに対し、ワイドバンドギャップ半導体として注目されているSiCのバンドギャップが2.20~3.02eV、GaNのバンドギャップが3.39eVであり、バンドギャップがより大きいワイドバンドギャップ半導体の開発が進められている。
 また、本発明者は、特許文献1において、酸化アルミニウムを基材とした半導体層を用いた発振素子及び発振素子の製造方法に関する詳細な検討を行っている。
国際公開第2016/175251号
 例えば、ワイドバンドギャップ半導体材料としてバンドギャップが5.47eVであるダイアモンドが注目されているが、ダイアモンドは半導体ではないため、イオン注入してドナー準位やアクセプタ準位を形成する必要がある。しかし、ダイアモンドのイオン注入には高温高圧が必要であり、簡単に行うことができない。
 また、酸化アルミニウムのバンドギャップは8.8eVであり、ワイドバンドギャップ半導体の材料とすることができれば魅力的ではあるが、これまでバンドギャップ内にドナー準位やアクセプタ準位を形成することは難しかった。特に、アクセプタ準位の形成は困難であった。このようなことから、酸化アルミニウムは極めて優秀な絶縁体として高い信頼性を得ているものの、酸化アルミニウムを用いた、p型半導体及びpn接合を形成することは困難であった。
 このため、バンドギャップが大きい酸化アルミニウムを基材とした半導体及びそれを用いた半導体素子や発振素子を得るために、酸化アルミニウムのバンド内にキャリアを充填してドナー準位やアクセプタ準位を得る技術を見出すことが課題である。また、酸化アルミニウムを半導体化した先行技術文献や、酸化アルミニウム半導体のpn接合に関する先行技術文献は無い。よって、酸化アルミニウムを基材とした半導体機能の原点であるpn接合形成することが課題である。
 ところで、本発明者は、特許文献1に記載のとおり、酸化アルミニウムを基材としてショットキー接合を有する半導体層の作製に成功した。また、本発明者は、この半導体層において、空乏層厚さを極めて薄くして、トンネル電流を流し、逆バイアス方向に電圧を印加することにより電流に発振が見られることを見出し、更に、この電流発振は所定の高電流密度以下において発現することを確認した。
 本発明者が発明した発振素子を使用して、例えば電池などの直流を交流にするインバータを設計する場合、順バイアス電圧側から逆バイアス電圧側にわたる、ゼロバイアス電圧を含む広いバイアス電圧の印加により、電流発振することが望まれる。
 しかし、この電流発振は、逆バイアス電圧を印加した場合のみに生じ、順バイアス電圧又はゼロバイアス電圧の印加によっては生じなかった。このため、この発振素子を用いたインバータ回路は複雑な回路構成を備えることになる。それゆえ、ゼロバイアス電圧を含め、順バイアス電圧側から逆バイアス電圧側にわたる、広いバイアス電圧の印加により、電流発振する発振素子、及びその製造方法を見出すことが課題である。
 本発明の一態様は、本発明者による更なる研究に基づいて新たに想到されたものであり、従来よりも性能に優れた半導体層、発振素子及び半導体層の製造方法を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る半導体層は、酸化アルミニウム膜にアルミニウムを過剰に含有させることによりドナー準位を形成したn型半導体と、酸化アルミニウム膜に酸素を過剰に含有させることによりアクセプタ準位を形成したp型半導体とを接合したpn接合を含む。
 本発明の他の一態様に係る半導体層は、酸化アルミニウム膜に酸素を過剰に含有させることによりアクセプタ準位を形成したp型半導体を含む。
 本発明の他の一態様に係る半導体層の製造方法は、酸化アルミニウム膜の一方の面に金属アルミニウムを、前記酸化アルミニウム膜の他方の面にプローブを接触させ、大気中、酸素含有ガス中又は酸素ガス中で、アノードとしての前記金属アルミニウムとカソードとしての前記プローブとの間に、前記酸化アルミニウム膜の絶縁破壊が生じる電圧を印加して前記酸化アルミニウム膜を溶融させ、前記溶融の間に、前記酸化アルミニウム膜に溶融塩電解反応を生じさせ、冷却させることにより、前記酸化アルミニウム膜の前記金属アルミニウム側にn型半導体層を、前記酸化アルミニウム膜の前記プローブ側にp型半導体層を、それぞれ生成し、且つ、前記n型半導体層と前記p型半導体層とを接合する。
 本発明の他の一態様に係る半導体層の製造方法は、酸化アルミニウム膜の一方の面に金属アルミニウムを、前記酸化アルミニウム膜の他方の面にプローブを接触させ、大気中、ガス中又は真空中で、カソードとしての前記金属アルミニウムとアノードとしての前記プローブとの間に、前記酸化アルミニウム膜の絶縁破壊が生じる電圧を印加して前記酸化アルミニウム膜を溶融させ、前記溶融の間に、前記酸化アルミニウム膜に溶融塩電解反応を生じさせ、冷却させることにより、前記酸化アルミニウム膜の前記金属アルミニウム側にp型半導体層を、前記酸化アルミニウム膜の前記プローブ側にn型半導体層を、それぞれ生成し、且つ、前記n型半導体層と前記p型半導体層とを接合する。
 前記酸化アルミニウム膜に溶融塩電解反応を生じさせる際、前記溶融塩電解反応を起こす通電電気量を調整することにより、前記n型半導体のドナー濃度又は前記p型半導体のアクセプタ濃度を制御可能にさせることが好ましい。
 前記酸化アルミニウム膜に溶融塩電解反応を生じさせる際、前記プローブを前記酸化アルミニウム膜に接触させながら移動させることが好ましい。
 前記プローブを前記酸化アルミニウム膜に接触させながら移動させる際、前記印加電圧を、(1)連続的に変化させる、(2)不連続に変化させる、(3)極性を一方向又は両方向に変化させる、又は、前記(1)~(3)を組み合わせて変化させることが好ましい。
 本発明の他の一態様に係る発振素子は、酸化アルミニウム膜にアルミニウムを過剰に含有させることによりドナー準位を形成したn型半導体と、酸化アルミニウム膜に酸素を過剰に含有させることによりアクセプタ準位を形成したp型半導体とを接合したpn接合を含む。
 本発明の他の一態様に係る発振素子の製造方法は、酸化アルミニウム膜の一方の面に金属アルミニウムを、前記酸化アルミニウム膜の他方の面にプローブを接触させ、大気中、酸素含有ガス中又は酸素ガス中で、アノードとしての前記金属アルミニウムとカソードとしての前記プローブとの間に、前記酸化アルミニウム膜の絶縁破壊が生じる電圧を印加して前記酸化アルミニウム膜を溶融させ、前記溶融の間に、前記酸化アルミニウム膜に溶融塩電解反応を生じさせ、冷却させることにより、前記酸化アルミニウム膜の前記金属アルミニウム側にn型半導体層を、前記酸化アルミニウム膜の前記プローブ側にp型半導体層を、それぞれ生成し、且つ、前記n型半導体層と前記p型半導体層とを接合し、前記接合により形成される空乏層の厚さは、1nm以下である。
 本発明の他の一態様に係る発振素子の製造方法は、酸化アルミニウム膜の一方の面に金属アルミニウムを、前記酸化アルミニウム膜の他方の面にプローブを接触させ、大気中、ガス中又は真空中で、カソードとしての前記金属アルミニウムとアノードとしての前記プローブとの間に、前記酸化アルミニウム膜の絶縁破壊が生じる電圧を印加して前記酸化アルミニウム膜を溶融させ、前記溶融の間に、前記酸化アルミニウム膜に溶融塩電解反応を生じさせ、冷却させることにより、前記酸化アルミニウム膜の前記金属アルミニウム側にp型半導体層を、前記酸化アルミニウム膜の前記プローブ側にn型半導体層を、それぞれ生成し、且つ、前記n型半導体層と前記p型半導体層とを接合し、前記接合により形成される空乏層の厚さは、1nm以下である。
 前記酸化アルミニウム膜に溶融塩電解反応を生じさせる際、前記プローブを前記酸化アルミニウム膜に接触させながら移動させることが好ましい。
 本発明の一態様によれば、従来よりも性能に優れた半導体層、発振素子及び半導体層の製造方法を実現するという効果を奏する。
プローブの形状及びプローブと試料との位置関係を説明する模式図である。 測定装置の概略構成を示す模式図である。 酸化アルミニウム膜をスパークした場合における電圧及び電流特性を示すグラフ図である。 I-V特性測定結果を示すグラフ図である。 I-V特性測定結果を示すグラフ図である。 半導体層断面のTEM観察結果である。 半導体層のEDS分析結果である。 半導体層の概略構成を示す模式図である。 金属アルミニウムをアノード、プローブをカソードとして、スパークにより高温溶融した場合における半導体層内の反応を示す模式図である。 図9の半導体層が融点よりやや低くまで温度降下した場合における半導体層内の反応を示す模式図である。 図10の半導体層が室温まで温度降下した場合における半導体層の構成を示す模式図である。 金属アルミニウムをアノード、プローブをカソードとして、スパークにより形成したpn接合ダイオードの構成を示す模式図である。 図8の半導体層に含まれるpn接合の構成を示す模式図である。 金属アルミニウムをカソード、プローブをアノードとして、スパークにより高温溶融した場合における半導体層内の反応を示す模式図である。 図14の半導体層が融点よりやや低くまで温度降下した場合における半導体層内の反応を示す模式図である。 図15の半導体層が室温まで温度降下した場合における半導体層の構成を示す模式図である。 金属アルミニウムをカソード、プローブをアノードとして、スパークにより形成したpn接合ダイオードの構成を示す模式図である。 プローブ先端をスキャニングしながら酸化アルミニウム膜を生成する方法を説明する図である。 プローブ先端をスキャニングしながら酸化アルミニウム層を分解する方法を説明する図である。 プローブ先端のスキャニングパターンの一例を示す図である。 発振素子の構成を示す模式図である。 pn接合における空乏層の構成を示す模式図である。 空乏層の厚さが極めて薄い場合における、図22の空乏層の構成を示す模式図である。 (a)(b)は、発振時のI-V特性測定結果を示すグラフ図である。 発振時の電流波形を示すグラフ図である。 低キャリア濃度における空乏層内の電界の状況を示す模式図である。 高キャリア濃度における空乏層内の電界の状況を示す模式図である。 高キャリア濃度において最内イオン間にかかる力を説明する模式図である。 高キャリア濃度において最内イオン間にかかる力を説明する模式図である。
 〔材料〕
 半導体層をスパーク法により形成するための膜は、共有結合性よりもイオン結合性の大きい金属化合物であり、かつ絶縁体又は導電性の極めて小さい物質であればいずれも用いることができる。例えば、酸化アルミニウムや酸化チタン等の金属酸化物、水酸化アルミニウム等の金属水酸化物、窒化アルミニウム等の金属窒化物等が使用可能である。更に、ベーマイトのように酸化アルミニウムに水分子を含むような化合物を使用することができる。
 また、半導体層をスパーク法により形成するための膜における金属イオン種は、その基板の金属と同じでなくてもよい。例えば、金属アルミニウム上に酸化ジルコニウムをスパッタで成膜したもの、又は金属アルミニウム表面に化成処理により形成した膜でも可能である。
 基板が金属アルミニウムの場合、金属アルミニウムとしてアルミニウム合金を使用することができる。すなわち、4N以上の高純度アルミニウムや純アルミニウム(1000系)以外に、Al-Mn系合金(3000系)、Al-Si系合金(4000系)、Al-Mg系合金(5000系)、Al-Cu-Mg系合金(2000系)、Al-Mg-Si系合金(6000系)、Al-Zn-Mg系合金(7000系)のいずれも用いることができる。
 膜の材料が金属酸化物の場合、その多くは透明酸化物である。スパーク法により半導体化してもバンドギャップが大きければ可視光域にエネルギーの吸収がないため、透明酸化物半導体になる。
 また、上述の膜材料に接触させてスパークさせるためのプローブ材料として、白金、ステンレス、銅、カーボン等導電性の良好な物質を使用することができる。スパークにより高温になるため耐熱性が高い材料が好ましい。白金は優れた材料であるがコストガ高い。Siの芯材に最表面を白金メッキした材料等を用いることが可能である。
 〔実施形態1〕
 本発明の実施形態1について、図1~図17に基づいて説明すれば、以下の通りである。なお、各実施形態では、同一の部分には同一の符号を付し、図面で同一の符号を付したものは、再度の説明を適宜省略する。また、各実施形態に記載されている構成の寸法、材質、形状、相対配置、加工法等はあくまで一例に過ぎず、これらの記載によって本発明の技術的範囲が限定解釈されるべきではない。更に、図面は模式的なものであり、寸法の比率、形状は実際のものとは異なる場合もある。
 <半導体層>
 本実施形態1に係る半導体層について説明する。本実施形態1に係る半導体層は、酸化アルミニウム膜をスパークさせる方法で形成する。その一例を次に示す。
 (試料及び装置)
 図1に示すように、金属アルミニウム103の表面に酸化アルミニウム膜102を被覆した試料を用意する。自然酸化皮膜には直径100nm程度の電流通過点が分散して存在する。このため、自然酸化皮膜にプローブ101を接触させた試料に高電圧を印加すると、電流通過点を通して短絡電流が流れてしまい、高印加電圧をかけてもスパークが生じず、その結果、半導体層を形成することができない。そこで、金属アルミニウム103の表面に予め酸化アルミニウム膜102を被覆しておく。酸化アルミニウム膜102の被覆方法は、スパッタ法、アノード酸化法、大気加熱法、ベーマイト処理法などがある。なお、被覆した酸化アルミニウム膜102中は、水を含み、純粋な酸化アルミニウムではない場合もある。例えば、ベーマイトの分子式は、Al・HOであり、水1分子を含む。酸化アルミニウム膜102の膜厚は、5~100nmとする。
 次に、マニュアルプローバ20を用意し、図1に示す構成のプローブ101を取り付けた。プローブ101では、直径0.2mmの白金線(H材)のプローブ先端101aを削り、プローブ先端101aの、試料との接触面の直径を、0.02mmにした。プローブの根本はコイル状に巻かれており、これにより、バネ作用によりプローブの先端を低圧力で試料に接触させることができる。
 図2に示す装置10を用意し、試料への電圧印加と試料のI-V特性を測定した。プローブ先端を酸化アルミニウム膜に接触させ、金属アルミニウムとプローブとの間に電圧を印加し、スパークによる絶縁破壊を生じさせた。直流安定化電源11から出力される印加電圧は可変である。図2では、金属アルミニウム側がアノード(プラス)になるようにしている。金属アルミニウム側がカソード(マイナス)にする場合には直流安定化電源の極性を逆にすれば良い。図2に示すように、スイッチボックス13(リードリレー内蔵)のプラス側を、電流制限抵抗15を介して、マニュアルプローバ20に取り付けた金属アルミニウム側に接続し、スイッチボックス13のマイナス側を、電流測定用のシャント抵抗14を介して、プローブに接続した。スイッチ22を切り替えることにより、金属アルミニウム側及プローブをI-V測定器23に接続し、試料のI-V特性を測定する。試料に印加される電圧及び試料に流れる電流を、高耐圧・フローティング入力オシロスコープ12を用いて測定した。
 金属アルミニウムとして1085材(12mm×30mm、厚さ20μm)を用い、試料表面をベーマイト処理した。ベーマイト処理は、試料を95℃の純水に30s浸せきし、水洗、乾燥することにより行った。ベーマイト皮膜は絶縁性であるので試料の一部をやすり掛けしてベーマイト皮膜を除去し通電できるようにした。図1に示すプローブを用い、図2に示すマニュアルプローバ20に試料をセットして、マニュピレータ21でプローバ先端位置を調整して先端がベーマイト処理皮膜に接触するようにした。プローブ先端に約0.01Nの力がベーマイト皮膜に加わった。
 (通電)
 図2の電流制限抵抗15を100Ω、シャント抵抗14を100Ω、電流直流安定化電源の出力を36Vとし、スイッチボックス13のスイッチを閉じた。プローブ先端と金属アルミニウム間でスパークした。プローブ先端を接触させた部分には厚さ30nm程度の半導体層が形成された。この時の試料に印加される電圧と試料に流れる電流をオシロスコープ12で測定した。その結果を図3に示す。
 スイッチを閉じたタイミングは-0.28μsであるが、実際に電流値が0.05Aを超えたところでトリガーをかけたので、トリガーをかけた時点を0μsとした。汎用の直流電源を用いたので、-0.28~0μsの間は電源のスタンバイ状態となり、そのため、この間では、出力として設定した36Vに出力が達することなく、約20Vの電圧が出力された。20Vの電圧ではスパークは生ぜず電流はほとんど流れなかった。
 0μsで試料に一瞬36Vが印加されたが、スパークの電流が流れてすぐに電圧は約10V程度に低下した。電流値は約0.1Aであった。この状態は0.3μs継続した。この間スパークが継続し、皮膜は高温になり溶融状態になり皮膜は厚くなったと考えられる。また、この間電圧に大きな振動があるが、これはスイッチを閉じた際に、装置側のインタクダンスなどリアクタンスに起因する過渡現象が現れたのか、材料固有特性によるものかは不明である。0.3μsを経過すると電圧は約0Vに低下し、電流は0.17Aに増加した。図3では、1μs経過までしか示していない。この後もこの状態を維持したが、60sまで電流と電圧に変化はなかった。0.3μs以降は半導体層にトンネル電流が流れたか、皮膜の電子状態が金属化して電流が流れたと考えられる。その理由については後述する。通電終了後、プローブはそのままの状態を維持し、図2におけるスイッチ22の結線を右側、すなわちI-V測定に切り換えた。
 (I-V測定結果)
 このようにして得られた半導体層のI-V測定を行った。その結果を図4に示す。-0.6~1.0Vの電圧範囲を0.1V/sの速度で走査した。-0.55~+0.2Vの間でほぼ直線関係が得られた。この電圧範囲においては金属アルミニウムとプローブとの間にトンネル電流又は皮膜の電子状態が金属化したことによる電流が流れたと考えられる。-0.55V以下と+0.2V~+0.55Vで直線関係から外れて大電流が流れた。また、+0.55~+1.0Vの間、電流はほとんど流れなかった。このように広い電圧範囲で直線関係から外れる理由は現時点では分からないが、半導体層のキャリア挙動が不安定な状況にあると考えられる。なお、仮に金属アルミニウムとプローブとが短絡していたとするならばI-V特性の全電圧領域で直線関係になるはずである。全電圧領域で直線関係にならない以上、-0.55V~+0.2Vにおける直線関係は形成した半導体層固有の特性であるといえる。
 次に、図2に示す電流制限抵抗15を100Ωから1kΩにし、プローブ先端を移動し、同じ試料の別の場所でベーマイト処理膜にプローブ先端を接触させ、上記と同じ方法でスパークして半導体層を形成した。この際の試料の電圧、電流は図3とほぼ同じ挙動であったが、溶融塩の電解時間は30ns程度に、電流は0.03A程度に減少した。溶融塩電解の反応に要する電気量は上記の例の1/100程度であった。ここで生成した半導体層のI-V特性を図5に示す。電圧が-0.6V以下で負の電流が流れたがそれ以上の電圧では電流は流れず、いわゆる整流特性が示された。半導体層の中にpn接合が形成され、半導体層の金属アルミニウム側がn型半導体、プローブ側はp型半導体となった。
 なお、ここでは「溶融塩」を次のような広い意味で用いた。すなわち、アルミニウムイオン及び酸素イオンの電解による移動(電気泳動)は、完全な溶融塩ではなくても固体状態が混ざり合った固液混合体であっても可能である。そこで固液混合状態であっても、表現としては「溶融塩」とした。
 上記2例の結果からわかることは、スパークによる溶融塩電解に通電する電気量が大きいと半導体層のキャリア濃度が大きくなりpn接合部にできる空乏層の厚さが小さくなりトンネル電流又は皮膜の電子状態が金属化したことによる電流が流れること、スパークによる溶融塩電解に通電する電気量が小さいと半導体層のキャリア濃度は小さくなり、pn接合部にできる空乏層の厚さが厚くなるということである。
 以上の説明は、金属アルミニウム側をアノード(プラス側)、プローブ側をカソード(マイナス側)にして酸化アルミニウム膜をスパークさせることにより半導体層を形成する方法について示し、その結果、酸化アルミニウム膜の金属アルミニウム側がn型半導体となり、酸化アルミニウム膜のプローブ側がp型半導体層になることを示した。
 これに対して、金属アルミニウム側をカソード(マイナス側)、プローブ側をアノード(プラス側)にして酸化アルミニウム膜をスパークさせることによっても半導体層を形成することができる。この場合には、酸化アルミニウム膜の金属アルミニウム側がp型半導体となり、酸化アルミニウム膜のプローブ側がn型半導体層になる。
 (本方法による半導体構成の推定)
 (半導体層の構成元素)
 上述のように、本発明の一実施形態に係る半導体層は、スパークにより酸化アルミニウム膜を絶縁破壊させたことにより形成する。スパークにより形成した半導体層の構成を確認するため、半導体層の断面TEM(透過型電子顕微鏡)撮影とEDS分析(元素分析)を行った。TEM撮影では半導体層の断面をFIB(集束イオンビーム)で薄膜にして試料とした。
 撮影した試料を図6に示す。図6に示すように、AAが金属アルミニウムの自然酸化皮膜のラインで、ラインの下側が金属アルミニウムの組織、ラインの上側はTEM観察試料を作製するために行った充填剤である。点線で囲った部分の中央部分が半導体層である。金属アルミニウムには大きな窪みがあり、窪みに沿ったその上側の層が半導体層である。その厚さは5~100nmであるが、最大の厚さ部分の上側がプローブ先端の位置である。
 図6の点線で囲った部分の半導体層の最も厚い部分とその周辺についてEDS分析した結果を図7に示す。BF(明視野像)の中央にあるのが半導体層で、その上部の富士山型部分の頂点がプローブ先端位置である。半導体層の下側は金属アルミニウム、上側は試料作製時に使用した充填剤である。その他の5枚がAl、O、Pt、C、GaのEDS分析結果である。また、最も右側の図は、各EDS分析結果の四角枠の部分を拡大し、半導体層の物質構成を示した模式図である。
 半導体層内のAlとOの分布をよく見るとAlは下側の金属アルミニウム側が高濃度で、Oは上側の充填剤側(分析試料にする前は大気側)が高濃度になっている。BF像と比較してAlの分布を観察すると、Alが濃い部分が凡そ15nmの厚さでAl金属表面に沿って帯状に存在しているように見える。この部分は非化学量論的にAlのO2-が欠乏してAl3+が過剰に存在する部分だと考えられる(N++)。また、Oの分布を観察すると、Oが濃い部分が凡そ15nmの厚さで半導体層皮膜の表面に沿って帯状に存在しているように見える。この部分は非化学量論的にAlのAl3+が欠乏してO2-が過剰に存在する部分(P++)だと考えられる。
 図8の左側は図7の半導体層の構成模式図にプローブ先端(Pt)を追加したものである。図8の右側3図は半導体層を通過する電流パスの違いから3種類の半導体層構成があることを示している。半導体層の厚い部分(70nm程度)を含むaaの断面にはN++(Al3+過剰部分)とP++(O2-過剰部分)との間に化学量論的又は化学量論的に近い組成のAlが存在すると考えられる。このAlは新たなエネルギー準位がないので導電性はない。また、abの断面はN++とP++とが近接している部分で、後述のようにこの部分で空乏層が形成され、pn接合が形成されていると考えられる。更に、acの断面はN++とP++とがクロスして混在していると考えられる。Al3+過剰部分とO2-過剰部分とがイオン結合を起こし、化学量論的又は化学量論的に近い組成のAlが存在すると考えられる。よって、この断面もaa断面と同様に導電性はない。
 以上の元素分析の結果、スパーク法により形成した半導体層は酸化アルミニウム膜であるが、Alが金属アルミニウム側に、Oが半導体層表面側に偏析した非常に特殊な構造であり、更にpn接合は非常に限られた部分に存在することが分かった。
 なお、本発明のスパーク法で半導体層を形成する場合、上記abの断面面積は小さいがP++とN++がクロスした部分に必ず存在するので、非常に再現性のある製造法である。
 本発明の一実施形態により得られた半導体層の構造は、アモルファスであると考えられる。酸化アルミニウム層がスパークにより溶融してから冷却して固体になるまでの時間が極めて短いため結晶化しにくいと考えられるからである。Si半導体のように共有結合性の半導体は結合の大きさに方向性があるため結晶性がなければキャリア伝導路を得ることができないが、酸化アルミニウムのようにイオン結合性の強い半導体は結合の大きさに方向性がないためアモルファスでもキャリア伝導路を確保することができる。これによりアモルファスでも半導体特性が得られる。
 (半導体層の形成過程の推定)
 (金属アルミニウムをプラス、プローブをマイナスにしてスパークした場合)
 このような極めて特殊な元素構成を有する半導体層になる理由について推定した。
 はじめに、スパーク時、金属アルミニウムをプラス、プローブをマイナスにした場合について示す。
 図9は、スパークにより絶縁体である酸化アルミニウム膜が溶融した状態を示す。スパーク時には図3に示したように、短時間スパーク電流が流れるが、この間、酸化アルミニウム膜は融点以上の高温になり溶融塩となる。酸化アルミニウム膜の融点は2072℃である。融点以上の温度で(1)式及び(2)式に従い溶融塩電解が生じ、(3)式のようにAl3+とO2-が蓄積して半導体層は厚くなる。
アノード反応(Al金属側) Al→Al3++3e (1)
カソード反応(プローブ側) O2+4e→2O2- (2)
全反応 4Al+3O2→4Al3++6O2- (3)
 スパークが終了すると温度が下がるが、温度下降速度は半導体層内で完全に均一ではなく、固液が混在して部分的に凝固してAlを形成する。溶融状態が残っている部分はまだイオン化していることにより、又は固体のAlは室温では絶縁体であるが、融点近くの高温では電子伝導性が有ることにより、更にはこれらの両方の理由により、図10に示すように上記アノード反応、カソード反応が引き続き起きる。半導体層の金属アルミニウム側にはAl3+イオンが過剰になるが、電気的中性を保つため半導体層内に新たなドナー準位ができる。一方、プローブ側にO2-イオンが過剰になるが、電気的中性を保つため半導体層内に新たなアクセプタ準位ができる。
 更に温度が室温にまで下がると、図11に示した構成の半導体層が形成すると考えられる。半導体層の金属アルミニウム側はAl濃度過剰のn型半導体となり、プローブ側(Pt側)はO濃度過剰のp型半導体となる。両者はpn接合となり、その結合部には空乏層が生じる。空乏層の厚さは新たに生じたドナー準位のキャリア濃度とアクセプタ準位のキャリア濃度により決定されるが、半導体層の断面EDS分析結果等からキャリア濃度の最大値は極めて高い濃度(1027~1029個/m)であると推定され、空乏層の厚さは1nm以下になりトンネル電流が流れやすい。又は、キャリア濃度が極めて高いため皮膜の電子状態が金属化して高い導電性が得られると考えられる。
 金属アルミニウムをアノード、プローブをカソードとして、スパークにより形成したpn接合ダイオードの例を図12に示す。
 以上のメカニズムによりpn接合のダイオードが形成されると推定しているが、スパーク法により実際にpn接合ができている部分の面積は小さいと考えられる。図8に示したaa、ab、acにおける半導体構成を縦横反転して図13に示す。aaには中間にAl層が存在するが、この部分のキャリア濃度は低く、導電性がない又はほとんどないと考えられる。abは上述のpn接合ができている状態である。acはAl3+過剰部とO2-過剰部が混合し、これらが反応してイオン結合しAlが生成すると考えられる。aaと同様にこの部分のキャリア濃度は低く、導電性がない又はほとんどないと考えられる。実際の半導体素子はabの部分で作動すると推定する。
 (金属アルミニウムをマイナス、プローブをプラスにしてスパークした場合)
 次に、スパーク時、金属アルミニウムをマイナス、プローブをプラスにした場合について示す。
 図14は、金属アルミニウム上に酸化アルミニウム膜がスパーク可能な範囲で厚く存在し、スパークにより絶縁体である酸化アルミニウム膜が溶融した状態を示す。スパーク時に短時間スパーク電流が流れるが、この間、酸化アルミニウム膜は融点以上の高温になり溶融塩となる。融点以上の温度で(4)、(5)式に従い溶融塩電解が生じ、(6)式のようにAl3+とO2-が消費されて金属アルミニウムと酸素になり半導体層は薄くなる。
カソード反応(金属アルミニウム側) Al3++3e→Al (4)
アノード反応(プローブ側) 2O2-→O2+4e (5)
全反応 4Al3++6O2-→4Al+3O(6)
 スパークが終了すると温度が下がるが、温度下降速度は半導体層内で完全に均一ではなく、固液が混在して部分的に凝固してAlを形成する。溶融状態が残っている部分はまだイオン化していることにより、又は固体のAlは室温では絶縁体であるが、融点近くの高温では電子伝導性が有ることにより、更にはこれらの両方の理由により、図15に示すように上記カソード反応、アノード反応が引き続き起きる。半導体層の金属アルミニウム側にはO2-イオンが過剰になるが、電気的中性を保つため半導体層内に新たなアクセプタ電位ができる。一方、プローブ側にAl3+イオンが過剰になるが、電気的中性を保つため半導体層内に新たなドナー準位ができる。
 更に温度が室温にまで下がると、図16に示した構成の半導体層が形成すると考えられる。半導体層の金属アルミニウム側はO(酸素)濃度過剰のp型半導体となり、プローブ側(Pt側)はAl濃度過剰のn型半導体となる。両者はpn接合となり、その結合部には空乏層が生じる。空乏層の厚さは新たに生じたドナー準位のキャリア濃度とアクセプタ準位のキャリア濃度により決定されるが、半導体層のキャリア濃度の最大値は極めて高い濃度(1027~1029個/m)であると推定され、空乏層の厚さは1nm以下になりトンネル電流が流れやすい。又は、キャリア濃度が極めて高いため皮膜の電子状態が金属化して高い導電性が得られると考えられる。
 金属アルミニウムをカソード、プローブをアノードとして、スパークに形成したよりpn接合ダイオードの例を図17に示す。半導体層断面の説明は省略する。
 〔実施形態2〕
 (スキャニング法による半導体層のスケールアップ化)
 本発明の実施形態2について、図18~図20に基づいて説明すれば、以下の通りである。
 (スキャニングの目的)
 金属アルミニウム上に生成した酸化アルミニウム膜にプローブを接触させる際、プローブの位置を固定して金属アルミニウムとプローブとの間にスパーク電流を流すと、生成する半導体層又は分解する酸化アルミニウム膜は大きくても直径1~2μm程度でこれを大きくすることは難しい。半導体層のスケールアップ化を実現するために、スパーク電流を流しながら酸化アルミニウム膜に接触させたプローブを移動させることにより半導体層の面積や体積を更に大きくすることができると考えた。本方法を「スキャニング法」と称することにし、生成する半導体層又は分解する酸化アルミニウム膜とスパーク電気量との関係とその具体的方法について示す。
 (スキャニング法の原理)
 (スパーク時における電気化学反応)
 金属アルミニウム上に生成した酸化アルミニウム膜にプローブを接触させて、金属アルミニウムとプローブ間にスパーク電流を流した場合、1μs以下の極短時間、酸化アルミニウム膜は溶融し、金属アルミニウム側をアノード(プラス)にした場合は(7)式の溶融塩反応が、金属アルミニウム側をカソード(マイナス)にした場合は(8)式の溶融塩反応がそれぞれ生じると考えられる。
金属アルミニウム側をアノードにした場合 4Al+3O2→4Al3++6O2- (7)
金属アルミニウム側をカソードにした場合 4Al3++6O2-→4Al+3O(8)
 この反応は1molのAl(実際は2Al3++3O2-)生成((7)式)又は分解((8)式)に対し6F(ファラデー)の電気量が消費される。Alの分子量をM(101.96g/mol)、密度ρ(4.0×10g/m)とすると、1mol当たりのAlの体積は、M/ρ(m/mol)である。1Fで生成又は分解するAlの体積は、M/6ρ(m/F)である。M、ρを代入すると、1Cで生成又は分解するAlの体積は、
M/(6ρFc)/=4.4×10-11(m3/C)
となる。ただしFcはファラデー定数(1F=96500C)である。
 よって、Q(C)の電気量で生成する半導体層の体積又は分解するAl2O3の体積Vm(m3)は、
Vm=MQ/(6ρFc)=4.4×10-11・Q (9)
となる。
 次にAl2O3の密度NAO(個/m3)は、アボガドロ数をAv(6.022×1023個/mol)とすると、NAO=ρAv/M (10)
である。半導体形成に関る電気量Q(C)は、電流をi(A)、通電時間をt(s)とすると、Q=it (11)
であり、n molのAl2O3を生成する電気量をQn(C)、ファラデー定数をFc(c/mol)とすると、Qn=6Fcnより、
n=Qn/(6Fc) (12)
となる。(11)式より、
n=it/(6Fc) (13)
であり、また、n molのAl2O3の生成数、分解数をΔNAOとすると、
ΔNAO=Avn/V(14)
である。(13)式より、
ΔNAO=Avit/(6FcVm) (15)
となる。Al2O3 1mol に対してAl3+は2mol発生するので、n molのAlの生成数、分解数をΔNAlとすると、
ΔNAl=Avit/(3FcVm) (16)
である。Al2O3 1molに対してO2-は3mol発生するので、n molのOの生成数、分解数をΔNOとすると、
ΔNO=Avit/(2FcVm) (17)
となる。
 (金属アルミニウム側をアノードにした場合の溶融塩反応)
 次に、プローブの先端位置を酸化アルミニウム膜表面201上で移動させる方法のひとつとしてスキャニングさせる方法について述べる。図18は、金属アルミニウム上の酸化アルミニウム膜表面201にプローブを接触させ、金属アルミニウム側をアノードにして(7)式の反応式によりスキャニングで形成した半導体層(生成中の半導体層202及び生成した半導体層203)の概念図を示す。プローブ先端の面積よりも実際に酸化アルミニウム膜表面201と接触する面積は小さくなるが、ここではu1(m)×u2(m)の長方形領域で接触すると仮定する。金属アルミニウムとプローブ間にスパーク電流i(A)を流しながら、プローブを定速度v(m/s)で矢印の方向にスキャニングさせて半導体層を生成させる。スパークにより半導体層の厚さは増加してh(m)まで成長する。スキャニングを連続させることにより幅u2(m)、厚さh(m)の直方体状の半導体層が形成されていく。スパーク電流iは、実際の操作では印加電圧を一定にしてスキャニングするので変動しながら凡そ一定値に安定すると考えられるが、ここでは便宜的に定電流とした。
 スパーク電流iにより半導体層が生成する時間、すなわちプローブ先端の接触面がu1×u2の領域を通過する時間tはt=u1/vとなる。
 また、通過する電気量Qは、
Q=u1i/v (18)
となる。tの時間で生成する半導体層の体積VmはVm=u1u2hであるので、
h=Vm/(u1u2) (19)
となる。(19)式に(9)式及び(18)式を代入すると、
h=4.4×10-11・i/(u2v) (20)
となる。これより、
i=2.3×1010・u2vh (21)
となる。
 ここで、プローブ先端接触面のスキャン方向に直角方向の幅(u2)を10μm、スキャン速度(v)を14.6μm、生成する半導体層の厚さ(h)を50nmとして必要なスパーク電流値(i)を計算する。u2=1.0×10-5(m)、v=14.6×10-6(m/s)、h=5.0×10-8(m)を(21)式に代入すると、i≒1.7×10-7(A)となり、0.17μAのスパーク電流値が必要となる。
 (金属アルミニウム側をカソードにした場合の溶融塩反応)
 図19は、金属アルミニウム上の酸化アルミニウム膜表面301にプローブを接触させ、金属アルミニウム側をカソードにして(8)式の反応式によりスキャニングで形成した半導体層(分解中の半導体層302及び分解した半導体層303)の概念図を示す。この場合、酸化アルミニウム膜の分解によって半導体層が形成されるので、スキャニングにより酸化アルミニウム膜が窪む状態になる。半導体層は残った酸化アルミニウム膜より形成される。したがって、金属アルミニウム上の酸化アルミニウム膜の厚さはスキャニングにより窪む高さよりも厚くなるよう作製条件を選ぶ必要がある。図19の詳細説明については、上述の図18の詳細説明における「生成」を「分解」と読み替えれば全て同じであるのでここでは省略する。
 (スキャニングの方法)
 スキャニングパターンの例を図20に示す。半導体層を生成又は分解するため、酸化アルミニウム膜にプローブを接触したままスキャニングすることによりa(m)×b(m)の領域に半導体層を形成させる。ある瞬間において半導体層が形成させる領域Uはプローブの先端が酸化アルミニウム膜に接触してスパーク電流がこの部分全体に流れる部分で上述のu1×u2である。プローブ先端をa×b領域内を速度vで矢印のようにスパーク電流iを流しながらスキャンさせる。
 1回目のスキャニングは、図20のスタート地点にプローブを移動してプローブ先端を試料に接触させ、スパーク電圧VをかけてiをONにして直ちに最上行m1に沿って左から右に移動させる動作である。右端でVをゼロにして一旦プローブを試料から離してiをOFFにし、改行r1にて下行に移り2行目の左端に移動させる。
 2回目のスキャニングは、2行目の左端でプローブ先端を再び試料に接触させて電圧VをかけてiをONにして直ちに2行目m2に沿って左から右に移動させる動作である。右端でVをゼロにしてプローブを試料から離してiをOFFにし、改行r2にて下行に移り3行目の左端に移動させる。
 この往復を重ねていき、プローム先端がbの最終行右端に達したところでスキャニングを終了する。この際縦軸の解像度をpとすると、縦軸のピッチはb/p(m)となる。
 ここで、u2=b/pの関係があれば、計算上スキャンしたa×bの領域全体で半導体層の生成又は酸化アルミニウム膜の分解が均一の厚さで生じることになる。u2<b/pの関係があれば、半導体層の生成又は酸化アルミニウム膜の分解が生じない部分がライン状に発生し、u2>b/pの関係であれば、半導体層の過剰生成部分又は酸化アルミニウム膜の過剰分解部分がライン状に発生する。実際には計算からずれる場合があるので、試作と条件変更を繰り返すことによりスケールアップした半導体層を形成することができる。
 (スキャニングの条件設定)
 ここでスパーク電流により形成したい半導体層のキャリア濃度に対して設定するスキャニング条件との関係を求める。キャリア濃度は過剰に注入されるAl3+イオン濃度に応じて増加するドナー準位のドナー密度と、過剰に注入されるO2-イオン濃度に応じて増加するアクセプタ準位のアクセプタ密度があるが、ここではドナー密度、すなわちAl3+イオン濃度を例にとって計算する。
 Al3+イオン濃度CAl(個/m3)は酸化アルミニウム膜のスパークによるAlの生成又は分解濃度ΔNAl(個/m3)に効率ηAlをかけた値であるので、(16)式は次のようになる。
CAl=ηAlΔNAl=ηAlAvit/(3FcVm) (22)
 ここで、Vm=u1u2h、t=u1/vであるので、これらを(22)式に代入すると、
CAl=ηAl・A/(3Fcu2h)・i/v
 よって、スキャニングにおけるプローブの走査速度v(m/s)、通電電流i(A)、酸化アルミニウム膜の生成又は分解厚さh(m)、プローブの走査方向に直角の幅u2(m)、キャリア生成効率ηAlと、Al3+イオン濃度CAl(個/m3)は(23)式で表される。
CAl=2.08×1018・i/(u2hv)・ηAl (23)
 (スキャニング装置の仕様)
 日本電子製走査型プローブ顕微鏡JSPM-5200に導電性プローブを取り付けで半導体層が形成できるか装置の仕様を調べた。この結果スキャニング法による半導体層形成に関る装置の仕様は表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
 本装置ではプローブと試料間に定電圧を印加した走査はできるが定電流走査はできない。しかし、測定電流のレンジ設定により最大電流の設定ができる。
 (スキャニング法による生成計算)
 (高キャリア濃度半導体層の形成)
 JSPM-5200を用いてスキャニング法による半導体層の形成について計算した。一例として、(7)式に従った電流方向で、ベースとなる酸化アルミニウム膜を自然酸化皮膜とし、CAlを高濃度1×1028(個/m3)にする場合の電流値iを(23)式にて計算した。プローブ先端幅U2を1×106m(1.0μm)、半導体層形成高さhを2×10-8m(20nm)、スキャン速度vを1.46×10-5m/s(14.6μm/s)、キャリア生成効率ηAlを0.1とすると、i=1.4×10-8(A)、すなわち、14nAとなった。最大電流10nAのレンジを用いれば、CAlは若干低くなるものの半導体層を形成できる。
 (低キャリア濃度半導体層の形成)
 (7)式に従った電流方向で、CAlを低濃度1×1025(個/m3)にする場合について検討した。濃度は上記高濃度の場合よりも3桁低いので、電流値を3桁低くするか、速度を3桁上げるか、又は両者の設定を変えることが必要だが、いずれもこの装置の仕様範囲を超える設定となる。よって、本装置では低キャリア濃度半導体層の形成はできない。高キャリア濃度に限定される。
 (更なる面積拡大について)
 上述のように1回のスキャニングの範囲が25μm2に限られるため、更に範囲を広げるためには複数のスキャニングを行う必要がある。ただし、1回の測定時間30分の場合でも複数回だと長時間が必要である。更なる面積の拡大については別途検討することにする。
 (他の面積拡大法)
 これまでに示した半導体層はスパーク法によりp型半導体とn型半導体を同時に生成し、pn接合を形成していた。実際にダイオードやトランジスタ等の半導体素子や発振素子にするためにはこれらの方法は必ずしも量産に適した方法とはいえない。
 本半導体素子においても既存の半導体製造技術であるスパッタによる薄膜の形成やフォトリソとエッチングによる素子構造の形成をできるようにすることが望ましい。そこで本発明の半導体層をスパッタで得る方法を示す。
 スパーク法にて形成した半導体層は例えば図8に示すように最表面はO2-が過剰なp型半導体層が存在している。この部分(面)以外をマスクしてターゲット材とスパッタ処理を行い、半導体素子を形成する。Al3+が過剰なn型半導体層を得るためには、上記スパッタを進めてn型半導体層が抽出されるまでスパッタを行うか、又はスパーク時の電流方向を逆にしてアノードとカソードを切換え、表面をn型半導体層にし、これをターゲット材にすることができる。また、ターゲット材の面積を拡大するために上述のスキャニングを行うことも可能である。
 この方法を用い、pn接合を得るためには、例えば、Al3+が過剰な半導体層をターゲット材としてスパッタでアルミニウム基板(カソード集電材を兼ねる)の上にn型半導体の薄膜を形成し、次にO2-が過剰な半導体層をターゲット材として上記n型半導体薄膜の上にスパッタでp型半導体薄膜を形成し、更にp型半導体層にカソード端子を取り付けることにより可能である。
 スパーク時の電気量を変えることにより半導体層のキャリア濃度を制御することが可能である。また他の材料も用いてスパッタとフォトリソとエッチングを繰り返すことによりMOS-FET等の半導体素子を製造することもできる。
 〔実施形態3〕
 (発振素子)
 本発明の実施形態3ついて、図21~図29に基づいて説明すれば、以下の通りである。
 (特許文献1との比較)
 まず、本発明の一態様に係る半導体層について詳細に説明する前に、当該半導体層を備えた発振素子の概要について述べる。本発明者は、特許文献1にて、上記発振素子について詳細に説明している。発振素子についての以下の説明は、特許文献1の開示内容の一部であり、より詳細な内容については特許文献1を参照されたい。
 図21は、本実施形態の発振素子の要部構造を模式的に示す断面図である。発振素子の構造は上述の図17に示すスパーク法に形成したpn接合のダイオードと同じである。
 空乏層の構成を図22に示す。n型半導体にはAl2O3からOが欠乏してAlが過剰となり、Al3+のカチオンと電気的中性を保つための電子が存在している。p型半導体にはAl2O3からAlが欠乏してOが過剰となり、O2-のアニオンと電気的中性を保つためのホールが存在している。n型半導体とp型半導体が接合した付近はn型半導体の電子とp型半導体のホールが結合して消滅し、電子もホールも存在しない部分が生じるが、この部分が空乏層である。
 空乏層を極めて薄くすることにより発振素子を形成することができる。その厚さは1nm以下であることが必要である。ここでAl2O3の1分子の大きさを計算する。アボガドロ数は6.022×1023(1/mol)、Al2O3の分子量は101.96(g/mol)であり、密度を4.0×103(kg/m3)とすると、1分子の占める体積は4.23×10-29(m3)である。これを仮に立方体としてその略一辺の長さdmを計算すると3.5×10-10(m)、すなわちdmは0.35nmになる。発振するための条件は空乏層の厚さxdepがdmの3倍以下であると考えられる。よって、空乏層の厚さxdepは1nm以下であることが望ましい。
 空亡層を薄くするためには、p型半導体のキャリア(ホール)やn型半導体のキャリア、又はp型n型両半導体のキャリア濃度を増やすことにより実現することができる。ここで、アクセプタ濃度をNA、ドナー濃度をNDとすると、p側の空乏層厚さXpとn側の空乏層厚さXnは次式により求めることができる。ただし、キャリア濃度が高濃度になると誤差は大きくなると考えられ、あくまでも目安であって厳密な計算式ではないことを留意すべきである。
Figure JPOXMLDOC01-appb-M000002
 ここで、Vbi:ビルトインポテンシャル(V)、ni:真性半導体のキャリア濃度(m-3)、Xp:p型領域の空乏層幅(m)、Xn:n型領域の空乏層幅(m)、kB:ボルツマン定数(1.38×10-23 (J/K))、T:温度(K)、q:素電荷1.602×10-19(C)、εr:比誘電率、ε0:真空の誘電率(8.854×10-12(F/m))である。
 バイアス電圧をVD(V)とすると、空乏層全体の厚さxdepは次のように表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、N=NA=NDとし、xdepが1nmとなるキャリア濃度Nを求めた。Al2O3のεr=8.9、VD=0(V)とすると、N=2.6×1027(m-3)であった。一般にイオン注入法によりキャリア濃度を増加させる場合、高キャリア濃度とは1×1027(m-3)以上を示すことが多い。よって、このNの値も高キャリア濃度であるといえる。
 一方、発振電流の振幅を最大にするためには、図23のように空乏層の厚さを更に薄くすることが必要である。xdepの値を0.35nm程度にすることが望ましい。この際のNを同様に求めると、N=2.3×1028(m-3)であり、更に1桁ほど高い濃度であった。Al2O3分子におけるAlの濃度は4.73×1028(m-3)、Oの濃度は7.09×1028(m-3)と計算できるので、このNの値は超高キャリア濃度ということができる。キャリア濃度が極めて高い場合に発振の最大電流振幅が得られ、かつ安定した発振となる。
 発振時のI-V特性の例を図24(a)、(b)に示す。図24は、バイアス電圧(横軸)の負の領域が順バイアス側、正の領域が逆バイアス側をそれぞれ示す。バイアス電圧が(a)では-0.1V~+0.1Vの間で、(b)では-0.2~+0.17Vでそれぞれ電流発振の現象が生じた。(a)における発振波形を図25に示す。発振電流は凡そ-0.4~+0.4μAの振幅で生じた。バイアス電圧0Vにおいても同様な大きさの振幅で発振電流が生じた。周波数は約3.4kHzであった。
 図24のI-V特性において、発振しないバイアス電圧((a)では-0.6~-0.1V及び+0.1~+0.6V、(b)では-0.6~-0.2V及び+0.17~+0.6V)の電流に着目すると、原点に対してほぼ対称であり整流性は観察されなかった。通常pn接合があればダイオードとなり整流性を有するが、本素子はキャリア濃度が極めて高く空乏層の厚さが1nm以下であるためp型とn型の接合面でトンネル効果による通電が生じる、又はキャリア濃度が極めて高いため皮膜の電子状態が金属化して高い導電性が得られることにより、pn接合があっても整流特性を示さないと考えられる。
 (発振メカニズムの推定)
 次に、発明者の考える発振メカニズムについて述べる。本発振素子の電流発振のメカニズムはあくまでも仮説であり、メカニズムの全容を解明するには、今後より深い研究を行う必要があることに留意すべきである。
 図22に示すpn接合における空乏層の構成を更に詳しく説明する。図26は、キャリア濃度が比較的低い場合における空乏層内の電界を示す。電界は大きく2種類あると考えられる。一つめのEaはaの空乏層内のカチオン面とアニオン面が対峙して向き合っている部分にかかる電界でfaの力で引き合っている。カチオンとアニオンとの距離は各中央部間で凡そ0.35nm程度と考えられる。二つめのEは、空乏層の外側に存在する電子面(n型半導体側)とホール面(p型半導体側)にかかる電界でfbの力で引き合っている。距離は数nm程度である。EaとEbとは向きは逆で、Ea>>Ebであるので、fa>>fbとなり、実質的には最内のカチオンとカチオン間の静電力となる。
 一方、キャリア濃度が非常に高く、空乏層の距離が0.35nm程度の場合を図27に示す。この場合はEa=Ebとなり、最内イオン間(カチオンとアニオン)に働く力と、最内の電子・ホール間に働く力とが等しくなる。すなわち最内のカチオンとアニオンは静電力から解放され、両者間には引力のみが働くことになる。この引力については例えばvan der Waals力のような力だと考えられる。よって最内のカチオンとアニオンはニュートンの運動方程式に従って振動する。この振動はバイアス電圧が0Vであっても生じる。
 ところで、図24のI-V特性において、発振するバイアス電圧(-0.1~+0.1V)と発振しないバイアス電圧(-0.6~-0.1V及び+0.1~+0.6V)が生じる理由について推定した。図28に示すように、バイアス電圧を順方向にかけると(25)式に従い空乏層の厚さxdepは小さくなる。0.1Vをかけると計算上xdepは0.34nmと狭くなる。この場合はEb>Eaとなり、電界が働くためニュートン運動は抑えられ電流発振は生じなくなると考えられる。また、図29に示すように、バイアス電圧を逆方向にかけると(25)式に従い空乏層の厚さxdepは大きくなる。-0.1Vをかけると計算上xdepは0.36nmと広くなる。この場合はEa>Eとなり、電界が働くためニュートン運動は抑えられ電流発振は生じなくなると考えられる。以上のように電流発振のメカニズムを推定した。
 以下、実施例によって本発明をより詳細に説明するが、本発明は当該実施例に限定されるものではない。
 (実施例1)
 はじめに、アルミニウム板(1085材、12×30mm、厚さ0.2mm )を用意した。この試料を95℃に加熱した純水に浸せきして、厚さ約20nmのベーマイト皮膜をアルミニウム板上に形成した。次にマニュアルプローバ20を用意した。プローブには、直径0.2mmの白金線(H材)の先端を削り直径0.02mmにし、白金線の根本はコイル状に巻いたものを用いた。図2に示す装置10を用意し結線した。
 電流制限抵抗15を100Ω、シャント抵抗14を100Ω、電流直流安定化電源の出力を36Vとし、大気中プローブ先端を試料に接触させてからスイッチボックス13のスイッチを閉じた。プローブ先端とアルミニウム板間でスパークした。プローブ先端を接触させた部分には厚さ30nm程度の半導体層が形成した。この時の試料にかかる電圧と試料に流れる電流変化をオシロスコープ12で測定した。通電直後、試料に一瞬36Vが印加されるがすぐに電圧は約10V程度に低下した。電流は約0.1Aであった。この状態は0.3μs継続した。
 (I-V測定結果)
 通電終了後プローブはそのままの状態を維持し、図2における結線をI-V測定に切り換え、得られた半導体層のI-V測定を行った。その結果を図4に示す。-0.6~1.0Vの電圧範囲を0.1V/sの速度で走査した。-0.55~+0.2Vの間でほぼ直線関係が得られた。この電圧範囲においてはアルミニウム板とプローブとの間にトンネル電流又は皮膜の電子状態の金属化による電流が流れたと考えられる。-0.55V以下と+0.2V~+0.55Vで直線関係からはずれて大電流が流れた。また+0.55~+1.0Vの間、電流はほとんど流れなかった。このように広い電圧範囲で直線関係からはずれる理由は現時点では分からないが、半導体層のキャリア挙動が不安定な状況にあると考えられる。なお、仮にアルミニウム板とプローブとが短絡していたとするならばI-V特性の全電圧領域で直線関係になるはずであるが、そうではないので直線関係は形成した半導体層固有の特性である。
 (実施例2)
 実施例1と同様に、アルミニウム板(1085材、20×60mm、厚さ0.18mm)を用意した。この試料を95℃に加熱した純水に浸せきして、厚さ約20nmのベーマイト皮膜をアルミニウム板上に形成した。
 図2に示す電流制限抵抗15を100Ωから1kΩにし、プローブ先端をベーマイト処理膜に接触させ、上記と同じ方法でスパークして半導体層を形成した。この際の試料の電圧、電流は図3と同じような挙動であったが、溶融塩の電解時間は30ns程度に、電流は0.03A程度に減少した。溶融塩電解の反応に関る電気量は上記の例の1/100程度であった。
 (I-V測定結果)
 ここで生成した半導体層のI-V特性を図5に示す。電圧-0.6V以下で負の電流が流れたがそれ以上の電圧では電流は流れなく、整流特性が示された。半導体層の中にpn接合が形成され、半導体層のアルミニウム板側がn型半導体、プローブ側がp型半導体のpn接合ダイオードが形成された。
 (実施例3)
 はじめに次の試料を用意した。アルミニウム板(24×24mm、厚さ0.1mm)を基板とし、フルウチ化学製5NアルミニウムAl(φ76×6mm厚)をターゲット材としてAr+O2ガス、全圧0.4Paの条件で約40分間スパッタを行い、アルミニウム板上に約30nmの酸化アルミニウム膜を付与した。スパッタ装置として、日電アネルバ製SPC-350型を用いた。
 次に、JSPM-5200を用いてスキャニング法による半導体層の形成を行った。先端幅が1.0μmのプローブを用意し、スキャン速度を14.6μm/s、電流値を10nAとしてスキャニングを行い、25×25μmのサイズの素子を形成した。
 (I-V測定の結果)
 スパッタで作製した素子の表面に実施例1と同じプローブを接触させてI-V特性を測定した。-0.5~+0.5Vの間で直線関係が得られた。この電圧範囲においてはアルミニウム板とプローブとの間にトンネル電流又は皮膜の電子状態の金属化による電流が流れたと考えられる。-0.5V以下と+0.5V以上ではほとんど電流は流れなかった。整流作用はなかったが、キャリア濃度が高い場合の本半導体素子固有のI-V特性が得られた。
 (低キャリア濃度半導体層の形成について)
 キャリア濃度を低濃度(例えば1×1025(m-3))にする場合について検討した。濃度は上記高濃度の場合よりも3桁低いので、電流値を3桁低くするか、速度を3桁上げるか、又は両者の設定を変えることが必要だが、いずれもこの装置の仕様範囲を超える設定となる。よって本装置では低キャリア濃度半導体層の形成はできなかった。高キャリア濃度に限定される。
 (実施例4)
 次の試料を用意した。アルミニウム板(24×24mm、厚さ0.1mm)を基板とし、フルウチ化学製5NアルミニウムAl(φ76×6mm厚)をターゲット材としてAr+O2ガス、全圧0.4Paの条件で約40分間スパッタを行い、アルミニウム板上に約30nmの酸化アルミニウム薄膜を付与した。スパッタ装置として、日電アネルバ製SPC-350型を用いた。
 電流制限抵抗15を100Ω、シャント抵抗14を100Ω、電流直流安定化電源の出力を60Vとし、大気中プローブ先端を試料に接触させてからスイッチボックス13のスイッチを閉じた。プローブ先端とアルミニウム板間でスパークした。プローブ先端を接触させた部分には厚さ50nm程度の半導体層が形成した。この時の試料にかかる電圧と試料に流れる電流変化をオシロスコープ12で測定した。通電直後、試料に一瞬60Vが印加されるがすぐに電圧は約10V程度に低下した。電流は約0.2Aであった。この状態は0.3μs継続した。
 (I-V測定の結果)
 I-V特性の例を図24に示す。この図はバイアス電圧(横軸)の負の領域が順バイアス側、正の領域が逆バイアス側をそれぞれ示す。バイアス電圧が-0.1V~+0.1Vの間で電流発振の現象が生じた。発振波形を図25に示す。発振電流は凡そ-0.4~+0.4μAの振幅で生じた。バイアス電圧0Vにおいても同様な大きさの振幅で発振電流が生じた。周波数は約3.4kHzであった。
 〔本発明の用途〕
 本発明に係る、半導体層として生成したアルミニウム酸化物は、化学量論的物質であるAl(O/Al=1.5)ではなく、Al欠乏又はO過剰(O/Al>1.5)のp型半導体、及び、Al過剰又はO欠乏(O/Al<1.5)のn型半導体である。p型半導体層及びn型半導体層の各キャリア濃度を~1027/mに調整し、pn接合すればダイオードとなる。キャリア濃度を適宜調整したp型半導体層及びn型半導体層と化学量論的な酸化アルミニウム等の絶縁体とを立体的に組み合わせればトランジスタやサイリスタ等の半導体素子になる。これらは、ワイドバンドギャップのパワー半導体としての利用が期待できる。更に、透明酸化物半導体の特性を組み合わせれば太陽電池の構成材料、ディスプレーパネルへ適応できる。
 一方、p型半導体層及びn型半導体層の各キャリア濃度を1028~1029/mにし、pn接合すれば発振素子になり直流電流を交流電流に変換するインバータへの利用が期待できる。この発振素子に透明酸化物半導体の特性と紫外域の発光ダイオードを組み合わせれば、周波数可変型インバータとなりインバータの適応範囲を広げることができる。また、このような高いキャリア濃度では半導体層の電子状態が金属化するので極めて良好な導電性が得られ高性能導電体として期待できる。更に、透明酸化物半導体の特性を組み合わせれば透明導電体としても利用できる。
 本発明に係るp型半導体層及びn型半導体層は、極めて高い酸化剤又は還元剤となるので、新しい化学物質としても有望である。透明酸化物半導体の特性を組み合わせれば燃料電池用電極材や光合成電極に活用できる可能性もある。更に、半導体のターゲット材への利用が期待できる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 10  装置
 11  直流安定化電源
 12  オシロスコープ
 13  スイッチボックス
 14  シャント抵抗
 15  電流制限抵抗
 20  マニュアルプローバ
 21  マニュピレータ
 22  スイッチ
 23  I-V測定器
 101  プローブ
 101a  プローブ先端
 102  酸化アルミニウム膜
 103  金属アルミニウム
 201、301  酸化アルミニウム膜表面
 202、203、302、303  半導体層

Claims (11)

  1.  酸化アルミニウム膜にアルミニウムを過剰に含有させることによりドナー準位を形成したn型半導体と、酸化アルミニウム膜に酸素を過剰に含有させることによりアクセプタ準位を形成したp型半導体とを接合したpn接合を含むことを特徴とする半導体層。
  2.  酸化アルミニウム膜に酸素を過剰に含有させることによりアクセプタ準位を形成したp型半導体を含むことを特徴とする半導体層。
  3.  酸化アルミニウム膜の一方の面に金属アルミニウムを、前記酸化アルミニウム膜の他方の面にプローブを接触させ、大気中、酸素含有ガス中又は酸素ガス中で、アノードとしての前記金属アルミニウムとカソードとしての前記プローブとの間に、前記酸化アルミニウム膜の絶縁破壊が生じる電圧を印加して前記酸化アルミニウム膜を溶融させ、
     前記溶融の間に、前記酸化アルミニウム膜に溶融塩電解反応を生じさせ、冷却させることにより、前記酸化アルミニウム膜の前記金属アルミニウム側にn型半導体層を、前記酸化アルミニウム膜の前記プローブ側にp型半導体層を、それぞれ生成し、且つ、前記n型半導体層と前記p型半導体層とを接合することを特徴とする半導体層の製造方法。
  4.  酸化アルミニウム膜の一方の面に金属アルミニウムを、前記酸化アルミニウム膜の他方の面にプローブを接触させ、大気中、ガス中又は真空中で、カソードとしての前記金属アルミニウムとアノードとしての前記プローブとの間に、前記酸化アルミニウム膜の絶縁破壊が生じる電圧を印加して前記酸化アルミニウム膜を溶融させ、
     前記溶融の間に、前記酸化アルミニウム膜に溶融塩電解反応を生じさせ、冷却させることにより、前記酸化アルミニウム膜の前記金属アルミニウム側にp型半導体層を、前記酸化アルミニウム膜の前記プローブ側にn型半導体層を、それぞれ生成し、且つ、前記n型半導体層と前記p型半導体層とを接合することを特徴とする半導体層の製造方法。
  5.  前記酸化アルミニウム膜に溶融塩電解反応を生じさせる際、前記溶融塩電解反応を起こす通電電気量を調整することにより、前記n型半導体のドナー濃度又は前記p型半導体のアクセプタ濃度を制御可能にしたことを特徴とする請求項3又は4に記載の半導体層の製造方法。
  6.  前記酸化アルミニウム膜に溶融塩電解反応を生じさせる際、前記プローブを前記酸化アルミニウム膜に接触させながら移動させることを特徴とする請求項3~5のいずれか1項に記載の半導体層の製造方法。
  7.  前記プローブを前記酸化アルミニウム膜に接触させながら移動させる際、前記印加電圧を、(1)連続的に変化させる、(2)不連続に変化させる、(3)極性を一方向又は両方向に変化させる、又は、前記(1)~(3)を組み合わせて変化させることを特徴とする請求項3~6のいずれか1項に記載の半導体層の製造方法。
  8.  酸化アルミニウム膜にアルミニウムを過剰に含有させることによりドナー準位を形成したn型半導体と、酸化アルミニウム膜に酸素を過剰に含有させることによりアクセプタ準位を形成したp型半導体とを接合したpn接合を含むことを特徴とする発振素子。
  9.  酸化アルミニウム膜の一方の面に金属アルミニウムを、前記酸化アルミニウム膜の他方の面にプローブを接触させ、大気中、酸素含有ガス中又は酸素ガス中で、アノードとしての前記金属アルミニウムとカソードとしての前記プローブとの間に、前記酸化アルミニウム膜の絶縁破壊が生じる電圧を印加して前記酸化アルミニウム膜を溶融させ、
     前記溶融の間に、前記酸化アルミニウム膜に溶融塩電解反応を生じさせ、冷却させることにより、前記酸化アルミニウム膜の前記金属アルミニウム側にn型半導体層を、前記酸化アルミニウム膜の前記プローブ側にp型半導体層を、それぞれ生成し、且つ、前記n型半導体層と前記p型半導体層とを接合し、
     前記接合により形成される空乏層の厚さは、1nm以下であることを特徴とする発振素子の製造方法。
  10.  酸化アルミニウム膜の一方の面に金属アルミニウムを、前記酸化アルミニウム膜の他方の面にプローブを接触させ、大気中、ガス中又は真空中で、カソードとしての前記金属アルミニウムとアノードとしての前記プローブとの間に、前記酸化アルミニウム膜の絶縁破壊が生じる電圧を印加して前記酸化アルミニウム膜を溶融させ、
     前記溶融の間に、前記酸化アルミニウム膜に溶融塩電解反応を生じさせ、冷却させることにより、前記酸化アルミニウム膜の前記金属アルミニウム側にp型半導体層を、前記酸化アルミニウム膜の前記プローブ側にn型半導体層を、それぞれ生成し、且つ、前記n型半導体層と前記p型半導体層とを接合し、
     前記接合により形成される空乏層の厚さは、1nm以下であることを特徴とする発振素子の製造方法。
  11.  前記酸化アルミニウム膜に溶融塩電解反応を生じさせる際、前記プローブを前記酸化アルミニウム膜に接触させながら移動させることを特徴とする請求項9又は10に記載の発振素子の製造方法。
PCT/JP2018/022013 2017-06-09 2018-06-08 半導体層、発振素子及び半導体層の製造方法 WO2018225855A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18813187.4A EP3637476A4 (en) 2017-06-09 2018-06-08 SEMICONDUCTOR LAYER, OSCILLATION ELEMENT AND SEMICONDUCTOR LAYER MANUFACTURING PROCESS
JP2019523991A JP7282029B2 (ja) 2017-06-09 2018-06-08 半導体層の製造方法及び発振素子の製造方法
US16/620,221 US10930522B2 (en) 2017-06-09 2018-06-08 Semiconductor layer, oscillation element, and semiconductor layer manufacturing method
KR1020207000475A KR102263151B1 (ko) 2017-06-09 2018-06-08 반도체층, 발진 소자 및 반도체층의 제조 방법
CN201880037796.4A CN110741479B (zh) 2017-06-09 2018-06-08 半导体层、振荡元件以及半导体层的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-114559 2017-06-09
JP2017114559 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225855A1 true WO2018225855A1 (ja) 2018-12-13

Family

ID=64566039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022013 WO2018225855A1 (ja) 2017-06-09 2018-06-08 半導体層、発振素子及び半導体層の製造方法

Country Status (7)

Country Link
US (1) US10930522B2 (ja)
EP (1) EP3637476A4 (ja)
JP (1) JP7282029B2 (ja)
KR (1) KR102263151B1 (ja)
CN (1) CN110741479B (ja)
TW (1) TWI735786B (ja)
WO (1) WO2018225855A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022540A (ja) * 2019-07-30 2021-02-18 株式会社Uacj 半導体電池、負極材、正極材及び半導体電池の製造方法
JPWO2020050181A1 (ja) * 2018-09-03 2021-08-26 株式会社Uacj 半導体製造方法及び半導体製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215755A (ja) * 1996-02-09 1997-08-19 Poritoronikusu:Kk 皮接治療具
JP2016051825A (ja) * 2014-08-29 2016-04-11 高知県公立大学法人 量子井戸構造および半導体装置
WO2016175251A1 (ja) 2015-04-28 2016-11-03 株式会社Uacj 発振素子及び発振装置
WO2018004009A1 (ja) * 2016-06-30 2018-01-04 株式会社Flosfia p型酸化物半導体及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022379A (ja) * 1983-07-19 1985-02-04 Nec Corp 半導体装置
US5944685A (en) 1996-02-09 1999-08-31 Polytronics, Ltd. Skin-contact type medical treatment apparatus
JP6133191B2 (ja) * 2013-10-18 2017-05-24 古河電気工業株式会社 窒化物半導体装置、ダイオード、および電界効果トランジスタ
JP6655294B2 (ja) 2015-03-19 2020-02-26 株式会社デンソーウェーブ Plc操作装置の樹脂ケース

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215755A (ja) * 1996-02-09 1997-08-19 Poritoronikusu:Kk 皮接治療具
JP2016051825A (ja) * 2014-08-29 2016-04-11 高知県公立大学法人 量子井戸構造および半導体装置
WO2016175251A1 (ja) 2015-04-28 2016-11-03 株式会社Uacj 発振素子及び発振装置
WO2018004009A1 (ja) * 2016-06-30 2018-01-04 株式会社Flosfia p型酸化物半導体及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020050181A1 (ja) * 2018-09-03 2021-08-26 株式会社Uacj 半導体製造方法及び半導体製造装置
JP7062776B2 (ja) 2018-09-03 2022-05-06 株式会社Uacj 半導体製造方法及び半導体製造装置
US11410850B2 (en) * 2018-09-03 2022-08-09 Uacj Corporation Aluminum oxide semiconductor manufacturing method and aluminum oxide semiconductor manufacturing device
JP2021022540A (ja) * 2019-07-30 2021-02-18 株式会社Uacj 半導体電池、負極材、正極材及び半導体電池の製造方法
JP7244386B2 (ja) 2019-07-30 2023-03-22 株式会社Uacj 半導体電池、負極材、正極材及び半導体電池の製造方法

Also Published As

Publication number Publication date
KR102263151B1 (ko) 2021-06-08
KR20200014908A (ko) 2020-02-11
TWI735786B (zh) 2021-08-11
US20200135494A1 (en) 2020-04-30
EP3637476A4 (en) 2021-03-10
US10930522B2 (en) 2021-02-23
TW201903904A (zh) 2019-01-16
EP3637476A1 (en) 2020-04-15
CN110741479A (zh) 2020-01-31
JPWO2018225855A1 (ja) 2020-04-09
CN110741479B (zh) 2023-10-13
JP7282029B2 (ja) 2023-05-26

Similar Documents

Publication Publication Date Title
Tittes et al. Electrochemical deposition of Bi 2 Te 3 for thermoelectric microdevices
US4640744A (en) Amorphous carbon electrodes and their use in electrochemical cells
WO2018225855A1 (ja) 半導体層、発振素子及び半導体層の製造方法
Szymczak et al. Electrodeposition of stoichiometric bismuth telluride Bi2Te3 using a piperidinium ionic liquid binary mixture
Jung et al. Thermoelectric generator based on a bismuth-telluride alloy fabricated by addition of ethylene glycol
TW202232875A (zh) 發電元件、發電裝置、電子機器、及發電元件的製造方法
Yamamoto et al. Electrodeposition of Co–Sb thermoelectric film from ethylene glycol–CoCl2–SbCl3 solution
TWI803691B (zh) 半導體製造方法及半導體製造裝置
Ahmad et al. Effect of different metallic contacts on the device performance of a pn heterostructure of a topological insulator and silicon (p-Bi 2 Te 3/n-Si)
US9388498B2 (en) Electrochemical liquid-liquid-solid deposition processes for production of group IV semiconductor materials
Zeng et al. Cathode-Control Alloying at an Au-ZnSe Nanowire Contact via in Situ Joule Heating
US11342131B2 (en) Electron acceleration and capture device for preserving excess kinetic energy to drive electrochemical reduction reactions
Jangid et al. Self-Assembly and Electrochemical Characterization of Ferrocene-based Molecular Diodes for Solar Rectenna Device
Hamidi et al. Electrochemical deposition of Zinc Oxide thin film using two-terminal setup
JP7244386B2 (ja) 半導体電池、負極材、正極材及び半導体電池の製造方法
Mohan et al. Electronic conductivity of mechanochemically synthesized nanocrystalline Ag 1− x Cu x I system using DC polarization technique
Ohto et al. Nanoscale modifications of chalcogenide glasses using scanning tunneling microscopes
Onkar Synthesis Characterization and Application of Cd1 x FexS thin Films
Muthuvel Electrodeposition of compound semiconductors on indium phosphide (INP) using Electrochemical Atomic Layer Epitaxy (EC-ALE)
Mamedov Threshold switching in electrodeposited Cu1. 91Te and Cu1. 84Te layers with Al electrodes
JP2023552508A (ja) 電気エネルギーを生成するためのデバイスおよび方法
Djellal et al. Photoelectrochemical Characterization of Chalcopyrite Cu (In0. 6Ga0. 4) 3Se5
Yin et al. Memristive Behavior Enabled by Amorphous-Crystalline Two Dimensional Oxide Heterostructure
Kalisman Study of the Electrochemical System of Antimony-Tellurium in Dimethyl Sulfoxide for Growth of Nanowire Arrays, and an Innovative Method for Single Nanowire Measurements
Chatman Electronic properties of electrodeposited semiconductor junctions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207000475

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018813187

Country of ref document: EP

Effective date: 20200109