WO2018225243A1 - 熱解析装置、熱解析方法及び熱解析プログラム - Google Patents
熱解析装置、熱解析方法及び熱解析プログラム Download PDFInfo
- Publication number
- WO2018225243A1 WO2018225243A1 PCT/JP2017/021459 JP2017021459W WO2018225243A1 WO 2018225243 A1 WO2018225243 A1 WO 2018225243A1 JP 2017021459 W JP2017021459 W JP 2017021459W WO 2018225243 A1 WO2018225243 A1 WO 2018225243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal analysis
- thermal
- unit
- network model
- target product
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/20—Configuration CAD, e.g. designing by assembling or positioning modules selected from libraries of predesigned modules
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2115/00—Details relating to the type of the circuit
- G06F2115/12—Printed circuit boards [PCB] or multi-chip modules [MCM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
Definitions
- the present invention relates to a thermal analysis apparatus, a thermal analysis method, and a thermal analysis program.
- an object of the present invention is to provide a thermal analysis apparatus, a thermal analysis method, and a thermal analysis program that can shorten the time required for thermal analysis.
- the thermal analysis apparatus refers to the first storage unit that stores information on the presence / absence of contact between two parts obtained from design information of past products, and determines whether each pair of parts included in the target product is in contact.
- the thermal network of the component pair included in the target product is referred to by referring to a second storage unit that stores an estimation unit to be estimated, a parameter relating to heat transfer of two components, and the number of divisions in the thermal network model
- a determination unit that determines the number of divisions in the model, a thermal analysis unit that constructs a thermal circuit network model of the target product using the estimation result of the estimation unit and the determination result of the determination unit, and performs thermal analysis And.
- the time required for thermal analysis can be shortened.
- FIG. 4A to FIG. 4C are diagrams for explaining the division method. It is a figure which shows an example of the data structure of division system DB. It is a figure which shows an example of component data.
- FIG. 7A is a diagram illustrating an estimation model table
- FIG. 7B is a diagram illustrating a contact determination table. It is a table
- FIG. 9A is a diagram illustrating an example of division method data added by the learning unit to the division method DB, and FIG.
- FIG. 9B illustrates an example of model data added by the learning unit to the design asset DB.
- FIG. It is a flowchart which shows the process of a thermal-analysis apparatus. It is a figure for demonstrating the utilization method of a thermal analysis. It is a figure for demonstrating a modification. It is a figure which shows about the example which a cloud server has the function of a thermal-analysis apparatus.
- FIG. 1 shows the hardware configuration of the thermal analysis apparatus 10.
- the thermal analysis apparatus 10 is a PC (Personal Computer) or the like.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- a storage unit (here) 1 includes an HDD (Hard Disk Drive) 96, a network interface 97, a display unit 93, an input unit 95, a portable storage medium drive 99, and the like.
- Each component of the thermal analysis apparatus 10 is connected to a bus 98.
- the display unit 93 includes a liquid crystal display and the input unit 95 includes a keyboard, a mouse, a touch panel, and the like.
- FIG. 2 also illustrates a database (DB) stored in the HDD 96 of the thermal analysis apparatus 10.
- the CPU 90 executes the program, whereby the contact determination model generation unit 30, the division method acquisition unit 32, the component data acquisition unit 12, and the estimation model generation / output unit 14 as an estimation unit illustrated in FIG. 2.
- a contact determination table acquisition unit 16 an allowable error acquisition unit 18 as a reception unit, a division number determination unit 20 as a determination unit, a thermal circuit network model analysis unit 22 as a thermal analysis unit, and a learning unit 24 as an update unit. The function is realized.
- the contact determination model generation unit 30 acquires information on past products stored in the design asset DB 40, and generates data (FIG. 3) for each part pair based on the acquired information.
- the design asset DB 40 is a database that stores data similar to model data (see FIG. 9B) described later.
- the data of each part pair includes data of two parts that are in contact with or face each other in the product. Specifically, the data of each part pair includes “part name 1” and “part name 2”, which are names of two parts constituting the part pair, and “size 1” which is the size of each part.
- the contact determination model generation unit 30 performs logistic regression analysis on the data of each part pair to generate a contact determination model.
- the contact determination model is a model (for example, a model for calculating a contact probability) for determining the presence or absence of contact between two parts (part pairs) included in a product.
- the contact determination model generation unit 30 stores the generated contact determination model in the contact determination model DB 42 as the first storage unit. It can be said that the contact determination model is information relating to the presence or absence of contact between two parts obtained from design information of past products.
- the division method acquisition unit 32 acquires information on a division method based on a thermal network model that has been proven in past thermal analysis created by the user.
- the division method of this embodiment is a method of determining the number of divisions using the area ratio of two components and the heat transport force ratio of two components as parameters.
- FIG. 4A to FIG. 4C are diagrams for explaining the division method.
- Sr area of component 2 / area of component 1
- Tr heat transport force of part 2 / heat transport force of part 1 (2)
- the heat transport force [W / K] is expressed as the following equation (3).
- Heat transport capacity thermal conductivity x component height (thickness) (3)
- the user divides into a simple division method (a division method with a large tolerance) and a detailed division method (a division method with a small tolerance), and based on a thermal network model that has been proven in past thermal analysis. Determine the division method.
- the division method acquisition unit 32 performs thermal analysis of the sample data (part data of the sample product) using a simple division method and a detailed division method, and obtains an error between the analysis result and the actual measurement value.
- storage part as shown in FIG. 5 is produced
- the division method DB 44 includes a plurality of records (rows), and the division method associated with the error closest to the allowable error value input by the user is used in the division number determination unit 20 described later. Shall be. Note that the user uses each division method, for example, a simple division method is used when the allowable error is greater than or equal to a predetermined value, and a detailed division method is used when the allowable error is less than the predetermined value. May be determined in advance.
- the component data acquisition unit 12 acquires the component data of the target product of the thermal analysis input by the user of the thermal analysis device 10.
- the component data is assumed to be data as shown in FIG. 6 as an example.
- the part data is information on parts included in the target product, and includes fields of “part name”, “size”, “thermal conductivity”, and “heat generation”.
- the “component name” field stores the name of the component
- the “size” field stores D (depth), W (width), and H (height) dimensions (unit [mm]).
- the “thermal conductivity” field stores a thermal conductivity value (unit [W / mK])
- the “calorific value” field stores a calorific value (unit [W]). Is done.
- the estimation model generation / output unit 14 refers to the contact determination model DB 42 and estimates the presence / absence of contact between components included in the component data acquired by the component data acquisition unit 12. Further, the estimation model generation / output unit 14 generates an estimation model table as shown in FIG. 7A as an estimation result and displays the estimation model table on the display unit 93.
- the estimation model table includes fields of “part name 1” and “part name 2”, which are names of the parts included in the part pair, and a “contact” field indicating whether the part pair is in contact. Have.
- the user refers to the estimated model table and corrects information if there is information to be corrected. Then, when the correction is completed, a confirmation operation (for example, pressing a confirmation button) is executed.
- the estimated model table is a contact determination table as illustrated in FIG.
- the contact determination table of FIG. 7B the contact state of the component name 1 “LCD_Metal” and the component name 2 “graphite sheet” is corrected by the user, as can be seen from comparison with FIG. 7A.
- the contact determination table acquisition unit 16 acquires the estimated model table determined by the user (that is, the contact determination table of FIG. 7B), and converts the acquired contact determination table into the division number determination unit 20 and It transmits to the thermal circuit network model analysis part 22.
- the allowable error acquisition unit 18 prompts the user to input an allowable error (that is, required accuracy), acquires the input allowable error value, and transmits it to the division number determination unit 20.
- the division number determination unit 20 uses the allowable error acquired by the allowable error acquisition unit 18 and the data of the contact determination table acquired by the contact determination table acquisition unit 16, and based on the division method DB 44 (FIG. 5), the thermal circuit network model. Determine the number of divisions in.
- the division number determination unit 20 transmits information on the determined division number to the thermal circuit network model analysis unit 22.
- the thermal network model analysis unit 22 uses the division number determined by the division number determination unit 20 and information in the contact determination table to construct a thermal circuit network model and perform thermal analysis. Note that the component data acquired by the component data acquisition unit 12 is also used in the thermal analysis.
- the learning unit 24 obtains the analysis result obtained by the thermal network model analysis unit 22 and calculates an error between the analysis result and the actual measurement value when obtaining the actual measurement value or the simulation result (hereinafter simply referred to as “actual measurement value”). To do.
- FIG. 8 shows, as an example, a circuit network analysis result, an actual measurement value, and an error regarding the rising temperature of the display.
- the learning unit 24 updates the division method DB 44 using the calculated error and the division method, and adds information on the contact determination table used for the thermal analysis to the design asset DB 40.
- the learning unit 24 adds the data shown in FIG. 9A to the division method DB 44 and adds the model data shown in FIG. 9B to the design asset DB 40.
- the model data in FIG. 9B is a summary of the part names and sizes of parts pairs included in the product subjected to thermal analysis, and the presence or absence of contact.
- the contact determination model generation unit 30 may generate a new contact determination model each time new data is added to the design asset DB 40, or may generate only the contact determination model specified by the user. .
- the learning unit 24 may appropriately modify the contact determination model DB 42 and the division method DB 44 when the calculated error deviates from the allowable error input by the user.
- the contact determination model DB 42 stores the contact determination model generated by the contact determination model generation unit 30, and the division method DB 44 has the configuration shown in FIG. It is assumed that data is generated and stored by the division method acquisition unit 32.
- the part data acquisition unit 12 waits until part data is input in step S10.
- the component data acquisition unit 12 proceeds to step S12 and acquires the input component data (FIG. 6).
- step S14 the allowable error acquisition unit 18 requests the user to input the allowable error via the display unit 93. Specifically, an allowable error input screen is displayed on the display unit 93 to prompt the user to input the allowable error.
- step S16 the allowable error acquisition unit 18 stands by until an allowable error is input.
- the allowable error acquisition unit 18 proceeds to step S18 and acquires the input allowable error.
- step S20 the estimated model generation / output unit 14 refers to the contact determination model DB 42 and generates an estimated model table (FIG. 7A) from the component data.
- step S22 the estimated model generation / output unit 14 displays the estimated model table generated in step S20 on the display unit 93.
- step S24 the contact determination table acquisition unit 16 waits until a confirmation operation is performed by the user.
- the contact determination table acquisition unit 16 proceeds to step S26 and acquires an estimated model table (that is, a contact determination table) that has been changed and determined.
- step S28 the division number determination unit 20 refers to the division method DB 44 and determines the division number in each part pair based on the allowable error.
- step S30 the thermal network model analysis unit 22 constructs a thermal network model based on the number of divisions determined in step S28, the contact determination table, component data, and the like, and executes thermal analysis processing.
- the thermal analysis result is output (displayed on the display unit 93).
- step S30 when the processing up to step S30 has been performed, the entire processing in FIG. 10 ends.
- the thermal analysis can be performed in a short time.
- the learning unit 24 appropriately performs the above-described processing at the timing when the actual measurement value and the simulation result are obtained.
- the thermal analysis result in this case is shown in FIG.
- the result shown in FIG. 11 can be obtained in a short time by executing the process according to the flowchart of FIG. 10 in the thermal analysis. From this result, it can be seen that increasing the thermal conductivity of the rear case rather than increasing the heat transfer coefficient of the graphite sheet increases the IC temperature reduction effect. Can be designed. The man-hours for obtaining the results shown in Fig.
- the estimated model generation / output unit 14 is included in the target product with reference to the contact determination model DB 42 that stores the contact determination model obtained from the past design asset.
- the presence / absence of contact of each component pair is estimated, and an estimated model table is generated (S20).
- the division number determination unit 20 is included in the target product with reference to the division method DB 44 that stores the relationship between the parameters (Sr, Tr) regarding the heat transfer of the two components and the division number in the thermal circuit network model.
- the number of divisions in the thermal network model of the component pair is determined (S28).
- the thermal network model analysis unit 22 uses the contact determination table in which the estimated model table is corrected and the division number determined by the division number determination unit 20 to construct a thermal circuit network model of the target product, Thermal analysis is executed (S30).
- the thermal network model analysis unit 22 uses the contact determination table in which the estimated model table is corrected and the division number determined by the division number determination unit 20 to construct a thermal circuit network model of the target product, Thermal analysis is executed (S30).
- the estimated model table generated by the estimated model generation / output unit 14 is output, and a thermal circuit network model is constructed using a table (contact determination table) determined after confirmation, correction, etc. by the user To do. Thereby, it is possible to perform a thermal analysis after reflecting the user's design guidelines.
- the allowable error acquisition unit 18 receives the input of the allowable error in the thermal analysis and determines the number of divisions by the division method corresponding to the allowable error, so that the appropriate division is performed with the accuracy required by the user. The number can be determined.
- the design asset DB 40 and the division method DB 44 are updated (learned) based on the thermal analysis result, it is possible to improve the determination accuracy of the presence / absence of contact and the determination accuracy of the number of divisions.
- the thermal analysis processing of a product such as a portable terminal has been described.
- the present invention is not limited to this, and for example, a model for estimating the temperature of a difficult-to-predict location from the analysis result of a failed LSI is constructed.
- the same method as in the above embodiment can be adopted.
- the number of divisions of a certain layer for example, the lower layer fine wiring portion
- another The number of divisions of a layer may be determined by different division methods.
- the area ratio and the heat transport force ratio are used as the parameters related to the heat transfer of the two components used when determining the number of divisions.
- the present invention is not limited to this, and the area ratio and the heat transport force are not limited thereto. Only one of the ratios may be used. Further, parameters other than the area ratio and the heat transport force ratio may be employed as parameters relating to heat transfer between the two components.
- the division number determination unit 20 determines the division number based on the allowable error.
- the present invention is not limited to this.
- the division number determination unit 20 may determine the division number without using an allowable error. In this case, only one type of division method needs to be prepared.
- the cloud server 50 connected to a network 80 such as the Internet as shown in FIG.
- the cloud server 50 receives the component data, the allowable error, and the like input from the user terminal 70, and the cloud server 50 executes the process of FIG.
- the cloud server 50 may be installed either in Japan or overseas.
- the above processing functions can be realized by a computer.
- a program describing the processing contents of the functions that the processing apparatus should have is provided.
- the program describing the processing contents can be recorded on a computer-readable recording medium (except for a carrier wave).
- the program When the program is distributed, for example, it is sold in the form of a portable recording medium such as a DVD (Digital Versatile Disc) or CD-ROM (Compact Disc Read Only Memory) on which the program is recorded. It is also possible to store the program in a storage device of a server computer and transfer the program from the server computer to another computer via a network.
- a portable recording medium such as a DVD (Digital Versatile Disc) or CD-ROM (Compact Disc Read Only Memory) on which the program is recorded. It is also possible to store the program in a storage device of a server computer and transfer the program from the server computer to another computer via a network.
- the computer that executes the program stores, for example, the program recorded on the portable recording medium or the program transferred from the server computer in its own storage device. Then, the computer reads the program from its own storage device and executes processing according to the program. The computer can also read the program directly from the portable recording medium and execute processing according to the program. Further, each time the program is transferred from the server computer, the computer can sequentially execute processing according to the received program.
- Thermal Analysis Device 14 Estimated Model Generation / Output Unit (Estimation Unit) 18 Tolerance acquisition unit (reception unit) 20 Number of division determination unit (determination unit) 22 Thermal network model analysis unit (thermal analysis unit) 24 learning part (update part) 42 Contact determination model DB (first storage unit) 44 Division method DB (second storage unit)
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
Sr=部品2の面積/部品1の面積 …(1)
Tr=部品2の熱輸送力/部品1の熱輸送力 …(2)
熱輸送力=熱伝導率×部品の高さ(厚さ) …(3)
P(%)=(|ΔT1-ΔT2|/ΔT1)×100 …(4)
次に、図10のフローチャートに沿って、熱解析装置10の処理について、説明する。なお、図10の処理が実行される段階では、接触判定モデルDB42には、接触判定モデル生成部30により生成された接触判定モデルが格納されており、分割方式DB44には、図5のようなデータが分割方式取得部32により生成され、格納されているものとする。
14 推定モデル生成・出力部(推定部)
18 許容誤差取得部(受付部)
20 分割数決定部(決定部)
22 熱回路網モデル解析部(熱解析部)
24 学習部(更新部)
42 接触判定モデルDB(第1記憶部)
44 分割方式DB(第2記憶部)
Claims (13)
- 過去の製品の設計情報から得られる2つの部品の接触有無に関する情報を記憶する第1記憶部を参照し、対象製品に含まれる部品対それぞれの接触有無を推定する推定部と、
2つの部品の熱伝達に関するパラメータと、熱回路網モデルにおける分割数との関係を記憶する第2記憶部を参照し、前記対象製品に含まれる部品対の前記熱回路網モデルにおける分割数を決定する決定部と、
前記推定部の推定結果と、前記決定部の決定結果とを用いて、前記対象製品の熱回路網モデルを構築し、熱解析を実行する熱解析部と、を備える熱解析装置。 - 前記熱解析部は、前記推定部の推定結果の修正要求の入力を受け付け、該修正要求を反映させた前記推定結果を用いて、前記対象製品の熱回路網モデルを構築することを特徴とする請求項1に記載の熱解析装置。
- 前記熱解析に対する要求精度の入力を受け付ける受付部をさらに備え、
前記第2記憶部は、異なる要求精度に対応付けて、2つの部品の熱伝達に関するパラメータと、熱回路網モデルにおける分割数との関係を記憶し、
前記決定部は、前記受付部が受け付けた要求精度に対応する前記パラメータと前記分割数との関係を用いて、前記対象製品に含まれる部品対の前記熱回路網モデルにおける分割数を決定する、ことを特徴とする請求項1又は2に記載の熱解析装置。 - 前記熱伝達に関するパラメータは、2つの部品の面積比を含むことを特徴とする請求項1~3のいずれか一項に記載の熱解析装置。
- 前記熱伝達に関するパラメータは、2つの部品における熱伝達のしやすさの比を含むことを特徴とする請求項1~4のいずれか一項に記載の熱解析装置。
- 前記熱解析部の熱解析結果に基づいて、前記推定部の推定結果を用いて前記第1記憶部を更新し、前記決定部の決定結果を用いて前記第2記憶部を更新する更新部をさらに備える請求項1~5のいずれか一項に記載の熱解析装置。
- 過去の製品の設計情報から得られる2つの部品の接触有無に関する情報を記憶する第1記憶部を参照し、対象製品に含まれる部品対それぞれの接触有無を推定し、
2つの部品の熱伝達に関するパラメータと、熱回路網モデルにおける分割数との関係を記憶する第2記憶部を参照し、前記対象製品に含まれる部品対の前記熱回路網モデルにおける分割数を決定し、
前記推定する処理における推定結果と、前記決定する処理における決定結果とを用いて、前記対象製品の熱回路網モデルを構築し、熱解析を実行する、
処理をコンピュータが実行することを特徴とする熱解析方法。 - 前記熱解析を実行する処理では、前記推定する処理の推定結果の修正要求の入力を受け付け、該修正要求を反映させた前記推定結果を用いて、前記対象製品の熱回路網モデルを構築することを特徴とする請求項7に記載の熱解析方法。
- 前記熱解析に対する要求精度の入力を受け付ける処理を前記コンピュータがさらに実行し、
前記第2記憶部は、異なる要求精度に対応付けて、2つの部品の熱伝達に関するパラメータと、熱回路網モデルにおける分割数との関係を記憶し、
前記決定する処理では、前記受け付ける処理で受け付けた要求精度に対応する前記パラメータと前記分割数との関係を用いて、前記対象製品に含まれる部品対の前記熱回路網モデルにおける分割数を決定する、ことを特徴とする請求項7又は8に記載の熱解析方法。 - 前記熱伝達に関するパラメータは、2つの部品の面積比を含むことを特徴とする請求項7~9のいずれか一項に記載の熱解析方法。
- 前記熱伝達に関するパラメータは、2つの部品における熱伝達のしやすさの比を含むことを特徴とする請求項7~10のいずれか一項に記載の熱解析方法。
- 前記熱解析を実行する処理の熱解析結果に基づいて、前記推定する処理の推定結果を用いて前記第1記憶部を更新し、前記決定する処理の決定結果を用いて前記第2記憶部を更新する、処理を前記コンピュータがさらに実行することを特徴とする請求項7~11のいずれか一項に記載の熱解析方法。
- 過去の製品の設計情報から得られる2つの部品の接触有無に関する情報を記憶する第1記憶部を参照し、対象製品に含まれる部品対それぞれの接触有無を推定し、
2つの部品の熱伝達に関するパラメータと、熱回路網モデルにおける分割数との関係を記憶する第2記憶部を参照し、前記対象製品に含まれる部品対の前記熱回路網モデルにおける分割数を決定し、
前記推定する処理における推定結果と、前記決定する処理における決定結果とを用いて、前記対象製品の熱回路網モデルを構築し、熱解析を実行する、
処理をコンピュータに実行させるための熱解析プログラム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17912529.9A EP3637286A4 (en) | 2017-06-09 | 2017-06-09 | THERMAL ANALYSIS DEVICE, THERMAL ANALYSIS METHOD AND THERMAL ANALYSIS PROGRAM |
PCT/JP2017/021459 WO2018225243A1 (ja) | 2017-06-09 | 2017-06-09 | 熱解析装置、熱解析方法及び熱解析プログラム |
CN201780091202.3A CN110709849A (zh) | 2017-06-09 | 2017-06-09 | 热分析装置、热分析方法和热分析程序 |
JP2019523311A JP6753528B2 (ja) | 2017-06-09 | 2017-06-09 | 熱解析装置、熱解析方法及び熱解析プログラム |
US16/679,372 US20200074026A1 (en) | 2017-06-09 | 2019-11-11 | Thermal analysis device and thermal analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/021459 WO2018225243A1 (ja) | 2017-06-09 | 2017-06-09 | 熱解析装置、熱解析方法及び熱解析プログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/679,372 Continuation US20200074026A1 (en) | 2017-06-09 | 2019-11-11 | Thermal analysis device and thermal analysis method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018225243A1 true WO2018225243A1 (ja) | 2018-12-13 |
Family
ID=64566641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/021459 WO2018225243A1 (ja) | 2017-06-09 | 2017-06-09 | 熱解析装置、熱解析方法及び熱解析プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200074026A1 (ja) |
EP (1) | EP3637286A4 (ja) |
JP (1) | JP6753528B2 (ja) |
CN (1) | CN110709849A (ja) |
WO (1) | WO2018225243A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002183223A (ja) * | 2000-12-15 | 2002-06-28 | Sharp Corp | メッシュ処理装置、メッシュ処理方法およびメッシュ処理プログラムを記録したコンピュータで読取可能な記録媒体 |
JP2003011199A (ja) * | 2001-07-04 | 2003-01-15 | Canon Inc | 射出成形プロセスシミュレーション装置および形状精度予測方法 |
JP2004318250A (ja) | 2003-04-11 | 2004-11-11 | Fujitsu Ltd | 熱解析モデリング方法および熱解析モデリングプログラム |
JP2007122506A (ja) | 2005-10-28 | 2007-05-17 | Fujitsu Ltd | 熱流体解析モデル生成プログラム、熱流体解析モデル生成装置及び熱流体解析モデル生成方法 |
JP2012064036A (ja) | 2010-09-16 | 2012-03-29 | Fujitsu Ltd | 熱解析モデル生成装置、熱解析モデル生成プログラム、熱解析モデル生成方法および熱解析装置 |
JP2016192160A (ja) * | 2015-03-31 | 2016-11-10 | キヤノン株式会社 | 情報処理装置、情報処理方法およびプログラム |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5202843A (en) * | 1990-04-25 | 1993-04-13 | Oki Electric Industry Co., Ltd. | CAE system for automatic heat analysis of electronic equipment |
JP2002230047A (ja) * | 2001-02-02 | 2002-08-16 | Nec Corp | 熱回路網データの生成システム、方法及び記録媒体 |
JP4097176B2 (ja) * | 2001-08-02 | 2008-06-11 | 本田技研工業株式会社 | 熱解析方法および装置 |
JP2007293382A (ja) * | 2006-04-20 | 2007-11-08 | Sony Corp | 熱解析装置、熱解析方法及び熱解析処理プログラム |
JP2008082901A (ja) * | 2006-09-27 | 2008-04-10 | Sharp Corp | 熱解析方法、熱解析装置および熱解析プログラム |
JP2009026085A (ja) * | 2007-07-19 | 2009-02-05 | Sharp Corp | 熱解析装置、熱解析方法、プログラムおよび記録媒体 |
JP2009129196A (ja) * | 2007-11-22 | 2009-06-11 | Sharp Corp | 熱解析モデル生成装置、熱解析モデル生成方法、熱解析装置および熱解析方法 |
US8103996B2 (en) * | 2008-06-24 | 2012-01-24 | Cadence Design Systems, Inc. | Method and apparatus for thermal analysis of through-silicon via (TSV) |
-
2017
- 2017-06-09 CN CN201780091202.3A patent/CN110709849A/zh active Pending
- 2017-06-09 WO PCT/JP2017/021459 patent/WO2018225243A1/ja active Application Filing
- 2017-06-09 JP JP2019523311A patent/JP6753528B2/ja not_active Expired - Fee Related
- 2017-06-09 EP EP17912529.9A patent/EP3637286A4/en not_active Withdrawn
-
2019
- 2019-11-11 US US16/679,372 patent/US20200074026A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002183223A (ja) * | 2000-12-15 | 2002-06-28 | Sharp Corp | メッシュ処理装置、メッシュ処理方法およびメッシュ処理プログラムを記録したコンピュータで読取可能な記録媒体 |
JP2003011199A (ja) * | 2001-07-04 | 2003-01-15 | Canon Inc | 射出成形プロセスシミュレーション装置および形状精度予測方法 |
JP2004318250A (ja) | 2003-04-11 | 2004-11-11 | Fujitsu Ltd | 熱解析モデリング方法および熱解析モデリングプログラム |
JP2007122506A (ja) | 2005-10-28 | 2007-05-17 | Fujitsu Ltd | 熱流体解析モデル生成プログラム、熱流体解析モデル生成装置及び熱流体解析モデル生成方法 |
JP2012064036A (ja) | 2010-09-16 | 2012-03-29 | Fujitsu Ltd | 熱解析モデル生成装置、熱解析モデル生成プログラム、熱解析モデル生成方法および熱解析装置 |
JP2016192160A (ja) * | 2015-03-31 | 2016-11-10 | キヤノン株式会社 | 情報処理装置、情報処理方法およびプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3637286A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP6753528B2 (ja) | 2020-09-09 |
JPWO2018225243A1 (ja) | 2019-12-12 |
EP3637286A1 (en) | 2020-04-15 |
EP3637286A4 (en) | 2020-06-17 |
US20200074026A1 (en) | 2020-03-05 |
CN110709849A (zh) | 2020-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11170320B2 (en) | Updating machine learning models on edge servers | |
US8170979B2 (en) | Systems and methods for calibrating user ratings | |
Broekgaarden et al. | STROOPWAFEL: Simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources | |
Fang et al. | Global response approximation with radial basis functions | |
CN110245287B (zh) | 分析驱动参与 | |
US8650161B1 (en) | Self healing system for inaccurate metadata | |
JP2011529224A (ja) | 相関性のある情報の推薦 | |
JP5880101B2 (ja) | 情報処理装置、情報処理方法およびプログラム | |
JP6493006B2 (ja) | 人口推計方法、人口推計プログラム、および人口推計装置 | |
CN106447419B (zh) | 基于特征选择的拜访者标识 | |
GB2445844A (en) | Environmental operational analysis of datacentre | |
CN112102043B (zh) | 物品推荐页面生成方法、装置、电子设备和可读介质 | |
JP2015108983A (ja) | アイテム推薦装置、アイテム推薦方法、およびアイテム推薦プログラム | |
WO2018225243A1 (ja) | 熱解析装置、熱解析方法及び熱解析プログラム | |
Jones et al. | Electronically coarse-grained molecular dynamics using quantum Drude oscillators | |
Liao et al. | Efficient and accurate finite difference schemes for solving one-dimensional Burgers’ equation | |
CN111768124A (zh) | 一种测试评估方法、系统、设备及计算机可读存储介质 | |
JP5928248B2 (ja) | 評価方法、情報処理装置およびプログラム | |
JP6601888B1 (ja) | 情報処理装置、情報処理方法および情報処理プログラム | |
JP6725405B2 (ja) | 情報処理システム、情報処理装置、および情報処理方法 | |
JP2019121323A (ja) | 情報処理システム | |
Gogu et al. | Effect of approximation fidelity on vibration-based elastic constants identification | |
CN113763065B (zh) | 推荐商品的方法、装置、设备和计算机可读介质 | |
US20230401282A1 (en) | Computing inverse temperature upper and lower bounds | |
EP4345701A1 (en) | Modeling and managing affinity networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17912529 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019523311 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017912529 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017912529 Country of ref document: EP Effective date: 20200109 |