WO2018225558A1 - 二軸配向ポリエステルフィルム - Google Patents
二軸配向ポリエステルフィルム Download PDFInfo
- Publication number
- WO2018225558A1 WO2018225558A1 PCT/JP2018/020338 JP2018020338W WO2018225558A1 WO 2018225558 A1 WO2018225558 A1 WO 2018225558A1 JP 2018020338 W JP2018020338 W JP 2018020338W WO 2018225558 A1 WO2018225558 A1 WO 2018225558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- acid
- resin
- glycol
- biaxially oriented
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/09—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/16—Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/31—Heat sealable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/748—Releasability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/40—Closed containers
- B32B2439/46—Bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/70—Food packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/80—Medical packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2519/00—Labels, badges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2553/00—Packaging equipment or accessories not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
- C08L2203/162—Applications used for films sealable films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Definitions
- the present invention relates to a polyester film used in the packaging field of foods, pharmaceuticals, industrial products and the like. More specifically, the present invention relates to a polyester film that is excellent in pinhole resistance, bag breaking resistance, adhesiveness after being subjected to boil treatment or retort treatment, and has little positional deviation at the time of bonding with a pitch deviation or sealant during printing.
- polybutylene terephthalate resin is superior in impact resistance, gas barrier property, and chemical resistance to polyethylene terephthalate resin, its application in the film field such as a film for food packaging and a film for drawing is being studied.
- Patent Document 1 discloses a biaxially oriented polybutylene terephthalate film made of a polyester-based resin composition in which a polybutylene terephthalate resin alone or a polyethylene terephthalate resin is blended in an amount of 30% by weight or less with respect to the polybutylene terephthalate resin. It is disclosed that the number of pinholes when bent 1000 times under the condition of 5 ° C. ⁇ 40% RH is 10 or less, which is more suitable for a liquid filling packaging material.
- Patent Document 2 in a film composed of a polyethylene terephthalate resin and a polybutylene terephthalate resin, the heat resistance of the unstretched sheet is reduced by setting the transesterification index between the polyethylene terephthalate resin and the polybutylene terephthalate resin to 10% or less. It is disclosed that it does not cause fusing during stretching. However, there is no disclosure about improvement of the positional deviation at the time of bonding with the pitch deviation or the sealant.
- JP 2014-015233 A Japanese Patent Laid-Open No. 2003-2987
- the present invention has been made against the background of the problems of the prior art. That is, the object of the present invention is excellent in pinhole resistance, rupture resistance, excellent adhesive strength even after being boiled or retorted, and at the time of bonding such as pitch deviation or sealant during printing. The object is to obtain a polyester film with little misalignment.
- a biaxially oriented stretched film mainly comprising polybutylene terephthalate resin has a dimensional change rate in the longitudinal direction at 80 ° C., a heat shrinkage rate, and a degree of plane orientation.
- pinhole resistance, bag breakage resistance, excellent adhesive strength even after retort processing, and in the bonding process with the printing process and sealant on the base material layer It has been found that the dimensional change of the film is small even in the case where the film is heated while tension is applied, and that it is difficult for pitch deviation at the time of printing and positional deviation at the time of bonding of the sealant to occur.
- a biaxially oriented polyester film that satisfies the following (a) to (d) simultaneously.
- a polyester resin composition containing 60 to 90% by weight of polybutylene terephthalate resin (A) and 10 to 40% by weight of polyester resin (B) other than polybutylene terephthalate resin (A).
- B) The dimensional change rate at 80 ° C. with respect to the original film length of the temperature dimensional change curve measured using a thermal mechanical analyzer (TMA) is 1.0% or less in the longitudinal direction of the film.
- TMA thermal mechanical analyzer
- the thermal shrinkage rate at 150 ° C. in the longitudinal direction and the width direction of the film is both 4.0% or less.
- D The plane orientation degree ⁇ P of the film is 0.136 to 0.154.
- polyester resin (B) other than the polybutylene terephthalate resin (A) is at least one resin selected from the following (1) to (5) Oriented polyester film.
- the polyester resin (B) other than the polybutylene terephthalate resin (A) is polyethylene terephthalate, and a chain structure of ethylene glycol (EG) -terephthalic acid (TPA) -butanediol (BD) in the polyester resin composition
- the present inventors have excellent pinhole resistance, bag breaking resistance, and excellent adhesive strength even after being boiled or retorted, and are bonded with a pitch deviation or a sealant during printing. It became possible to obtain a polyester film with little positional displacement.
- the polyester resin composition used for the film of the present invention comprises a polybutylene terephthalate resin (A) as a main constituent, and the content of the polybutylene terephthalate resin (A) is preferably 60% by weight or more, and 75% by weight. % Or more is preferable, and further 85% by weight or more is preferable. If it is less than 60% by weight, the resistance to pinholes and the resistance to bag breakage will decrease.
- the polybutylene terephthalate resin (A) used as the main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, as the dicarboxylic acid component. Yes, and most preferably 100 mol%.
- 1,4-butanediol as the glycol component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butane during polymerization. Except for by-products generated by the ether bond of the diol, it is not included.
- the polyester resin composition used for the film of the present invention is a polyester resin (B) other than the polybutylene terephthalate resin (A) for the purpose of adjusting the film forming property when biaxially stretching and the mechanical properties of the obtained film. Can be contained.
- Examples of the polyester resin (B) other than the polybutylene terephthalate resin (A) include at least one resin selected from the following (1) to (5).
- polyethylene terephthalate resin has a high melting point and is excellent in heat resistance, so it is difficult to change in dimensions, and because it has excellent compatibility with polybutylene terephthalate resin, it is excellent in transparency.
- polyethylene terephthalate resin has a high melting point and is excellent in heat resistance, so it is difficult to change in dimensions, and because it has excellent compatibility with polybutylene terephthalate resin, it is excellent in transparency.
- the lower limit of the intrinsic viscosity of the polybutylene terephthalate resin (A) used in the film of the present invention is preferably 0.8 dl / g, more preferably 0.95 dl / g, and still more preferably 1.0 dl / g. .
- the upper limit of the intrinsic viscosity of the polybutylene terephthalate resin (A) is preferably 1.3 dl / g.
- the adhesive strength of the film may be lowered, or the stress during stretching becomes too high, and the film forming property may deteriorate.
- polybutylene terephthalate resin with high intrinsic viscosity it is necessary to increase the extrusion temperature because the melt viscosity of the resin is high.
- polybutylene terephthalate resin is extruded at a higher temperature, decomposition products are likely to be produced. There is.
- the upper limit of the amount of the polyester resin (B) other than the polybutylene terephthalate resin (A) is preferably 40% by weight or less, more preferably 35% by weight or less, and particularly preferably 15% by weight or less.
- the addition amount of the polyester resin (B) other than the polybutylene terephthalate resin (A) exceeds 40% by weight, the pinhole resistance and the bag breaking resistance are impaired, and the transparency and gas barrier properties are deteriorated. Sometimes.
- the polyester resin composition may contain conventionally known additives such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, and an ultraviolet absorber as necessary.
- a lubricant type for adjusting the dynamic friction coefficient of the film of the present invention in addition to inorganic lubricants such as silica, calcium carbonate and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica has haze. This is particularly preferable in terms of reduction. By these, transparency and slipperiness can be expressed.
- the lower limit of the content of the lubricant in the polyester resin composition is preferably 100 ppm by weight, more preferably 800 ppm by weight, and if it is less than 100 ppm by weight, the slipperiness may be lowered.
- the upper limit of the content of the lubricant is preferably 20000 ppm by weight, more preferably 1000 ppm by weight, particularly preferably 1800 ppm by weight, and if it exceeds 20000 ppm by weight, the transparency may be lowered.
- a preferred method for obtaining the biaxially oriented polyester film of the present invention is to cast a polyester resin composition raw material having the same composition in multiple layers when casting the molten polyester resin composition to a cooling roll. Since polybutylene terephthalate resin has a high crystallization speed, crystallization proceeds even when cast. At this time, when cast as a single layer without forming multiple layers, there is no barrier that can suppress the growth of crystals, so these crystals grow into large spherulites. As a result, the yield stress of the obtained unstretched sheet becomes high, and it becomes easy to break at the time of stretching in the longitudinal direction (hereinafter sometimes abbreviated as MD). In addition, since crystallization proceeds during stretching in the longitudinal direction, breakage easily occurs during stretching in the width direction (hereinafter sometimes abbreviated as TD). The resulting biaxially oriented polyester film has insufficient bag breaking strength and puncture strength.
- the transesterification ratio of the polyester resin (B) other than the polybutylene terephthalate resin (A) in the polyester resin composition as compared with a single layer.
- a polyester resin (B) other than the polybutylene terephthalate resin (A) for example, a highly heat-resistant polyethylene terephthalate resin
- a polyester resin composition is formed by transesterification with the polybutylene terephthalate resin (A). Deterioration of the crystallinity of the product and the tendency of the film to stretch easily at high temperatures can be suppressed. As a result, the dimensional change rate at 80 ° C.
- TMA thermal mechanical analyzer
- the method for producing a biaxially oriented polybutylene terephthalate film of the present invention is specifically formed in the step (1) of forming a molten fluid by melting a polyester resin composition containing 60% by weight or more of a polybutylene terephthalate resin.
- Another step may be inserted between step (1) and step (2), step (2) and step (3).
- a filtration process, a temperature change process, etc. may be inserted between the process (1) and the process (2).
- a temperature changing process, a charge adding process, and the like may be inserted between the process (2) and the process (3).
- the method of melting the polyester resin composition to form a molten fluid is not particularly limited, but a preferable method is a method of heating and melting using a single screw extruder or a twin screw extruder. Can do.
- the method for forming the laminated fluid in the step (2) is not particularly limited, but a static mixer and / or a multilayer feed block is more preferable from the viewpoints of facility simplicity and maintainability. Further, in view of uniformity in the sheet width direction, those having a rectangular melt line are more preferable. It is further preferred to use a static mixer or multilayer feed block with a rectangular melt line. In addition, you may let the resin composition which consists of several layers formed by making a some polyester resin composition merge pass in any 1 type, or 2 or more types of a static mixer, a multilayer feed block, and a multilayer manifold.
- the theoretical number of layers in step (2) needs to be 60 or more.
- the lower limit of the theoretical number of layers is preferably 200, more preferably 500. If the number of theoretical layers is too small, or the distance between layer interfaces becomes long and the crystal size becomes too large, the effects of the present invention tend not to be obtained. In addition, the degree of crystallinity in the vicinity of both ends of the sheet increases, the film formation becomes unstable, and transparency after molding may decrease.
- the upper limit of the theoretical number of layers in step (2) is not particularly limited, but is preferably 100,000, more preferably 10,000, and still more preferably 7,000. Even if the theoretical number of layers is extremely increased, the effect may be saturated.
- the number of theoretical laminations can be adjusted by selecting the number of elements of the static mixer.
- the static mixer is generally known as a static mixer (line mixer) having no drive unit, and the fluid entering the mixer is sequentially stirred and mixed by the elements.
- a typical static mixer element has a structure in which a rectangular plate is twisted 180 degrees, and depending on the direction of twisting, there are a right element and a left element, and the dimensions of each element are 1.5 times the diameter. Based on.
- the static mixer that can be used in the present invention is not limited to this.
- the lamination in the step (2) is performed with a multilayer feed block
- the theoretical number of laminations can be adjusted by selecting the number of divisions / stacking of the multilayer feed block.
- Multiple multilayer feed blocks can be installed in series.
- the above multilayering apparatus can be introduced into the melt line from extrusion to die using only one extruder. .
- step (3) the laminated fluid is discharged from the die and brought into contact with a cooling roll to be solidified.
- the lower limit of the die temperature is preferably 255 ° C., more preferably 260 ° C., and particularly preferably 265 ° C. If the temperature is lower than the above, the discharge may not be stable and the thickness may be uneven. In addition, when the transesterification ratio of the film decreases, the crystallinity of the film increases, and the adhesive strength with a sealant or the like tends to decrease. In addition, a polyethylene terephthalate (PET) resin having a high melting point staying in the resin melt extrusion process becomes an unmelted material, which is mixed into the film and becomes a foreign substance, which may impair the quality of the film.
- PET polyethylene terephthalate
- the upper limit of the resin melting temperature is preferably 285 ° C, more preferably 280 ° C, and most preferably 275 ° C.
- the dimensional change rate exceeds 1.0% in the longitudinal direction (MD) of the film, and the tension applied in the printing process and the bonding process with the sealant makes it easy to stretch in the running direction of the film. May cause misalignment during pasting.
- the upper limit of the die temperature is preferably 320 ° C., more preferably 300 ° C. or less, and further preferably 280 ° C. or less.
- the upper limit of the cooling roll temperature is preferably 25 ° C, more preferably 20 ° C or less. If the above is exceeded, the melted polyester resin composition may have an excessively high crystallinity when cooled and solidified, making stretching difficult.
- the lower limit of the cooling roll temperature is preferably 0 ° C., and if it is lower than the above, the effect of suppressing crystallization when the molten polyester resin composition is cooled and solidified may be saturated. Further, when the temperature of the cooling roll is in the above range, it is preferable to reduce the humidity of the environment near the cooling roll in order to prevent condensation.
- the temperature of the surface of the cooling roll rises because a high-temperature resin comes into contact with the surface.
- the chill roll is cooled by flowing cooling water through the pipe inside, but securing a sufficient amount of cooling water, devising the arrangement of the pipe, performing maintenance so that sludge does not adhere to the pipe, etc. It is necessary to reduce the temperature difference in the width direction. In particular, care should be taken when cooling at low temperatures without using a method such as multilayering.
- the thickness of the unstretched sheet is preferably in the range of 15 to 2500 ⁇ m. More preferably, it is 500 micrometers or less, More preferably, it is 300 micrometers or less.
- the casting in the multilayer structure described above is performed with at least 60 layers, preferably 250 layers or more, more preferably 1000 layers or more.
- the number of layers is small, the spherulite size of the unstretched sheet is increased, and the effect of reducing the yield stress of the obtained biaxially stretched film is lost as well as the effect of improving the stretchability is small.
- the stretching method in step (4) can be either simultaneous biaxial stretching or sequential biaxial stretching, but it has good pinhole resistance and bag breaking resistance, is easy to increase the plane orientation coefficient, and is easy to make the film thickness uniform in the width direction. Sequential biaxial stretching is most preferable from the viewpoint of high film forming speed and high productivity.
- the lower limit of the stretching temperature in the film longitudinal direction (MD) is preferably 55 ° C, more preferably 60 ° C.
- the upper limit of the MD stretching temperature is preferably 100 ° C, more preferably 95 ° C. If the temperature exceeds 100 ° C., the orientation is not applied and the mechanical properties may be deteriorated.
- the lower limit of the MD draw ratio is preferably 3.0 times, and particularly preferably 3.2 times. If it is less than the above, it is difficult to make the degree of orientation in the longitudinal direction of the obtained biaxially oriented polyester film 0.049 or more. As a result, the obtained biaxially oriented polyester film is subjected to a printing step or a bonding step with a sealant. When passing, it becomes easy to stretch due to the tension and temperature applied to the film, and the dimensional change rate at 80 ° C. with respect to the original film length of the temperature dimensional change curve measured using TMA exceeds 1.0% in the longitudinal direction of the film, There may be a shift in the pitch of the printed pattern or a positional shift when pasting with a sealant.
- the upper limit of the MD draw ratio is preferably 4.3 times, more preferably 4.0 times, and particularly preferably 3.8 times. If the above is exceeded, the effect of improving the mechanical strength and thickness unevenness may be saturated.
- the lower limit of the stretching temperature in the width direction (TD) of the film is preferably 60 ° C. If it is less than the above, breakage may easily occur.
- the upper limit of the TD stretching temperature is preferably 100 ° C., and if it exceeds the above, since the orientation is not applied, the mechanical properties may be deteriorated.
- the lower limit of the TD stretch ratio is preferably 3.5 times, more preferably 3.6 times, and particularly preferably 3.7 times. If it is less than the above, the degree of orientation in the width direction becomes small, so that the mechanical strength and thickness unevenness may deteriorate.
- the upper limit of the TD stretch ratio is preferably 5 times, more preferably 4.5 times, and particularly preferably 4.0 times. If the above is exceeded, the effect of improving the mechanical strength and thickness unevenness may be saturated.
- the lower limit of the heat setting temperature in the width direction (TD) of the film is preferably 200 ° C., more preferably 205 ° C. If it is less than the above, the thermal shrinkage rate increases, and there is a risk that a pitch shift at the time of printing or a position shift at the time of bonding with a sealant or the like may occur.
- the upper limit of the TD heat setting temperature is preferably 240 ° C., and if it exceeds the above, the film will melt, and even if it does not melt, it may become extremely brittle.
- the lower limit of the relaxation rate in the width direction (TD) of the film is preferably 0.5%, and if it is less than the above, breakage may easily occur during heat setting.
- the upper limit of the TD relaxation rate is preferably 7%. If the upper limit is exceeded, sagging may occur and thickness unevenness may occur, and the shrinkage in the longitudinal direction during heat setting increases. The strain of molecular orientation becomes large, and the dimensional stability in the width direction may become non-uniform.
- the lower limit of the film thickness is preferably 3 ⁇ m, more preferably 5 ⁇ m, and still more preferably 8 ⁇ m. If it is less than 3 ⁇ m, the strength as a film may be insufficient.
- the upper limit of the film thickness is preferably 100 ⁇ m, more preferably 75 ⁇ m, and still more preferably 50 ⁇ m. If it exceeds 100 ⁇ m, it may become too thick and processing for the purpose of the present invention may be difficult.
- the lower limit of the intrinsic viscosity of the biaxially oriented polybutylene terephthalate film of the present invention is preferably 0.80 dl / g, more preferably 0.85 dl / g, still more preferably 0.90 dl / g, and particularly preferably Is 0.95 dl / g. If it exceeds the above, impact strength, puncture resistance and the like are improved. Moreover, the barrier property after bending is also good.
- the upper limit of the intrinsic viscosity of the biaxially oriented polybutylene terephthalate film is preferably 1.2 dl / g, more preferably 1.1 dl / g.
- the biaxially oriented polybutylene terephthalate film of the present invention preferably has a resin having the same composition throughout the film.
- the dimensional change rate at 80 ° C. with respect to the film original length of the temperature dimensional change curve measured using a thermal mechanical analyzer (TMA) is 1.0% or less in the longitudinal direction (MD) of the film.
- the dimensional change rate is preferably 0.8% or less, more preferably 0.6% or less, and particularly preferably 0.4% or less.
- the lower limit of the dimensional change rate at 80 ° C. with respect to the original film length of the temperature dimensional change curve in the longitudinal direction of the film is ⁇ 1.0%.
- the printed pattern may be displaced in pitch or may be displaced when pasted with a sealant, which may make it difficult to process the film.
- polyester resin (B) other than the polybutylene terephthalate resin (A) ethylene glycol (EG) -terephthalic acid (TPA) -butanediol (in the polyester resin composition)
- the transesterification ratio represented by the chain structure ratio (%) of BD) is preferably 0.8 or more and 3.0% or less.
- the upper limit is more preferably 2.8% or less, still more preferably 2.5% or less, and particularly preferably 2.0% or less.
- the lower limit is more preferably 0.9% or more, still more preferably 1.2% or more.
- the crystallinity of the film is increased, and it becomes difficult to extend in the running direction of the film due to the tension applied in the printing process or the bonding process with a sealant, and the temperature measured using TMA.
- the dimensional change rate at 80 ° C. with respect to the original film length of the dimensional change curve tends to be 1.0% or less in the longitudinal direction of the film.
- the transesterification ratio is 0.8 or more, the crystallinity of the polyester resin composition on the film surface does not become too high. Therefore, since the plane orientation coefficient of the film does not become too high, the adhesive strength with a sealant or the like is maintained.
- the PET resin staying in the melt extrusion process of the resin becomes an unmelted product and is less likely to remain as a foreign substance in the molten film, so that the quality of the film is easily maintained.
- the method for measuring the transesterification ratio is as described in the examples.
- the lower limit of the degree of orientation ( ⁇ Nx) in the longitudinal direction (MD) of the biaxially oriented polyester film of the present invention is preferably 0.049. More preferably, it is 0.050, More preferably, it is 0.052. If it is less than the above, since the orientation is weak, sufficient strength as a film may not be obtained, and the bag breaking resistance may be deteriorated, and the film passes through a bonding step with a printing step or a sealant. In addition, the film tends to be stretched depending on the tension and temperature applied to the film, and may cause a pitch shift during printing or a positional shift during bonding with a sealant. When it is more than the above, sufficient strength as a film is obtained, and bag resistance is easily obtained. Moreover, it is easy to obtain a film having a dimensional change rate at 80 ° C. with respect to the original film length of the temperature dimensional change curve measured using TMA of 1.0% or less in the longitudinal direction of the film.
- the upper limit of the degree of orientation ( ⁇ Nx) in the longitudinal direction (MD) of the biaxially oriented polyester film of the present invention is preferably 0.076, more preferably 0.075, and still more preferably 0.074. If the above is exceeded, the dimensional change rate at 80 ° C. with respect to the original film length of the temperature dimensional change curve measured using TMA may be saturated.
- the method for measuring the MD orientation degree ( ⁇ Nx) is as described in the examples.
- the upper limit of the degree of plane orientation ( ⁇ P) of the biaxially oriented polyester film of the present invention is preferably 0.154, more preferably 0.151, and still more preferably 0.146. If it is more than the above, the orientation is strong in the direction parallel to the film surface, and the adhesive strength with the sealant or the like may decrease.
- the lower limit of the degree of plane orientation ( ⁇ P) of the biaxially oriented polyester film of the present invention is preferably 0.136, more preferably 0.138, and still more preferably 0.140. If it is less than the above, the orientation is weak, and impact strength, bag breaking property and the like may be lowered.
- the method for measuring the degree of plane orientation ( ⁇ P) is as described in the examples.
- the upper limit of the heat shrinkage ratio after heating at 150 ° C. for 15 minutes in the MD and TD directions of the biaxially oriented polyester film of the present invention needs to be 4.0%. Preferably it is 3.0%, More preferably, it is 2%.
- the upper limit of the heat shrinkage rate after heating at 150 ° C. for 15 minutes in the TD direction is particularly preferably 1.0%. Exceeding the above may cause a pitch deviation at the time of printing or a positional deviation at the time of bonding with a sealant or the like. In addition, the bag resistance may be reduced.
- the biaxially oriented polyester film of the present invention is preferably ⁇ 2.0%, more preferably ⁇ 1.0% or more. 0% or more is more preferable, and 0.2% or more is particularly preferable. If it is less than the above, not only the effect of improving the positional deviation at the time of bonding with the pitch deviation and the sealant at the time of printing is saturated, but also the positional deviation at the time of pasting with the pitch deviation at the time of printing or the sealant rather than the slack of the film. Misalignment may occur, and the bag resistance may be reduced.
- the method for measuring the thermal shrinkage after heating at 150 ° C. for 15 minutes is as described in the examples.
- the lower limit of impact strength is preferably 0.05 J / ⁇ m. If it is less than the above, the strength may be insufficient when used as a bag.
- the upper limit of impact strength is preferably 0.2 J / ⁇ m. If the above is exceeded, the improvement effect may become saturated.
- the upper limit of the dynamic friction coefficient of at least one surface of the film is preferably 0.4 or less, preferably 0.39 or less, and most preferably 0.38 or less.
- the upper limit of the haze per thickness of the biaxially oriented polyester film of the present invention is preferably 0.66% / ⁇ m, more preferably 0.60% / ⁇ m, still more preferably 0.53% / ⁇ m. . If it exceeds the above, there is a possibility of degrading the quality of printed characters and images when printing on the film.
- a printing layer may be laminated on the biaxially oriented polyester film of the present invention.
- aqueous and solvent-based resin-containing printing inks can be preferably used.
- the resin used in the printing ink include acrylic resins, urethane resins, polyester resins, vinyl chloride resins, vinyl acetate copolymer resins, and mixtures thereof.
- the printing method for providing the printing layer is not particularly limited, and known printing methods such as an offset printing method, a gravure printing method, and a screen printing method can be used.
- known drying methods such as hot air drying, hot roll drying and infrared drying can be used.
- the biaxially oriented polyester film of the present invention may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, surface roughening treatment as long as the object of the present invention is not impaired.
- Anchor coating, printing, decoration, etc. may be applied.
- a gas barrier layer such as an inorganic thin film layer or a metal foil such as an aluminum foil may be provided on at least one surface of the biaxially oriented polyester film of the present invention.
- the inorganic thin film layer is a thin film made of a metal or an inorganic oxide.
- the material for forming the inorganic thin film layer is not particularly limited as long as it can be formed into a thin film, but from the viewpoint of gas barrier properties, inorganic oxidation such as silicon oxide (silica), aluminum oxide (alumina), a mixture of silicon oxide and aluminum oxide, etc. A thing is mentioned preferably.
- a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint that both flexibility and denseness of the thin film layer can be achieved.
- the mixing ratio of silicon oxide and aluminum oxide is preferably such that Al is in the range of 20 to 70% by weight ratio of metal. If the Al concentration is less than 20%, the water vapor barrier property may be lowered. On the other hand, if it exceeds 70%, the inorganic thin film layer tends to be hard, and the film may be broken during the secondary processing such as printing or laminating, and the barrier property may be lowered.
- silicon oxide is various silicon oxides such as SiO and SiO 2 or a mixture thereof
- aluminum oxide is various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.
- the film thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm. If the thickness of the inorganic thin film layer is less than 1 nm, satisfactory gas barrier properties may be difficult to obtain. On the other hand, even if the thickness exceeds 100 nm, the corresponding effect of improving gas barrier properties is obtained. However, it is disadvantageous in terms of bending resistance and manufacturing cost.
- the method for forming the inorganic thin film layer is not particularly limited.
- a known vapor deposition method such as a vacuum vapor deposition method, a sputtering method, a physical vapor deposition method such as an ion plating method (PVD method), or a chemical vapor deposition method (CVD method).
- PVD method physical vapor deposition method
- CVD method chemical vapor deposition method
- a typical method for forming the inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide thin film as an example.
- a vacuum deposition method a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as a deposition material.
- particles are used as these vapor deposition materials.
- the size of each particle is desirably such that the pressure during vapor deposition does not change, and the preferred particle diameter is 1 mm to 5 mm.
- methods such as resistance heating, high frequency induction heating, electron beam heating, and laser heating can be employed.
- reactive vapor deposition using oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as a reactive gas, or using means such as ozone addition or ion assist.
- the film forming conditions can be arbitrarily changed, for example, by applying a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target.
- Such a vapor deposition material, reaction gas, bias of the deposition target, heating / cooling, and the like can be similarly changed when a sputtering method or a CVD method is employed.
- a printing layer may be laminated on the inorganic thin film layer.
- a layer of another material may be laminated on the biaxially oriented polyester film of the present invention, and as a method thereof, the biaxially oriented polyester film can be laminated after production or can be laminated during film formation.
- the heat-sealable resin layer is usually formed by an extrusion lamination method or a dry lamination method.
- the thermoplastic polymer for forming the heat-sealable resin layer is not particularly limited as long as the sealant adhesiveness can be sufficiently exhibited, such as polyethylene resin such as HDPE, LDPE, LLDPE, polypropylene resin, ethylene-vinyl acetate copolymer, Polyolefin resins such as ethylene- ⁇ -olefin random copolymers and ionomer resins can be preferably used.
- the sealant layer may be a single layer film or a multilayer film, and may be selected according to a required function. For example, in terms of imparting moisture resistance, a multilayer film in which a resin such as an ethylene-cycloolefin copolymer or polymethylpentene is interposed can be used.
- the sealant layer may contain various additives such as a flame retardant, slip agent, anti-blocking agent, antioxidant, light stabilizer, and tackifier.
- the thickness of the sealant layer 16 is preferably 10 to 100 ⁇ m, and more preferably 20 to 60 ⁇ m.
- the layer structure of the laminate using the biaxially oriented polyester film of the present invention is not particularly limited as long as it has at least one biaxially oriented polyester film and a sealant layer of the present invention.
- the laminate using the biaxially oriented polyester film of the present invention can be suitably used for applications such as packaging products, various label materials, lid materials, sheet molded products, laminated tubes, etc., especially for laminated films or packaging.
- a bag for example, a pouch such as a pillow bag, a standing pouch or a four-way pouch
- the thickness of the laminate can be appropriately determined according to the application. For example, it is used in the form of a film or sheet having a thickness of about 5 to 500 ⁇ m, preferably about 10 to 300 ⁇ m.
- the film was evaluated by the following measurement method.
- [Dimensional change rate at 80 ° C] The temperature was measured from room temperature to 200 ° C. using a thermal mechanical analyzer (TMA) manufactured by Shimadzu Corporation. However, the heating rate was 10 ° C./min, the width of the measurement sample was 4 mm, the length of the measurement sample was 10 mm, and the initial tension was 100 mN.
- the dimensional change rate (%) with respect to the original film length in the longitudinal direction (MD) of the film at 80 ° C. in the obtained temperature change curve was read.
- the peak area around 134 ppm caused by butanediol-terephthalic acid-butanediol (BD-TPA-BD) is represented by Sa
- the transesterification ratio was calculated by the following formula (1), where Sb is the peak area near 0.7 ppm, and Sc is the peak area near 133.5 ppm due to ethylene glycol-terephthalic acid-butanediol (EG-TPA-BD). .
- Transesterification ratio (%) Sc / ⁇ 0.5 (Sa + Sb) + Sc ⁇ (1)
- urethane-based two-component curable adhesives (“Takelac (registered trademark) A525S” and “Takenate (registered trademark) A50” manufactured by Mitsui Chemicals, Inc.) are provided.
- a non-stretched polypropylene film (“P1147” manufactured by Toyobo Co., Ltd.) having a thickness of 70 ⁇ m was bonded as a heat-sealable resin layer by a dry laminating method using a ratio of 5: 1 (weight ratio)) to 40 ° C.
- the laminate gas barrier laminate for evaluation was obtained by aging for 4 days.
- all the thickness after drying of the adhesive bond layer formed with a urethane type 2 liquid curable adhesive was about 4 micrometers.
- the other end of the tester was fixed to the outer periphery of a disk-shaped movable head of a tester facing the fixed head at a distance of 17.8 cm (7 inches). Then, the movable head is rotated 440 ° while approaching the fixed head in the direction of 7.6 cm (3.5 inches) along the axis of both heads opposed in parallel, and then 6.4 cm (without rotation) 2.5-inch)
- a one-cycle bending test in which the movement is performed in the reverse direction and the movable head is returned to the initial position is performed continuously for 2000 cycles at a rate of 40 cycles per minute. Repeated. Implementation was at 5 ° C.
- the laminated laminate produced above is subjected to a wet heat treatment that is kept in hot water at 130 ° C. for 30 minutes, and cut into a test piece with a width of 15 mm and a length of 200 mm in an undried state.
- the laminate strength (after retort) was measured using a Tensilon universal material testing machine (“Tensilon UMT-II-500 type” manufactured by Toyo Baldwin Co., Ltd.) under the conditions of °C and relative humidity of 65%.
- the laminate strength was the strength when the tensile speed was 200 mm / min, water was applied between the laminated film and the heat-sealable resin layer, and the film was peeled at a peeling angle of 90 degrees.
- the first registration mark is prepared so that two colors of red and black overlap, and the amount of deviation between the red and black registration marks after printing 60m is measured, and this amount of deviation is used as the amount of pitch deviation during printing as follows. evaluated.
- X The deviation of the printing pitch was 1 mm or more, and it was difficult to adjust the printing press.
- a melt line was introduced into a 12-element static mixer, whereby the melt was divided and laminated to obtain a theoretically 4096 layer multilayer melt made of the same raw material, cast from a T-die at 270 ° C., 15 An unstretched sheet was obtained by adhering to a cooling roll at 0 ° C. by an electrostatic adhesion method.
- the film was stretched 3.3 times in the longitudinal direction (MD) at 60 ° C., then stretched 4.0 times in the width direction (TD) at 90 ° C. through a tenter, and subjected to a tension heat treatment at 210 ° C. for 3 seconds. After a relaxation treatment of 5% for 1 second, the gripping portions at both ends were cut and removed by 10% each to obtain a mill roll of a film having a thickness of 15 ⁇ m.
- Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
- Example 1 it carried out like Example 1 except having changed the raw material composition and the film forming conditions into the biaxially stretched film described in Table 1.
- Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
- the films of Examples 1 to 7 of the present invention have excellent bond strength with a sealant after severe wet heat treatment such as bag-breaking resistance, bending pinhole resistance, and retort sterilization treatment, and as in the printing process. It can be seen that even in the process where tension is applied while being heated, the pitch deviation during printing is small and the film processability is good.
- severe wet heat treatment such as bag-breaking resistance, bending pinhole resistance, and retort sterilization treatment
- the pinhole resistance, the bag breaking resistance, and the adhesive strength after being boiled or retort processed are excellent, and the positional deviation at the time of bonding with a pitch deviation or a sealant at the time of printing is prevented. Since a suppressed polyester film can be obtained and can be widely applied as a food packaging or pharmaceutical packaging material, it is expected to greatly contribute to the industrial world.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
しかしながら、ピッチずれやシーラントとの貼り合せ時の位置ずれの改善についての開示はない。
〔1〕 下記(a)~(d)を同時に満足する二軸配向ポリエステルフィルム。
(a)ポリブチレンテレフタレート樹脂(A)を60~90重量%、ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)を10~40重量%含有するポリエステル樹脂組成物からなる。
(b)サーマルメカニカルアナライザー(TMA)を用いて測定した温度寸法変化曲線のフィルム原長に対する80℃での寸法変化率がフィルムの長手方向において1.0%以下である。
(c)フィルムの長手方向及び幅方向の150℃における熱収縮率がともに4.0%以下である。
(d)フィルムの面配向度ΔPが0.136~0.154である。
(1)ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンテレフタレート、
(2)イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選択される少なくとも1種のジカルボン酸が共重合されたポリブチレンテレフタレート樹脂、
(3)エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる群から選択される少なくとも1種のジオール成分が共重合されたポリブチレンテレフタレート樹脂、
(4)イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選択される少なくとも1種のジカルボン酸が共重合されたポリエチレンテレフタレート樹脂、
(5)若しくは1,3-ブタンジオール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる群から選択される少なくとも1種のジオール成分が共重合されたポリエチレンテレフタレート樹脂。
〔3〕 ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)がポリエチレンテレフタレートであって、ポリエステル樹脂組成物中におけるエチレングリコール(EG)-テレフタル酸(TPA)-ブタンジオール(BD)の連鎖構造比率(%)で表されるエステル交換比率が、0.8~3.0%である〔1〕に記載の二軸配向ポリエステルフィルム。
〔4〕 〔1〕~〔3〕いずれかに記載の二軸配向ポリエステルフィルムの少なくとも片面に、厚み10~100μmのヒートシール性樹脂層が積層された積層フィルム。
(ポリエステル樹脂組成物)
本発明のフィルムに用いられるポリエステル樹脂組成物は、ポリブチレンテレフタレート樹脂(A)を主たる構成成分とするものであり、ポリブチレンテレフタレート樹脂(A)の含有率は60重量%以上が好ましく、75重量%以上が好ましく、更には85重量%以上が好ましい。60重量%未満であると耐ピンホール性、耐破袋性が低下してしまう。
主たる構成成分として用いるポリブチレンテレフタレート樹脂(A)は、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、更に好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、更に好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)としては、下記の(1)~(5)のいずれかから選ばれる少なくとも1種の樹脂が挙げられる。
(1)ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンテレフタレート、
(2)イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選択される少なくとも1種のジカルボン酸が共重合されたポリブチレンテレフタレート樹脂、
(3)エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる群から選択される少なくとも1種のジオール成分が共重合されたポリブチレンテレフタレート樹脂、
(4)イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選択される少なくとも1種のジカルボン酸が共重合されたポリエチレンテレフタレート樹脂、
(5)若しくは1,3-ブタンジオール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる群から選択される少なくとも1種のジオール成分が共重合されたポリエチレンテレフタレート樹脂。
ポリブチレンテレフタレート樹脂(A)の固有粘度の上限は好ましくは1.3dl/gである。上記を越えるとフィルムの接着強度が低下したり、延伸時の応力が高くなりすぎ、製膜性が悪化するとなることがある。更に固有粘度の高いポリブチレンテレフタレート樹脂を使用した場合、樹脂の溶融粘度が高くなるため押出し温度を高温にする必要があるが、ポリブチレンテレフタレート樹脂をより高温で押出しすると分解物が出やすくなることがある。
本発明の二軸配向ポリエステルフィルムを得るための好適な方法のとして、溶融ポリエステル樹脂組成物を冷却ロールにキャストする時に同一の組成のポリエステル樹脂組成物原料を多層化してキャストすることが挙げられる。
ポリブチレンテレフタレート樹脂は結晶化速度が速いため、キャスト時にも結晶化が進行する。このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、これらの結晶はサイズの大きな球晶へと成長してしまう。その結果、得られた未延伸シートの降伏応力が高くなり、長手方向(以下、MDと略す場合がある)の延伸時に破断しやすくなる。
そればかりか、長手方向の延伸の間にも結晶化が進むため、幅方向(以下、TDと略す場合がある)の延伸時にも破断しやすくなる。得られた二軸配向ポリエステルフィルムの破袋強度や突き刺し強度も不十分なフィルムとなってしまう。
工程(1)と工程(2)、工程(2)と工程(3)の間には、他の工程が挿入されていても差し支えない。例えば、工程(1)と工程(2)の間には濾過工程、温度変更工程等が挿入されていても良い。また、工程(2)と工程(3)の間には、温度変更工程、電荷付加工程等が挿入されていても良い。但し、工程(2)と工程(3)の間には、工程(2)で形成された積層構造を破壊する工程があってはならない。
なお、本願発明のように同一組成のポリエステル樹脂組成物で多層化する場合は、一台の押し出し機のみを用いて、押し出しからダイまでのメルトラインに上述の多層化装置を導入することもできる。
また、樹脂の溶融押出し工程内で滞留した融点が高いポリエチレンテレフタレート(PET)樹脂が未溶融物となって、フィルム中に混入し異物となり、フィルムの品位を損ねてしまうことがある。樹脂溶融温度の上限は好ましくは285℃であり、より好ましくは280℃であり、最も好ましくは275℃である。上記を越えると樹脂の分解が進行し、フィルムが脆くなってしまう。またPETを添加した場合においては、フィルムのエステル交換比率が高くなりすぎるために、フィルムの結晶性が低下することにより、TMAを用いて測定した温度寸法変化曲線のフィルム原長に対する80℃での寸法変化率がフィルムの長手方向(MD)において1.0%を超え、印刷工程やシーラントなどとの貼り合せ工程でかかる張力により、フィルムの走行方向に伸びやすくなり、印刷時のピッチずれやシーラントなどとの貼り合せ時の位置ずれなどを引き起こすことがある。
ダイ温度の上限は好ましくは320℃であり、より好ましくは300℃以下であり、更に好ましくは280℃以下である。上記を越えると厚みが不均一となるほか、樹脂の劣化が起こり、ダイリップ汚れなどで外観不良となることがある。
このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。より好ましくは500μm以下であり、更に好ましくは300μm以下である。
MD延伸倍率の上限は好ましくは4.3倍であり、より好ましくは4.0倍であり、特に好ましくは3.8倍である。上記を越えると力学強度や厚みムラ改善の効果が飽和することがある。
本発明の二軸配向ポリエステルフィルムでは、フィルム厚みの下限は好ましくは3μmであり、より好ましくは5μmであり、更に好ましくは8μmである。3μm未満であるとフィルムとしての強度が不足することがある。
フィルム厚みの上限は好ましくは100μmであり、より好ましくは75μmであり、更に好ましくは50μmである。100μmを越えると厚くなりすぎて本発明の目的における加工が困難となることがある。
二軸配向ポリブチレンテレフタレートフィルムの固有粘度の上限は好ましくは1.2dl/gであり、更に好ましくは1.1dl/gである。上記を超えると延伸時の応力が高くなりすぎず、製膜性が良好になる。
本発明の二軸配向ポリブチレンテレフタレートフィルムはフィルム全域に亘って同一組成の樹脂があることが好ましい。
寸法変化率が1.0%以下であると、印刷パターンのピッチずれやシーラントなどとの貼り合せ時の位置ずれを抑制することができ、フィルムの加工性に優れる。
フィルムの長手方向の温度寸法変化曲線のフィルム原長に対する80℃での寸法変化率の下限は、-1.0%である。
寸法変化率が-1.0%以下であると、印刷パターンのピッチずれやシーラントなどとの張り合わせ時に位置ずれが生じることがあり、フィルムの加工が困難となることがある。
エステル交換比率が3.0%以下である場合、フィルムの結晶性が高まり、印刷工程やシーラントなどとの貼り合せ工程でかかる張力によりフィルムの走行方向に伸びにくくなり、TMAを用いて測定した温度寸法変化曲線のフィルム原長に対する80℃での寸法変化率がフィルムの長手方向において1.0%以下となりやすい。
エステル交換比率が0.8以上であると、フィルム表面のポリエステル樹脂組成物の結晶性が高くなり過ぎない。そのためフィルムの面配向係数が高くなりすぎないので、シーラント等との接着強度が維持される。また、樹脂の溶融押出し工程内で、滞留したPET樹脂が未溶融物となり、溶融フィルム中に異物として残存することが少なくなり、フィルムの品位を維持しやすい。
エステル交換比率の測定方法は、実施例に記載のとおりである。
MD配向度(ΔNx)の測定方法は、実施例に記載のとおりである。
本発明の二軸配向ポリエステルフィルムの面配向度(ΔP)の下限は好ましくは0.136であり、より好ましくは0.138であり、更に好ましくは0.140である。上記以下であると配向が弱く、衝撃強度や破袋性などが低下してしまうことがある。
面配向度(ΔP)の測定方法は、実施例に記載のとおりである。
本発明の二軸配向ポリエステルフィルムのMD及びTDの方向ににおける150℃×15分加熱後の熱収縮率の下限は、好ましくは-2.0%であり、-1.0%以上がより好ましく、0%以上が更に好ましく、0.2%以上が特に好ましい。上記未満であると印刷時のピッチずれやシーラントなどとの貼り合せ時の位置ずれ改善の効果が飽和するばかりか、フィルムのたるみによりむしろ印刷時のピッチずれやシーラントなどとの貼り合わせ時の位置ずれが起こることがあるほか、耐破袋性が低下してしまうことがある。
150℃×15分加熱後の熱収縮率の測定方法は、実施例に記載のとおりである。
印刷層を形成する印刷インクとしては、水性および溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂およびこれらの混合物が例示される。印刷インクには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。
更に、上記無機薄膜層上に印刷層を積層していてもよい。
本発明の二軸配向ポリエステルフィルムに他素材の層を積層して良く、その方法として、二軸配向ポリエステルフィルムを作製後に貼り合わせるか、製膜中に貼り合わせることができる。
シーラント層16の厚さは、10~100μmが好ましく、20~60μmがより好ましい。
[80℃での寸法変化率]
島津製作所社製のサーマルメカニカルアナライザー(TMA)を用いて室温から200℃まで昇温して測定した。ただし、昇温速度は10℃/分、測定サンプルの幅は4mm、測定サンプルの長さは10mm、初期張力は100mNとした。 得られた温度変化曲線の80℃におけるフィルムの長手方向(MD)のフィルム原長に対する寸法変化率(%)を読み取った。
得られたフィルム60mgをHFIP/C6D6=1/1(重量比)溶液に溶解し、遠心分離した後、上澄み液を採取し、13C-NMRを測定した。エステル交換比率は、ブタンジオール-テレフタル酸-ブタンジオール(BD-TPA-BD)に起因する134ppm付近のピーク面積をSa、エチレングリコール-テレフタル酸-エチレングリコール(EG-TPA-EG)に起因する133.7ppm付近のピーク面積をSb、エチレングリコール-テレフタル酸-ブタンジオール(EG-TPA-BD)に起因する133.5ppm付近のピーク面積をScとし、下記式(1)によりエステル交換比率を算出した。
エステル交換比率(%)=Sc/{0.5(Sa+Sb)+Sc} ・・・(1)
JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。
サンプルについてJIS K 7142-1996 A法により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(nx)、幅方向の屈折率(ny)、厚み方向の屈折率(nz)を測定し、式(2)の計算式によりΔNxを算出した。
MDの配向度(ΔNx)=nx-(ny+nz)/2 (2)
サンプルについてJIS K 7142-1996 A法により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(nx)、幅方向の屈折率(ny)、厚み方向の屈折率(nz)を測定し、式(3)の計算式によりΔPを算出した。
面配向係数(ΔP)=(nx+ny)/2-nz (3)
ポリエステルフィルムの熱収縮率は、試験温度150℃、加熱時間15分間とした以外は、JIS-C-2151-2006.21に記載の寸法変化試験法で測定した。試験片は21.1(a)の記載に従い使用した。
後述する実施例および比較例に示したフィルム基材の内側に、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を13.5:1(重量比)の割合で配合)を用いてドライラミネート法により、ヒートシール性樹脂層として厚さ70μmの無延伸ポリプロピレンフィルム(東洋紡株式会社製「P1147」)を貼り合わせ、40℃にて4日間エージングを施すことにより、評価用のラミネートガスバリア性積層体を得た。なお、ウレタン系2液硬化型接着剤で形成される接着剤層の乾燥後の厚みはいずれも約4μmであった。
前述のラミネート積層体を20.3cm(8インチ)×27.9cm(11インチ)の大きさに切断し、その切断後の長方形テストフィルムを、温度23℃の相対湿度50%の条件下に、24時間以上放置してコンディショニングした。しかる後、その長方形テストフィルムを巻架して長さ20.32cm(8インチ)の円筒状にする。そして、その円筒状フィルムの一端を、ゲルボフレックステスター(理学工業社製、NO.901型)(MIL-B-131Cの規格に準拠)の円盤状固定ヘッドの外周に固定し、円筒状フィルムの他端を、固定ヘッドと17.8cm(7インチ)隔てて対向したテスターの円盤状可動ヘッドの外周に固定した。
そして、可動ヘッドを固定ヘッドの方向に、平行に対向した両ヘッドの軸に沿って7.6cm(3.5インチ)接近させる間に440゜回転させ、続いて回転させることなく6.4cm(2.5インチ)直進させた後、それらの動作を逆向きに実行させて可動ヘッドを最初の位置に戻すという1サイクルの屈曲テストを、1分間あたり40サイクルの速度で、連続して2000サイクル繰り返した。実施は5℃で行った。
しかる後に、テストしたフィルムの固定ヘッドおよび可動ヘッドの外周に固定した部分を除く17.8cm(7インチ)×27.9cm(11インチ)内の部分に生じたピンホール数を計測した(すなわち、497cm2 (77平方インチ)当たりのピンホール数を計測した)。
前述のラミネート積層体を15cm四方の大きさにカットし、シーラントが内側になるように2枚を重ね合わせ、3方を160℃のシール温度、シール幅1.0cmにてヒートシールすることで内寸13cmの3方シール袋を得た。
得られた3方シール袋に水250mLを充填した後、ヒートシールにて4方目の口を閉じ、水の充填された4方シール袋を作製した。
得られた4方シール袋に対して、130℃の熱水中に30分間保持する湿熱処理を行った後、室温5℃、湿度35%R.H.の環境下、高さ100cmの位置からコンクリート板の上に落下させ、破れやピンホールが発生するまでの落下回数を数えた。
上記で作製したラミネート積層体に対して、130℃の熱水中に30分間保持する湿熱処理を行い、未乾燥のままの状態で、幅15mm、長さ200mmに切り出して試験片とし、温度23℃、相対湿度65%の条件下で、テンシロン万能材料試験機(東洋ボールドウイン社製「テンシロンUMT-II-500型」)を用いてラミネート強度(レトルト後)を測定した。ラミネート強度は、引張速度を200mm/分とし、積層フィルムとヒートシール性樹脂層との間に水を付けて、剥離角度90度で剥離させたときの強度とした。
得られた二軸配向ポリエステルフィルムについて、市販の多色刷り印刷機(東谷鉄工所社製「3色グラビア印刷機PAS-247型」)にて通常の運転条件で印刷(2色)を行った。乾燥工程での加熱と張力によりフィルムが伸びやすいと寸法変化が大きくなり、ピッチずれが起こるので、以下のような基準で印刷適性(二次加工適性)を判断した。
ピッチずれの測定方法は以下のとおり。
作成した二軸配向フィルムから幅400mm、長さ150mの試験フィルムを切り出し、このフィルムの処理面に、インキを用いて、2色(赤と黒)のトンボの図柄をそれぞれ50cmピッチで印刷した。最初のトンボは赤と黒の2色が重なるように調製し、60m印刷した後の赤と黒のトンボのずれ量を測定し、このずれ量を印刷時のピッチズずれ量として、下記のように評価した。
◎:印刷ピッチのずれが0.3mm以内。
○:印刷ピッチのずれが0.5mm以内で、実用上問題ないもの。
△:印刷ピッチのずれが1mm程度認められたが、印刷機の調整で対応できたもの。
×:印刷ピッチのずれが1mm以上あり、印刷機の調整が困難であったもの。
一軸押出機を用い、ポリブチレンテレフタレート樹脂(1100-211XG(CHANG CHUN PLASTICS CO.,LTD.、固有粘度1.28dl/g)とテレフタル酸//エチレングリコール=100//100(モル%)からなる固有粘度0.62dl/gのポリエチレンテレフタレート樹脂、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として1600重量ppmとなるように配合したものを290℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、溶融体の分割・積層を行い、同一の原料からなる理論上4096層の多層溶融体を得た。270℃のT-ダイからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。
次いで、60℃で長手方向(MD)に3.3倍ロール延伸し、次いで、テンターに通して90℃で幅方向(TD)に4.0倍延伸し、210℃で3秒間の緊張熱処理と1秒間5%の緩和処理を実施した後、両端の把持部を10%ずつ切断除去して厚みが15μmのフィルムのミルロールを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。
実施例1において、原料組成、製膜条件を表1に記載した二軸延伸フィルムに変えた以外は実施例1と同様に行った。得られたフィルムの製膜条件、物性および評価結果を表1に示した。
一軸押出機を用い、表1記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。
(比較例2) 得られたフィルムの耐ピンホール性や印刷時のピッチずれは良好であったが、ポリブチレンテレフタレート樹脂の組成が100%であり、MD方向の熱収縮率が4.5%であるため、レトルト処理後の耐破袋性やラミネート強度が不良であった。
(比較例3) 得られたフィルムのラミネート強度や印刷時のピッチずれは良好であったが、ポリブチレンテレフタレート樹脂の組成が50%であるため、耐ピンホール性やレトルト処理後の耐破袋性が不良であった。
(比較例4) 得られたフィルムの耐ピンホール性やレトルト処理後の耐破袋性、印刷時のピッチずれは良好であったが、面配向度が0.155であるため、ラミネート強度が不良であった。
(比較例5) 得られたフィルムの耐ピンホール性やレトルト処理後の耐破袋性、ラミネート強度は良好であったが、寸法変化率が1.1であるため、印刷時のピッチずれが不良であった。
(比較例6) 得られたフィルムの耐ピンホール性やラミネート強度は良好であったが、MD方向の熱収縮率が4.7%であるため、レトルト処理後の耐破袋性や印刷時のピッチずれが不良であった。
Claims (4)
- 下記(a)~(d)を同時に満足する二軸配向ポリエステルフィルム。
(a)ポリブチレンテレフタレート樹脂(A)を60~90重量%、ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)を10~40重量%含有するポリエステル樹脂組成物からなる。
(b)サーマルメカニカルアナライザー(TMA)を用いて測定した温度寸法変化曲線のフィルム原長に対する80℃での寸法変化率がフィルムの長手方向において1.0%以下である。
(c)フィルムの長手方向及び幅方向の150℃における熱収縮率がともに4.0%以下である。
(d)フィルムの面配向度ΔPが0.136~0.154である。 - ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)が、下記の(1)~(5)のいずれかから選ばれる少なくとも1種の樹脂である、請求項1に記載の二軸配向ポリエステルフィルム。
(1)ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンテレフタレート、
(2)イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選択される少なくとも1種のジカルボン酸が共重合されたポリブチレンテレフタレート樹脂、
(3)エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる群から選択される少なくとも1種のジオール成分が共重合されたポリブチレンテレフタレート樹脂、
(4)イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選択される少なくとも1種のジカルボン酸が共重合されたポリエチレンテレフタレート樹脂、
(5)若しくは1,3-ブタンジオール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる群から選択される少なくとも1種のジオール成分が共重合されたポリエチレンテレフタレート樹脂。 - ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)がポリエチレンテレフタレート樹脂であって、ポリエステル樹脂組成物中におけるエチレングリコール(EG)-テレフタル酸(TPA)-ブタンジオール(BD)の連鎖構造比率(%)で表されるエステル交換比率が、0.8~3.0%である請求項1に記載の二軸配向ポリエステルフィルム。
- 請求項1~3いずれかに記載の二軸配向ポリエステルフィルムの少なくとも片面に、厚み10~100μmのヒートシール性樹脂層が積層された積層フィルム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112019025226-6A BR112019025226A2 (pt) | 2017-06-06 | 2018-05-28 | Película de poliéster biaxialmente orientada |
KR1020197038809A KR20200016900A (ko) | 2017-06-06 | 2018-05-28 | 2축 배향 폴리에스테르 필름 |
EP18813533.9A EP3636694A4 (en) | 2017-06-06 | 2018-05-28 | BIAXIALLY ORIENTED POLYESTER FILM |
US16/616,130 US20200079955A1 (en) | 2017-06-06 | 2018-05-28 | Biaxially oriented polyester film |
CN201880036656.5A CN110691808A (zh) | 2017-06-06 | 2018-05-28 | 双轴取向聚酯薄膜 |
JP2019523460A JP6879473B2 (ja) | 2017-06-06 | 2018-05-28 | 二軸配向ポリエステルフィルム |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017111642 | 2017-06-06 | ||
JP2017-111642 | 2017-06-06 | ||
JP2017112682 | 2017-06-07 | ||
JP2017-112682 | 2017-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018225558A1 true WO2018225558A1 (ja) | 2018-12-13 |
Family
ID=64565843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020338 WO2018225558A1 (ja) | 2017-06-06 | 2018-05-28 | 二軸配向ポリエステルフィルム |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200079955A1 (ja) |
EP (1) | EP3636694A4 (ja) |
JP (1) | JP6879473B2 (ja) |
KR (1) | KR20200016900A (ja) |
CN (1) | CN110691808A (ja) |
BR (1) | BR112019025226A2 (ja) |
WO (1) | WO2018225558A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020031712A1 (ja) * | 2018-08-08 | 2020-02-13 | 東洋紡株式会社 | ガスバリア性積層フィルムおよびその製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017117328A1 (de) * | 2017-07-31 | 2019-01-31 | Mitsubishi Polyester Film Gmbh | Peelfähige Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung |
CN114591604B (zh) * | 2020-12-07 | 2024-08-20 | 爱思开迈克沃有限公司 | 聚酯薄膜、保护薄膜及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10195210A (ja) * | 1997-01-06 | 1998-07-28 | Unitika Ltd | 金属板ラミネート用ポリエステルフィルム及びそのフィルムを用いたラミネート金属板の製造方法 |
JP2002088233A (ja) * | 2000-09-12 | 2002-03-27 | Unitika Ltd | 金属板ラミネート用ポリエステルフィルム、ラミネート金属板およびそれを用いた金属容器 |
JP2002178471A (ja) * | 2000-12-12 | 2002-06-26 | Unitika Ltd | 金属板ラミネート用ポリエステルフィルム、およびこれを用いてなる金属板、金属容器 |
JP2003002987A (ja) | 2001-06-22 | 2003-01-08 | Unitika Ltd | 絞り包装用ポリエステルフィルム |
JP2006082319A (ja) * | 2004-09-15 | 2006-03-30 | Dainippon Printing Co Ltd | バリア性フィルムおよびそれを使用した積層材 |
JP2014015233A (ja) | 2012-07-09 | 2014-01-30 | Kohjin Holdings Co Ltd | 二軸延伸ポリブチレンテレフタレート系フィルムを含む液体充填用包材 |
WO2015178390A1 (ja) * | 2014-05-21 | 2015-11-26 | 東洋紡株式会社 | 二軸延伸ポリブチレンテレフタレートフィルムおよびその製造方法、並びにガスバリア性積層フィルム |
WO2016171172A1 (ja) * | 2015-04-24 | 2016-10-27 | 東洋紡株式会社 | 二軸延伸ポリエステルフィルムおよびその製造方法 |
JP6123927B1 (ja) * | 2016-02-24 | 2017-05-10 | 大日本印刷株式会社 | 真空断熱材用外包材、真空断熱材、および真空断熱材付き機器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6780482B2 (en) * | 2000-05-30 | 2004-08-24 | Unitika Ltd. | Polyester film for metal sheet laminating, metal sheet laminated with this film, and metal vessel formed from this metal sheet |
CN109111585A (zh) * | 2012-05-14 | 2019-01-01 | 东洋纺株式会社 | 聚酯薄膜的制造方法 |
CA2930360C (en) * | 2013-11-13 | 2020-12-22 | Toyobo Co., Ltd. | Biaxially stretched polyester film and method for producing same |
MY185768A (en) * | 2015-04-24 | 2021-06-06 | Toyo Boseki | Biaxially stretched polyester film, and production method therefor |
JP6874277B2 (ja) * | 2015-04-24 | 2021-05-19 | 東洋紡株式会社 | 二軸延伸ポリエステルフィルムおよびその製造方法 |
-
2018
- 2018-05-28 US US16/616,130 patent/US20200079955A1/en not_active Abandoned
- 2018-05-28 KR KR1020197038809A patent/KR20200016900A/ko unknown
- 2018-05-28 BR BR112019025226-6A patent/BR112019025226A2/pt not_active Application Discontinuation
- 2018-05-28 JP JP2019523460A patent/JP6879473B2/ja active Active
- 2018-05-28 CN CN201880036656.5A patent/CN110691808A/zh active Pending
- 2018-05-28 EP EP18813533.9A patent/EP3636694A4/en not_active Withdrawn
- 2018-05-28 WO PCT/JP2018/020338 patent/WO2018225558A1/ja unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10195210A (ja) * | 1997-01-06 | 1998-07-28 | Unitika Ltd | 金属板ラミネート用ポリエステルフィルム及びそのフィルムを用いたラミネート金属板の製造方法 |
JP2002088233A (ja) * | 2000-09-12 | 2002-03-27 | Unitika Ltd | 金属板ラミネート用ポリエステルフィルム、ラミネート金属板およびそれを用いた金属容器 |
JP2002178471A (ja) * | 2000-12-12 | 2002-06-26 | Unitika Ltd | 金属板ラミネート用ポリエステルフィルム、およびこれを用いてなる金属板、金属容器 |
JP2003002987A (ja) | 2001-06-22 | 2003-01-08 | Unitika Ltd | 絞り包装用ポリエステルフィルム |
JP2006082319A (ja) * | 2004-09-15 | 2006-03-30 | Dainippon Printing Co Ltd | バリア性フィルムおよびそれを使用した積層材 |
JP2014015233A (ja) | 2012-07-09 | 2014-01-30 | Kohjin Holdings Co Ltd | 二軸延伸ポリブチレンテレフタレート系フィルムを含む液体充填用包材 |
WO2015178390A1 (ja) * | 2014-05-21 | 2015-11-26 | 東洋紡株式会社 | 二軸延伸ポリブチレンテレフタレートフィルムおよびその製造方法、並びにガスバリア性積層フィルム |
WO2016171172A1 (ja) * | 2015-04-24 | 2016-10-27 | 東洋紡株式会社 | 二軸延伸ポリエステルフィルムおよびその製造方法 |
JP6123927B1 (ja) * | 2016-02-24 | 2017-05-10 | 大日本印刷株式会社 | 真空断熱材用外包材、真空断熱材、および真空断熱材付き機器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3636694A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020031712A1 (ja) * | 2018-08-08 | 2020-02-13 | 東洋紡株式会社 | ガスバリア性積層フィルムおよびその製造方法 |
JPWO2020031712A1 (ja) * | 2018-08-08 | 2020-08-20 | 東洋紡株式会社 | ガスバリア性積層フィルムおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20200016900A (ko) | 2020-02-17 |
JP6879473B2 (ja) | 2021-06-02 |
JPWO2018225558A1 (ja) | 2020-04-09 |
EP3636694A1 (en) | 2020-04-15 |
US20200079955A1 (en) | 2020-03-12 |
CN110691808A (zh) | 2020-01-14 |
BR112019025226A2 (pt) | 2020-06-16 |
EP3636694A4 (en) | 2020-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018225559A1 (ja) | 二軸配向ポリエステルフィルム | |
JP6874277B2 (ja) | 二軸延伸ポリエステルフィルムおよびその製造方法 | |
JP6784256B2 (ja) | 二軸延伸ポリエステルフィルムおよびその製造方法 | |
JP6756330B2 (ja) | 二軸延伸ポリエステルフィルムおよびその製造方法 | |
WO2017126563A1 (ja) | 二軸延伸ポリエステルフィルム、積層体及び包装用袋 | |
JP6962364B2 (ja) | 積層フィルム | |
JP6879473B2 (ja) | 二軸配向ポリエステルフィルム | |
WO2019187694A1 (ja) | ポリエステルフィルムロール | |
US20200009777A1 (en) | Biaxially oriented polyester film and method for producing same | |
JP2019172812A (ja) | ポリエステルフィルムおよびガスバリア性積層フィルム | |
JP2019155845A (ja) | ラミネート積層体 | |
WO2020080131A1 (ja) | 積層フィルム | |
JP4418161B2 (ja) | ヒートシール性ポリ乳酸系二軸延伸フィルム | |
WO2019142781A1 (ja) | 二軸配向ポリエステルフィルム | |
JP2020078908A (ja) | 積層フィルム及びそれからなる包装袋 | |
JP2006341423A (ja) | 接着性に優れたポリエステル系樹脂フィルム | |
TW201905048A (zh) | 雙軸配向聚酯膜及積層膜 | |
JP2019171587A (ja) | ポリエステルフィルムおよびガスバリア性積層フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18813533 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019523460 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019025226 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20197038809 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018813533 Country of ref document: EP Effective date: 20200107 |
|
ENP | Entry into the national phase |
Ref document number: 112019025226 Country of ref document: BR Kind code of ref document: A2 Effective date: 20191128 |