WO2018224776A1 - Composition de caoutchouc - Google Patents

Composition de caoutchouc Download PDF

Info

Publication number
WO2018224776A1
WO2018224776A1 PCT/FR2018/051307 FR2018051307W WO2018224776A1 WO 2018224776 A1 WO2018224776 A1 WO 2018224776A1 FR 2018051307 W FR2018051307 W FR 2018051307W WO 2018224776 A1 WO2018224776 A1 WO 2018224776A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastomer
units
composition according
ethylene
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2018/051307
Other languages
English (en)
French (fr)
Inventor
Julien Thuilliez
Emma MORESO
Vincent LAFAQUIERE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Priority to EP18737664.5A priority Critical patent/EP3634776B1/fr
Priority to US16/620,257 priority patent/US20210079135A1/en
Priority to CN201880036892.7A priority patent/CN110709259B/zh
Priority to JP2019567700A priority patent/JP7187492B2/ja
Publication of WO2018224776A1 publication Critical patent/WO2018224776A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
    • C08L23/083Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic polyenes, i.e. containing two or more carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition that can be used especially for the manufacture of a tire, which comprises at least one reinforcing inorganic filler and a functional diene elastomer that is highly saturated because it is rich in ethylene units.
  • a tire must obey in known manner a large number of technical requirements, often antithetical, among which low rolling resistance, high wear resistance, as well as high adhesion on both dry and wet roads.
  • This compromise of properties, in particular from the point of view of rolling resistance and wear resistance, has been improved in recent years on "green tires” with low energy consumption, especially for passenger vehicles.
  • new weakly hysteretic rubber compositions having the characteristic of being reinforced mainly by highly dispersible silicas called "HDS" (Highly Dispersible Silica), capable of competing, from the point of view of the reinforcing power, with the conventional carbon blacks of pneumatic grade.
  • HDS Highly Dispersible Silica
  • Pneumatic rubber compositions generally comprise diene-containing elastomers such as polybutadienes, polyisoprenes and copolymers of 1,3-butadiene or isoprene and styrene.
  • diene-containing elastomers such as polybutadienes, polyisoprenes and copolymers of 1,3-butadiene or isoprene and styrene.
  • the replacement of these diene-rich elastomers in these same compositions with diene elastomers rich in ethylene unit is accompanied by both a decrease in hysteresis of the rubber composition and an increase in its rigidity, which results in a change in the performance compromise between rolling resistance and wear.
  • WO 2014114607 can be referred to.
  • These ethylene-rich diene elastomers also have the property of imparting to the rubber compositions improved wear resistance under extreme conditions, as described in the WO document. 2016012259.
  • elastomers that exhibit one or more interactive functions with the reinforcing filler.
  • Functional elastomers can be prepared by anionic polymerization, the functionalization taking place during the initiation or termination reaction.
  • the modification of the ends of the polymer chains produced by anionic polymerization is based on the living character of the polymer chains, the living character resulting in the absence of transfer reaction and termination reaction during the polymerization reaction. Live polymerization is also characterized by the fact that only one polymer chain is produced per mole of initiator or metal.
  • the polymerization by means of a catalytic coordination system comprising a metallocene provides access to diene copolymers rich in ethylene. But this polymerization proceeds from a different chemistry of anionic polymerization and polymerization by Ziegler Natta catalysis.
  • a first difference relates to the catalytic system, for example described in documents EP 1 092 731 B1, WO 2004035639 and EP 1 954 706 B1, which is typically composed of a metallocene and a cocatalyst, an organomagnesium compound.
  • a second difference relates to the reactions involved which include numerous transfer reactions between the metallocene metal and the magnesium of the cocatalyst and which also allow the production of a large number of copolymer chains per metallocene metal.
  • a third difference relates to the polymer chains produced which comprise both unsaturated units such as diene units, and saturated ethylenic units. Another difference is the chemical structure of the chain end to be modified, a structure that results from the very specific mechanism of polymerization. For example, see ACS Catalysis, 2016, Volume 6, Issue 2, pages 1028-1036.
  • the object of the present invention is to provide a low hysteretic rubber composition which comprises a diene elastomer rich in ethylene unit while decreasing its rigidity.
  • This object is achieved in that the inventors have discovered that such a compromise between rigidity and hysteresis could be obtained by modifying the end chain of diene elastomer rich in ethylene unit by a silanol or alkoxysilane function.
  • a first subject of the invention is a rubber composition which comprises at least one reinforcing inorganic filler and a highly saturated elastomer comprising 1,3-diene units and ethylene units and carrying a silanol or alkoxysilane function at the chain end, the ethylene units representing more than 50 mol% of all the monomeric units of the elastomer.
  • Another object of the invention is a semi-finished article which comprises a rubber composition according to the invention.
  • the invention also relates to a tire which comprises a rubber composition according to the invention or a semi-finished article according to the invention.
  • any range of values designated by the expression “between a and b” represents the range of values greater than “a” and less than “b” (i.e., terminals a and b excluded) while any interval of values denoted by “from a to b” means the range from “a” to "b” (i.e., including the strict limits a and b).
  • the abbreviation “pce” means parts by weight per hundred parts of elastomer (of the total elastomers if several elastomers are present).
  • the compounds mentioned in the description may be of fossil origin or biobased. In the latter case, they can be, partially or totally, derived from biomass or obtained from renewable raw materials derived from biomass. Are concerned in particular elastomers, plasticizers, fillers ...
  • all the monomer units of the elastomer or "all of the monomer units of the elastomer” means all the constituent repeating units of the elastomer that result from the insertion of the monomers. in the elastomeric chain by polymerization.
  • the elastomer useful for the purposes of the invention is an elastomer which comprises ethylene units resulting from the polymerization of ethylene.
  • ethylene unit refers to the - (CH 2 -CH 2) - unit resulting from the insertion of ethylene into the elastomeric chain.
  • the ethylene-rich elastomer is termed a highly saturated elastomer, since the ethylene units represent more than 50 mol% of all the ethylene units.
  • monomeric units of the elastomer Preferably, they represent more than 60 mol% of all the monomeric units of the elastomer. More preferably, the ethylene unit level in the elastomer is at least 65 mol% of all monomer units of the elastomer.
  • the elastomer useful for the purposes of the invention also comprises 1,3-diene units resulting from the polymerization of a 1,3-diene.
  • 1,3-diene unit refers to the units resulting from the insertion of 1,3-diene by a 1,4-insertion, a 2.1-insertion or a 3,4-insertion in the case of isoprene.
  • the 1,3-diene units are those, for example, of a 1,3-diene having 4 to 12 carbon atoms, such as 1,3-butadiene, isoprene, 1,3-pentadiene, an aryl- l, 3-butadiene.
  • 1,3-diene is 1,3-butadiene.
  • the elastomer contains UD units of formula (I) and may contain UE units of formula (II).
  • the elastomer contains the following units UA, UB, UC, UD and UE distributed statistically according to the molar percentages indicated below:
  • the elastomer has at least one of the following criteria, and preferably all:
  • q is equal to 0.
  • the elastomer contains 1,4-trans units which represent more than 80 mol% of the 1,3-diene units of the elastomer.
  • the 1,3-diene units in the elastomer contain more than 80 mol% of 1,4-trans unit according to the embodiment.
  • 1,4-trans units are 1,4 units which have the trans configuration.
  • the elastomer may comprise UD units of formula (I), in which case the UD units preferably represent less than 1 mol% of all the monomeric units of the elastomer.
  • the elastomer comprises ⁇ -monoolefin units randomly distributed within the elastomer.
  • the elastomer is preferably a terpolymer of 1,3-butadiene, ethylene and an ⁇ -monoolefin.
  • alpha-olefin ⁇ -olefin
  • monoolefin a monomer which contains only one carbon-carbon double bond except those of the benzene ring of the aromatic group.
  • the ⁇ -monoolefin may be aliphatic; as such, there may be mentioned aliphatic ⁇ -monoolefins having from 3 to 18 carbon atoms, such as propene, 1-butene, 1-hexene, 1-octene, 1-hexadecene or mixtures thereof.
  • the ⁇ -monoolefin may also be an aromatic ⁇ -monoolefin.
  • the aromatic ⁇ -monoolefin is of formula CH 2 CHCH-Ar, in which the symbol Ar represents an aromatic group.
  • the aromatic group may be phenyl, substituted or unsubstituted.
  • aromatic ⁇ -monoolefin styrene, styrenes substituted with one or more para, meta or ortho alkyl groups or mixtures thereof are suitable.
  • the elastomer useful for the purposes of the invention is very preferably a copolymer of ethylene and 1,3-butadiene.
  • the elastomer useful for the needs of the invention is preferably statistical.
  • the silanol or alkoxysilane function is located at the end of the chain of the elastomer.
  • the alkoxysilane or silanol function carried at one of the ends is referred to herein as the functional group F 1 .
  • it is attached directly by a covalent bond to the terminal unit of the elastomer, which is to say that the silicon atom of the function is directly covalently bonded to a carbon atom of the unit. terminal of the elastomer.
  • the terminal unit to which the functional group F 1 is directly attached is preferably a methylene linked to an ethylene unit or to a UD unit, the Si atom being bound to methylene.
  • terminal unit is meant the last unit inserted into the copolymer-copolymer chain, which unit is preceded by the penultimate unit, itself preceded by the antithenial unit.
  • the functional group F 1 is of formula (III-a)
  • R 2 identical or different, representing a hydrogen atom, a hydrocarbon chain or a hydrocarbon chain substituted by a chemical function F 2 ,
  • f being an integer from 0 to 2.
  • R 1 are preferably an alkyl having at most 6 carbon atoms, more preferably a methyl or an ethyl, even more preferably a methyl.
  • R 1 are advantageously identical, in particular methyl or ethyl, more particularly methyl.
  • the functional group F 1 is of formula (III-b)
  • alkyls in particular those having 1 to 6 carbon atoms, preferably methyl or ethyl, more preferably methyl.
  • alkanediyl chains in particular those containing at most 6 carbon atoms, all especially the 1,3-propanediyl group, the alkanediyl group bearing a substituent, the chemical function F 2 , in other words, a valency of the alkanediyl chain for the F 2 function, the other valence for the silicon atom of the function silanol or alkoxysilane.
  • chemical function F 2 means a group which is different from a saturated hydrocarbon group and which can participate in chemical reactions.
  • the chemical functions that may be suitable, mention may be made of the ether function, the thioether function, the primary, secondary or tertiary amine function, the thiol function and the silyl function.
  • the primary or secondary amine or thiol functions may be protected or not protected.
  • the protecting group for amine and thiol functions is, for example, a silyl group, in particular trimethylsilyl or terbutyldimethylsilyl.
  • the chemical function F 2 is a primary, secondary or tertiary amine function or a function thiol, the primary, secondary or thiol amine function being protected by a protecting or unprotected group.
  • the symbols R 2 represent an alkyl having at most 6 carbon atoms or an alkanediyl chain having at most 6 carbon atoms and substituted by a chemical function F 2 in the formulas (II la) and ( ll lb).
  • As functional group F 1 there may be mentioned dimethoxymethylsilyl, dimethoxyethylsilyl, diethoxymethylsilyl, diethoxyethysilyl, 3- (N, N-dimethylamino) propyl-dimethoxysilyl, 3- (N, N-dimethylamino) propyldiethoxysilyl, 3-aminopropyldimethoxysilyl, 3 groups.
  • Dimethylsilanol, diethylsilanol, 3- (N, N-dimethylamino) propylmethylsilanol, 3- (N, N-dimethylamino) propylethylsilanol, 3-aminopropylmethylsilanol, 3-aminopropylethylsilanol, 3-thiopropylethylsilanol, 3- are suitable for this purpose.
  • functional group F 1 mention may also be made of the functional groups, whether they are in the alkoxy or silanol form, which have previously been mentioned and which comprise an amine or thiol function in a form protected by a silyl group, in particular trimethylsilyl or terbutyldimethylsilyl.
  • the functional group F 1 is of formula (II la) in which f is equal to 1.
  • the groups for which R 1 is methyl or ethyl such as, for example, dimethoxymethylsilyl, dimethoxyethylsilyl, diethoxymethylsilyl, diethoxyethysilyl, 3- (N, N-dimethylamino) propyldimethoxysilyl, 3- (N, N-dimethylamino) propyldiethoxysilyl, 3-aminopropyldimethoxysilyl, 3-aminopropyldiethoxysilyl, 3 thiopropyldimethoxysilyl, 3-thiopropyldiethoxysilyl.
  • the protected forms of the amine or thiol function of the last 4 functional groups mentioned are also suitable. in the preceding list by a silyl group, in particular trimethylsilyl or terbutyld
  • the functional group F 1 is of formula (III-a) in which f is 1 and R 1 is methyl.
  • the dimethoxymethylsilyl, dimethoxyethylsilyl, 3- (N, N-dimethylamino) propyldimethoxysilyl, 3-aminopropyldimethoxysilyl and 3-thiopropyldimethoxysilyl groups, as well as the protected forms of the amine or thiol function of the 3, are particularly suitable.
  • -aminopropyldimethoxysilyl or 3-thiopropyl-dimethoxysilyl by trimethylsilyl or terbutyldimethylsilyl.
  • the elastomer useful for the purposes of the invention may be prepared by a process which comprises the following steps (a) and (b), and optionally the following step (c):
  • step b) the reaction of a functionalizing agent with the polymer obtained in step a), c) optionally a hydrolysis reaction.
  • Step a) is a copolymerization of the monomer mixture.
  • the monomer mixture is a mixture of ethylene, 1,3-diene, preferably 1,3-butadiene, and optionally ⁇ -monoolefin.
  • the copolymerization can be carried out in accordance with patent applications EP 1 092 731, WO 2004035639, WO 2007054223 and WO 2007054224 using a catalytic system composed of a metallocene and an organomagnesium used as catalyst and co-catalyst respectively.
  • the molar ratio of the organomagnesium to the Met metal constituting the metallocene is preferably in a range from 1 to 100, more preferably is greater than or equal to 1 and less than 10.
  • the range of values from 1 to less than 10 is particularly favorable for obtaining copolymers of high molar masses.
  • the person skilled in the art also adapts the polymerization conditions and the concentrations in each of the reagents (constituents of the catalytic system, monomers) according to the equipment (tools, reactors) used to conduct the polymerization and the different chemical reactions.
  • the copolymerization as well as the handling of the monomers, the catalyst system and the polymerization solvent or solvents are carried out under anhydrous conditions and under an inert atmosphere.
  • Solvents polymerization are typically hydrocarbon, aliphatic or aromatic solvents.
  • the organomagnesium is butyloctylmagnesium or butylethylmagnesium and the metallocene is chosen from [ ⁇ Me 2 SiFlu 2 Nd 2 -BBH 4 ) 2 Li (TI-IF) ⁇ 2 ],
  • Step b) consists in reacting a functionalization agent with the copolymer obtained in step a) to functionalize the copolymer at the chain end.
  • the functionalizing agent is a compound of formula (IV),
  • Rc 2 identical or different, representing a hydrogen atom, a hydrocarbon chain or a hydrocarbon chain substituted with a chemical function Fc 2 ,
  • g being an integer from 0 to 2.
  • the alkoxy group is preferably methoxy or ethoxy.
  • the symbol Fc 1 represents a halogen atom
  • the halogen atom is preferably chlorine.
  • At least one of the symbols Fc 1 represents an alkoxy group, in particular methoxy or ethoxy.
  • the functionalization agent is then of formula (IV-1)
  • MeOSKFcVg (Rc 2 ) g (IV-1) the symbols Fc 1 , Rc 2 and g being as defined in formula (IV).
  • At least two of the symbols Fc 1 represent an alkoxy group, in particular methoxy or ethoxy.
  • the functionalization agent is then of formula (IV-2)
  • At least three of the symbols Fc 1 represent an alkoxy group, in particular methoxy or ethoxy.
  • the functionalization agent is then of formula (IV-3)
  • the functionalizing agent is of formula (IV-4)
  • Rc 2 being as defined in formula (IV).
  • alkyls preferably alkyls having at most 6 carbon atoms, more preferably methyl or ethyl, better methyl.
  • alkanediyl chains preferably those containing at most 6 carbon atoms, more preferably the 1,3-propanediyl group, the alkanediyl group carrying a substituent, the chemical function Fc 2 , in other words a valence of the chain alkanediyl for the F 2 function, the other valency for the silicon atom of the silanol or alkoxysilane function.
  • the term "chemical function” means a group which is different from a saturated hydrocarbon group and which can participate in chemical reactions.
  • the chemical function Fc 2 is a group that is chemically inert with respect to the chemical species present in the polymerization medium.
  • the chemical function Fc 2 can be in a protected form, as for example in the case of the primary amine, secondary amine or thiol function.
  • the functions ether, thioether, protected primary amine, protected secondary amine, tertiary amine, protected thiol, silyl can be mentioned.
  • the chemical function Fc 2 is a protected primary amine function, a protected secondary amino function, a tertiary amine function or a protected thiol function.
  • protecting groups of the primary amine, secondary amine and thiol functions include silyl groups, for example trimethylsilyl and terbutyldimethylsilyl groups.
  • g is preferably different from 0, which implies that the functionalization agent comprises at least one Si-Rc 2 bond.
  • the functionalizing agent is typically added to the polymerization medium resulting from step a). It is typically added to the polymerization medium at a monomer conversion ratio chosen by those skilled in the art according to the desired macrostructure of the elastomer. Since step a) is generally carried out under ethylene pressure, degassing of the polymerization reactor can be carried out before the addition of the functionalization agent.
  • the functionalizing agent is added under inert and anhydrous conditions to the polymerization medium, maintained at the polymerization temperature. 0.25 to 10 moles of functionalizing agent are typically used for 1 mole of cocatalyst, preferably 2 to 4 moles of functionalizing agent per 1 mole of cocatalyst.
  • the functionalizing agent is contacted with the polymerization medium for a time sufficient to allow the functionalization reaction.
  • This contact time is judiciously chosen by those skilled in the art as a function of the concentration of the reaction medium and the temperature of the reaction medium.
  • the reaction of Functionalization is conducted with stirring, at a temperature ranging from 17 to 80 ° C, for 0.01 to 24 hours.
  • the elastomer can be recovered, in particular by isolating it from the reaction medium.
  • the techniques for separating the elastomer from the reaction medium are well known to those skilled in the art and chosen by those skilled in the art according to the amount of elastomer to be separated, its macrostructure and the tools provided to those skilled in the art. . Mention may be made, for example, of the coagulation techniques of the elastomer in a solvent such as methanol, the techniques for evaporation of the solvent from the reaction medium and residual monomers, for example under reduced pressure.
  • step b) may be followed by a hydrolysis reaction to form an elastomer carrying at the chain end a silanol function.
  • the hydrolysis may be conducted by a step of stripping the solution containing the elastomer at the end of step b), in a manner known to those skilled in the art.
  • step b) may also be followed by a hydrolysis reaction to deprotect the function at the end of the chain of the elastomer.
  • the hydrolysis reaction, a step of deprotection of the function is generally carried out in an acidic or basic medium depending on the chemical nature of the function to be deprotected.
  • a silyl group in particular trimethylsilyl or terbutyldimethylsilyl, which protects an amine or thiol function may be hydrolysed in an acidic or basic medium in a manner known to those skilled in the art.
  • the choice of the deprotection conditions is judiciously made by those skilled in the art taking into account the chemical structure of the substrate to be deprotected.
  • Step c) is an optional step depending on whether or not it is desired to convert the functional group into a silanol function or that it is desired to deprotect the protected function or not.
  • step c) is conducted before separating the elastomer from the reaction medium at the end of step b) or simultaneously with this separation step.
  • the rubber composition contains more than 50 phr of the highly saturated elastomer, more preferably at least 80 phr of the elastomer useful for the purposes of the invention.
  • the level of the highly saturated elastomer is 100 phr.
  • the highly saturated elastomer may consist of a mixture of elastomers useful for the needs of the invention which differ from each other by their microstructures or by their macrostructures.
  • any inorganic or mineral filler (regardless of its color and origin (natural or synthetic), also called “white” filler, “clear” filler or “non-black fi ne”("non-black fi Mer") as opposed to carbon black, capable of reinforcing on its own, with no other means than an intermediate coupling agent, a rubber composition intended for the manufacture of tires in other words, able to replace, in its reinforcing function, a conventional carbon black of pneumatic grade, such a charge is generally characterized, in known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • -OH hydroxyl groups
  • Suitable reinforcing inorganic fillers are in particular mineral fillers of the siliceous type, preferentially silica (SiO 2 ).
  • the silica used may be any reinforcing silica known to those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface both less than 450 m 2 / g, preferably from 30 to 400 m 2 / g, in particular between 60 and 300 m 2 / g-A of highly dispersible precipitated silicas (called “HDS”), there may be mentioned for example the silicas “Ultrasil” 7000 and “Ultrasil” 7005 from the company Degussa, silicas “Zeosil” 1165 MP, 1135MP and 1115MP from Rhodia, the "Hi-Sil” silica EZ150G from PPG, the "Zeopol” silicas 8715, 8745 and 8755 from Huber, high surface
  • the BET surface area is determined in a known manner by gas adsorption using the Brunauer-Emmett-Teller method described in "The Journal of the American Chemical Society” Vol. 60, page 309, February 1938, specifically according to the French standard NF ISO 9277 of December 1996 (multipoint volumetric method (5 points) - gas: nitrogen - degassing: time at 160 ° C - relative pressure range p / po: 0.05 at 0.17).
  • the CTAB specific surface is the external surface determined according to the French standard NF T 45-007 of November 1987 (method B).
  • the physical state under which the reinforcing inorganic filler is present is indifferent, whether in the form of powder, microbeads, granules or beads.
  • reinforcing inorganic filler is also understood to mean mixtures of different reinforcing inorganic fillers, in particular of highly dispersible silicas as described above.
  • the level of reinforcing inorganic filler is between 30 and 200 phr, more preferably between 40 and 160 phr. Any of these ranges of inorganic reinforcing filler content can be applied to any of the embodiments of the invention.
  • the rubber composition may further include carbon black.
  • Suitable carbon blacks are all carbon blacks, especially blacks of the HAF, ISAF, SAF, FF, FEF, GPF and SRF type conventionally used in tire rubber compositions (so-called pneumatic grade blacks).
  • the carbon black when present, is preferably used at a level of less than 20 phr, more preferably less than 10 phr (for example between 0.5 and 20 phr, in particular between 2 and 10 phr).
  • the black coloring agent and the anti-UV properties of the carbon blacks are advantageously used, without in any way penalizing the typical performance provided by the reinforcing inorganic filler, in particular silica.
  • a coupling agent is used in a well-known manner, namely a silane (or bonding agent) at least bifunctional intended to ensure a sufficient connection between the inorganic filler (surface of its particles) and the diene elastomer.
  • a silane or bonding agent
  • organosilanes or at least bifunctional polyorganosiloxanes are used.
  • polysulfide silanes called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, as described for example in the applications WO03 / 002648 (or US 2005/016651) and WO03 / 002649 (or US 2005/016650).
  • polysulphide silanes having the general formula (V) are not suitable for limiting the definition below.
  • G which are identical or different, represent a divalent hydrocarbon radical (preferably alkylene Ci-Ci 8 or an arylene C 6 -C 2, more particularly alkylene Ci-Ci 0, in particular -C C 4 , especially propylene);
  • radicals R 1 substituted or unsubstituted, identical or different, represent an alkyl group Ci-8 cycloalkyl, C 5 -C 8 aryl or C 6 -C 8 (preferably alkyl groups -C 6 , cyclohexyl or phenyl, especially C 1 -C 4 alkyl groups, more particularly methyl and / or ethyl).
  • radicals R 2 substituted or unsubstituted, identical or different, represent an alkoxy group or Ci-Ci 8 cycloalkoxy, C 5 -C 8 (preferably a group selected from alkoxyls and C 8 cycloalkoxyls C 5 -C 8 , more preferably still a group selected from C 1 -C 4 alkoxyls, in particular methoxyl and ethoxyl).
  • polysulphide silanes By way of examples of polysulphide silanes, mention may be made more particularly of bis (C 1 -C 4 ) alkoxy-C 1 -C 4 alkylsilyl-C 1 -C 4 alkyl (especially disulfide, trisulphide or tetrasulfide) polysulphides. )), such as polysulfides of bis (3-trimethoxysilylpropyl) or bis (3-triethoxysilylpropyl).
  • TESPT bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis (3-triethoxysilylpropyl) tetrasulfide
  • CH2 3 Si
  • S 2 bis (triethoxysilylpropyl) disulfide
  • TESPD of formula [(C2H 5 0) 3 Si (CH2) 3S] 2.
  • coupling agent other than polysulfurized alkoxysilane there may be mentioned in particular bifunctional POSS (polyorganosiloxanes) or hydroxysilane polysulfides as described in patent applications WO 02/30939 (or US Pat. No. 6,774,255), WO 02 / 31041 (or US 2004/051210) or silanes or POSS bearing azodicarbonyl functional groups, as described for example in patent applications WO 2006/125532, WO 2006/125533, WO 2006/125534.
  • POSS polyorganosiloxanes
  • hydroxysilane polysulfides as described in patent applications WO 02/30939 (or US Pat. No. 6,774,255), WO 02 / 31041 (or US 2004/051210) or silanes or POSS bearing azodicarbonyl functional groups, as described for example in patent applications WO 2006/125532, WO 2006/125533, WO 2006/125534.
  • the content of coupling agent is advantageously less than 30 phr, it being understood that it is generally desirable to use as little as possible.
  • the level of coupling agent is from 0.5% to 15% by weight relative to the amount of inorganic filler. Its content is preferably between 0.5 and 16 phr, more preferably in a range from 3 to 10 phr. This rate is easily adjusted by those skilled in the art according to the level of inorganic filler used in the composition.
  • the rubber composition in accordance with the invention may also contain, in addition to the coupling agents, coupling activators, inorganic charge-covering agents or, more generally, processing aid agents which can be used in a known manner, by improving the dispersion of the filler in the rubber matrix and lowering the viscosity of the compositions, to improve their ability to implement in the green state.
  • the rubber composition may contain a crosslinking system. Chemical crosslinking allows the formation of covalent bonds between the elastomer chains.
  • the crosslinking system may be a vulcanization system or one or more peroxide compounds.
  • the vulcanization system itself is based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator.
  • sulfur or a sulfur-donor agent
  • a primary vulcanization accelerator To this basic vulcanization system are added, incorporated during the first non-productive phase and / or during the production phase as described later, various known secondary accelerators or vulcanization activators such as zinc oxide.
  • Sulfur is used at a preferential rate of 0.5 to 12 phr, in particular from 1 to 10 phr.
  • the primary vulcanization accelerator is used at a preferential rate of between 0.5 and 10 phr, more preferably between 0.5 and 5 phr.
  • accelerator can be used any compound capable of acting as an accelerator of vulcanization of diene elastomers in the presence of sulfur, in particular thiazole-type accelerators and their derivatives, accelerators of thiuram type, zinc dithiocarbamates.
  • a primary accelerator of the sulfenamide type is used.
  • the one or more peroxide compounds preferably represent from 0.01 to 10 phr.
  • peroxidic compounds that can be used as chemical crosslinking systems, mention may be made of acyl peroxides, for example benzoyl peroxide or p-chlorobenzoyl peroxide, peroxide ketones, for example methyl ethyl ketone peroxide or peroxyesters, for example butylperoxyacetate, t-butylperoxybenzoate and t-butylperoxyphthalate, alkyl peroxides, for example dicumyl peroxide, di-t-butyl peroxybenzoate and 1,3-bis (t-butyl peroxyisopropyl) benzene, hydroperoxides, for example t-butyl hydro peroxide.
  • acyl peroxides for example benzoyl peroxide or p-chlorobenzoyl peroxide
  • peroxide ketones for example methyl eth
  • the rubber composition may contain in addition to the highly saturated elastomer a second elastomer.
  • the second elastomer may be chosen from the group of diene elastomers consisting of polybutadienes, polyisoprenes, butadiene copolymers, isoprene copolymers and their mixture.
  • the rubber composition in accordance with the invention may also comprise all or part of the usual additives normally used in elastomer compositions intended to constitute external mixtures of finished articles of rubber such as tires, in particular treads, such as, for example, plasticizers or extension oils, whether these are aromatic or non-aromatic in nature, in particular very slightly or non-aromatic oils (eg, paraffinic oils, hydrogenated naphthenic oils, MES or TDAE oils), vegetable oils , in particular glycerol esters such as glycerol trioleate, pigments, protective agents such as anti-ozone waxes, chemical antiozonants, anti-oxidants,.
  • plasticizers or extension oils whether these are aromatic or non-aromatic in nature, in particular very slightly or non-aromatic oils (eg, paraffinic oils, hydrogenated naphthenic oils, MES or TDAE oils), vegetable oils , in particular glycerol esters such as glycerol trioleate, pigments, protective agents such as anti-o
  • the rubber composition according to the invention can be manufactured in suitable mixers, using two successive preparation phases according to a general procedure well known to those skilled in the art: a first working phase or thermomechanical mixing (sometimes referred to as “non-productive” phase) at high temperature, up to a maximum temperature of between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C, followed by a second phase of mechanical work (sometimes qualified of "productive" phase) at a lower temperature, typically below 120 ° C, for example between 60 ° C and 100 ° C, finishing phase during which is incorporated the chemical crosslinking agent, in particular the system of vulcanization.
  • a first working phase or thermomechanical mixing sometimes referred to as "non-productive" phase
  • a second phase of mechanical work sometimes qualified of "productive” phase
  • the first (non-productive) phase is carried out in a single thermomechanical step during which all the necessary constituents, the possible setting agents, are introduced into a suitable mixer such as a conventional internal mixer.
  • a suitable mixer such as a conventional internal mixer.
  • complementary additives and other miscellaneous additives with the exception of the chemical crosslinking agent.
  • the total mixing time in this non-productive phase is preferably between 1 and 15 minutes.
  • incorporating the low temperature crosslinking system usually in an external mixer such as a roll mill; the whole is then mixed (productive phase) for a few minutes, for example between 2 and 15 min.
  • the final composition thus obtained is then calendered, for example in the form of a sheet or a plate, in particular for a characterization in the laboratory, or else extruded in the form of a rubber profile that can be used as a semi-finished tire for vehicle.
  • the rubber composition according to the invention can be either in the green state (before crosslinking or vulcanization), or in the fired state (after crosslinking or vulcanization), is a semi-finished product that can be used in a tire, especially as a tire tread.
  • Size Exclusion Chromatography is used to separate macromolecules in solution by size through columns filled with a porous gel. The macromolecules are separated according to their hydrodynamic volume, the larger ones being eluted first.
  • the SEC allows to apprehend the distribution of absolute molar masses of a polymer.
  • the equipment used is a "WATERS Alliance" chromatograph.
  • the eluting solvent is (tetrahydrofuran + 1% vol diisopropylamine + 1% vol triethylamine), the flow rate 0.5 ml / min, the system temperature 35 ° C.
  • a set of four POLYMER LABORATORIES columns is used in series, of trade names: two "MIXED A LS" and two "MIXED B LS".
  • the injected volume of the solution of the polymer sample is 100 ⁇ l.
  • the detection system used is the "TDA 302 of VISCOTEK", it is composed of a differential refractometer, a differential viscometer and a 90 ° light scattering detector. For these 3 detectors, the wavelength is 670nm.
  • the value of the refractive index increment dn / dC of the polymer solution previously defined in (tetrahydrofuran + 1% vol diisopropylamine + 1% vol triethylamine ) at 35 ° C and 670nm.
  • the data exploitation software is the "OMNISEC system of VISCOTEK".
  • the 1 H NMR spectrum makes it possible to quantify the styrene, 1,3-butadiene and ethylene units.
  • the 1H / 13C 1J HSOC 2D NMR correlation spectrum used makes it possible to verify the nature of the motifs by virtue of the chemical shifts of the carbon and proton atom signals.
  • Long-distance correlation spectra 3J HMBC 1H / 13C make it possible to verify the presence of covalent bonds between the styrene, 1,3-butadiene and ethylene units.
  • PB1-2 1,3-butadiene unit resulting from an insertion 2.1 (unit 1,2)
  • PB1-4 1,3-butadiene unit resulting from 1,4 insertion (1,4 unit)
  • the information of the cis and trans microstructure of the PB1-4 units can be obtained from the quantitative 1 D 13 C NMR spectrum.
  • the two-dimensional H / C and H / Si experiments are used for the purpose of determining the structure of the functional polymers.
  • Dynamic properties are measured on a viscoanalyzer (Metravib VA4000) according to ASTM D 5992-96.
  • the response of a sample of vulcanized composition (cylindrical specimen 4 mm in thickness and 400 mm 2 in section), subjected to a sinusoidal stress in alternating simple shear, at the frequency of 10 Hz, is recorded under normal conditions. temperature (23 ° C) according to ASTM D 1349-99.
  • a strain amplitude sweep is performed from 0.1% to 50% (forward cycle) and then from 50% to 0.1% (return cycle).
  • the results used are the complex shear modulus G *, the loss factor tan ( ⁇ ) and the modulus difference AG * between the values at 0.1 and 50% deformation (Payne effect).
  • tan ( ⁇ ) max the maximum value of tan ( ⁇ ) observed, denoted tan ( ⁇ ) max.
  • the complex modulus G * at 50% of deformation, denoted G *, the difference of modulus AG * between the values 0.1 and 50% of deformation (Payne effect) and the value of tan ( ⁇ ) max are given in base 100, the value 100 being attributed to the control composition (T).
  • the lower the value of tan ( ⁇ ) max the lower the hysteresis of the rubber composition.
  • Ethylene, grade N35 comes from Air Liquide and is used without prior purification. 1,3-Butadiene is purified on alumina guards. Functionalising agents are used without prior purification.
  • the methylcyclohexane solvent from BioSolve is dried and purified on a column of alumina in a solvent fountain from mbraun and used in an inert atmosphere.
  • the methanol (99%, class 3, grade II) comes from the company Laurylas, C 6 D 6 (99.6% D atom) from Aldrich and is stored cold. All reactions are carried out in an inert atmosphere.
  • metallocene 30 mg are introduced into a first Steinie bottle in a glove box.
  • the butyloctylmagnesium previously dissolved in 300 ml of methylcyclohexane in a second Steinie bottle is introduced into the first Steinie bottle containing the metallocene in the proportions indicated in Table 2.
  • a catalytic solution is obtained.
  • the catalytic solution is then introduced into the polymerization reactor.
  • styrene is injected into the polymerization reactor just after the introduction of the catalytic solution.
  • the reactor contents are degassed and the functionalizing agent is introduced under an inert atmosphere by overpressure.
  • the reaction medium is stirred for a time and a temperature indicated in Table 2.
  • the medium is degassed and then precipitated in methanol.
  • the polymers are dissolved in toluene and then precipitated in methanol so as to eliminate ungrafted "silane" molecules, which improves the quality of the spectral signals for the quantification of the function rate and the integration different signals.
  • the polymer is antioxidized and then dried at 60 ° C under vacuum to constant mass. It is then analyzed by SEC (THF), 13 C NMR, 29 Si.
  • the functionalization agents used are respectively:
  • Rubber compositions whose formulation expressed in phr (parts by weight per hundred parts of elastomer) is shown in Table 3, were prepared according to the following procedure: is introduced into an internal mixer (final filling ratio: about 70 % by volume), whose initial tank temperature is about 80 ° C, successively the copolymer, the silica, as well as the various other ingredients with the exception of the vulcanization system. Thermomechanical work (non-productive phase) is then carried out in one stage, which lasts a total of about 5 minutes, until a maximum temperature of 150 ° C. is reached.
  • the mixture thus obtained is recovered, cooled and then sulfur is incorporated and the accelerator on a mixer (homo-finisher) at 40 ° C, mixing the whole (productive phase) for about ten minutes.
  • the compositions thus obtained are then calendered either in the form of plates (thickness of 2 to 3 mm) or thin sheets of rubber for the measurement of their physical or mechanical properties.
  • the copolymer has alkoxysilane or silanol functionalization at the chain end.
  • One third or even one half of the chains can be functionalized, as is the case when the functionalization agents Al and A2 are used with the metallocene A.
  • the function rates can reach more than 90%
  • the values of AG * and Tanô max of the composition I which comprises a copolymer according to the invention are much lower than those of the control composition T. In parallel, the value of G * is also lower.
  • the rubber composition according to the invention is both less hysteretic and less rigid than the control composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
PCT/FR2018/051307 2017-06-08 2018-06-06 Composition de caoutchouc Ceased WO2018224776A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18737664.5A EP3634776B1 (fr) 2017-06-08 2018-06-06 Composition de caoutchouc
US16/620,257 US20210079135A1 (en) 2017-06-08 2018-06-06 Rubber composition
CN201880036892.7A CN110709259B (zh) 2017-06-08 2018-06-06 橡胶组合物
JP2019567700A JP7187492B2 (ja) 2017-06-08 2018-06-06 ゴム組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1755109A FR3067355A1 (fr) 2017-06-08 2017-06-08 Composition de caoutchouc
FR17/55109 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018224776A1 true WO2018224776A1 (fr) 2018-12-13

Family

ID=59930480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/051307 Ceased WO2018224776A1 (fr) 2017-06-08 2018-06-06 Composition de caoutchouc

Country Status (6)

Country Link
US (1) US20210079135A1 (enExample)
EP (1) EP3634776B1 (enExample)
JP (1) JP7187492B2 (enExample)
CN (1) CN110709259B (enExample)
FR (1) FR3067355A1 (enExample)
WO (1) WO2018224776A1 (enExample)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020128196A1 (fr) * 2018-12-20 2020-06-25 Compagnie Generale Des Etablissements Michelin TERPOLYMÈRES D'ÉTHYLÈNE, DE 1,3-BUTADIÈNE ET D'UNE α-MONOOLÉFINE AROMATIQUE
FR3104586A1 (fr) 2019-12-17 2021-06-18 Compagnie Generale Des Etablissements Michelin Composé diorganomagnésien asymétrique pour système catalytique
FR3104584A1 (fr) 2019-12-17 2021-06-18 Compagnie Generale Des Etablissements Michelin Composé diorganomagnésien asymétrique
FR3104585A1 (fr) 2019-12-17 2021-06-18 Compagnie Generale Des Etablissements Michelin Système catalytique à base d’un métallocène et d’un diorganomagnésien
CN113195247A (zh) * 2018-12-21 2021-07-30 米其林集团总公司 轮胎的胎面
CN113272379A (zh) * 2018-12-21 2021-08-17 米其林集团总公司 橡胶组合物
FR3116276A1 (fr) 2020-11-19 2022-05-20 Compagnie Generale Des Etablissements Michelin Diorganomagnésien ayant une chaîne diénique ou oléfinique et fonctionnelle amine
FR3116540A1 (fr) 2020-11-24 2022-05-27 Compagnie Generale Des Etablissements Michelin Système catalytique à base d’un métallocène de terre rare et d’un co-catalyseur ayant plusieurs liaisons carbone magnésium.
FR3116539A1 (fr) 2020-11-24 2022-05-27 Compagnie Generale Des Etablissements Michelin Système catalytique à base d’un métallocène de terre rare et d’un co-catalyseur ayant plusieurs liaisons carbone magnésium.
FR3116535A1 (fr) 2020-11-24 2022-05-27 Compagnie Generale Des Etablissements Michelin Polymères téléchéliques à base d’éthylène et de 1,3-diène
FR3116538A1 (fr) 2020-11-24 2022-05-27 Compagnie Generale Des Etablissements Michelin Co-catalyseur comprenant plusieurs liaisons carbone magnésium
WO2023088820A1 (fr) 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088813A1 (fr) 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088822A1 (fr) * 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088817A1 (fr) 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088811A1 (fr) 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088816A1 (fr) * 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3141178A1 (fr) 2022-10-25 2024-04-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2024121112A1 (fr) 2022-12-08 2024-06-13 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3148030A1 (fr) 2023-04-24 2024-10-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2025073682A1 (fr) * 2023-10-05 2025-04-10 Compagnie Generale Des Etablissements Michelin Procédé de fonctionnalisation cétone de polyéthylènes et de copolymères contenant des unités éthylène et des unités 1,3-diène
WO2025073680A1 (fr) * 2023-10-05 2025-04-10 Compagnie Generale Des Etablissements Michelin Système catalytique comprenant un métallocène pour la synthèse de polyéthylène et de copolymère d'éthylène et de 1,3-diène
WO2025073678A1 (fr) * 2023-10-05 2025-04-10 Compagnie Generale Des Etablissements Michelin Système catalytique comprenant un métallocène pour la synthèse de polyéthylène et de copolymère d'éthylène et de 1,3-diène.
WO2025196210A1 (fr) 2024-03-21 2025-09-25 Compagnie Generale Des Etablissements Michelin Procédé de préparation d'un polyéthylène ou d'un copolymère d'éthylène et de 1,3-diène
WO2025196208A1 (fr) 2024-03-21 2025-09-25 Compagnie Generale Des Etablissements Michelin Système catalytique comprenant un métallocène pour la synthèse de polyéthylène et de copolymère d'éthylène et de 1,3-diène

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087443B3 (fr) * 2018-10-23 2020-10-23 Michelin & Cie Composition de caoutchouc
FR3108117B1 (fr) * 2020-03-10 2022-03-25 Michelin & Cie Procédé de fabrication d’une composition de caoutchouc.
FR3135723B1 (fr) * 2022-05-17 2024-04-19 Michelin & Cie Composition de caoutchouc a base d’un elastomere fortement sature et d’un plastifiant liquide polaire
FR3135722B1 (fr) * 2022-05-17 2024-04-19 Michelin & Cie Composition de caoutchouc a base d’un elastomere fortement sature et d’un plastifiant liquide

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037547A2 (en) 1995-05-22 1996-11-28 Cabot Corporation Elastomeric compounds incorporating silicon-treated carbon blacks
WO1999028380A1 (fr) 1997-11-28 1999-06-10 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse
EP1092731A1 (fr) 1999-10-12 2001-04-18 Société de Technologie Michelin Système catalytique, son procédé de préparation et procédé de préparation d'un copolymère d'éthylène et d'un diène conjugué
WO2001034658A1 (en) 1999-11-12 2001-05-17 Bridgestone Corporation Modified polymers prepared with lanthanide-based catalysts
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
WO2003016387A1 (fr) 2001-08-13 2003-02-27 Societe De Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
WO2004035639A1 (fr) 2002-10-16 2004-04-29 Societe De Technologie Michelin Copolymères éthylène/ butadiène, system catalytique et les produires et production desdits polymers
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2007054223A2 (fr) 2005-11-09 2007-05-18 Societe De Technologie Michelin Complexe metallocene borohydrure d’un lanthanide, systeme catalytique l’incorporant, procede de polymerisation l’utilisant et copolymere ethylene/butadiene obtenu par ce procede
WO2007054224A2 (fr) 2005-11-09 2007-05-18 Societe De Technologie Michelin Complexe metallocene borohydrure d’un lanthanide, systeme catalytique l’incorporant, procede de polymerisation l’utilisant et copolymere ethylene/butadiene obtenu par ce procede
EP1954706B1 (en) 2005-11-30 2012-03-28 Epicentre Technologies Corporation Method using reversibly blocked tagging oligonucleotides
WO2014114607A1 (fr) 2013-01-22 2014-07-31 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
WO2016012258A1 (fr) 2014-07-21 2016-01-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2016012259A1 (fr) 2014-07-22 2016-01-28 Compagnie Generale Des Etablissements Michelin Pneumatique pour avion
US20160319045A1 (en) * 2013-12-18 2016-11-03 Compagnie Generale Des Etablissements Michelin Modified diene elastomer and rubber composition containing same
WO2017060395A1 (fr) * 2015-10-08 2017-04-13 Compagnie Generale Des Etablissements Michelin Elastomère diénique possédant une fonction en milieu de chaîne et composition de caoutchouc le contenant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051073A1 (ja) 2007-10-18 2009-04-23 Sumitomo Rubber Industries, Ltd. タイヤ
JP2013144720A (ja) 2010-04-23 2013-07-25 Jsr Corp ゴム組成物及びタイヤ
WO2016143755A1 (ja) 2015-03-06 2016-09-15 株式会社ブリヂストン タイヤ

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037547A2 (en) 1995-05-22 1996-11-28 Cabot Corporation Elastomeric compounds incorporating silicon-treated carbon blacks
WO1999028380A1 (fr) 1997-11-28 1999-06-10 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse
EP1092731A1 (fr) 1999-10-12 2001-04-18 Société de Technologie Michelin Système catalytique, son procédé de préparation et procédé de préparation d'un copolymère d'éthylène et d'un diène conjugué
EP1092731B1 (fr) 1999-10-12 2011-12-14 Société de Technologie Michelin Système catalytique, son procédé de préparation et procédé de préparation d'un copolymère d'éthylène et d'un diène conjugué
WO2001034658A1 (en) 1999-11-12 2001-05-17 Bridgestone Corporation Modified polymers prepared with lanthanide-based catalysts
US20040051210A1 (en) 2000-10-13 2004-03-18 Jean-Claude Tardivat Rubber composition comprising a polyfunctional organosilane as coupling agent
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
US6774255B1 (en) 2000-10-13 2004-08-10 Michelin Recherche Et Technique, S.A. Polyfunctional organosilane usable as a coupling agent and process for the obtainment thereof
US20050016650A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of very low specific surface area
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
US20050016651A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of low specific surface area
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
WO2003016387A1 (fr) 2001-08-13 2003-02-27 Societe De Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
WO2004035639A1 (fr) 2002-10-16 2004-04-29 Societe De Technologie Michelin Copolymères éthylène/ butadiène, system catalytique et les produires et production desdits polymers
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2007054224A2 (fr) 2005-11-09 2007-05-18 Societe De Technologie Michelin Complexe metallocene borohydrure d’un lanthanide, systeme catalytique l’incorporant, procede de polymerisation l’utilisant et copolymere ethylene/butadiene obtenu par ce procede
WO2007054223A2 (fr) 2005-11-09 2007-05-18 Societe De Technologie Michelin Complexe metallocene borohydrure d’un lanthanide, systeme catalytique l’incorporant, procede de polymerisation l’utilisant et copolymere ethylene/butadiene obtenu par ce procede
EP1954706B1 (en) 2005-11-30 2012-03-28 Epicentre Technologies Corporation Method using reversibly blocked tagging oligonucleotides
WO2014114607A1 (fr) 2013-01-22 2014-07-31 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique fortement saturé
US20150353716A1 (en) * 2013-01-22 2015-12-10 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a highly saturated diene elastomer
US20160319045A1 (en) * 2013-12-18 2016-11-03 Compagnie Generale Des Etablissements Michelin Modified diene elastomer and rubber composition containing same
WO2016012258A1 (fr) 2014-07-21 2016-01-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2016012259A1 (fr) 2014-07-22 2016-01-28 Compagnie Generale Des Etablissements Michelin Pneumatique pour avion
WO2017060395A1 (fr) * 2015-10-08 2017-04-13 Compagnie Generale Des Etablissements Michelin Elastomère diénique possédant une fonction en milieu de chaîne et composition de caoutchouc le contenant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACS CATALYSIS, vol. 6, no. 2, 2016, pages 1028 - 1036
DE LLAURO ET AL., MACROMOLECULES, vol. 34, 2001, pages 6304 - 6311
THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, February 1938 (1938-02-01), pages 309

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006383B2 (en) 2018-12-20 2024-06-11 Compagnie Generale Des Etablissements Michelin Terpolymers of ethylene, 1,3-butadiene and an aromatic a-monoolefin
FR3090638A1 (fr) * 2018-12-20 2020-06-26 Compagnie Generale Des Etablissements Michelin Terpolymères d’éthylène, de 1,3-butadiène et d’une α-monooléfine aromatique.
WO2020128196A1 (fr) * 2018-12-20 2020-06-25 Compagnie Generale Des Etablissements Michelin TERPOLYMÈRES D'ÉTHYLÈNE, DE 1,3-BUTADIÈNE ET D'UNE α-MONOOLÉFINE AROMATIQUE
CN113195247A (zh) * 2018-12-21 2021-07-30 米其林集团总公司 轮胎的胎面
CN113272379A (zh) * 2018-12-21 2021-08-17 米其林集团总公司 橡胶组合物
FR3104586A1 (fr) 2019-12-17 2021-06-18 Compagnie Generale Des Etablissements Michelin Composé diorganomagnésien asymétrique pour système catalytique
FR3104584A1 (fr) 2019-12-17 2021-06-18 Compagnie Generale Des Etablissements Michelin Composé diorganomagnésien asymétrique
FR3104585A1 (fr) 2019-12-17 2021-06-18 Compagnie Generale Des Etablissements Michelin Système catalytique à base d’un métallocène et d’un diorganomagnésien
WO2021123590A1 (fr) 2019-12-17 2021-06-24 Compagnie Generale Des Etablissements Michelin Compose diorganomagnesien pour systeme catalytique
WO2021123591A1 (fr) 2019-12-17 2021-06-24 Compagnie Generale Des Etablissements Michelin Compose diorganomagnesien
WO2021123589A1 (fr) 2019-12-17 2021-06-24 Compagnie Generale Des Etablissements Michelin Systeme catalytique a base d'un metallocene et d'un diorganomagnesien
FR3116276A1 (fr) 2020-11-19 2022-05-20 Compagnie Generale Des Etablissements Michelin Diorganomagnésien ayant une chaîne diénique ou oléfinique et fonctionnelle amine
WO2022106769A1 (fr) 2020-11-19 2022-05-27 Compagnie Generale Des Etablissements Michelin Diorganomagnésien ayant une chaîne diénique ou oléfinique et fonctionnelle amine
FR3116539A1 (fr) 2020-11-24 2022-05-27 Compagnie Generale Des Etablissements Michelin Système catalytique à base d’un métallocène de terre rare et d’un co-catalyseur ayant plusieurs liaisons carbone magnésium.
FR3116535A1 (fr) 2020-11-24 2022-05-27 Compagnie Generale Des Etablissements Michelin Polymères téléchéliques à base d’éthylène et de 1,3-diène
FR3116538A1 (fr) 2020-11-24 2022-05-27 Compagnie Generale Des Etablissements Michelin Co-catalyseur comprenant plusieurs liaisons carbone magnésium
WO2022112693A1 (fr) 2020-11-24 2022-06-02 Compagnie Generale Des Etablissements Michelin Polymères téléchéliques à base d'éthylène et de 1,3-diène
WO2022112692A1 (fr) 2020-11-24 2022-06-02 Compagnie Generale Des Etablissements Michelin Système catalytique à base d'un métallocène de terre rare et d'un co-catalyseur ayant plusieurs liaisons carbone magnésium
WO2022112690A1 (fr) 2020-11-24 2022-06-02 Compagnie Generale Des Etablissements Michelin Co-catalyseur comprenant plusieurs liaisons carbone magnésium
WO2022112691A1 (fr) 2020-11-24 2022-06-02 Compagnie Generale Des Etablissements Michelin Système catalytique à base d'un métallocène de terre rare et d'un co-catalyseur ayant plusieurs liaisons carbone magnésium
FR3116540A1 (fr) 2020-11-24 2022-05-27 Compagnie Generale Des Etablissements Michelin Système catalytique à base d’un métallocène de terre rare et d’un co-catalyseur ayant plusieurs liaisons carbone magnésium.
WO2023088811A1 (fr) 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088820A1 (fr) 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088817A1 (fr) 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088813A1 (fr) 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088816A1 (fr) * 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3129401A1 (fr) 2021-11-22 2023-05-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3129400A1 (fr) * 2021-11-22 2023-05-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3129399A1 (fr) 2021-11-22 2023-05-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3129396A1 (fr) 2021-11-22 2023-05-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3129398A1 (fr) 2021-11-22 2023-05-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3129397A1 (fr) * 2021-11-22 2023-05-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2023088822A1 (fr) * 2021-11-22 2023-05-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2024088776A1 (fr) 2022-10-25 2024-05-02 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3141178A1 (fr) 2022-10-25 2024-04-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2024121112A1 (fr) 2022-12-08 2024-06-13 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3143035A1 (fr) 2022-12-08 2024-06-14 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3148030A1 (fr) 2023-04-24 2024-10-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2024223397A1 (fr) 2023-04-24 2024-10-31 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2025073678A1 (fr) * 2023-10-05 2025-04-10 Compagnie Generale Des Etablissements Michelin Système catalytique comprenant un métallocène pour la synthèse de polyéthylène et de copolymère d'éthylène et de 1,3-diène.
WO2025073680A1 (fr) * 2023-10-05 2025-04-10 Compagnie Generale Des Etablissements Michelin Système catalytique comprenant un métallocène pour la synthèse de polyéthylène et de copolymère d'éthylène et de 1,3-diène
WO2025073682A1 (fr) * 2023-10-05 2025-04-10 Compagnie Generale Des Etablissements Michelin Procédé de fonctionnalisation cétone de polyéthylènes et de copolymères contenant des unités éthylène et des unités 1,3-diène
FR3153824A1 (fr) * 2023-10-05 2025-04-11 Compagnie Generale Des Etablissements Michelin procédé de fonctionnalisation cétone de polyéthylènes et de copolymères contenant des unités éthylène et des unités 1,3-diène.
FR3153823A1 (fr) * 2023-10-05 2025-04-11 Compagnie Generale Des Etablissements Michelin système catalytique comprenant un métallocène pour la synthèse de polyéthylène et de copolymère d’éthylène et de 1,3-diène.
FR3153822A1 (fr) * 2023-10-05 2025-04-11 Compagnie Generale Des Etablissements Michelin système catalytique comprenant un métallocène pour la synthèse de polyéthylène et de copolymère d’éthylène et de 1,3-diène.
WO2025196210A1 (fr) 2024-03-21 2025-09-25 Compagnie Generale Des Etablissements Michelin Procédé de préparation d'un polyéthylène ou d'un copolymère d'éthylène et de 1,3-diène
WO2025196208A1 (fr) 2024-03-21 2025-09-25 Compagnie Generale Des Etablissements Michelin Système catalytique comprenant un métallocène pour la synthèse de polyéthylène et de copolymère d'éthylène et de 1,3-diène
FR3160409A1 (fr) 2024-03-21 2025-09-26 Compagnie Generale Des Etablissements Michelin Système catalytique comprenant un métallocène pour la synthèse de polyéthylène et de copolymère d’éthylène et de 1,3-diène.
FR3160408A1 (fr) 2024-03-21 2025-09-26 Compagnie Generale Des Etablissements Michelin Procédé de préparation d’un polyéthylène ou d’un copolymère d’éthylène et de 1,3-diène.

Also Published As

Publication number Publication date
JP7187492B2 (ja) 2022-12-12
CN110709259A (zh) 2020-01-17
FR3067355A1 (fr) 2018-12-14
JP2020522599A (ja) 2020-07-30
EP3634776B1 (fr) 2021-08-25
US20210079135A1 (en) 2021-03-18
EP3634776A1 (fr) 2020-04-15
CN110709259B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
EP3634776B1 (fr) Composition de caoutchouc
EP2139703B1 (fr) Elastomere dienique couple monomodal possedant une fonction silanol en milieu de chaine, son procede d'obtention et composition de caoutchouc le contenant
EP4031382B1 (fr) Copolymeres d'ethylene et de 1,3-diene fonctionnels
FR2918065A1 (fr) Procede de preparation d'un copolymere dienique a bloc polyether, composition de caoutchouc renforcee et enveloppe de pneumatique.
EP3691918B1 (fr) Compositions de caoutchouc comprenant une combinaison spécifique d'un agent de couplage et d'une résine hydrocarbonée
EP3558700B1 (fr) Composition de caoutchouc comprenant une resine hydrocarbonee specifique
EP3870459B1 (fr) Composition de caoutchouc
EP3049460B1 (fr) Elastomère diénique tribloc dont le bloc central est un bloc polyéther et fonctionnalisé amine en extrémité de chaîne
WO2022162292A1 (fr) Elastomere dienique modifie etendu a la resine
EP3898831B1 (fr) Composition de caoutchouc
EP4031591A1 (fr) Copolymeres d'ethylene et de 1,3-diene fonctionnels
FR2967680A1 (fr) Elastomere dienique a bloc pour des compositions de caoutchouc utilisables pour des pneumatiques
EP3877450B1 (fr) Composition de caoutchouc à base d'un élastomère diénique modifié
FR3141178A1 (fr) Composition de caoutchouc
FR3141179A1 (fr) Composition de caoutchouc
WO2022189718A1 (fr) Composition de caoutchouc
FR3119394A1 (fr) Elastomère diénique modifié étendu à la résine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18737664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018737664

Country of ref document: EP

Effective date: 20200108