WO2018224042A1 - 一种信号传输方法、相关设备及系统 - Google Patents

一种信号传输方法、相关设备及系统 Download PDF

Info

Publication number
WO2018224042A1
WO2018224042A1 PCT/CN2018/090517 CN2018090517W WO2018224042A1 WO 2018224042 A1 WO2018224042 A1 WO 2018224042A1 CN 2018090517 W CN2018090517 W CN 2018090517W WO 2018224042 A1 WO2018224042 A1 WO 2018224042A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
bandwidth
indication information
terminal
network device
Prior art date
Application number
PCT/CN2018/090517
Other languages
English (en)
French (fr)
Inventor
贾琼
朱俊
林英沛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18814190.7A priority Critical patent/EP3634055B1/en
Priority to JP2019568039A priority patent/JP7091371B2/ja
Priority to CA3066685A priority patent/CA3066685C/en
Priority to EP22184642.1A priority patent/EP4152866A1/en
Publication of WO2018224042A1 publication Critical patent/WO2018224042A1/zh
Priority to US16/706,017 priority patent/US11387969B2/en
Priority to US17/830,828 priority patent/US20220368507A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a signal transmission method, related device, and system.
  • ETSI Occupancy Channel Bandwidth
  • a resource interleave consists of 10 Resource Blocks (RBs) uniformly distributed over the system bandwidth.
  • RBs Resource Blocks
  • FIG. 1 it is assumed that the system bandwidth is 20 MHz, the system bandwidth of 20 MHz corresponds to 100 RBs (RB0 to RB99), and each resource interlace is composed of 10 resource blocks (RBs) uniformly distributed over the entire bandwidth.
  • the composition, and the RBs in each resource interlace are separated by 10 RBs. This ensures that the frequency domain span formed by each interlace (the bandwidth span between the two RBs at the beginning and the end) is 91 RBs, which is about 16.38 MHz, which is greater than 80% of the system bandwidth of 20 MHz.
  • LBT Listening Before Talk
  • the station first listens to whether the unlicensed band is idle before sending a signal. For example, the busy state is determined according to the received power of the signal on the unlicensed band. If the received power is less than a certain threshold, the unlicensed band is considered to be in an idle state, and the signal can be sent on the unlicensed band; otherwise, the unlicensed The band is busy and cannot send signals on this unlicensed band.
  • future 5G or NR systems support more flexible bandwidth for more reliable and high-speed service transmission.
  • future 5G or NR system based on the LBT mechanism on the unlicensed band, the bandwidth that different stations can access may be inconsistent. In particular, there may be inconsistencies between the bandwidth that the terminal actually can access and the bandwidth indicated by the base station.
  • the existing resource interlace is composed of a fixed number (for example, 10) of RBs. If the idle bandwidth monitored by the terminal through the LBT is inconsistent with the bandwidth indicated by the base station, the terminal cannot use the idle bandwidth for data transmission. , unable to support flexible bandwidth transmission in future communication systems.
  • the technical problem to be solved by the embodiments of the present application is that the existing resource interlace scheme cannot support flexible bandwidth transmission, and provides a signal transmission method, related equipment and system, can support flexible bandwidth transmission, and can better adapt to the next generation. Multi-bandwidth scenarios supported by new air interface technology.
  • the present application provides a signal transmission method, which is applied to a network device side, where the method includes: allocating an integer number of resource blocks uniformly distributed on part or all of the first bandwidth to an uplink resource, and then The terminal sends the first indication information, where the first indication information is used to indicate an uplink resource allocated by the network device to the terminal on the first bandwidth. And receiving, by the terminal, second indication information, where the second indication information is used to indicate that the terminal monitors an idle second bandwidth for uplink transmission.
  • the present application provides a signal transmission method, which is applied to a terminal side, and includes: receiving, by a network device, first indication information, where the first indication information is used to indicate that the network device is on a first bandwidth.
  • the resource indicated by the first indication information includes an integer number of resource blocks uniformly distributed on part or all of the first bandwidth.
  • uplink transmission is performed on the monitored idle second bandwidth.
  • the second indication information is sent to the network device, where the second indication information is used to indicate the second bandwidth.
  • the first bandwidth is the available bandwidth on which the network device performs uplink resource scheduling
  • the second bandwidth is the available bandwidth that the terminal monitors through the LBT for uplink transmission.
  • the first bandwidth may be the available bandwidth that the network device listens through the LBT when performing resource scheduling. It should be understood that even if the available bandwidth monitored by the terminal through the LBT may be greater than the first bandwidth, the terminal needs to perform uplink transmission according to the indication of the network device. That is to say, the available bandwidth (ie, the second bandwidth) for the uplink transmission monitored by the terminal through the LBT can only be less than or equal to the first bandwidth.
  • the method described in the first aspect and the second aspect can implement flexible bandwidth transmission, and can better adapt to the multi-bandwidth scenario supported by the next generation of new air interface technology.
  • the present application mainly provides three resource scheduling modes. The following details:
  • the network device performs broadband resource scheduling at the full bandwidth level on the first bandwidth, and the RB interval of the resource interleaving based on the resource scheduling is fixed and does not change with the change of the first bandwidth.
  • the resource interleaved RB interval defined in this application is fixed and does not change with the change of bandwidth.
  • the RB interval in which each resource is interleaved at different bandwidths is fixed to N (N is a positive integer) as an example. That is, the resource indicated by the first indication information includes one or more resource interlaces uniformly distributed on the first bandwidth, where an interval between adjacent two resource blocks in the resource interleave Fixed to N, does not change with the change of the first bandwidth; N is a positive integer.
  • the terminal when the first resource scheduling mode is implemented, if the second bandwidth is equal to the first bandwidth, the terminal may perform uplink transmission on the resource indicated by the first indication information. . If the second bandwidth is smaller than the first bandwidth, the terminal may perform uplink transmission on the resource located in the second bandwidth indicated by the first indication information.
  • the terminal when the first resource scheduling mode is implemented, if the second bandwidth is equal to the first bandwidth, the terminal may perform uplink transmission on the resource indicated by the first indication information. And transmitting power is not 0; if the second bandwidth is smaller than the first bandwidth, performing uplink transmission on the resource indicated by the first indication information, where the first indication information indicates The transmit power for uplink transmission on the resource in the second bandwidth is not 0, and the transmit power for uplink transmission on the resource outside the second bandwidth indicated by the first indication information is 0.
  • the specific implementation of the foregoing first indication information may be as follows.
  • the network device may carry the foregoing first indication information in downlink control information (DCI).
  • DCI downlink control information
  • a field may be added to the DCI, where the field is used to indicate the resource interlace allocated to the terminal, and the related field used for the resource indication in the existing DCI format, such as the RB resource allocation field, may be used to indicate the allocation.
  • a resource block for the terminal may carry the foregoing first indication information in downlink control information (DCI).
  • DCI downlink control information
  • the network device may further carry the foregoing first indication information in another response message for the scheduling request, or the network device may separately encapsulate the first indication information into a message, and return the message to the terminal.
  • the embodiment of the present application is not limited.
  • the foregoing first indication information may include: indication information of the first bandwidth, and an index of one or more resource interlaces allocated by the network device to the terminal on the first bandwidth.
  • the foregoing first indication information may include: an index of a starting RB included in one or more resource interlaces allocated by the network device to the terminal on the first bandwidth, and an RB quantity.
  • the terminal can learn the index of the initial RB included in the one or more resource interlaces, and the number of RBs to learn the location of the RB actually allocated by the network device.
  • the foregoing first indication information may include: an index of a starting RB respectively included in one or more resource interlaces allocated by the network device to the terminal on the first bandwidth, and a total number of RBs allocated by the network device to the terminal Quantity.
  • the number of starting RBs is the number of resource interlaces allocated by the network device.
  • the foregoing first indication information may include: indication information of the first bandwidth, a number of resource interlaces allocated by the network device for the terminal, and an index of the starting RB allocated by the network device to the terminal.
  • the resource interleaving assigned by the network device to the terminal may be indicated by a resource indication value (RIV).
  • RIV resource indication value
  • the foregoing first indication information may include an index of an RB that the network device actually allocates to the terminal.
  • the specific implementation of the foregoing second indication information may be as follows.
  • the terminal may carry the second indication information in the uplink data, where the second indication information may be sent in the first symbol of the uplink transmission, and the second indication information may be carried in the uplink transmission. Occupied on each subcarrier.
  • the terminal is not limited to the implementation manner, and the terminal may also carry the second indication information in an uplink control signal associated with the uplink data.
  • the terminal may further encapsulate the second indication information into a message and send the message to the network device.
  • the signaling implementation of the second indication information that is, how the terminal sends the second indication information
  • the embodiment of the present application is not limited.
  • the second indication information may include size information of the second bandwidth, or index information of carriers or subcarriers actually occupied by the uplink transmission.
  • the second indication information may also include carrier or subcarrier range information actually occupied by the uplink transmission, that is, a frequency domain span.
  • the terminal can also report the bandwidth actually occupied by the uplink transmission, such as the index information of the RB actually occupied by the uplink transmission, by using other methods.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the network device performs subband resource scheduling at the subband level on the first bandwidth, and the resource scheduling uses the interlace segment corresponding to the subband as a basic unit.
  • the interlace is an interlace in which the RB interval is fixed to N and uniformly distributed over the full bandwidth of the first bandwidth, that is, the interlace corresponding to the first bandwidth.
  • resource allocation is not performed based on the interlace corresponding to the first bandwidth. Rather, the interlace corresponding to the first bandwidth is divided into interlace segments corresponding to each of the plurality of sub-bands, and then the resource allocation is performed with the interlace segments corresponding to the respective sub-bands as a basic unit.
  • the subband bandwidth is relatively small, and the LBT on the subband can fully utilize the idle resources, which is beneficial to the timely transmission of uplink data. .
  • the terminal when the second resource scheduling mode is implemented, the terminal may perform uplink transmission on the monitored idle subband.
  • the signaling implementation of the first indication information may refer to the related content in the first resource scheduling manner.
  • the content of the foregoing first indication information may be implemented as follows:
  • the foregoing first indication information may include: an index of a subband corresponding to an interlace fragment allocated by the network device to the terminal, and an index of the interlace corresponding to the interlace fragment.
  • the foregoing first indication information may include: an index of a subband corresponding to an interlace fragment allocated by the network device to the terminal, and an index of the starting RB in the interlace corresponding to the interlace fragment.
  • the foregoing first indication information may include: an index of an interlace corresponding to an interlace fragment allocated by the network device to the terminal, and a fragment index of the interlace fragment in the interlace.
  • the foregoing first indication information may include: indication information W subband corresponding to the subband bandwidth of the interlace fragment allocated by the network device, number L of the interlace associated with the interlace fragment, and allocation of the network device to the terminal
  • the index of the starting RB is RB START .
  • a resource indicator allocated by the network device to the terminal on the subband may be indicated by a resource indication value (RIV).
  • RIV resource indication value
  • the first indication information may include an index of an RB that the network device actually allocates to the terminal.
  • the second indication information may include an index of a subband actually occupied by the uplink transmission.
  • the second indication information may also include an index of subcarriers actually occupied by the uplink transmission. It is not limited to these methods, and may be different in practical applications.
  • the second indication information may include a range of subcarriers actually occupied by the uplink transmission. The examples are merely illustrative of the application and should not be construed as limiting.
  • the network device performs subband resource scheduling on the first bandwidth, and selects an appropriate interlace structure on the subband, and then uses the interlace on the subband as a basic unit for resource scheduling.
  • the interlace may be a fixed number of interlaces uniformly distributed on the sub-bands, or an interlace with fixed RB intervals uniformly distributed on the sub-bands.
  • the subband bandwidth is relatively small, and the LBT on the subband can fully utilize the idle resources, which is beneficial to the timely transmission of uplink data. .
  • the terminal when implementing the foregoing third resource scheduling mode, may perform uplink transmission on the monitored idle subband.
  • the signaling implementation of the first indication information may refer to related content in the foregoing first resource scheduling manner.
  • the content of the foregoing first indication information may be implemented as follows:
  • the foregoing first indication information may include: an index of a subband corresponding to an interlace allocated by the network device to the terminal, and an index of the interlace.
  • the foregoing first indication information may include: an index of a subband corresponding to an interlace allocated by the network device to the terminal, and an index of the starting RB in the interlace.
  • the first indication information may include: information indicating a network device allocation W subband, the network equipment to the corresponding terminal interlace subband band of the bandwidth allocated to the terminal in the sub-interlace number L, and a network The index RB START of the starting RB allocated by the device to the terminal on the subband.
  • the second indication information may include an index of a subband actually occupied by the uplink transmission.
  • the second indication information may also include an index of subcarriers actually occupied by the uplink transmission. It is not limited to these methods, and may be different in practical applications.
  • the second indication information may include a range of subcarriers actually occupied by the uplink transmission. The examples are merely illustrative of the application and should not be construed as limiting.
  • the foregoing first resource scheduling mode is a broadband resource scheduling mode of a full bandwidth level
  • the second resource allocation mode is a subband resource scheduling mode of a subband level.
  • the network device also needs to carry the flag for distinguishing the two scheduling modes in the first indication information, and is used to indicate the resource allocation manner adopted by the network device.
  • the terminal may first identify the foregoing flag bit.
  • the terminal performs LBT on the bandwidth indicated by the network device, that is, the foregoing first bandwidth.
  • the terminal may perform uplink transmission on all resources indicated by the foregoing first indication information.
  • the terminal may perform uplink transmission on some resources indicated by the foregoing first indication information.
  • the terminal performs the LBT on the sub-band indicated by the first indication information (that is, the sub-band of the first bandwidth). If the subband is idle, the terminal may perform uplink transmission on the scheduling resource in the subband. Otherwise, the terminal may not perform uplink transmission on the subband.
  • the scheduling resource in the subband refers to the resource located in the subband indicated by the first indication information.
  • the broadband resource scheduling mode of the full bandwidth level can also be converted into a subband resource scheduling mode at the subband level.
  • the network device may adopt a sub-band resource scheduling manner. In this way, the terminal can perform the sub-band LBT again, which can provide the LBT success probability and perform uplink transmission in time.
  • the present application provides a signal transmission method applied to a network device side, the method comprising: using an integer number of resource blocks evenly distributed on the subband as a basic allocation on a subband of a first channel bandwidth
  • the unit allocates the uplink resource to the terminal, and then sends the first indication information to the terminal, where the first indication information is used to indicate the uplink resource allocated by the network device to the terminal on the sub-band.
  • the second indication information sent by the terminal is received.
  • the second indication information is used to indicate an idle subband.
  • the present application provides a signal transmission method, which is applied to a terminal side, and includes: receiving, by a network device, first indication information, where the first indication information is used to indicate that a network device is in a first channel bandwidth.
  • the uplink transmission is performed, according to the first indication information, whether the sub-band is idle is monitored, and if idle, the sub-band is transmitted for uplink transmission.
  • the second indication information is sent to the network device, and is used to indicate the idle subband.
  • the methods described in the third aspect and the fourth aspect are implemented. Since the subband bandwidth is relatively small, the LBT is performed on the subband, and the idle resource can be fully utilized, and the scheduling granularity is smaller, which is beneficial to the uplink data. transmission.
  • a network device comprising a plurality of functional units for respectively performing the method provided by any one of the first aspect or the possible embodiments of the first aspect.
  • a terminal comprising a plurality of functional units for respectively performing the method provided by any one of the second aspect or the possible embodiments of the second aspect.
  • a network device comprising a plurality of functional units for respectively performing the method provided by any one of the third or third possible embodiments.
  • a terminal comprising a plurality of functional units for respectively performing the method provided by any one of the fourth or fourth possible embodiments.
  • a network device for performing the signal transmission method described in the first aspect.
  • the network device can include a memory and a processor, a transmitter and a receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless communication device, such as a terminal, the receiver is for Receiving, by the other wireless communication device, such as a terminal, a signal for storing an implementation code of a signal transmission method described in the first aspect, the processor for executing program code stored in the memory, ie A signal transmission method as described in any one of the first aspect or the possible embodiments of the first aspect.
  • a terminal for performing the signal transmission method described in the second aspect.
  • the terminal can include a memory and a processor, transmitter and receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless communication device, such as a network device, the receiver is for Receiving, by the another wireless communication device, such as a network device, a signal for storing an implementation code of a signal transmission method described in the second aspect, the processor for executing program code stored in the memory, That is, the signal transmission method described in any one of the second aspect or the possible embodiments of the second aspect is performed.
  • a network device for performing the signal transmission method described in the third aspect.
  • the network device can include a memory and a processor, a transmitter and a receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless communication device, such as a terminal, the receiver is for Receiving, by the other wireless communication device, such as a terminal, a signal for storing an implementation code of a signal transmission method described in the third aspect, the processor for executing program code stored in the memory, ie A signal transmission method as described in any one of the third or third possible embodiments.
  • a terminal for performing the signal transmission method described in the fourth aspect.
  • the terminal can include a memory and a processor, transmitter and receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless communication device, such as a network device, the receiver is for Receiving, by the another wireless communication device, such as a network device, a signal for storing an implementation code of a signal transmission method described in the fourth aspect, the processor for executing a program code stored in the memory, That is, the signal transmission method described in any one of the fourth aspect or the possible embodiments of the fourth aspect is performed.
  • a communication system comprising: a network device and a terminal, wherein:
  • the network device is configured to allocate an integer number of resource blocks uniformly distributed on part or all of the first bandwidth to the terminal as an uplink resource, and then send the first indication information to the terminal, and receive the second sent by the terminal. Instructions.
  • the terminal is configured to receive the first indication information sent by the network device, perform uplink transmission on the monitored idle second bandwidth, and finally send the second indication information to the network device.
  • the first indication information is used to indicate an uplink resource allocated by the network device to the terminal on the first bandwidth, and the resource indicated by the first indication information includes an integer number of resources uniformly distributed on part or all of the first bandwidth.
  • the second indication information is used to indicate the second bandwidth.
  • the network device may be the network device described in the fifth aspect or the ninth aspect.
  • the terminal may be the terminal described in the sixth aspect or the tenth aspect.
  • a communication system comprising: a network device and a terminal, wherein:
  • the network device is configured to allocate an uplink resource to the terminal by using an integer number of resource blocks uniformly distributed on the sub-band as a basic allocation unit on a sub-band of the first channel bandwidth, and then send the first indication information to the terminal, where Finally, the second indication information sent by the terminal is received.
  • the terminal is configured to receive the first indication information sent by the network device, and then monitor whether the sub-band is idle, and if idle, transmit the uplink transmission on the sub-band. Finally, the second indication information is sent to the network device, and is used to indicate the idle subband.
  • the first indication information is used to indicate an uplink resource allocated by the network device to the terminal on the first bandwidth, and the resource indicated by the first indication information includes an integer number of resource blocks uniformly distributed on the subband of the first bandwidth.
  • the second indication information is used to indicate an idle subband.
  • the network device may be the network device described in the seventh aspect or the eleventh aspect.
  • the terminal may be the terminal described in the eighth aspect or the twelfth aspect.
  • a computer readable storage medium having stored thereon instructions for causing a computer to perform the signal transmission method described in the first aspect above when it is run on a computer.
  • a sixteenth aspect there is provided another computer readable storage medium having instructions stored thereon that, when executed on a computer, cause the computer to perform the signal transmission method described in the second aspect above.
  • a computer readable storage medium having instructions thereon, when executed on a computer, causing the computer to perform the signal transmission method described in the third aspect above.
  • a eighteenth aspect there is provided another computer readable storage medium having instructions stored thereon that, when run on a computer, cause the computer to perform the signal transmission method described in the fourth aspect above.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the signal transmission method described in the first aspect above.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the signal transmission method described in the second aspect above.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the signal transmission method described in the third aspect above.
  • FIG. 1 is a schematic structural diagram of an existing resource interleaving according to the present application.
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to the present application.
  • 3 is a schematic structural diagram of existing resource interleaving under different bandwidths
  • FIG. 4 is a schematic diagram of a hardware architecture of a terminal provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a hardware architecture of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of resource interleaving with fixed RB intervals provided by the present application.
  • FIG. 7 is a schematic flowchart diagram of a signal transmission method according to an embodiment of the present application.
  • 8A-8B are schematic diagrams of resource interleaving with an RB interval of 10 in different bandwidth scenarios provided by the present application;
  • FIG. 9 is a schematic diagram of setting a signal transmission power to zero on a non-idle frequency band provided by the present application.
  • FIG. 10 is a schematic flowchart diagram of a signal transmission method according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of subband division of an interlace with fixed RB spacing provided by the present application.
  • FIG. 12 is a schematic flowchart diagram of a signal transmission method according to still another embodiment of the present application.
  • 13 is a schematic diagram of resource interleaving on each sub-band after performing sub-band division provided by the present application
  • FIG. 15 is a timing diagram of an uplink transmission of the embodiment of FIG. 14 of the present application.
  • FIG. 16 is a schematic structural diagram of a wireless communication system, a network device, and a terminal according to an embodiment of the present application.
  • the wireless communication system 200 can operate in a licensed band or in an unlicensed band. As can be appreciated, the use of unlicensed frequency bands can increase the system capacity of the wireless communication system 200.
  • the wireless communication system 200 includes one or more base stations 201, such as a NodeB, an eNodeB, or a WLAN access point, one or more terminals (Terminal) 203, and a core network 215. among them:
  • Network device 201 can be used to communicate with terminal 203 under the control of a network device controller (not shown).
  • the network device controller may be part of the core network 230 or may be integrated into the network device 201.
  • Network device 201 can be used to transmit control information or user data to core network 215 via a blackhaul interface (e.g., S1 interface) 213.
  • a blackhaul interface e.g., S1 interface
  • Network device 201 can communicate wirelessly with terminal 203 via one or more antennas. Each network device 201 can provide communication coverage for each respective coverage area 207.
  • the coverage area 207 corresponding to the access point may be divided into a plurality of sectors, wherein one sector corresponds to a part of coverage (not shown).
  • the network device 201 and the network device 201 can also communicate with each other directly or indirectly via a blackhaul link 211.
  • the backhaul link 211 may be a wired communication connection or a wireless communication connection.
  • the network device 201 may include: a base transceiver station (Base Transceiver Station), a wireless transceiver, a basic service set (BSS), and an extended service set (Extended Service Set, ESS). ), NodeB, eNodeB, etc.
  • the wireless communication system 200 can include several different types of network devices 201, such as a macro base station, a micro base station, and the like.
  • the network device 201 can apply different wireless technologies, such as a cell radio access technology, or a WLAN radio access technology.
  • Terminals 203 may be distributed throughout wireless communication system 200, either stationary or mobile.
  • the terminal 203 may include: a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user agent, a mobile client, and the like.
  • the wireless communication system 200 may be an LTE communication system capable of operating in an unlicensed frequency band, such as LTE-U, or a communication system capable of operating in an unlicensed frequency band of 5G and a future new air interface.
  • the wireless communication system 200 can employ a grant assisted access (LAA) scheme to handle terminal access on unlicensed frequency bands.
  • LAA grant assisted access
  • the primary cell operates in the licensed frequency band to transmit key messages and services that require quality of service guarantees.
  • the secondary cell operates in an unlicensed frequency band to improve data plane performance.
  • the wireless communication system 200 can support multi-carrier (waveform signals of different frequencies) operations.
  • a multi-carrier transmitter can simultaneously transmit modulated signals on multiple carriers.
  • each communication connection 205 can carry multi-carrier signals modulated with different wireless technologies.
  • Each modulated signal can be transmitted on different carriers, and can also carry control information (such as reference signals, control channels, etc.), overhead information, data, and the like.
  • the wireless communication system 200 can also include a WiFi network.
  • the wireless communication system 200 may employ a Listen before Talk (LBT) mechanism.
  • LBT Listen before Talk
  • some terminals 203 may connect to the WiFi access point 209 through the WiFi communication connection 217 to use unlicensed band resources, and some terminals 203 may also connect the network device 201 through the mobile communication connection 205 to use the unlicensed band. Resources.
  • any device When using an unlicensed band, any device must first listen to see if the band is occupied. If the band is not busy, it can occupy and transmit data.
  • the uplink resource allocation is based on resource interlace as a basic unit.
  • the existing interlace fixed is composed of 10 RBs, which causes the positions of the RBs in the resource interlace in different bandwidth scenarios to be unaligned and cannot support flexible bandwidth transmission.
  • resource interleaving in a 20 MHz bandwidth and a 10 MHz bandwidth includes 10 RBs.
  • 9 resource blocks are separated between two adjacent resource blocks in one resource interlace.
  • 10MHz bandwidth four resource blocks are separated between two adjacent resource blocks in a resource interlace.
  • some of the RBs in the resource interleaving are in different frequency domain positions and cannot be aligned.
  • the terminal since the resource interleaving in different bandwidths corresponds to different time-frequency positions, if the terminal is allocated resource interleaving in the 20 MHz bandwidth, the terminal cannot use the resource interleaving in the 10 MHz bandwidth to transmit data.
  • the bandwidth that the terminal can hear through the LBT is inconsistent with the bandwidth scheduled by the network device (such as the base station), the terminal cannot perform uplink transmission, or the terminal needs to wait for the network device to perform resource allocation again.
  • the terminal 300 may include: an input and output module (including an audio input and output module 318, a key input module 316, and a display 320, etc.), a user interface 302, one or more terminal processors 304, a transmitter 306, and a receiving The 308, the coupler 310, the antenna 314, and the memory 312. These components can be connected by bus or other means, and FIG. 4 is exemplified by a bus connection. among them:
  • Communication interface 301 can be used by terminal 300 to communicate with other communication devices, such as base stations.
  • the base station may be the network device 400 shown in FIG.
  • the communication interface 301 may include: a Global System for Mobile Communication (GSM) (2G) communication interface, a Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, and a long-term One or more of the Long Term Evolution (LTE) (4G) communication interfaces and the like may also be a communication interface of 4.5G, 5G or a future new air interface.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • 4G Long Term Evolution
  • the terminal 300 may be configured with a wired communication interface 301, such as a Local Access Network (LAN) interface.
  • LAN Local Access Network
  • the antenna 314 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 310 is configured to divide the mobile communication signal received by the antenna 314 into multiple channels and distribute it to a plurality of receivers 308.
  • Transmitter 306 can be used to transmit signals to signals output by terminal processor 304, such as modulating the signal in a licensed band or modulating a signal in an unlicensed band.
  • the transmitter 206 may include an unlicensed band transmitter 3061 and an authorized band transmitter 3063.
  • the unlicensed band transmitter 3061 can support the terminal 300 to transmit signals on one or more unlicensed bands
  • the licensed band transmitter 3063 can support the terminal 300 to transmit signals on one or more licensed bands.
  • Receiver 308 can be used to perform reception processing on the mobile communication signals received by antenna 314.
  • the receiver 308 can demodulate a received signal that has been modulated on an unlicensed band, and can also demodulate a received signal that is modulated on a licensed band.
  • the receiver 308 may include an unlicensed band receiver 3081 and a licensed band receiver 3083.
  • the unlicensed band receiver 3081 can support the terminal 300 to receive a signal modulated on the unlicensed band
  • the licensed band receiver 3083 can support the terminal 300 to receive the signal modulated on the licensed band.
  • transmitter 306 and receiver 308 can be viewed as a wireless modem.
  • the number of the transmitter 306 and the receiver 308 may each be one or more.
  • the terminal 300 may also include other communication components such as a GPS module, a Bluetooth module, a Wireless Fidelity (Wi-Fi) module, and the like.
  • the terminal 300 can also support other wireless communication signals such as satellite signals, short wave signals, and the like, without being limited to the wireless communication signals described above.
  • the terminal 300 may be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • the input and output module can be used to implement interaction between the terminal 300 and the user/external environment, and can mainly include an audio input and output module 318, a key input module 316, a display 320, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and the like.
  • the input and output modules communicate with the terminal processor 304 through the user interface 302.
  • Memory 312 is coupled to terminal processor 304 for storing various software programs and/or sets of instructions.
  • memory 312 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 312 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 312 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the memory 312 can also store a user interface program, which can realistically display the content image of the application through a graphical operation interface, and receive user control operations on the application through input controls such as menus, dialog boxes, and keys. .
  • the memory 312 can be used to store an implementation of the signal transmission method provided by one or more embodiments of the present application on the terminal 300 side.
  • the signal transmission method provided by one or more embodiments of the present application please refer to the subsequent embodiments.
  • Terminal processor 304 can be used to read and execute computer readable instructions. Specifically, the terminal processor 304 can be used to invoke a program stored in the memory 312, such as the implementation of the signal transmission method provided by one or more embodiments of the present application on the terminal 300 side, and execute the instructions contained in the program.
  • the terminal 300 can be the terminal 203 in the wireless communication system 200 shown in FIG. 2, and can be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user agent, and a mobile device. Client and so on.
  • the terminal 300 shown in FIG. 4 is only one implementation of the embodiment of the present application. In an actual application, the terminal 300 may further include more or fewer components, which are not limited herein.
  • network device 400 can include a communication interface 403, one or more network device processors 401, a transmitter 407, a receiver 409, a coupler 411, an antenna 413, and a memory 405. These components can be connected by bus or other means, and FIG. 5 is exemplified by a bus connection. among them:
  • Communication interface 403 can be used by network device 400 to communicate with other communication devices, such as terminal devices or other base stations.
  • the terminal device may be the terminal 300 shown in FIG. 3.
  • the communication interface 403 may include: a Global System for Mobile Communications (GSM) (2G) communication interface, a Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, and a Long Term Evolution (LTE) (4G) communication interface, and the like.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the network device 400 may also be configured with a wired communication interface 403 to support wired communication.
  • the backhaul link between one network device 400 and other network devices 400 may be a wired communication connection.
  • the antenna 413 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 411 can be used to divide the mobile pass signal into multiple channels and distribute it to a plurality of receivers 409.
  • the transmitter 407 can be used to perform a transmission process on a signal output by the network device processor 401, such as modulating the signal in a licensed band or modulating a signal in an unlicensed band.
  • the transmitter 407 may include an unlicensed band transmitter 4071 and an authorized band transmitter 4073.
  • the unlicensed band transmitter 4071 can support the network device 400 to transmit signals on one or more unlicensed bands
  • the licensed band transmitter 4073 can support the network device 400 to transmit signals on one or more licensed bands.
  • the receiver 409 can be used to perform reception processing on the mobile communication signal received by the antenna 413.
  • the receiver 409 can demodulate a received signal that has been modulated on an unlicensed band, and can also demodulate a received signal that is modulated on a licensed band.
  • the receiver 409 may include an unlicensed band receiver 4091 and a licensed band receiver 4093.
  • the unlicensed band receiver 4091 can support the network device 400 to receive signals modulated on the unlicensed band
  • the licensed band receiver 4093 can support the network device 400 to receive signals modulated on the licensed band.
  • transmitter 407 and receiver 409 can be viewed as a wireless modem.
  • the number of the transmitter 407 and the receiver 409 may each be one or more.
  • Memory 405 is coupled to network device processor 401 for storing various software programs and/or sets of instructions.
  • memory 405 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 405 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 405 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the network device processor 401 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and control the handoff of user equipment in the control area.
  • the network device processor 401 may include: an Administration Module/Communication Module (AM/CM) (a center for voice exchange and information exchange), and a basic module (BasicModule, BM) (for completing Call processing, signaling processing, radio resource management, radio link management and circuit maintenance functions), code transform and sub-multiplexer (TCSM) (for multiplexing demultiplexing and code conversion functions) and many more.
  • AM/CM Administration Module/Communication Module
  • BM basic module
  • TCSM code transform and sub-multiplexer
  • the network device processor 401 can be used to read and execute computer readable instructions. Specifically, the network device processor 401 can be used to invoke a program stored in the memory 405, for example, the implementation of the signal transmission method provided by one or more embodiments of the present application on the network device 400 side, and execute the instructions included in the program. .
  • the network device 400 can be the base station 201 in the wireless communication system 200 shown in FIG. 2, and can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). NodeB, eNodeB, etc.
  • Network device 400 can be implemented as several different types of base stations, such as macro base stations, micro base stations, and the like.
  • Network device 400 can apply different wireless technologies, such as cell radio access technology, or WLAN radio access technology.
  • the network device 400 shown in FIG. 5 is only one implementation of the embodiment of the present application. In actual applications, the network device 400 may further include more or fewer components, which are not limited herein.
  • the embodiment of the present application provides a signal transmission method.
  • the main principles of this application may include:
  • the network device allocates resources by using a fixed resource interlace of RB spacing as a basic unit.
  • the RB interval refers to an interval between any two adjacent RBs in the resource interleave.
  • the resource interleaved RB interval defined in this application is fixed and does not change with the change of bandwidth.
  • the RB interval N of each resource interleave is 10 in a 20 MHz bandwidth, a 40 MHz bandwidth, and an 80 MHz bandwidth. It can be seen from FIG. 6 that the newly defined resource interleaving in the present application is advantageous for resource alignment between different bandwidths.
  • the terminal may also perform uplink transmission. The flexible bandwidth transmission can be realized without waiting for the network device to re-schedule the resource.
  • N is a positive integer
  • the terminal needs to report the actual bandwidth information of the uplink transmission to the network device because the access bandwidth monitored by the LBT and the available bandwidth of the network device are inconsistent. Therefore, the terminal needs to report the actual bandwidth information of the uplink transmission to the network device, thereby facilitating the network. Correct reception of the device.
  • the available bandwidth on which the network device performs uplink resource scheduling may be referred to as a first bandwidth
  • the available bandwidth used by the terminal for uplink transmission monitored by the LBT may be referred to as a second bandwidth.
  • the first bandwidth may be the available bandwidth that the network device listens through the LBT when performing resource scheduling. It should be understood that even if the available bandwidth monitored by the terminal through the LBT may be greater than the first bandwidth, the terminal needs to perform uplink transmission according to the indication of the network device. That is to say, the available bandwidth (ie, the second bandwidth) for the uplink transmission monitored by the terminal through the LBT can only be less than or equal to the first bandwidth.
  • the terminal may perform uplink transmission according to the scheduling indication of the network device on the second bandwidth, that is, perform uplink transmission on the resource indicated by the resource indication information sent by the network device. . If the second bandwidth is smaller than the first bandwidth, the terminal may perform uplink transmission on a part of the resources indicated by the resource indication information, that is, perform uplink transmission on the resource in the second bandwidth indicated by the resource indication information.
  • the network device schedules a resource interleave to the terminal in a 40 MHz bandwidth (ie, the first bandwidth), and specifically includes RB0, RB10, RB20, ... RB90, RB100, RB110, ... RB180, RB190.
  • the terminal listens to the available bandwidth of 80 MHz bandwidth through the LBT, but because the resources allocated by the network device to the terminal are located on the first bandwidth 40 MHz bandwidth, the terminal can only perform uplink transmission on the idle 40 MHz bandwidth.
  • the second bandwidth is the idle 40 MHz bandwidth.
  • the terminal listens to the idle 80M bandwidth through the LBT, but because the resources allocated to the terminal are located in the first bandwidth 40M bandwidth, the terminal can only perform uplink transmission on the idle 40M second bandwidth (the second bandwidth is equal to the first bandwidth). bandwidth).
  • the bandwidth available for uplink transmission monitored by the LBT through the LBT is 20 MHz bandwidth (ie, the second bandwidth)
  • only a part of resource blocks ie, RB0, RB10, RB20, ... RB90
  • the terminal can perform uplink transmission on the part of the resource block according to the scheduling indication of the network device in part of the 20M available bandwidth.
  • the example of Figure 6 is only used to explain the present application and should not be construed as limiting.
  • the terminal needs to report the second bandwidth to the network device, so that it can determine whether the uplink transmission meets the OCB requirement based on the bandwidth reported by the terminal.
  • the second bandwidth reported by the terminal can be used as the claimed bandwidth of the OCB test.
  • the network device schedules a resource interleave to the terminal in a 40 MHz bandwidth, specifically including RB0, RB10, RB20, ... RB90, RB100, RB110, ... RB180, RB190.
  • the bandwidth available for the uplink transmission monitored by the LBT through the LBT is 20 MHz bandwidth
  • the terminal may only perform on some resource blocks (ie, RB0, RB10, RB20, ..., RB90) in the resource interlace allocated by the network device.
  • the actual bandwidth occupied by the uplink transmission is 16.38 MHz (assuming a subcarrier spacing of 15 kHz, one RB accounting for 0.18 MHz, and 91 RBs occupying a bandwidth of 16.38 MHz).
  • the uplink transmission is determined to satisfy the OCB requirement based on the 40 MHz bandwidth (ie, the first bandwidth)
  • the bandwidth occupancy of the uplink signal is finally obtained: 16.38 MHz/40 MHz ⁇ 41%, which obviously does not satisfy the OCB requirement.
  • the terminal can only perform uplink transmission in the second bandwidth that is idle, it is unreasonable to use the first bandwidth as the basis for judging the OCB.
  • the bandwidth occupancy rate of the uplink signal is: 16.38 MHz/20 MHz ⁇ 82%, which obviously satisfies the OCB.
  • bandwidth scenarios such as the 20 MHz bandwidth, the 40 MHz bandwidth, and the 80 MHz bandwidth shown in FIG. 6.
  • the present application is also applicable to other bandwidth scenarios, such as a 60 MHz bandwidth or a 100 MHz bandwidth.
  • the number of RBs corresponding to each of the various bandwidth scenarios, the RB interval of resource interleaving, and the like are not limited to those shown in FIG. 6, and may be specifically referred to in the future communication technology.
  • FIG. 7 illustrates a signal transmission method provided by an embodiment of the present application.
  • the network device performs bandwidth resource scheduling at the full bandwidth level on the first bandwidth, and the RB interval of resource interleaving based on resource scheduling is fixed and does not change with the change of the first bandwidth.
  • the network device receives a scheduling request (SR) sent by the terminal.
  • the scheduling request is used to request the network device to allocate an uplink transmission resource.
  • the terminal may periodically send a scheduling request to the network device, for example, the terminal sends the scheduling request to the network device once every other transmission time interval (TTI).
  • the terminal may also send the scheduling request to the network device under event driving. For example, when there is uplink data to be transmitted, the terminal sends the scheduling request to the network device.
  • the arrival of the uplink data is an event that drives the terminal to transmit the scheduling request.
  • the embodiment of the present application does not limit the trigger mechanism for the terminal to send the scheduling request.
  • the network device may perform an LBT before determining resource scheduling, and determine a first bandwidth corresponding to an unlicensed frequency band that is available for free. Then, when resource allocation is performed, resource allocation with N fixed at RB intervals is used as a basic unit for resource allocation.
  • the uplink resource allocated by the network device to the terminal may include one or more of the resource interlaces.
  • the resource interleaving in which the RB interval is fixed to N is uniformly distributed over the entire bandwidth of the first bandwidth, and the interval between any two RBs is fixed to N.
  • the first bandwidth may include a protection bandwidth, and assuming that the protection bandwidth accounts for 10% in the first bandwidth, then the transmission bandwidth actually used for transmitting signals accounts for the first bandwidth.
  • the ratio is 90%.
  • the transmission bandwidth (actually 18 MHz) corresponds to 100 RBs
  • the resource interleaving at the first bandwidth of 20 MHz is composed of 10 RBs.
  • the specific structure of resource interleaving can be as shown in FIG. 6 (A). ) shown.
  • the transmission bandwidth (actually 36 MHz) corresponds to 200 RBs
  • the resource interleaving at the first bandwidth of 40 MHz is composed of 20 RBs.
  • the specific structure of resource interleaving can be as shown in FIG. 6 (B). ) shown.
  • the transmission bandwidth (actually 72 MHz) corresponds to 400 RBs
  • the resource interleaving at the first bandwidth of 80 MHz is composed of 40 RBs.
  • the specific structure of resource interleaving can be as shown in FIG. 6 (C). ) shown.
  • the RB interval N of the resource interleaving is a fixed value and does not change with the change of the bandwidth. Therefore, the larger the bandwidth, the more the number of RBs constituting the resource interleaving.
  • the network device returns, to the terminal, the resource indication information, where the resource indication information is used to indicate the uplink resource allocated by the network device to the terminal on the first bandwidth.
  • the resource indication information may be referred to as first indication information.
  • the network device may carry the resource indication information in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • a field may be added to the DCI, where the field is used to indicate resource interleaving allocated to the terminal, and related fields used for resource indication in the existing DCI format, such as RB resource allocation (Resource block assignment), may also be used.
  • the network device may carry the resource indication information in an uplink grant authorization (UL grant) returned to the terminal.
  • UL grant is a type of DCI, which uses DCI format0/0A/0B/4/4A/4B.
  • the network device may further carry the foregoing resource indication information in another response message for the scheduling request, or the network device may separately encapsulate the resource indication information into a message, and return the message to the terminal.
  • the manner in which the network device sends the foregoing resource indication information is not limited in this embodiment.
  • the resource indication information may include: indication information of the first bandwidth, and an index of one or more resource interlaces allocated by the network device to the terminal on the first bandwidth.
  • the resource interleave allocated by the network device for the terminal on the first bandwidth of 20 MHz includes interlace0, interlace1.
  • the resource indication information may indicate a first bandwidth of 20 MHz, and an index 0, 1 of resource interlace interlace0 and interlace1.
  • the terminal can know that the interlace0 and the interlace1 are the structure shown in FIG. 8A according to 20 MHz, that is, 10 RBs are included.
  • the index 0, 1 it can be known that the RB actually allocated by the network device includes: ⁇ RB0, RB10, RB20, ... RB90 ⁇ (ie, interlace0), and ⁇ RB1, RB11, RB21, ..., RB91 ⁇ (ie, interlace1).
  • the resource interleave allocated by the network device for the terminal on the first bandwidth of 40 MHz includes interlace0 and interlace1.
  • the resource indication information may indicate a first bandwidth of 40 MHz, and an index 0, 1 of resource interlace interlace0 and interlace1.
  • the terminal can know that the interlace0 and the interlace1 are the structure shown in FIG. 8B according to 40 MHz, that is, 20 RBs are included.
  • the RBs actually allocated by the network device include: ⁇ RB0, RB10, RB20, ... RB90, RB100, RB110, ... RB180, RB190 ⁇ (ie, interlace0), and ⁇ RB1, RB11, RB21, ...RB91, RB101, RB111, ... RB181, RB191 ⁇ (ie, interlace1).
  • the resource indication information may include: an index of a starting RB included in one or more resource interlaces allocated by the network device to the terminal on the first bandwidth, and an RB quantity.
  • the terminal can learn the index of the initial RB included in the one or more resource interlaces, and the number of RBs to learn the location of the RB actually allocated by the network device.
  • the resource interleave allocated by the network device for the terminal on the first bandwidth of 20 MHz includes interlace0, interlace1.
  • the resource indication information may indicate that the starting RBs in interlace0 and interlace1 are RB0 and RB1, respectively, and the number of RBs included in interlace0 and interlace1 are all 10.
  • the terminal can know that the interlace0 and the interlace1 are the structure shown in FIG. 8A according to the number of RBs (ie, 10 RBs) included in the interlace0 and the interlace1, that is, the network device allocates resources for the terminal on the bandwidth of 20 MHz.
  • the RB actually allocated by the network device includes: ⁇ RB0, RB10, RB20, ... RB90 ⁇ (ie, interlace0), and ⁇ RB1, RB11, RB21, ...RB91 ⁇ (ie interlace1).
  • the resource interleave allocated by the network device for the terminal on the first bandwidth of 40 MHz includes interlace0 and interlace1.
  • the resource indication information may indicate that the starting RBs in interlace0 and interlace1 are RB0 and RB1, respectively, and the number of RBs included in interlace0 and interlace1 are all 20.
  • the terminal can know that interlace0 and interlace1 are the structure shown in FIG. 8B according to the number of RBs included in interlace0 and interlace1 (ie, 20 RBs), that is, the network device allocates resources for the terminal on a bandwidth of 40 MHz.
  • the RB actually allocated by the network device includes: ⁇ RB0, RB10, RB20, ... RB90, RB100, RB110, ... RB180, RB190 ⁇ (ie, interlace0), and ⁇ RB1.
  • the foregoing resource indication information may include: an index of a starting RB separately included in one or more resource interlaces allocated by the network device to the terminal on the first bandwidth, and a total number of RBs allocated by the network device to the terminal .
  • the number of starting RBs is the number of resource interlaces allocated by the network device.
  • the terminal can obtain the number of RBs in a single resource interleave by dividing the total number of the RBs by the number of the starting RBs, that is, the structure of the resource interleaving can be known.
  • the resource interleave allocated by the network device to the terminal on the first bandwidth of 20 MHz includes interlace0, interlace1.
  • the resource indication information may indicate that the starting RBs in interlace0 and interlace1 are RB0 and RB1, respectively, and the total number of RBs allocated by the network device for the terminal is 20.
  • the terminal can divide the total number of 20s by the number of starting RBs 2 (RB0, RB1) to obtain that the single resource interleave includes 10 RBs, that is, the resource interleaving is the structure shown in FIG. 8A.
  • the RB actually allocated by the network device includes: ⁇ RB0, RB10, RB20, ... RB90 ⁇ (ie, interlace0), and ⁇ RB1, RB11, RB21, ... RB91 ⁇ (ie, Interlace1).
  • the resource interleave allocated by the network device for the terminal on the first bandwidth of 40 MHz includes interlace0 and interlace1.
  • the resource indication information may indicate that the starting RBs in interlace0 and interlace1 are RB0 and RB1, respectively, and the total number of RBs allocated by the network device for the terminal is 40.
  • the terminal can divide the total number 40 by the number of starting RBs 2 (RB0, RB1) to obtain a single resource interleave including 20 RBs, that is, the resource interleaving is the structure shown in FIG. 8B.
  • the RB actually allocated by the network device includes: ⁇ RB0, RB10, RB20, ... RB90, RB100, RB110, ... RB180, RB190 ⁇ (ie, interlace0) And ⁇ RB1, RB11, RB21, ... RB91, RB101, RB111, ... RB181, RB191 ⁇ (ie, interlace1).
  • the foregoing resource indication information may include: indication information of the first bandwidth, a number of resource interlaces allocated by the network device for the terminal, and an index of the starting RB allocated by the network device to the terminal.
  • the RB interval N of resource interleaving is a known amount
  • the index RB START of the starting RB, the number L of resource interlaces, and the first bandwidth are known (can be derived Under the premise of the network, the RB set allocated by the network device to the terminal can be determined.
  • the uplink transmission bandwidth actually used for transmitting the uplink signal corresponds to 100 RBs, that is,
  • the set of RBs assigned to the terminal is:
  • the above RB set is the resource interlace interlace0 in Figure 8A.
  • the above two RB sets are the resource interlace interlace0 and interlace1 in FIG. 8A.
  • a Resource Indication Value may be used to indicate resource interleaving allocated by the network device to the terminal.
  • RIV Resource Indication Value
  • the resource indication information may include an index of an RB that the network device actually allocates to the terminal.
  • the resource indication information may indicate an index of 10 resource blocks of RB0, RB10, RB20, ..., RB90 included in interlace0, for example, 0, 10, 20, ... 90.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the terminal after receiving the resource indication information, the terminal needs to perform the LBT before the uplink transmission, and listen to the available unlicensed frequency band, and determine the idle second bandwidth that can be used for the uplink transmission. For details, refer to S111. It should be understood that if the LBT does not detect idle spectrum resources, the terminal cannot perform uplink transmission. Then, the terminal performs uplink transmission according to the foregoing resource indication information completely or partially on the second bandwidth. For details, refer to S113-S123.
  • the signal processing may be performed during signal transmission, for example, modulating uplink data to be transmitted on all or part of resources indicated by the resource indication information, frequency multiplexing of the transmission signal, processing of resource sharing, and the like.
  • the terminal may only transmit on the first bandwidth scheduled by the network device, that is, the terminal needs to perform uplink transmission according to the indication of the network device. That is to say, the available bandwidth (ie, the second bandwidth) for the uplink transmission monitored by the terminal through the LBT can only be less than or equal to the first bandwidth.
  • the terminal may perform uplink transmission according to the resource indication information on the second bandwidth, that is, perform uplink transmission on the resource indicated by the resource indication information. If the second bandwidth is smaller than the first bandwidth, the uplink transmission may be performed on a part of the resources indicated by the resource indication information, that is, the uplink transmission is performed on the resource in the second bandwidth indicated by the resource indication information.
  • the terminal may still transmit the uplink data on the resource indicated by the resource indication information, but the terminal is in the second bandwidth indicated by the resource indication information.
  • the transmit power for uplink transmission on the resource is not 0, and the transmit power for uplink transmission on the resource outside the second bandwidth indicated by the resource indication information is 0. In this way, it can be ensured that the uplink transmission only has signal energy in the idle frequency band, and the signal energy in the non-idle frequency band is 0, and does not interfere with other signals transmitted on the non-idle frequency band.
  • the first bandwidth is 40 MHz
  • the second bandwidth available for uplink transmission determined by the terminal through the LBT is 20 MHz.
  • the terminal still chooses to transmit uplink data on the first bandwidth of 40 MHz, but the transmit power of the uplink signal is not 0 only on the idle second bandwidth, and is 0 on the non-idle frequency band.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the terminal needs to send the indication information to the network device, where the indication information is used to indicate the bandwidth actually occupied by the uplink transmission, so that the network device can correctly receive the uplink data.
  • the indication information may be referred to as second indication information.
  • the terminal may carry the second indication information in the uplink transmission, where the second indication information may be sent in the first symbol of the uplink transmission.
  • the terminal may use the second indication information.
  • the indication information is carried on each subcarrier actually occupied by the uplink transmission.
  • the terminal is not limited to the implementation manner, and the terminal may also carry the second indication information in an uplink control signal associated with the uplink transmission. In other implementation manners, the terminal may further encapsulate the second indication information into a message and send the message to the network device.
  • the terminal may send the second indication information on an unlicensed frequency band.
  • the terminal may carry the second indication information in the uplink transmission or carry the second indication information in an uplink control signal associated with the uplink transmission.
  • the terminal may perform LBT on the unlicensed frequency band again, and separately send the second indication information on the re-listened idle bandwidth.
  • the terminal may also send the second indication information on the licensed frequency band.
  • the embodiment of the present application is not limited.
  • the second indication information may include a size of the second bandwidth, or an index of a carrier or a subcarrier actually occupied by the uplink transmission.
  • the second indication information may also include a carrier or subcarrier range actually occupied by the uplink transmission, that is, a frequency domain span.
  • the terminal is not limited to the two modes, and the terminal may report the bandwidth actually occupied by the uplink transmission, for example, the index of the RB actually occupied by the uplink transmission.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the network device performs bandwidth resource scheduling at the full bandwidth level on the first bandwidth, and the RB interval of resource interleaving based on the resource scheduling is fixed and does not change with the change of the first bandwidth. This can improve the flexibility of resource scheduling on the basis of meeting the OCB requirements of ESTI.
  • the network device may also perform subband resource scheduling at the subband level.
  • a subband refers to one or more carriers, or a partial subcarrier or a partial resource block on one carrier.
  • the concept of subbands may no longer exist in future communication technologies, but the same applies to concepts such as partial subcarriers or partial resource blocks represented by subbands.
  • the sub-band level resource scheduling is described in detail below.
  • FIG. 10 illustrates a signal transmission method provided by another embodiment of the present application.
  • the network device performs sub-band level sub-band resource scheduling on the first bandwidth, and the resource scheduling uses the interlace segment corresponding to the sub-band as a basic unit.
  • the interlace is an interlace in which the RB interval is fixed to N and uniformly distributed over the full bandwidth of the first bandwidth, that is, the interlace corresponding to the first bandwidth.
  • the network device receives a scheduling request sent by the terminal.
  • the scheduling request is used to request the network device to allocate an uplink transmission resource.
  • the network device may perform an LBT to determine a first bandwidth corresponding to an unavailable unlicensed frequency band.
  • S207 is different from the embodiment of FIG. 7 in that, when resource allocation is performed, resource allocation is not performed based on the interlace corresponding to the first bandwidth. Rather, the interlace corresponding to the first bandwidth is divided into interlace segments corresponding to each of the plurality of sub-bands, and then the resource allocation is performed with the interlace segments corresponding to the respective sub-bands as a basic unit.
  • the first bandwidth is 40 MHz
  • the interlace corresponding to the first bandwidth is an interlace with an RB interval of 10, such as interlace0 and interlace1.
  • the network device divides the interlace corresponding to the first bandwidth into two interlace segments corresponding to each of the two subbands (both 20 MHz).
  • the interlace segment corresponding to subband 0 includes: RB0, RB10, RB20, ... RB90
  • the interlace segment corresponding to subband 1 includes: RB100, RB110, ... RB180, RB190.
  • the interlace segment corresponding to subband 0 includes: RB1, RB11, RB21, ... RB91
  • the interlace segment corresponding to subband 1 includes: RB101, RB111, ... RB181, RB191.
  • the subband bandwidth may be other values, and the bandwidth of each subband may also be inconsistent.
  • the specific implementation of the subband division is not limited in this application, and the ratio of the span of the interlace segment corresponding to the subband in the frequency domain to the bandwidth of the subband satisfies the OCB requirement.
  • the uplink resource allocated by the network device to the terminal may include: one or more interlace fragments.
  • the uplink resource allocated by the network device to the terminal may include: a fragment of interlace0 corresponding to subband 0, and a fragment of interlace1 corresponding to subband 0.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the interlace fragment refers to a part of the resource blocks in the interlace, and the part of the resource blocks are consecutively adjacent in the interlace.
  • the interlace segment corresponding to subband 0 includes: RB0, RB10, RB20, ... RB90.
  • RB0, RB10, RB20, ..., RB90 are partial resource blocks in interlace0, and are the first, second, third, ..., 10th RBs in interlace0, respectively, which are consecutively adjacent in interlace0.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the network device returns, to the terminal, the resource indication information, where the resource indication information is used to indicate the uplink resource allocated by the network device to the terminal on the subband of the first bandwidth.
  • the resource indication information may be referred to as first indication information.
  • the resource indication information may include: an index of a subband corresponding to an interlace fragment allocated by the network device to the terminal, and an index of the interlace corresponding to the interlace fragment.
  • the interlace fragment allocated by the network device to the terminal includes: a fragment of interlace1 corresponding to subband 0 (which may be referred to as fragment 1), and a fragment of interlace0 corresponding to subband 1 (which may be referred to as fragment 2).
  • the resource indication information may include: an index of a subband corresponding to the fragment 1 (ie, an index of the subband 0) and an index of the interlace (ie, an index of the interlace1), and an index of the subband corresponding to the fragment 2 (ie, the subband 1) Index) and the index of the interlace (ie the index of interlace0).
  • the terminal can know that the resource actually allocated by the network device includes the segment 1 according to the index of the subband 0 and the index of the interlace1. Similarly, the terminal can know that the resource actually allocated by the network device includes the segment 2 according to the index of the subband 1 and the index of the interlace0.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the foregoing resource indication information may include: an index of a subband corresponding to an interlace fragment allocated by the network device to the terminal, and an index of the starting RB in the interlace corresponding to the interlace fragment.
  • the index of the starting RB can be used to indicate which interlace(s) the starting RB belongs to. Combined with the index of the subband corresponding to the interlace fragment, the terminal can know which interlace fragments actually allocated by the network device.
  • the interlace fragment allocated by the network device to the terminal includes: (interlace1 fragment on subband 0) fragment of interlace1 corresponding to subband 0 (abbreviated as fragment 1), interlace0 corresponding to subband 1 Fragment (may be referred to as fragment 2).
  • the resource indication information may include: an index of a subband corresponding to the segment 1 (ie, an index of the subband 0) and an index of the starting RB in the interlace corresponding to the segment 1 (ie, an index of the RB1), and the subtitle corresponding to the segment 2
  • the terminal can know that the interlace fragment allocated by the network device to the terminal is from interlace1 according to the index of RB1, and then combines the index of subband 0, and the terminal can determine that the interlace fragment allocated by the network device to the terminal is a fragment of interlace1 on subband 0.
  • the terminal can know that the resource actually allocated by the network device includes the segment 2 according to the index of the RB0 and the index of the sub-band 1.
  • the foregoing resource indication information may include: an index of an interlace corresponding to an interlace fragment allocated by the network device to the terminal, and a fragment index of the interlace fragment in the interlace.
  • the fragment of the interlace corresponding to each sub-band may be indexed.
  • interlace0 is divided into two sub-bands corresponding to interlace fragments, and the corresponding interlace fragments of the two sub-bands may be numbered as follows: fragment 0 (ie, RB0, RB10, RB20, ... RB90), fragment 1 ( That is, RB100, RB110, ... RB180, RB190).
  • fragment 0 ie, RB0, RB10, RB20, ... RB90
  • fragment 1 That is, RB100, RB110, ... RB180, RB190.
  • the resource indication information may include: an indication information W subband corresponding to the subband bandwidth of the interlace fragment allocated by the network device, a number L of interlaces associated with the interlace fragment, and a network device allocated for the terminal The index RB START of the starting RB.
  • This implementation is similar to the fourth implementation of the resource indication information in the embodiment of FIG. 7, which is equivalent to viewing the subband as the first bandwidth in the embodiment of FIG.
  • the first bandwidth of 40 MHz is divided into two 20 MHz subbands, that is,
  • the above RB set is a fragment of interlace0 corresponding to sub-band 0 in FIG.
  • the above two RB sets are the fragment of interlace0 corresponding to subband 0 in FIG. 11, and the fragment of interlace1 corresponding to subband 0, respectively.
  • the above examples are only used to explain the embodiments of the present application and should not be construed as limiting.
  • a resource indicator allocated by the network device to the terminal on the subband may be indicated by a resource indication value (RIV).
  • RIV resource indication value
  • the resource indication information may include an index of an RB that the network device actually allocates to the terminal.
  • the terminal may perform an LBT on the subband to determine an available subband.
  • the idle available subband corresponds to the aforementioned second bandwidth.
  • the terminal performs uplink transmission according to the resource indication information on the part of the available subband, and may perform uplink transmission on the resource in the subband indicated by the resource indication information. It should be understood that if the LBT does not detect an idle subband, the terminal cannot perform uplink transmission.
  • the terminal may learn, according to the resource indication information, one or more interlace segments allocated by the network device to the terminal, and a subband corresponding to each of the one or more interlace segments. Specifically, the terminal may perform LBT only on the subbands corresponding to the one or more interlace segments, and then perform uplink transmission on the monitored idle available subbands.
  • the interlace fragment allocated by the network device to the terminal on the first bandwidth of 40 MHz includes: a fragment of interlace0 corresponding to subband 0, and a fragment of interlace1 corresponding to subband 1.
  • the terminal can perform LBT on subband 0 and subband 1.
  • the terminal may perform uplink transmission on the sub-band 0, specifically, uplink transmission on the interlace0 segment corresponding to the sub-band 0.
  • the subband bandwidth is relatively small, and the LBT on the subband can fully utilize the idle resources, and the scheduling granularity is smaller, which is beneficial to the uplink data. Timely transmission.
  • the terminal when the uplink transmission is performed on the idle available sub-band, the terminal also needs to send the indication information to the network device, where the indication information is used to indicate the sub-band actually occupied by the uplink transmission, so that the network device can correctly receive the uplink data.
  • the indication information may be referred to as second indication information.
  • the second indication information may include an index of a subband actually occupied by the uplink transmission.
  • the second indication information may also include an index of subcarriers actually occupied by the uplink transmission. It is not limited to these methods, and may be different in practical applications.
  • the second indication information may include a range of subcarriers actually occupied by the uplink transmission. The examples are merely illustrative of the application and should not be construed as limiting.
  • the network device performs subband resource scheduling at the subband level on the first bandwidth, and performs resource allocation by using the interlace segment corresponding to each subband as a basic unit.
  • the interlace used is an interlace in which the RB interval is fixed to N and uniformly distributed over the full bandwidth of the first bandwidth. In this way, flexible transmission can be realized in a multi-bandwidth scenario, and the probability of successful LBT monitoring can be increased, and the efficiency of uplink transmission is improved.
  • FIG. 12 illustrates a signal transmission method provided by still another embodiment of the present application.
  • the network device performs subband resource scheduling at the subband level on the first bandwidth, and selects an appropriate interlace structure on the subband, and then performs resource scheduling by using the interlace on the subband as a basic unit.
  • the interlace used in the embodiment of FIG. 12 is an interlace on the sub-band, and the interlace may be a fixed number of interlaces uniformly distributed on the sub-bands, or may be evenly distributed in the sub-bands.
  • the interlace with fixed RB spacing on the belt The following expands the description:
  • the network device receives a scheduling request sent by the terminal.
  • the scheduling request is used to request the network device to allocate an uplink transmission resource.
  • the network device may perform an LBT to determine a first bandwidth corresponding to an unavailable unlicensed frequency band.
  • the interlace corresponding to the first bandwidth is divided into multiple sub-bands, and the interlace structure corresponding to each sub-band is determined, and then the resource allocation is performed by using the interlace on each sub-band as a basic unit.
  • the first bandwidth is 80 MHz
  • the first bandwidth is divided into 4 sub-bands
  • the interlace corresponding to each sub-band is an interlace with an RB interval N fixed to be equal to 5.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the subband bandwidth may be other values, and the bandwidth of each subband may also be inconsistent.
  • the interlace corresponding to the subband may be a fixed number of interlaces uniformly distributed on the subband, or an interlace with a fixed RB interval uniformly distributed on the subband.
  • the interlace structures corresponding to the respective sub-bands may be the same or different.
  • the present application does not limit the subband division, and the specific implementation of the interlace used by the subband, and ensures that the ratio of the span of the interlace corresponding to the subband in the frequency domain to the bandwidth of the subband satisfies the OCB requirement.
  • the uplink resource allocated by the network device to the terminal may include: one or more interlaces.
  • the one or more interlaces may be interlaces on the same subband, or interlaces on different subbands.
  • the uplink resource allocated by the network device to the terminal may include interlace0 and interlace1 on the subband 0, that is, multiple interlaces on the same subband.
  • the uplink resources allocated by the network device to the terminal may further include: interlace0 on subband 0, interlace0 on subband 1, that is, multiple interlaces on different subbands.
  • the network device returns, to the terminal, the resource indication information, where the resource indication information is used to indicate the uplink resource allocated by the network device to the terminal on the subband of the first bandwidth.
  • the resource indication information may be referred to as first indication information.
  • the resource indication information may include: an index of a subband corresponding to an interlace allocated by the network device to the terminal, and an index of the interlace.
  • the interlace allocated by the network device to the terminal includes interlace1 corresponding to subband 0 and interlace0 corresponding to subband 1.
  • the resource indication information may include: an index of the subband 0 and an index of the interlace0 on the subband 0, an index of the subband 1 and an index of the interlace0 on the subband 1.
  • the terminal can know that the resources actually allocated by the network device include: ⁇ RB0, RB5, RB10..., RB90, RB95 ⁇ according to the index of the subband 0 and the index of the interlace0 on the subband 0.
  • the terminal can know that the resources actually allocated by the network device include: ⁇ RB100, RB105, RB110..., RB190, RB195 ⁇ according to the index of the subband 1 and the index of the interlace0 on the subband 1.
  • the resources actually allocated by the network device include: ⁇ RB100, RB105, RB110..., RB190, RB195 ⁇ according to the index of the subband 1 and the index of the interlace0 on the subband 1.
  • the foregoing resource indication information may include: an index of a subband corresponding to an interlace allocated by the network device to the terminal, and an index of the starting RB in the interlace.
  • the index of the starting RB can be used to indicate which one of the known sub-bands belongs to the interlace.
  • the interlace allocated by the network device to the terminal includes interlace1 corresponding to subband 0 and interlace0 corresponding to subband 1.
  • the foregoing resource indication information may include: an index of the subband 0 and an index of the start RB in the interlace0 on the subband 0 (ie, an index of the RB0), an index of the subband 1, and an interlace0 on the subband 1
  • the index of the starting RB ie the index of RB100.
  • the terminal can know that the resources actually allocated by the network device include the interlace0 on the subband 1 according to the index of the subband 1 and the index of the interlace0 on the subband 1.
  • the resources actually allocated by the network device include the interlace0 on the subband 1 according to the index of the subband 1 and the index of the interlace0 on the subband 1.
  • said resource indication information may include: information indicating a network device allocation W subband, the network device corresponding to the interlace sub-band bandwidth is allocated to the terminal strip of the terminal sub-interlace number L, and network equipment The index RB START of the starting RB assigned to the terminal on the subband.
  • This implementation is similar to the fourth implementation of the resource indication information in the embodiment of FIG. 7, which is equivalent to viewing the subband as the first bandwidth in the embodiment of FIG.
  • the resource indication information may include an index of an RB that the network device actually allocates to the terminal.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the terminal may perform an LBT on the subband to determine an available subband.
  • the idle available subband corresponds to the aforementioned second bandwidth.
  • the terminal performs uplink transmission according to the resource indication information on the part of the available subband, and may perform uplink transmission on the resource in the subband indicated by the resource indication information. It should be understood that if the LBT does not detect an idle subband, the terminal cannot perform uplink transmission.
  • the terminal may learn, according to the foregoing resource indication information, one or more interlaces allocated by the network device to the terminal, and a corresponding sub-band of the one or more interlaces. Specifically, the terminal may perform LBT only on the sub-band corresponding to the one or more interlaces, and then perform uplink transmission on the monitored idle available sub-band.
  • the subband bandwidth is relatively small, and the LBT on the subband can fully utilize the idle resources, which is beneficial to the timely transmission of uplink data.
  • the terminal when the uplink transmission is performed on the idle available sub-band, the terminal also needs to send the indication information to the network device, where the indication information is used to indicate the sub-band actually occupied by the uplink transmission, so that the network device can correctly receive the uplink data.
  • the indication information may be referred to as second indication information.
  • the second indication information may include an index of a subband actually occupied by the uplink transmission.
  • the second indication information may also include an index of subcarriers actually occupied by the uplink transmission. It is not limited to these methods, and may be different in practical applications.
  • the second indication information may include a range of subcarriers actually occupied by the uplink transmission. The examples are merely illustrative of the application and should not be construed as limiting.
  • the network device performs subband resource scheduling at the subband level on the first bandwidth, and selects an appropriate interlace structure on the subband, and then performs resource scheduling by using the interlace on the subband as a basic unit.
  • the network device performs subband resource scheduling at the subband level on the first bandwidth, and selects an appropriate interlace structure on the subband, and then performs resource scheduling by using the interlace on the subband as a basic unit.
  • the network device may use the interlace with fixed RB interval for resource allocation. Specifically, when performing resource allocation, the network device may perform broadband resource scheduling at the full bandwidth level on the first bandwidth, or perform subband resource scheduling at the subband level on the subband of the first bandwidth.
  • the broadband resource scheduling mode of the full bandwidth level may be referred to as the first resource allocation mode
  • the subband resource scheduling mode of the subband level may be referred to as the second resource allocation mode.
  • the specific implementation of the resource indication mode of the network device (that is, the foregoing resource indication information) can be referred to the embodiment of FIG. 7.
  • the specific implementation of the resource indication mode of the network device (that is, the foregoing resource indication information) can be seen in the embodiment of FIG.
  • the network device also needs to carry the flag for distinguishing the two scheduling modes in the resource indication information, and is used to indicate the resource allocation mode adopted by the network device.
  • the terminal may first identify the foregoing flag bit.
  • the terminal performs LBT on the bandwidth indicated by the network device, that is, the foregoing first bandwidth.
  • the terminal may perform uplink transmission on all resources indicated by the resource indication information.
  • the terminal may perform uplink transmission on some resources indicated by the resource indication information.
  • the terminal performs the LBT on the sub-band indicated by the resource indication information (that is, the sub-band of the first bandwidth). If the subband is idle, the terminal may perform uplink transmission on the scheduling resource in the subband. Otherwise, the terminal may not perform uplink transmission on the subband.
  • the scheduling resource in the sub-band refers to the resource located in the sub-band indicated by the resource indication information.
  • the broadband resource scheduling mode of the full bandwidth level can also be converted into a subband resource scheduling mode at the subband level.
  • the network device may adopt a sub-band resource scheduling manner. In this way, the terminal can perform the sub-band LBT again, which can provide the LBT success probability and perform uplink transmission in time.
  • the following describes in detail how to design a newly defined RB interval fixed resource interlace in the scenario of multiple system bandwidths and/or multiple subcarrier spacings.
  • bandwidth percent represents the proportion of the transmission bandwidth in the system bandwidth.
  • the system bandwidth includes transmission bandwidth and protection bandwidth.
  • the RB number indicates the number of RBs (N RB ) corresponding to the transmission bandwidth.
  • Interlace structure indicates the number of RBs that make up each interlace RB spacing represents the RB interval of each interlace, that is, the interval between two adjacent RBs in each interlace
  • BW RB represents the bandwidth occupied by each RB.
  • the threshold indicates the OCB requirement of ESTI. For example, for an unlicensed low frequency band of 5 GHz, the threshold is 80%, and for the 60 GHz unlicensed high frequency band, the threshold is 70%.
  • the first condition above ie, It is used to determine the interlace structure in different transmission bandwidth scenarios, so that the entire transmission bandwidth can be divided into integer interlaces.
  • the second condition above is used to control the frequency domain span of the interlace, so that the frequency domain span of the interlace ( The ratio to the system bandwidth BW meets the OCB requirements.
  • each interlace contains 10 RBs, and the RB interval of each interlace is equal to 10 RBs.
  • each interlace contains 20 RBs, and the interleave RB interval is equal to 5 RBs.
  • each interlace contains 25 RBs, and the interleave RB interval is equal to 4 RBs.
  • each interlace contains 50 RBs, and the RB interval of each interlace is equal to 2 RBs.
  • Tables 2 to 26 also show the interlace structure in the scenario of other various system bandwidths and/or multiple subcarrier spacings, which are not described here.
  • the plurality of parameter values included in the fourth column sequentially correspond to the plurality of parameter values included in the fifth column (RB spacing), and the corresponding two parameters Represents the number of RBs included in the interlace and the RB interval of the interlace.
  • the fourth column in Table 1 includes four parameter values: 10, 20, 25, 50.
  • the fifth column in Table 1 includes four parameter values: 10, 5, 4, 2. Among them, 10 and 10 correspond, 20 and 5 correspond, 25 and 4 correspond, and 50 and 2 correspond.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the interlace structure that satisfies the above two conditions cannot be found.
  • 90.90% of such transmission bandwidth scenarios in Table 1 92.70% of such transmission bandwidth scenarios in Table 1, and the like.
  • an interlace structure in a similar transmission bandwidth scenario can be used, except that the entire transmission bandwidth cannot be just divided into an integer number of interlaces.
  • an interlace corresponding to the same RB interval is found from interlaces under various system bandwidths.
  • the proportion of transmission bandwidth is 90.00%.
  • four identical interlace structures can be found, and the RB intervals in the four interlace structures. They are: 2, 4, 5, and 10.
  • the newly defined interlace structure of the present application may be any of the four interlace structures.
  • FIG. 14 illustrates another signal transmission method provided by the present application, which can improve transmission efficiency.
  • the method may include:
  • the network device receives a scheduling request (SR) sent by the terminal.
  • the scheduling request is used to request the network device to allocate an uplink transmission resource.
  • the terminal may periodically send a scheduling request to the network device, for example, the terminal sends the scheduling request to the network device once every other transmission time interval (TTI).
  • the terminal may also send the scheduling request to the network device under event driving. For example, when there is uplink data to be transmitted, the terminal sends the scheduling request to the network device.
  • the arrival of the uplink data is an event that drives the terminal to transmit the scheduling request.
  • the embodiment of the present application does not limit the trigger mechanism for the terminal to send the scheduling request.
  • the network device may allocate an uplink transmission resource to the terminal according to the first time unit as a basic unit.
  • the first time unit may be a subframe, a slot, a transmission interval (TTI), a short transmission interval (short TTI), or a mini-slot.
  • the network device may return the resource indication information to the terminal, where the resource indication information may include: a start time of the uplink transmission performed by the terminal indicated by the network device. Specifically, the resource indication information may further include: a transmission length that the network device schedules to the terminal. The transmission length may include one or more of the first time units described above. Optionally, the length of the transmission may be represented by the number of the first units.
  • the signaling implementation manner of the resource indication information reference may be made to the signaling implementation of the foregoing resource indication information described in the embodiment of FIG. 7 , and details are not described herein again.
  • the terminal needs to execute the LBT before the uplink transmission.
  • the terminal can determine whether the LBT completion time is later than the foregoing start time indicated by the network device. If the LBT completion time is not later than the foregoing start time, the terminal may start uplink transmission at the foregoing start time according to the indication of the network device, and refer to S413. If the LBT completion time is later than the above start time, the terminal may start uplink transmission at the boundary of the second time unit closest to the LBT completion time, refer to S415.
  • the boundary refers to the start time or end time of the second time unit.
  • a time unit (such as mini-slot or short TTI) can correspond to two boundaries, namely a start boundary and an end boundary, where the start boundary refers to the start time of the second time unit, and the end boundary refers to the second time.
  • the end time of the time unit It can be understood that the starting boundary of one second time unit is the ending boundary of another second time unit, which are adjacent in the time domain.
  • the second time unit may be a smaller time unit such as a mini-slot or a short TTI, and is smaller than the first time unit.
  • the terminal starts uplink transmission at the boundary of the second time unit that is closest to the LBT completion time, so that the terminal can wait for the network device to re-schedule and improve the uplink transmission. s efficiency.
  • the terminal may further send, to the network device, indication information, where the indication information is used to indicate an actual start time of the uplink transmission.
  • the indication information may be an index of the second most recent time unit, such as an index of a mini-slot or a short TTI, or may be a time offset of the actual transmission time relative to a start time indicated by the network device. Wait.
  • the indication information may further include indication information of the second time unit, that is, a time unit indicating which structure is actually adopted by the uplink transmission.
  • the network device scheduling terminal performs uplink transmission in subframe n, that is, the start time indicated by the network device is the starting boundary of the subframe n.
  • the terminal needs to perform LBT first.
  • the LBT completion time is in the third mini-slot (mini-slot 2) in the subframe n, that is, the LBT completion time is later than the start time indicated by the network device, and the terminal may be away from
  • the boundary of the second time unit closest to the LBT completion time is uplinked, that is, uplink transmission is performed at the start boundary of the fourth mini-slot (mini-slot 3) in the subframe n.
  • the starting boundary of mini-slot 3 is the ending boundary of mini-slot 2.
  • the terminal When the LBT completion time is later than the start time of the network device scheduling, the terminal starts uplink transmission at the boundary of the second time unit closest to the LBT completion time, so that the terminal can be prevented from waiting for the network device to be re-scheduled. Improve the efficiency of uplink transmission.
  • FIG. 16 is a wireless communication system 700 provided by an embodiment of the present application, and a network device in the wireless communication system 700.
  • the network device 500 may be the foregoing network device in the foregoing method embodiment, and may be configured to receive a scheduling request of the terminal, and allocate an uplink signal transmission resource to the terminal on the unlicensed frequency band.
  • the terminal 600 may be the foregoing terminal in the foregoing method embodiment, and may perform uplink transmission according to the scheduling indication of the network device 500 in the idle bandwidth monitored by the LBT.
  • the network device 500 may include a receiving unit 501 and a transmitting unit 503. among them:
  • the sending unit 503 is configured to send the first indication information to the terminal 600, where the first indication information is used to indicate an uplink resource allocated by the network device to the terminal 600 on the first bandwidth, where the uplink resource is evenly distributed in part or all An integer number of resource blocks on the first bandwidth.
  • the receiving unit 501 is configured to receive the second indication information sent by the terminal 600.
  • the second indication information is used to indicate that the terminal 600 listens to the idle second bandwidth for uplink transmission.
  • the terminal 600 may include a transmitting unit 601 and a receiving unit 603. among them:
  • the receiving unit 603 is configured to receive the first indication information that is sent by the network device 500, where the first indication information is used to indicate the uplink resource allocated by the network device to the terminal 500 on the first bandwidth.
  • the resource indicated by the first indication information includes an integer number of resource blocks uniformly distributed on part or all of the first bandwidth.
  • the sending unit 601 is configured to perform uplink transmission on the monitored second idle bandwidth.
  • the sending unit 601 is further configured to send the second indication information to the network device 500.
  • the second indication information is used to indicate the second bandwidth.
  • the network device 500 can mainly provide three resource scheduling modes.
  • the network device performs broadband resource scheduling at the full bandwidth level on the first bandwidth, and the RB interval of the resource interleaving based on the resource scheduling is fixed and does not change with the change of the first bandwidth.
  • the resource interleaved RB interval defined in this application is fixed and does not change with the change of bandwidth.
  • the network device performs subband resource scheduling at the subband level on the first bandwidth, and the resource scheduling uses the interlace segment corresponding to the subband as a basic unit.
  • the interlace is an interlace in which the RB interval is fixed to N and uniformly distributed over the full bandwidth of the first bandwidth, that is, the interlace corresponding to the first bandwidth.
  • resource allocation is not performed based on the interlace corresponding to the first bandwidth. Rather, the interlace corresponding to the first bandwidth is divided into interlace segments corresponding to each of the plurality of sub-bands, and then the resource allocation is performed with the interlace segments corresponding to the respective sub-bands as a basic unit.
  • the network device performs subband resource scheduling on the first bandwidth, and selects an appropriate interlace structure on the subband, and then uses the interlace on the subband as a basic unit for resource scheduling.
  • the interlace may be a fixed number of interlaces uniformly distributed on the sub-bands, or an interlace with fixed RB intervals uniformly distributed on the sub-bands.
  • each functional unit included in the network device 500 may refer to the related functions of the network device in the method embodiment corresponding to FIG. 7, FIG. 10 or FIG. 11, respectively, and the specific implementation of each functional unit included in the network device 500. Reference may be made to the related functions of the terminal in the method embodiment corresponding to FIG. 7, FIG. 10 or FIG. 11, and details are not described herein again.
  • the embodiment of the present invention further provides a wireless communication system, which may be the wireless communication system 200 shown in FIG. 2, or may be the wireless communication system 700 shown in FIG. 16, and may include: a network device.
  • the terminal may be the terminal in the method embodiment corresponding to FIG. 7, FIG. 10 or FIG. 12, and the network device may be the network device in the method embodiment corresponding to FIG. 7, FIG. 10 or FIG.
  • the terminal processor 304 is configured to invoke an instruction stored in the memory 312 to control the transmitter 306 to transmit in an unlicensed band and/or a licensed band and control the receiver 308 in an unlicensed band. And/or licensed bands for reception.
  • Transmitter 306 is used to support the terminal in performing the process of transmitting data and/or signaling in FIG. 7, FIG. 10 or FIG.
  • the receiver 308 is configured to support the terminal in performing the process of receiving data and/or signaling in FIG. 7, FIG. 10 or FIG.
  • the memory 312 is used to store program codes and data of the terminal.
  • the terminal may be the terminal 300 shown in FIG. 4, and the network device may be the network device 400 shown in FIG. 5.
  • the terminal may also be the terminal 600 shown in FIG. 16, and the network device shown may also be the network device 500 shown in FIG.
  • the terminal may be the terminal 300 shown in FIG. 4, and the network device may be the network device 400 shown in FIG. 5.
  • the terminal may also be the terminal 600 shown in FIG. 16, and the network device shown may also be the network device 500 shown in FIG.
  • the network device processor 405 is configured to control the transmitter 407 to transmit in the unlicensed band and/or the licensed band and control the receiver 409 to receive in the unlicensed band and/or the licensed band.
  • Transmitter 407 is used to support the network device to perform the process of transmitting data and/or signaling in FIG. 7, FIG. 10 or FIG.
  • the receiver 409 is configured to support the network device to perform the process of receiving data and/or signaling in FIG. 7, FIG. 10 or FIG.
  • the memory 405 is used to store program codes and data of the network device.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the embodiments of the present invention can support flexible bandwidth transmission, and can better adapt to the multi-bandwidth scenario supported by the next generation of new air interface technology.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信号传输方法、相关设备及系统。所述方法可包括:接收网络设备发送的第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源;所述第一指示信息指示的资源包括均匀分布在部分或全部的第一带宽上的整数个资源块;在监听到的空闲的第二带宽上进行上行传输;向网络设备发送第二指示信息;所述第二指示信息用于指示所述第二带宽。上述方案可支持灵活带宽传输,能够更好的适应下一代新空口技术支持的多带宽场景。

Description

一种信号传输方法、相关设备及系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种信号传输方法、相关设备及系统。
背景技术
无线通信技术的飞速发展,导致频谱资源日益紧缺,促进了对于非授权频段的探索。然而对于非授权频段的使用,有诸多法规限制。一方面,对非授权频段的信号的带宽占用率(Occupancy Channel Bandwidth,OCB)有所限制。欧洲电信标准协会(European Telecommunications Standards Institute,ETSI)规定,在2.4GHz以及5GHz频段,要求信号的传输带宽要占用系统带宽的80%以上,而对于60GHz频段,则要求信号的传输带宽要占用系统带宽的70%以上。另一方面,对非授权频段的信号传输功率有所限制。例如,ETSI要求在5150-5350MHz频段,信号的最大功率谱密度为10dBm/MHz。
在LTE Release13版本中,在上行传输时引入了增强型授权辅助接入(Enhanced Licensed Assisted Access,eLAA)技术。为了满足ESTI的OCB规定,eLAA采用资源交错(interlace)结构。一个资源交错由均匀分布在系统带宽上的10个的资源块(Resource Block,RB)组成。例如,如图1所示,假设系统带宽是20MHz,20MHz的系统带宽对应100个RB(RB0~RB99),每个资源交错(interlace)由均匀分布在整个带宽上的10个资源块(RB)组成,而且每个资源交错(interlace)中的RB两两间隔10个RB。这样可以保证每个interlace形成的频域跨度(位于首尾的两个RB之间的带宽跨度)是91个RB,约16.38MHz,大于系统带宽20MHz的80%。
另外,部署在非授权频段上的通信系统通常采用先监听后发送(Listen Before Talk,LBT)的机制来使用/共享无线资源。一般地,站点在发送信号之前首先会监听非授权频段是否空闲。例如根据非授权频段上的信号的接收功率大小来判断忙闲状态,如果接收功率小于一定门限,则认为该非授权频段处于空闲状态,能够在该非授权频段上发送信号;否则认为该非授权频段处于忙碌状态,不能在该非授权频段上发送信号。
在未来第五代(5th-generation,5G)或新空口(New Radio,NR)通信系统中,非授权频段的使用也会是一个必不可少的满足业务需求、提升用户体验的技术手段。相较于目前的LTE/LTE-A等系统而言,未来5G或NR系统支持更灵活的带宽,实现更加可靠、高速的业务传输。在未来5G或NR系统中,基于非授权频段上的LBT机制,不同站点可接入的带宽可能会不一致。特别地,终端实际可接入的带宽与基站所指示的带宽之间也可能会存在不一致的情况。但是,现有的资源交错(interlace)由固定数量(如10个)的RB构成,如果终端通过LBT监听到的空闲带宽与基站所指示的带宽不一致,那么终端也不能使用该空闲带宽进行数据传输,无法支持未来通信系统中的灵活带宽传输。
发明内容
本申请实施例所要解决的技术问题在于现有的资源交错(interlace)方案无法支持灵活带宽传输,提供一种信号传输方法、相关设备及系统,可支持灵活带宽传输,能够更好 的适应下一代新空口技术支持的多带宽场景。
第一方面,本申请提供了一种信号传输方法,应用于网络设备侧,该方法包括:将均匀分布在部分或全部的第一带宽上的整数个资源块作为上行资源分配给终端,然后向所述终端发送第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源。接收所述终端发送的第二指示信息,所述第二指示信息用于指示所述终端监听到的空闲的用于上行传输的第二带宽。
第二方面,本申请提供了一种信号传输方法,应用于终端侧,该方法包括:接收网络设备发送的第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源。所述第一指示信息指示的资源包括均匀分布在部分或全部的第一带宽上的整数个资源块。然后,在监听到的空闲的第二带宽上进行上行传输。最后,向网络设备发送第二指示信息,所述第二指示信息用于指示所述第二带宽。
本申请中,第一带宽即网络设备进行上行资源调度所基于的可用带宽,第二带宽即终端通过LBT监听到的用于上行传输的可用带宽。其中,第一带宽可以是网络设备在进行资源调度时通过LBT监听到的可用带宽。应理解的,即使终端通过LBT监听到的可用带宽可能会大于第一带宽,终端也需要按照网络设备的指示进行上行传输。也即是说,终端通过LBT监听到的用于上行传输的可用带宽(即第二带宽)只能小于或等于第一带宽。
实施第一方面和第二方面描述的方法,可支持灵活带宽传输,能够更好的适应下一代新空口技术支持的多带宽场景。
结合第一方面或第二方面,本申请主要提供了三种资源调度方式。下面详细说明:
第一种资源调度方式,网络设备在第一带宽上进行全带宽级别的宽带资源调度,且资源调度所基于的资源交错的RB间隔是固定的,不随第一带宽的变化而变化。与LTE中定义的现有的资源交错不同的是,本申请定义的资源交错的RB间隔是固定的,不随带宽的变化而变化。
为了简化后续说明,以不同带宽下每个资源交错的RB间隔固定为N(N是正整数)为例。也即是说,所述第一指示信息指示的资源包括均匀分布在所述第一带宽上的一个或多个资源交错,其中,所述资源交错中的相邻2个资源块之间的间隔固定为N,不随第一带宽的变化而变化;N是正整数。
结合第一方面或第二方面,在实施上述第一种资源调度方式时,如果所述第二带宽等于所述第一带宽,则终端可以在所述第一指示信息指示的资源上进行上行传输。如果所述第二带宽小于所述第一带宽,则终端可以在所述第一指示信息所指示的位于所述第二带宽内的资源上进行上行传输。
结合第一方面或第二方面,在实施上述第一种资源调度方式时,如果所述第二带宽等于所述第一带宽,则终端可以在所述第一指示信息指示的资源上进行上行传输,且发射功率不为0;如果所述第二带宽小于所述第一带宽,则在所述第一指示信息指示的资源上进行上行传输,其中,在所述第一指示信息指示的处于所述第二带宽内的资源上进行上行传输的发射功率不为0,在所述第一指示信息指示的所述第二带宽外的资源上进行上行传输的发射功率为0。
结合第一方面或第二方面,在实施上述第一种资源调度方式时,上述第一指示信息的 具体实现可如下。
(1)上述第一指示信息的信令实现。
在本申请的一个实施例中,网络设备可以将上述第一指示信息携带在下行控制信息(DCI)中。具体的,可以在DCI中新增一个字段,该字段用于指示分配给终端的资源交错,也可以采用现有DCI格式中的用于资源指示的相关字段,如RB资源分配字段等,指示分配给终端的资源块。
可选的,网络设备还可以在针对所述调度请求的其他应答消息中携带上述第一指示信息,或者网络设备还可以将上述第一指示信息独立封装成一个消息,返回该消息给终端。关于网络设备如何发送上述第一指示信息的方式,本申请实施例不作限制。
(2)上述第一指示信息的内容实现。
第一种实现方式,上述第一指示信息可以包括:第一带宽的指示信息,以及网络设备在第一带宽上分配给终端的一个或多个资源交错的索引。
第二种实现方式,上述第一指示信息可以包括:网络设备在第一带宽上分配给终端的一个或多个资源交错分别包括的起始RB的索引,以及RB数量。这样,终端就可以根据所述一个或多个资源交错分别包括的起始RB的索引,以及RB数量获知网络设备实际分配的RB的位置。
第三种实现方式,上述第一指示信息可以包括:网络设备在第一带宽上分配给终端的一个或多个资源交错分别包括的起始RB的索引,以及网络设备为终端分配的RB的总数量。这里,起始RB的数量即网络设备分配的资源交错的个数。这样,终端利用上述RB的总数量除以起始RB的数量便可以得出单个资源交错中的RB的数量,即可以获知资源交错的结构。
第四种实现方式,上述第一指示信息可包括:第一带宽的指示信息、网络设备为终端分配的资源交错的个数,以及网络设备为终端分配的起始RB的索引。
可选的,可以通过资源指示值(RIV)来指示网络设备分配给终端的资源交错。不限于上述几种实现方式,网络设备和终端之间还可以约定更多的资源指示方式。例如,上述第一指示信息可以包括网络设备实际分配给终端的RB的索引。
结合第一方面或第二方面,在实施上述第一种资源调度方式时,上述第二指示信息的具体实现可如下。
具体的,终端可以在上行数据中携带所述第二指示信息,具体可以在上行传输的第一个符号中发送所述第二指示信息,且可以将所述第二指示信息携带在上行传输实际占用的每一个子载波上。不限于这种实现方式,终端也可以在该上行数据关联的上行控制信号中携带所述第二指示信息。终端还可以将所述第二指示信息独立封装成一个消息,发送该消息给网络设备。关于所述第二指示信息的信令实现(即终端如何发送所述第二指示信息),本申请实施例不作限制。
具体的,所述第二指示信息可包括第二带宽的大小信息,或者上行传输实际占用的载波或子载波的索引信息。所述第二指示信息也可以包括上行传输实际占用的载波或子载波范围信息,即频域跨度。不限于这两种方式,终端还可以通过其他方式上报上行传输实际占用的带宽,例如上行传输实际占用的RB的索引信息。示例仅仅用于解释本申请,不应构 成限定。
第二种资源调度方式,网络设备在第一带宽上进行子带级别的子带资源调度,且资源调度以子带对应的interlace片段为基本单元。这里,interlace是RB间隔固定为N的均匀分布在第一带宽的全带宽上的interlace,即第一带宽对应的interlace。与上述第一种资源调度方式不同的是,在进行资源分配时,不是以第一带宽对应的interlace为基本单位进行资源分配。而是,将第一带宽对应的interlace划分成多个子带各自对应的interlace片段,然后以各个子带对应的interlace片段为基本单位进行资源分配。
应理解的,相比全带宽(上述第一种资源调度方式中的第一带宽),子带带宽比较小,在子带上LBT,更能够充分利用到空闲资源,有利于上行数据的及时传输。
结合第一方面或第二方面,在实施上述第二种资源调度方式时,终端可以在监听到的空闲的子带上进行上行传输。
结合第一方面或第二方面,在实施上述第二种资源调度方式时,上述第一指示信息的信令实现可参考上述第一种资源调度方式中的相关内容。
结合第一方面或第二方面,在实施上述第二种资源调度方式时,上述第一指示信息的内容实现可如下:
第一种实现方式,上述第一指示信息可包括:网络设备分配给终端的interlace片段对应的子带的索引,以及该interlace片段对应的interlace的索引。
第二种实现方式,上述第一指示信息可包括:网络设备分配给终端的interlace片段对应的子带的索引,以及该interlace片段对应的interlace中的起始RB的索引。
第三种实现方式,上述第一指示信息可包括:网络设备分配给终端的interlace片段对应的interlace的索引,以及该interlace片段在该interlace中的片段索引。
第四种实现方式,上述第一指示信息可包括:网络设备分配给终端的interlace片段对应的子带带宽的指示信息W subband、该interlace片段关联的interlace的个数L,以及网络设备为终端分配的起始RB的索引RB START
可选的,在单个子带上,可以通过资源指示值(RIV)来指示网络设备在该子带上分配给终端的资源块。不限于上述几种实现方式,网络设备和终端之间还可以约定更多的资源指示方式。例如,所述第一指示信息可以包括网络设备实际分配给终端的RB的索引。
结合第一方面或第二方面,在实施上述第二种资源调度方式时,关于所述第二指示信息的信令实现,可参考上述第一种资源调度方式中的相关内容。
结合第一方面或第二方面,在实施上述第二种资源调度方式时,所述第二指示信息可以包括上行传输实际占用的子带的索引。所述第二指示信息也可以包括上行传输实际占用的子载波的索引。不限于这些方式,实际应用中还可以不同,例如,所述第二指示信息可以包括上行传输实际占用的子载波的范围。示例仅仅用于解释本申请,不应构成限定。
第三种资源调度方式,网络设备在第一带宽上进行子带级别的子带资源调度,并在子带上选择合适的interlace结构,然后以子带上的interlace为基本单元进行资源调度。该interlace既可以是均匀分布在子带上的数量固定的interlace,也可以是均匀分布在子带上的RB间隔固定的interlace。
应理解的,相比全带宽(上述第一种资源调度方式中的第一带宽),子带带宽比较小, 在子带上LBT,更能够充分利用到空闲资源,有利于上行数据的及时传输。
结合第一方面或第二方面,在实施上述第三种资源调度方式时,终端可以在监听到的空闲的子带上进行上行传输。
结合第一方面或第二方面,在实施上述第三种资源调度方式时,上述第一指示信息的信令实现可参考上述第一种资源调度方式中的相关内容。
结合第一方面或第二方面,在实施上述第三种资源调度方式时,上述第一指示信息的内容实现可如下:
第一种实现方式,上述第一指示信息可包括:网络设备分配给终端的interlace对应的子带的索引,以及该interlace的索引。
第二种实现方式,上述第一指示信息可包括:网络设备分配给终端的interlace对应的子带的索引,该interlace中的起始RB的索引。
第三种实现方式,上述第一指示信息可包括:网络设备分配给终端的interlace对应的子带带宽的指示信息W subband、网络设备在子带上分配给终端的interlace的个数L,以及网络设备在子带上为终端分配的起始RB的索引RB START
结合第一方面或第二方面,在实施上述第三种资源调度方式时,关于所述第二指示信息的信令实现,可参考上述第一种资源调度方式中的相关内容。
结合第一方面或第二方面,在实施上述第三种资源调度方式时,所述第二指示信息可以包括上行传输实际占用的子带的索引。所述第二指示信息也可以包括上行传输实际占用的子载波的索引。不限于这些方式,实际应用中还可以不同,例如,所述第二指示信息可以包括上行传输实际占用的子载波的范围。示例仅仅用于解释本申请,不应构成限定。
另外,上述第一种资源调度方式即全带宽级别的宽带资源调度方式,上述第二种资源分配方式即子带级别的子带资源调度方式。网络设备还需要将用于区分这两种调度方式的标志位携带在第一指示信息中,用于指示所述网络设备所采用的资源分配方式。
具体的,在接收到第一指示信息之后,终端可以先识别上述标志位。
如果上述标志位所指示的资源分配方式是宽带资源调度,则终端在网络设备指示的带宽(即上述第一带宽)上进行LBT。当监听到的空闲的用于上行传输的带宽(即第二带宽)等于第一带宽时,终端可以在上述第一指示信息指示的全部资源上进行上行传输。当监听到的空闲的用于上行传输的(即第二带宽)小于第一带宽时,终端可以在上述第一指示信息指示的部分资源上进行上行传输。
如果上述标志位所指示的资源分配方式是子带资源调度,则终端在上述第一指示信息所指示的子带(即上述第一带宽的子带)上进行LBT。如果子带空闲时,则终端可以在该子带内的调度资源上进行上行传输,否则,终端不能在该子带上进行上行传输。这里,该子带内的调度资源是指上述第一指示信息所指示的位于该子带内的资源。
可选的,全带宽级别的宽带资源调度方式还可以转换成子带级别的子带资源调度方式。具体的,在全带宽级别的宽带资源调度方式下,如果终端进行LBT没有监听到空闲带宽,则网络设备可以采取子带资源调度方式。这样,终端可以重新进行子带LBT,可提供LBT的成功机率,及时进行上行传输。
第三方面,本申请提供了一种信号传输方法,应用于网络设备侧,该方法包括:在第 一信道带宽的子带上以均匀分布在所述子带上的整数个资源块作为基本分配单元为终端分配上行资源,然后向所述终端发送第一指示信息,所述第一指示信息用于指示网络设备在所述子带上为终端分配的上行资源。最后,接收终端发送的第二指示信息。所述第二指示信息用于指示空闲的子带。
第四方面,本申请提供了一种信号传输方法,应用于终端侧,该方法包括:接收网络设备发送的第一指示信息,所述第一指示信息用于指示网络设备在第一信道带宽的子带上为终端分配的上行资源。在进行上行传输时,根据所述第一指示信息,监听所述子带是否空闲,如果空闲,则在所述子带上传输进行上行传输。最后,向所述网络设备发送第二指示信息,用于指示所述空闲的子带。
可以理解的,实施第三方面和第四方面描述的方法,由于子带带宽比较小,因此在子带上进行LBT,更能够充分利用到空闲资源,调度粒度更小,有利于上行数据的及时传输。
第五方面,提供了一种网络设备,包括多个功能单元,用于相应的执行第一方面或第一方面可能的实施方式中的任意一种所提供的方法。
第六方面,提供了一种终端,包括多个功能单元,用于相应的执行第二方面或第二方面可能的实施方式中的任意一种所提供的方法。
第七方面,提供了一种网络设备,包括多个功能单元,用于相应的执行第三方面或第三方面可能的实施方式中的任意一种所提供的方法。
第八方面,提供了一种终端,包括多个功能单元,用于相应的执行第四方面或第四方面可能的实施方式中的任意一种所提供的方法。
第九方面,提供了一种网络设备,用于执行第一方面描述的信号传输方法。所述网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线通信设备,例如终端,发送信号,所述接收器用于接收所述另一无线通信设备,例如终端,发送的信号,所述存储器用于存储第一方面描述的信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面或第一方面可能的实施方式中的任意一种所描述的信号传输方法。
第十方面,提供了一种终端,用于执行第二方面描述的信号传输方法。所述终端可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线通信设备,例如网络设备,发送信号,所述接收器用于接收所述另一无线通信设备,例如网络设备,发送的信号,所述存储器用于存储第二方面描述的信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第二方面或第二方面可能的实施方式中的任意一种所描述的信号传输方法。
第十一方面,提供了一种网络设备,用于执行第三方面描述的信号传输方法。所述网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线通信设备,例如终端,发送信号,所述接收器用于接收所述另一无线通信设备,例如终端,发送的信号,所述存储器用于存储第三方面描述的信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第三方面或第三方面可能的实施方式中的任意一种所描述的信号传输方法。
第十二方面,提供了一种终端,用于执行第四方面描述的信号传输方法。所述终端可 包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线通信设备,例如网络设备,发送信号,所述接收器用于接收所述另一无线通信设备,例如网络设备,发送的信号,所述存储器用于存储第四方面描述的信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第四方面或第四方面可能的实施方式中的任意一种所描述的信号传输方法。
第十三方面,提供了一种通信系统,所述通信系统包括:网络设备和终端,其中:
所述网络设备用于将均匀分布在部分或全部的第一带宽上的整数个资源块作为上行资源分配给终端,然后向所述终端发送第一指示信息,并接收所述终端发送的第二指示信息。
所述终端用于接收网络设备发送的第一指示信息,然后在监听到的空闲的第二带宽上进行上行传输,最后向网络设备发送第二指示信息。
其中,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源,所述第一指示信息指示的资源包括均匀分布在部分或全部的第一带宽上的整数个资源块。所述第二指示信息用于指示所述第二带宽。
具体的,所述网络设备可以是第五方面或第九方面描述的网络设备。所述终端可以是第六方面或第十方面描述的终端。
第十四方面,提供了一种通信系统,所述通信系统包括:网络设备和终端,其中:
所述网络设备用于在第一信道带宽的子带上以均匀分布在所述子带上的整数个资源块作为基本分配单元为终端分配上行资源,然后向所述终端发送第一指示信息,最后接收终端发送的第二指示信息。
所述终端用于接收网络设备发送的第一指示信息,然后监听所述子带是否空闲,如果空闲,则在所述子带上传输进行上行传输。最后,向所述网络设备发送第二指示信息,用于指示所述空闲的子带。
其中,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源,所述第一指示信息指示的资源包括均匀分布在第一带宽的子带上的整数个资源块。所述第二指示信息用于指示空闲的子带。
具体的,所述网络设备可以是第七方面或第十一方面描述的网络设备。所述终端可以是第八方面或第十二方面描述的终端。
第十五方面,提供了一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面描述的信号传输方法。
第十六方面,提供了另一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面描述的信号传输方法。
第十七方面,提供了一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面描述的信号传输方法。
第十八方面,提供了另一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面描述的信号传输方法。
结合第十九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面描述的信号传输方法。
结合第二十方面,提供了另一种包含指令的计算机程序产品,当其在计算机上运行时, 使得计算机执行上述第二方面描述的信号传输方法。
结合第二十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面描述的信号传输方法。
结合第二十二方面,提供了另一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第四方面描述的信号传输方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请涉及的一种现有的资源交错的结构示意图;
图2是本申请涉及的一种无线通信系统的架构示意图;
图3是不同带宽下的现有资源交错的结构示意图;
图4是本申请的一个实施例提供的终端的硬件架构示意图;
图5是本申请的一个实施例提供的网络设备的硬件架构示意图;
图6是本申请提供的RB间隔固定的资源交错的结构示意图;
图7是本申请的一个实施例提供的信号传输方法的流程示意图;
图8A-8B是本申请提供的不同带宽场景下RB间隔为10的资源交错的示意图;
图9是本申请提供的在非空闲频段上设置信号发射功率为零的示意图;
图10是本申请的另一个实施例提供的信号传输方法的流程示意图;
图11是本申请提供的对RB间隔固定的interlace进行子带划分的示意图;
图12是本申请的再一个实施例提供的信号传输方法的流程示意图;
图13是本申请提供的进行子带划分后的各个子带上的资源交错的示意图;
图14是本申请的另一种信号传输方法的流程示意图;
图15是本申请的图14实施例的一个上行传输的时序示意图;
图16是本申请的一个实施例提供的无线通信系统、网络设备和终端的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
为了便于了解本申请实施,首先介绍本申请实施例涉及的无线通信系统。
参考图2,图2示出了本申请涉及的无线通信系统200。无线通信系统200可以工作在授权频段,也可以工作在非授权频段。可以理解的,非授权频段的使用可以提高无线通信系统200的系统容量。如图2所示,无线通信系统200包括:一个或多个网络设备(Base Station)201,例如NodeB、eNodeB或者WLAN接入点,一个或多个终端(Terminal)203,以及核心网215。其中:
网络设备201可用于在网络设备控制器(未示出)的控制下与终端203通信。在一些实施例中,所述网络设备控制器可以是核心网230的一部分,也可以集成到网络设备201中。
网络设备201可用于通过回程(blackhaul)接口(如S1接口)213向核心网215传输控制信息(control information)或者用户数据(user data)。
网络设备201可以通过一个或多个天线来和终端203进行无线通信。各个网络设备201均可以为各自对应的覆盖范围207提供通信覆盖。接入点对应的覆盖范围207可以被划分为多个扇区(sector),其中,一个扇区对应一部分覆盖范围(未示出)。
网络设备201与网络设备201之间也可以通过回程(blackhaul)链接211,直接地或者间接地,相互通信。这里,所述回程链接211可以是有线通信连接,也可以是无线通信连接。
在本申请的一些实施例中,网络设备201可以包括:基站收发台(Base Transceiver Station),无线收发器,一个基本服务集(Basic Service Set,BSS),一个扩展服务集(Extended Service Set,ESS),NodeB,eNodeB等等。无线通信系统200可以包括几种不同类型的网络设备201,例如宏基站(macro base station)、微基站(micro base station)等。网络设备201可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
终端203可以分布在整个无线通信系统200中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端203可以包括:移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
本申请实施例中,无线通信系统200可以是能够工作在非授权频段的LTE通信系统,例如LTE-U,也可以是能够工作在非授权频段的5G以及未来新空口等通信系统。无线通信系统200可以采用授权辅助接入(LAA)方案来处理终端在非授权频段上的接入。在LAA方案中,主小区(Primary Cell)工作在授权频段,传送关键的消息和需要服务质量保证的业务;辅小区(Secondary Cell)工作在非授权频段,用于实现数据平面性能的提升。
本申请实施例中,无线通信系统200可以支持多载波(multi-carrier)(不同频率的波形信号)操作。多载波发射器可以在多个载波上同时发射调制信号。例如,每一个通信连接205都可以承载利用不同无线技术调制的多载波信号。每一个调制信号均可以在不同的载波上发送,也可以承载控制信息(例如参考信号、控制信道等),开销信息(Overhead Information),数据等等。
另外,无线通信系统200还可以包括WiFi网络。为了实现运营商网络和WiFi网络(工作在非授权频段)之间的和谐共存,无线通信系统200可采用先听后说(Listen before Talk,LBT)机制。例如,在无线通信系统200中,一些终端203可以通过WiFi通信连接217连接WiFi接入点209来使用非授权频段资源,一些终端203也可以通过移动通信连接205连接网络设备201来使用非授权频段资源。在使用非授权频段时,任何设备必须先监听,看看该频段是否被占用,如果该频段不忙,才可以占用并传输数据。
为了满足ESTI的OCB规定,在无线通信系统200中,上行资源分配以资源交错(interlace)为一个基本单位。但是,现有的资源交错(interlace)固定由10个RB构成,这样会导致不同带宽场景下的资源交错(interlace)中的RB的位置无法对齐,无法支持灵活带宽传输。
如图3所示,20MHz带宽和10MHz带宽下的资源交错均包括10个RB。其中,20MHz带 宽下,一个资源交错(interlace)中的相邻两个资源块之间间隔9个资源块。10MHz带宽下,一个资源交错(interlace)中的相邻两个资源块之间间隔4个资源块。从图3可以看出,在20MHz带宽和10MHz带宽下,资源交错中的部分RB分别处于不同的频域位置,不能对齐。可以理解的,由于不同带宽下的资源交错对应不同的时频位置,因此,如果终端被分配了20MHz带宽下的资源交错,则终端不能利用10MHz带宽下的资源交错来传输数据。具体的,当终端通过LBT监听到的实际可接入的带宽与网络设备(如基站)调度的带宽不一致时,终端无法进行上行传输,或者终端需要等待网络设备重新进行资源分配。
参考图4,图4示出了本申请的一些实施例提供的终端300。如图4所示,终端300可包括:输入输出模块(包括音频输入输出模块318、按键输入模块316以及显示器320等)、用户接口302、一个或多个终端处理器304、发射器306、接收器308、耦合器310、天线314以及存储器312。这些部件可通过总线或者其它方式连接,图4以通过总线连接为例。其中:
通信接口301可用于终端300与其他通信设备,例如基站,进行通信。具体的,所述基站可以是图4所示的网络设备400。具体的,通信接口301可包括:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信接口、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信接口,以及长期演进(Long Term Evolution,LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,终端300还可以配置有有线的通信接口301,例如局域接入网(Local Access Network,LAN)接口。
天线314可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器310用于将天线314接收到的移动通信信号分成多路,分配给多个的接收器308。
发射器306可用于对终端处理器304输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器206可包括非授权频段发射器3061和授权频段发射器3063。其中,非授权频段发射器3061可以支持终端300在一个或多个非授权频段上发射信号,授权频段发射器3063可以支持终端300在一个或多个授权频段上发射信号。
接收器308可用于对天线314接收的移动通信信号进行接收处理。例如,接收器308可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器308可包括非授权频段接收器3081和授权频段接收器3083。其中,非授权频段接收器3081可以支持终端300接收调制在非授权频段上的信号,授权频段接收器3083可以支持终端300接收调制在授权频段上的信号。
在本申请的一些实施例中,发射器306和接收器308可看作一个无线调制解调器。在终端300中,发射器306和接收器308的数量均可以是一个或者多个。
除了图4所示的发射器306和接收器308,终端300还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(WirelessFidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端300还可以支持其他无线通信信号,例如卫星信号、短 波信号等等。不限于无线通信,终端300还可以配置有有线网络接口(如LAN接口)来支持有线通信。
所述输入输出模块可用于实现终端300和用户/外部环境之间的交互,可主要包括音频输入输出模块318、按键输入模块316以及显示器320等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口302与终端处理器304进行通信。
存储器312与终端处理器304耦合,用于存储各种软件程序和/或多组指令。具体的,存储器312可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器312可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器312还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器312还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,存储器312可用于存储本申请的一个或多个实施例提供的信号传输方法在终端300侧的实现程序。关于本申请的一个或多个实施例提供的信号传输方法的实现,请参考后续实施例。
终端处理器304可用于读取和执行计算机可读指令。具体的,终端处理器304可用于调用存储于存储器312中的程序,例如本申请的一个或多个实施例提供的信号传输方法在终端300侧的实现程序,并执行该程序包含的指令。
可以理解的,终端300可以是图2示出的无线通信系统200中的终端203,可实施为移动设备,移动台(mobilestation),移动单元(mobileunit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图4所示的终端300仅仅是本申请实施例的一种实现方式,实际应用中,终端300还可以包括更多或更少的部件,这里不作限制。
参考图5,图5示出了本申请的一些实施例提供的网络设备400。如图5所示,网络设备400可包括:通信接口403、一个或多个网络设备处理器401、发射器407、接收器409、耦合器411、天线413和存储器405。这些部件可通过总线或者其它方式连接,图5以通过总线连接为例。其中:
通信接口403可用于网络设备400与其他通信设备,例如终端设备或其他基站,进行通信。具体的,所述终端设备可以是图3所示的终端300。具体的,通信接口403可包括:全球移动通信系统(GSM)(2G)通信接口、宽带码分多址(WCDMA)(3G)通信接口,以及长期演进(LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,网络设备400还可以配置有有线的通信接口403来支持有线通信,例如一个网络设备400与其他网络设备400之间的回程链接可以是有线通信连接。
天线413可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中 的电磁波转换成传输线中的电磁能。耦合器411可用于将移动通信号分成多路,分配给多个的接收器409。
发射器407可用于对网络设备处理器401输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器407可包括非授权频段发射器4071和授权频段发射器4073。其中,非授权频段发射器4071可以支持网络设备400在一个或多个非授权频段上发射信号,授权频段发射器4073可以支持网络设备400在一个或多个授权频段上发射信号。
接收器409可用于对天线413接收的移动通信信号进行接收处理。例如,接收器409可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器409可包括非授权频段接收器4091和授权频段接收器4093。其中,非授权频段接收器4091可以支持网络设备400接收调制在非授权频段上的信号,授权频段接收器4093可以支持网络设备400接收调制在授权频段上的信号。
在本申请的一些实施例中,发射器407和接收器409可看作一个无线调制解调器。在网络设备400中,发射器407和接收器409的数量均可以是一个或者多个。
存储器405与网络设备处理器401耦合,用于存储各种软件程序和/或多组指令。具体的,存储器405可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器405可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器405还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
网络设备处理器401可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内用户设备的过区切换进行控制等。具体的,网络设备处理器401可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(BasicModule,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请实施例中,网络设备处理器401可用于读取和执行计算机可读指令。具体的,网络设备处理器401可用于调用存储于存储器405中的程序,例如本申请的一个或多个实施例提供的信号传输方法在网络设备400侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备400可以是图2示出的无线通信系统200中的基站201,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB等等。网络设备400可以实施为几种不同类型的基站,例如宏基站、微基站等。网络设备400可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
需要说明的,图5所示的网络设备400仅仅是本申请实施例的一种实现方式,实际应用中,网络设备400还可以包括更多或更少的部件,这里不作限制。
基于前述无线通信系统200、终端300以及网络设备400分别对应的实施例,在进行上行传输时,为了支持灵活带宽传输,本申请实施例提供了一种信号传输方法。
本申请的主要原理可包括:
1.在进行上行资源调度时,网络设备以RB间隔(RB spacing)固定的资源交错(interlace)为基本单位进行资源分配。这里,RB间隔是指所述资源交错中的任意2个相邻RB之间的间隔。与LTE中定义的现有的资源交错不同的是,本申请定义的资源交错的RB间隔是固定的,不随带宽的变化而变化。
例如,如图6所示,在20MHz带宽、40MHz带宽以及80MHz带宽下,每个资源交错的RB间隔N均为10。从图6可以看出,本申请新定义的资源交错有利于不同带宽之间的资源对齐,当终端通过LBT监听到的可接入带宽与网络设备调度的带宽不一致时,终端也可以进行上行传输,无需等待网络设备重新进行资源调度,可实现灵活带宽传输。
为了简化后续说明,可以先假设不同带宽下每个资源交错的RB间隔固定为N(N是正整数)。
2.由于终端通过LBT监听到的可接入带宽与网络设备进行上行资源调度时所基于的可用带宽存在不一致的可能性,因此终端还需要向网络设备上报上行传输的实际带宽信息,从而便于网络设备的正确接收。此外,在进行OCB测试时,也可以基于终端上报的带宽来判断上行传输是否满足OCB要求,使得多带宽灵活传输满足OCB要求。
本申请中,可以将网络设备进行上行资源调度所基于的可用带宽称为第一带宽,可以将终端通过LBT监听到的用于上行传输的可用带宽称为第二带宽。其中,第一带宽可以是网络设备在进行资源调度时通过LBT监听到的可用带宽。应理解的,即使终端通过LBT监听到的可用带宽可能会大于第一带宽,终端也需要按照网络设备的指示进行上行传输。也即是说,终端通过LBT监听到的用于上行传输的可用带宽(即第二带宽)只能小于或等于第一带宽。
具体的,如果第二带宽等于第一带宽,则终端可以在第二带宽上完全的按照网络设备的调度指示进行上行传输,即在网络设备下发的资源指示信息所指示的资源上进行上行传输。如果第二带宽小于第一带宽,则终端可以在资源指示信息所指示的资源中的部分资源上进行上行传输,即在资源指示信息所指示的处于第二带宽内的资源上进行上行传输。
例如,如图6所示,假设网络设备在40MHz带宽(即第一带宽)下调度给终端一个资源交错,具体包括RB0、RB10、RB20、…RB90、RB100、RB110、…RB180、RB190。当终端通过LBT监听到的可用带宽80MHz带宽时,但由于网络设备调度给终端的资源位于第一带宽40MHz带宽上,因此,终端也只能在其中空闲的40MHz带宽上进行上行传输,这时,第二带宽即该空闲的40MHz带宽。当终端通过LBT监听到了空闲的80M带宽,但由于调度给终端的资源位于第一带宽40M带宽上,终端也只能在空闲的40M第二带宽上进行上行传输(此时第二带宽等于第一带宽)。当终端通过LBT监听到的空闲的可用于上行传输的带宽是20MHz带宽(即第二带宽)时,由于调度给终端的该资源交错中只有部分资源块(即RB0、RB10、RB20、…RB90)处于20MHz带宽内,因此,终端可以在20M可用带宽上部分的按照网络设备的调度指示在该部分资源块上进行上行传输。图6示例仅仅用于解释本申请,不应构成限定。
可以理解的,当第二带宽小于第一带宽时,终端在第二带宽上进行上行传输实际所占用的带宽与第一带宽的比值可能会不满足OCB要求。这时,终端需要将第二带宽上报网络 设备,这样可以基于终端上报的带宽来判断上行传输是否满足OCB要求。这里,终端上报的第二带宽即可以用作OCB测试的声称带宽。
例如,如图6所示,假设网络设备在40MHz带宽下调度给终端一个资源交错,具体包括RB0、RB10、RB20、…RB90、RB100、RB110、…RB180、RB190。当终端通过LBT监听到的空闲的可用于上行传输的带宽是20MHz带宽时,由于终端只可以在网络设备分配的该资源交错中的部分资源块(即RB0、RB10、RB20、…RB90)上进行上行传输,因此,上行传输实际占用的带宽为16.38MHz(假设子载波间隔15kHz,一个RB占0.18MHz,91个RB占用带宽为16.38MHz)。这时,如果基于40MHz带宽(即第一带宽)来测量上行传输是否满足OCB要求,那么,最后得出上行信号的带宽占用率是:16.38MHz/40MHz≈41%,显然不满足OCB要求。并且,由于终端只可能在监听到空闲的第二带宽内进行上行传输,用第一带宽来作为判断OCB的基础,是不合理的。此时,如果基于终端上报的带宽(即20MHz的第二带宽)来测量行传输是否满足OCB要求,那么,最后得出上行信号的带宽占用率是:16.38MHz/20MHz≈82%,显然满足OCB要求。图6示例仅仅用于解释本申请,不应构成限定。
不限于图6示出的20MHz带宽、40MHz带宽以及80MHz带宽等各种带宽场景,本申请还适用其他带宽场景,例如60MHz带宽或100MHz带宽等。而且,各种带宽场景各自对应的RB数量、资源交错的RB间隔等不限于图6所示,具体可参考未来通信技术中的规定。
参考图7,图7示出了本申请的一个实施例提供的信号传输方法。在图7实施例中,网络设备在第一带宽上进行全带宽级别的宽带资源调度,且资源调度所基于的资源交错的RB间隔是固定的,不随第一带宽的变化而变化。下面展开描述:
S103,网络设备接收终端发送的调度请求(Scheduling Request,SR)。所述调度请求用于请求网络设备分配上行传输资源。
可参考图7中的步骤S101,终端可以周期性的向网络设备发送调度请求,例如终端每隔一个传输时间间隔(Transmission Time Interval,TTI)向网络设备发送一次所述调度请求。或者,终端也可以在事件驱动下向网络设备发送所述调度请求。例如,当有上行数据需要传输时,终端会向网络设备发送所述调度请求。这里,上行数据的到来即驱动终端发送所述调度请求的事件。关于终端发送所述调度请求的触发机制,本申请实施例不作限制。
S105-S107,响应所述调度请求,网络设备在进行资源调度前,可以先进行LBT,确定空闲可用的非授权频段所对应的第一带宽。然后,在进行资源分配时,以RB间隔固定为N的资源交错为基本单位进行资源分配。具体的,网络设备分配给终端的上行资源可包括一个或多个所述资源交错。这里,RB间隔固定为N的资源交错均匀分布在第一带宽的全带宽上,其中任意2个RB之间的间隔固定为N。
举例说明,假设一个RB占12个子载波、每个子载波占15kHz。应理解的,为了避免码间干扰,第一带宽可包括保护带宽,假设保护带宽在第一带宽中的占比为10%,那么,实际用于传输信号的传输带宽在第一带宽中的占比为90%。如图6所示,如果各种带宽场景下的资源交错的RB间隔N=10,那么:
当第一带宽是20MHz时,传输带宽(实际为18MHz)对应100个RB,20MHz的第一带 宽下的资源交错由10个RB构成,这时资源交错的具体结构可如图6中的(A)所示。
当第一带宽是40MHz时,传输带宽(实际为36MHz)对应200个RB,40MHz的第一带宽下的资源交错由20个RB构成,这时资源交错的具体结构可如图6中的(B)所示。
当第一带宽是80MHz时,传输带宽(实际为72MHz)对应400个RB,80MHz的第一带宽下的资源交错由40个RB构成,这时资源交错的具体结构可如图6中的(C)所示。
由此可以看出,由于所述资源交错的RB间隔N是固定值,不随带宽的变化而变化,因此,带宽越大,构成所述资源交错的RB数量也越多。
S109,网络设备向终端返回资源指示信息,该资源指示信息用于指示网络设备在第一带宽上为终端分配的上行资源。本申请中,可以将该资源指示信息称为第一指示信息。
(1)上述第一指示信息的信令实现。
在本申请的一个实施例中,网络设备可以将上述资源指示信息携带在下行控制信息(Downlink Control Information,DCI)中。具体的,可以在DCI中新增一个字段,该字段用于指示分配给终端的资源交错,也可以采用现有DCI格式中的用于资源指示的相关字段,如RB资源分配(Resource block assignment)字段等,指示分配给终端的资源块。
例如,网络设备可以将上述资源指示信息携带在返回给终端的上行调度授权(UL grant)中。这里,UL grant即DCI的一种,采用DCI format0/0A/0B/4/4A/4B。
可选的,网络设备还可以在针对所述调度请求的其他应答消息中携带上述资源指示信息,或者网络设备还可以将上述资源指示信息独立封装成一个消息,返回该消息给终端。关于网络设备如何发送上述资源指示信息的方式,本申请实施例不作限制。
(2)上述资源指示信息的内容实现。
第一种实现方式,上述资源指示信息可以包括:第一带宽的指示信息,以及网络设备在第一带宽上分配给终端的一个或多个资源交错的索引。
可以理解的,不同带宽下的资源交错虽然可以对齐,但不同带宽下的资源交错所包括的RB数量却不一致。因此,在指示出分配给终端的资源交错的索引时,还需要指示出是哪一种带宽下的资源交错。这样,终端才可以根据第一带宽的指示信息获知所述资源交错的具体结构(即包含的RB数量),然后根据资源交错的索引便可获知网络设备实际分配的RB的位置。
例如,如图8A所示,假设网络设备在20MHz的第一带宽上为终端分配的资源交错包括interlace0、interlace1。那么,上述资源指示信息可以指示出20MHz的第一带宽,以及资源交错interlace0、interlace1的索引0、1。这样,终端就可以根据20MHz获知interlace0、interlace1为图8A所示的结构,即包含10个RB。然后,根据索引0、1便可以获知网络设备实际分配的RB包括:{RB0、RB10、RB20、…RB90}(即interlace0),以及{RB1、RB11、RB21、…RB91}(即interlace1)。
又例如,如图8B所示,假设网络设备在40MHz的第一带宽上为终端分配的资源交错包括interlace0、interlace1。那么,上述资源指示信息可以指示出40MHz的第一带宽,以及资源交错interlace0、interlace1的索引0、1。这样,终端就可以根据40MHz获知interlace0、interlace1为图8B所示的结构,即包含20个RB。然后,根据索引0、1便可以获知网络设备实际分配的RB包括:{RB0、RB10、RB20、…RB90、RB100、RB110、…RB180、 RB190}(即interlace0),以及{RB1、RB11、RB21、…RB91、RB101、RB111、…RB181、RB191}(即interlace1)。
上述示例仅仅用于解释本申请实施例,不应构成限定。
第二种实现方式,上述资源指示信息可以包括:网络设备在第一带宽上分配给终端的一个或多个资源交错分别包括的起始RB的索引,以及RB数量。这样,终端就可以根据所述一个或多个资源交错分别包括的起始RB的索引,以及RB数量获知网络设备实际分配的RB的位置。
例如,如图8A所示,假设网络设备在20MHz的第一带宽上为终端分配的资源交错包括interlace0、interlace1。那么,上述资源指示信息可以指示出interlace0、interlace1中的起始RB分别为RB0、RB1,以及interlace0、interlace1包括的RB数量均为10。这样,终端就可以根据interlace0、interlace1包括的RB数量(即10个RB)获知interlace0、interlace1为图8A所示的结构,即网络设备是在20MHz的带宽上为终端分配的资源。然后,根据interlace0、interlace1中的起始RB的索引0、1便可以获知网络设备实际分配的RB包括:{RB0、RB10、RB20、…RB90}(即interlace0),以及{RB1、RB11、RB21、…RB91}(即interlace1)。
又例如,如图8B所示,假设网络设备在40MHz的第一带宽上为终端分配的资源交错包括interlace0、interlace1。那么,上述资源指示信息可以指示出interlace0、interlace1中的起始RB分别为RB0、RB1,以及interlace0、interlace1包括的RB数量均为20。这样,终端就可以根据interlace0、interlace1包括的RB数量(即20个RB)获知interlace0、interlace1为图8B所示的结构,即网络设备是在40MHz的带宽上为终端分配的资源。然后,根据起始RB的索引0、1便可以获知网络设备实际分配的RB包括:{RB0、RB10、RB20、…RB90、RB100、RB110、…RB180、RB190}(即interlace0),以及{RB1、RB11、RB21、…RB91、RB101、RB111、…RB181、RB191}(即interlace1)。
上述示例仅仅用于解释本申请实施例,不应构成限定。
第三种实现方式,上述资源指示信息可以包括:网络设备在第一带宽上分配给终端的一个或多个资源交错分别包括的起始RB的索引,以及网络设备为终端分配的RB的总数量。这里,起始RB的数量即网络设备分配的资源交错的个数。这样,终端利用上述RB的总数量除以起始RB的数量便可以得出单个资源交错中的RB的数量,即可以获知资源交错的结构。
例如,如图8A所示,假设网络设备在20MHz的第一带宽上分配给终端的资源交错包括interlace0、interlace1。那么,上述资源指示信息可以指示出interlace0、interlace1中的起始RB分别为RB0、RB1,以及网络设备为终端分配的RB的总数量为20。这样,终端就可以根据总数量20除以起始RB的个数2(RB0、RB1)得出单个资源交错包括10个RB,即资源交错为图8A所示的结构。然后,根据起始RB的索引0、1便可以获知网络设备实际分配的RB包括:{RB0、RB10、RB20、…RB90}(即interlace0),以及{RB1、RB11、RB21、…RB91}(即interlace1)。
又例如,如图8B所示,假设网络设备在40MHz的第一带宽上为终端分配的资源交错包括interlace0、interlace1。那么,上述资源指示信息可以指示出interlace0、interlace1 中的起始RB分别为RB0、RB1,以及网络设备为终端分配的RB的总数量为40。终端就可以根据总数量40除以起始RB的个数2(RB0、RB1)得出单个资源交错包括20个RB,即资源交错为图8B所示的结构。然后,根据interlace0、interlace1中的起始RB的索引0、1便可以获知网络设备实际分配的RB包括:{RB0、RB10、RB20、…RB90、RB100、RB110、…RB180、RB190}(即interlace0),以及{RB1、RB11、RB21、…RB91、RB101、RB111、…RB181、RB191}(即interlace1)。
上述示例仅仅用于解释本申请实施例,不应构成限定。
第四种实现方式,上述资源指示信息可包括:第一带宽的指示信息、网络设备为终端分配的资源交错的个数,以及网络设备为终端分配的起始RB的索引。
具体的,网络设备分配给终端的RB集合可表示为:RB START+l+i·N,其中,RB START表示网络设备为终端分配的起始RB的索引;l=0,1,...L-1,L表示网络设备分配给终端的资源交错的个数; N表示资源交错的RB间隔;i=0,1,...M-1,
Figure PCTCN2018090517-appb-000001
Figure PCTCN2018090517-appb-000002
表示上行传输带宽对应的RB数量。由于资源交错的RB间隔N是已知量,因此,在获知起始RB的索引RB START、资源交错的个数L、第一带宽(可以推导出
Figure PCTCN2018090517-appb-000003
)的前提下,可以确定出网络设备分配给终端的RB集合。
假设一个RB占12个子载波、每个子载波占15kHz。那么,在第一带宽为20MHz,传输带宽的占比为90%的前提下,实际用于传输上行信号的上行传输带宽对应100个RB,即
Figure PCTCN2018090517-appb-000004
示例一,如图8A所示,如果网络设备从RB0开始(即RB START=0)为终端分配了1个资源交错(即L=1),假设资源交错的RB间隔为10(即N=10)。那么,分配给终端的RB集合为:
0+{(1-1)}+{0,1,…,9}*10={0,10,20,30…,90}
上面这个RB集合即图8A中的资源交错interlace0。
示例二,如图8A所示,如果网络设备从RB0开始(即RB START=0)为终端分配了2个资源交错(即L=2),假设资源交错的RB间隔为10(即N=10)。那么,分配给终端的RB集合为:
0+{0,(2-1)}+{0,1,…,9}*10={0,10,20,30…,90}&{1,11,21,31…,91}
上面这2个RB集合即图8A中的资源交错interlace0、interlace1。
上述示例仅仅用于解释本申请实施例,不应构成限定。
可选的,可以通过资源指示值(Resource Indication Value,RIV)来指示网络设备分配给终端的资源交错。具体的,可以参考3GPP36.213中关于RIV的现有计算算法,当
Figure PCTCN2018090517-appb-000005
时,RIV=M(L-1)+RB START,否则RIV=M(M-L+1)+(M-1-RB START)。
不限于上述几种实现方式,网络设备和终端之间还可以约定更多的资源指示方式。例如,上述资源指示信息可以包括网络设备实际分配给终端的RB的索引。如图8A所示,假设网络设备在20MHz的第一带宽上为终端分配的资源交错包括interlace0。那么,上述资源指示信息可以指示出interlace0包括的RB0、RB10、RB20、…RB90这10个资源块的索 引,例如0、10、20、…90。示例仅仅用于解释本申请,不应构成限定。
S111-S127,在接收到上述资源指示信息之后,终端需要在上行传输前先进行LBT,侦听空闲可用的非授权频段,确定空闲的可用于上行传输的第二带宽,具体可参考S111。应理解的,若LBT没有检测到空闲的频谱资源,则终端不能进行上行传输。然后,终端在第二带宽上完全的或者部分的按照上述资源指示信息进行上行传输,具体可参考S113-S123。其中,在信号传输时可以进行信号处理,例如将待传输的上行数据调制在上述资源指示信息指示的全部或部分资源上,以及对传输信号进行频率复用,资源共享的处理等等。
应理解的,即使终端通过LBT监听到的空闲带宽可能会大于第一带宽,终端也只能在网络设备调度的第一带宽上进行传输,即终端需要按照网络设备的指示进行上行传输。也即是说,终端通过LBT监听到的用于上行传输的可用带宽(即第二带宽)只能小于或等于第一带宽。
如S113-S123所示,如果第二带宽等于第一带宽,则终端可以在第二带宽上按照上述资源指示信息进行上行传输,即在上述资源指示信息所指示的资源上进行上行传输。如果第二带宽小于第一带宽,则可以在资源指示信息所指示的资源中的部分资源上进行上行传输,即在资源指示信息所指示的处于第二带宽内的资源上进行上行传输。相关示例和说明可参考发明原理部分,这里不再赘述。
在一些实施方式中,如果第二带宽小于第一带宽,则终端仍然可以在上述资源指示信息指示的资源上传输所述上行数据,但是终端在上述资源指示信息指示的处于所述第二带宽内的资源上进行上行传输的发射功率不为0,在上述资源指示信息指示的所述第二带宽外的资源上进行上行传输的发射功率为0。这样,可保证上行传输只在空闲频段上有信号能量,而在非空闲频段上的信号能量为0,不干扰非空闲频段上传输的其他信号。
举例说明,如图9所示,第一带宽为40MHz,终端通过LBT确定的空闲的可用于上行传输的第二带宽为20MHz。终端仍然选择在40MHz的第一带宽上传输上行数据,但是上行信号的发射功率只在空闲的第二带宽上不为0,在非空闲的频段上为0。示例仅仅用于解释本申请,不应构成限定。
另外,终端还需要向网络设备发送指示信息,该指示信息用于指示上行传输实际占用的带宽,便于网络设备正确接收上行数据。本申请中,可以将该指示信息称为第二指示信息。在进行OCB检测时,也可以根据该指示信息中终端上报的带宽来判断上行传输是否满足OCB要求。
在一些实施方式中,终端可以在上行传输中携带所述第二指示信息,具体可以在上行传输的第一个符号中发送所述第二指示信息.可选的,终端可以将所述第二指示信息携带在上行传输实际占用的每一个子载波上。不限于这种实现方式,终端也可以在该上行传输关联的上行控制信号中携带所述第二指示信息。在其他的实施方式中,终端还可以将所述第二指示信息独立封装成一个消息,发送该消息给网络设备。
具体的,终端可以在非授权频段上发送所述第二指示信息。例如,终端可以在该上行传输中携带所述第二指示信息或者在该上行传输关联的上行控制信号中携带所述第二指示信息。又例如,终端可以重新在非授权频段上进行LBT,在重新监听到的空闲带宽上单独发送所述第二指示信息。示例仅仅是本申请提供的一些实施例,实际应用中还可以不同, 不应构成限定。具体的,终端也可以在授权频段上发送所述第二指示信息。
关于所述第二指示信息的信令实现(即终端如何发送所述第二指示信息),本申请实施例不作限制。
具体的,所述第二指示信息可包括第二带宽的大小,或者上行传输实际占用的载波或子载波的索引。所述第二指示信息也可以包括上行传输实际占用的载波或子载波范围,即频域跨度。不限于这两种方式,终端还可以通过其他方式上报上行传输实际占用的带宽,例如上行传输实际占用的RB的索引。示例仅仅用于解释本申请,不应构成限定。
实施图7实施例,网络设备在第一带宽上进行全带宽级别的宽带资源调度,且资源调度所基于的资源交错的RB间隔是固定的,不随第一带宽的变化而变化。这样可实现在满足ESTI的OCB要求的基础上,提高资源调度的灵活性。
除了图7实施例提供的全带宽级别的宽带资源调度,网络设备还可以进行子带(subband)级别的子带资源调度。本申请中,子带(subband)是指一个或多个载波,或者一个载波上的部分子载波或者部分资源块等。未来通信技术中可能不再存在子带这个概念,但是针对子带实质所表示的部分子载波或者部分资源块等概念,本申请同样适用。下面详细介绍子带级别的资源调度。
参考图10,图10示出了本申请的另一个实施例提供的信号传输方法。在图10实施例中,网络设备在第一带宽上进行子带(sub-band)级别的子带资源调度,且资源调度以子带对应的interlace片段为基本单元。这里,interlace是RB间隔固定为N的均匀分布在第一带宽的全带宽上的interlace,即第一带宽对应的interlace。下面展开描述:
S203,网络设备接收终端发送的调度请求。所述调度请求用于请求网络设备分配上行传输资源。具体的,可参考图7实施例中的S103,这里不再赘述。
S205,响应所述调度请求,网络设备在进行资源调度前,可以先进行LBT,确定空闲可用的非授权频段所对应的第一带宽。
S207,与图7实施例不同的是,在进行资源分配时,不是以第一带宽对应的interlace为基本单位进行资源分配。而是,将第一带宽对应的interlace划分成多个子带各自对应的interlace片段,然后以各个子带对应的interlace片段为基本单位进行资源分配。
举例说明,如图11所示,假设第一带宽是40MHz,第一带宽对应的interlace是RB间隔为10的interlace,如interlace0、interlace1。网络设备将第一带宽对应的interlace划分成2个子带(均为20MHz)各自对应的interlace片段。具体的,对于interlace0来说,子带0对应的interlace片段包括:RB0、RB10、RB20、…RB90,子带1对应的interlace片段包括:RB100、RB110、…RB180、RB190。对于interlace1来说,子带0对应的interlace片段包括:RB1、RB11、RB21、…RB91,子带1对应的interlace片段包括:RB101、RB111、…RB181、RB191。
示例仅仅用于解释本申请,不应构成限定。不限于图11所示,在进行子带划分时,子带带宽还可以是其他值,各个子带的带宽也可以不一致。本申请对子带划分的具体实现不作限制,保证子带对应的interlace片段在频域上的跨度与该子带带宽的比值满足OCB要求即可。
具体的,网络设备分配给终端的上行资源可包括:一个或多个interlace片段。例如,在图11中,网络设备分配给终端的上行资源可包括:子带0对应的interlace0的片段、子带0对应的interlace1的片段。示例仅仅用于解释本申请,不应构成限定。
针对一个interlace来说,interlace片段是指该interlace中的部分资源块,这部分资源块在该interlace中是连续相邻的。例如,在图11中,对于interlace0来说,子带0对应的interlace片段包括:RB0、RB10、RB20、…RB90。RB0、RB10、RB20、…RB90是interlace0中的部分资源块,而且分别是interlace0中的第1个、第2个、第3个、…第10个RB,在interlace0中是连续相邻的。示例仅仅用于解释本申请,不应构成限定。
S209,网络设备向终端返回资源指示信息,该资源指示信息用于指示网络设备在第一带宽的子带上为终端分配的上行资源。本申请中,可以将该资源指示信息称为第一指示信息。
具体的,关于该资源指示信息的信令实现,可参考图7实施例中的S109,这里不再赘述。
下面说明上述资源指示信息的内容实现。
第一种实现方式,上述资源指示信息可包括:网络设备分配给终端的interlace片段对应的子带的索引,以及该interlace片段对应的interlace的索引。
例如,如图11所示,假设网络设备分配给终端的interlace片段包括:子带0对应的interlace1的片段(可简称片段1)、子带1对应的interlace0的片段(可简称片段2)。那么,上述资源指示信息可以包括:片段1对应的子带的索引(即子带0的索引)和interlace的索引(即interlace1的索引),片段2对应的子带的索引(即子带1的索引)和interlace的索引(即interlace0的索引)。这样,终端根据子带0的索引和interlace1的索引便可以知道网络设备实际分配的资源包括片段1。同样的,终端根据子带1的索引和interlace0的索引便可以知道网络设备实际分配的资源包括片段2。示例仅仅用于解释本申请,不应构成限定。
第二种实现方式,上述资源指示信息可包括:网络设备分配给终端的interlace片段对应的子带的索引,以及该interlace片段对应的interlace中的起始RB的索引。
可以理解的,起始RB的索引可用于指示出该起始RB属于哪一个(些)interlace。再结合interlace片段对应的子带的索引,终端便可以知道网络设备实际分配的interlace片段是哪些。
例如,如图11所示,假设网络设备分配给终端的interlace片段包括:(interlace1在子带0上的片段)子带0对应的interlace1的片段(可简称片段1)、子带1对应的interlace0的片段(可简称片段2)。那么,上述资源指示信息可以包括:片段1对应的子带的索引(即子带0的索引)和片段1对应的interlace中的起始RB的索引(即RB1的索引),片段2对应的子带的索引(即子带1的索引)和片段2对应的interlace中的起始RB的索引(即RB0的索引)。这样,终端根据RB1的索引便可以知道网络设备分配给终端的interlace片段来自interlace1,再结合子带0的索引,终端便可以确定网络设备分配给终端的interlace片段是interlace1在子带0上的片段,即片段1。同样的,终端根据RB0的索引和子带1的索引便可以知道网络设备实际分配的资源包括片段2。示例仅仅用于 解释本申请,不应构成限定。
第三种实现方式,上述资源指示信息可包括:网络设备分配给终端的interlace片段对应的interlace的索引,以及该interlace片段在该interlace中的片段索引。
具体的,针对一个interlace,可以对各个子带对应的该interlace的片段进行索引编号。例如,如图11所示,interlace0被划分成2个子带各自对应interlace片段,这2个子带各自对应的interlace片段可以编号如下:片段0(即RB0、RB10、RB20、…RB90)、片段1(即RB100、RB110、…RB180、RB190)。这样,如果上述资源指示信息包括interlace0的索引以及片段0的索引,那么,终端便可以知道网络设备实际分配的interlace片段是interlace0中的片段0。
第四种实现方式,上述资源指示信息可包括:网络设备分配给终端的interlace片段对应的子带带宽的指示信息W subband、该interlace片段关联的interlace的个数L,以及网络设备为终端分配的起始RB的索引RB START。这种实现方式与图7实施例中关于上述资源指示信息的第四种实现方式类似,相当于将子带看成图7实施例中的第一带宽。
具体的,网络设备分配给终端的RB集合可表示为:RB START+l+i·N,其中,RB START表示网络设备在子带上为终端分配的起始RB的索引;l=0,1,...L-1,L表示网络设备在子带上分配给终端的interlace片段关联的interlace的个数;N表示资源交错的RB间隔;i=0,1,...M-1,
Figure PCTCN2018090517-appb-000006
Figure PCTCN2018090517-appb-000007
表示子带对应的RB数量。由于资源交错的RB间隔N是已知量,因此,在获知RB START、L、W subband(可以推导出
Figure PCTCN2018090517-appb-000008
)的前提下,就可以确定出网络设备分配给终端的RB集合。
如图11所示,假设资源交错的RB间隔为10(即N=10),40MHz的第一带宽被划分成2个20MHz的子带,即
Figure PCTCN2018090517-appb-000009
示例一,如果网络设备从RB0开始(即RB START=0)为终端分配了子带0对应的interlace0的片段(即L=1)。那么,分配给终端的RB集合为:
0+{(1-1)}+{0,1,…,9}*10={0,10,20,30…,90}
上面这个RB集合即图11中子带0对应的interlace0的片段。
示例二,如果网络设备从RB0开始(即RB START=0)为终端分配了子带0对应的interlace0的片段和子带0对应的interlace1的片段(即L=2)。那么,分配给终端的RB集合为:
0+{0,(2-1)}+{0,1,…,9}*10={0,10,20,30…,90}&{1,11,21,31…,91}
上面这2个RB集合分别是图11中子带0对应的interlace0的片段、子带0对应的interlace1的片段。上述示例仅仅用于解释本申请实施例,不应构成限定。
可选的,在单个子带上,可以通过资源指示值(RIV)来指示网络设备在该子带上分配给终端的资源块。具体的,可以参考3GPP36.213中关于RIV的现有计算算法,当
Figure PCTCN2018090517-appb-000010
时,RIV=M(L-1)+RB START,否则RIV=M(M-L+1)+(M-1-RB START)。
不限于上述几种实现方式,网络设备和终端之间还可以约定更多的资源指示方式。例如,上述资源指示信息可以包括网络设备实际分配给终端的RB的索引。示例仅仅用于解释 本申请,不应构成限定。
S211-S213,在接收到上述资源指示信息之后,终端可以在子带上进行LBT,确定空闲可用的子带。这里,空闲可用的子带相当于前述第二带宽。然后,终端在空闲可用的子带上部分的按照上述资源指示信息进行上行传输,具体可以在上述资源指示信息所指示的处于该子带内的资源上进行上行传输。应理解的,若LBT没有检测到空闲的子带,则终端不能进行上行传输。
具体的,终端可以根据上述资源指示信息获知网络设备分配给终端的一个或多个interlace片段,以及该一个或多个interlace片段各自对应的子带。具体的,终端可以只在该一个或多个interlace片段各自对应的子带上进行LBT,然后在监听到的空闲可用的子带进行上行传输。
举例说明,如图11所示,假设网络设备在40MHz的第一带宽上分配给终端的interlace片段包括:子带0对应的interlace0的片段、子带1对应的interlace1的片段。那么,终端可以在子带0、子带1上进行LBT。具体的,当监听到子带0空闲可用、子带1非空闲不可用时,终端可以在子带0上进行上行传输,具体是在子带0对应的interlace0的片段上进行上行传输。示例仅仅用于解释本申请,不应构成限定。
应理解的,相比全带宽(如图11中的40MHz的第一带宽),子带带宽比较小,在子带上LBT,更能够充分利用到空闲资源,调度粒度更小,有利于上行数据的及时传输。
另外,在空闲可用的子带上进行上行传输时,终端还需要向网络设备发送指示信息,该指示信息用于指示上行传输实际占用的子带,便于网络设备正确接收上行数据。本申请中,可以将该指示信息称为第二指示信息。在进行OCB检测时,也可以根据该指示信息中终端上报的子带来判断上行传输是否满足OCB要求。
具体的,所述第二指示信息可以包括上行传输实际占用的子带的索引。所述第二指示信息也可以包括上行传输实际占用的子载波的索引。不限于这些方式,实际应用中还可以不同,例如,所述第二指示信息可以包括上行传输实际占用的子载波的范围。示例仅仅用于解释本申请,不应构成限定。
具体的,关于所述第二指示信息的信令实现,可参考图7实施例中的相关内容,这里不再赘述。
实施图10实施例,网络设备在第一带宽上进行子带级别的子带资源调度,且以各个子带对应的interlace片段为基本单位进行资源分配。其中,采用的interlace是RB间隔固定为N的均匀分布在第一带宽的全带宽上的interlace。这样,在多带宽场景下可实现灵活传输的同时,还可以增加LBT监听成功的机率,提高上行传输的效率。
参考图12,图12示出了本申请的再一个实施例提供的信号传输方法。在图12实施例中,网络设备在第一带宽上进行子带级别的子带资源调度,并在子带上选择合适的interlace结构,然后以子带上的interlace为基本单元进行资源调度。与图7或图10实施例不同的是,图12实施例采用的interlace是子带上的interlace,该interlace既可以是均匀分布在子带上的数量固定的interlace,也可以是均匀分布在子带上的RB间隔固定的interlace。下面展开描述:
S303,网络设备接收终端发送的调度请求。所述调度请求用于请求网络设备分配上行传输资源。具体的,可参考图7实施例中的S103,这里不再赘述。
S305,响应所述调度请求,网络设备在进行资源调度前,可以先进行LBT,确定空闲可用的非授权频段所对应的第一带宽。
S307,将第一带宽对应的interlace划分成多个子带,并确定各个子带对应的interlace结构,然后以各个子带上的interlace为基本单位进行资源分配。
例如,如图13所示,第一带宽是80MHz,第一带宽被划分成4个子带,每一个子带对应的interlace均是RB间隔N固定等于5的interlace。示例仅仅用于解释本申请,不应构成限定。
不限于图13所示,在进行子带划分时,子带带宽还可以是其他值,各个子带的带宽也可以不一致。子带对应的interlace既可以是均匀分布在该子带上的数量固定的interlace,也可以是均匀分布在该子带上的RB间隔固定的interlace。各个子带对应的interlace结构可以相同,也可以不同。本申请对子带划分,以及子带采用的interlace的具体实现不作限制,保证子带对应的interlace在频域上的跨度与该子带带宽的比值满足OCB要求即可。
具体的,网络设备分配给终端的上行资源可包括:一个或多个interlace。这一个或多个interlace可以是同一个子带上的interlace,也可以是不同子带上的interlace。
例如,如图13所示,网络设备分配给终端的上行资源可包括:子带0上的interlace0、interlace1,即同一子带上的多个interlace。网络设备分配给终端的上行资源还可包括:子带0上的interlace0、子带1上的interlace0,即不同子带上的多个interlace。示例仅仅用于解释本申请,不应构成限定。
S309,网络设备向终端返回资源指示信息,该资源指示信息用于指示网络设备在第一带宽的子带上为终端分配的上行资源。本申请中,可以将该资源指示信息称为第一指示信息。
具体的,关于该资源指示信息的信令实现,可参考图7实施例中的S109,这里不再赘述。
下面说明上述资源指示信息的内容实现。
第一种实现方式,上述资源指示信息可包括:网络设备分配给终端的interlace对应的子带的索引,以及该interlace的索引。
例如,如图13所示,假设网络设备分配给终端的interlace包括:子带0对应的interlace1、子带1对应的interlace0。那么,上述资源指示信息可以包括:子带0的索引以及子带0上的interlace0的索引,子带1的索引以及子带1上的interlace0的索引。这样,终端根据子带0的索引和子带0上的interlace0的索引便可以知道网络设备实际分配的资源包括:{RB0,RB5,RB10…,RB90,RB95}。同样的,终端根据子带1的索引和子带1上的interlace0的索引便可以知道网络设备实际分配的资源包括:{RB100,RB105,RB110…,RB190,RB195}。示例仅仅用于解释本申请,不应构成限定。
第二种实现方式,上述资源指示信息可包括:网络设备分配给终端的interlace对应的子带的索引,该interlace中的起始RB的索引。
可以理解的,在已知的子带(可根据子带的索引推导出)上,起始RB的索引可用于指示出该起始RB属于该已知的子带上的哪一个(些)interlace。
例如,如图13所示,假设网络设备分配给终端的interlace包括:子带0对应的interlace1、子带1对应的interlace0。那么,上述资源指示信息可以包括:子带0的索引以及子带0上的interlace0中的起始RB的索引(即RB0的索引),子带1的索引以及子带1上的interlace0中的起始RB的索引(即RB100的索引)。这样,终端根据子带0的索引和RB0的索引便可以知道网络设备实际分配的资源包括子带0上的interlace0。同样的,终端根据子带1的索引和子带1上的interlace0的索引便可以知道网络设备实际分配的资源包括子带1上的interlace0。示例仅仅用于解释本申请,不应构成限定。
第三种实现方式,上述资源指示信息可包括:网络设备分配给终端的interlace对应的子带带宽的指示信息W subband、网络设备在子带上分配给终端的interlace的个数L,以及网络设备在子带上为终端分配的起始RB的索引RB START
具体的,网络设备分配给终端的RB集合可表示为:RB START+l+i·N,其中,RB START表示网络设备在子带上为终端分配的起始RB的索引;l=0,1,...L-1,L表示网络设备在子带上分配给终端的interlace的个数;N表示子带上的资源交错的RB间隔;i=0,1,...M-1,
Figure PCTCN2018090517-appb-000011
Figure PCTCN2018090517-appb-000012
表示子带对应的RB数量。
这种实现方式与图7实施例中关于上述资源指示信息的第四种实现方式类似,相当于将子带看成图7实施例中的第一带宽。具体可参考前述实施例中的相关内容,这里不再赘述。
不限于上述几种实现方式,网络设备和终端之间还可以约定更多的资源指示方式。例如,上述资源指示信息可以包括网络设备实际分配给终端的RB的索引。示例仅仅用于解释本申请,不应构成限定。
S311-S313,在接收到上述资源指示信息之后,终端可以在子带上进行LBT,确定空闲可用的子带。这里,空闲可用的子带相当于前述第二带宽。然后,终端在空闲可用的子带上部分的按照上述资源指示信息进行上行传输,具体可以在上述资源指示信息所指示的处于该子带内的资源上进行上行传输。应理解的,若LBT没有检测到空闲的子带,则终端不能进行上行传输。
具体的,终端可以根据上述资源指示信息获知网络设备分配给终端的一个或多个interlace,以及该一个或多个interlace各自对应的子带。具体的,终端可以只在该一个或多个interlace对应的子带上进行LBT,然后在监听到的空闲可用的子带上进行上行传输。
应理解的,相比全带宽(如图13中的80MHz的第一带宽),子带带宽比较小,在子带上LBT,更能够充分利用到空闲资源,有利于上行数据的及时传输。
另外,在空闲可用的子带上进行上行传输时,终端还需要向网络设备发送指示信息,该指示信息用于指示上行传输实际占用的子带,便于网络设备正确接收上行数据。本申请中,可以将该指示信息称为第二指示信息。在进行OCB检测时,也可以根据该指示信息中终端上报的子带来判断上行传输是否满足OCB要求。
具体的,所述第二指示信息可以包括上行传输实际占用的子带的索引。所述第二指示 信息也可以包括上行传输实际占用的子载波的索引。不限于这些方式,实际应用中还可以不同,例如,所述第二指示信息可以包括上行传输实际占用的子载波的范围。示例仅仅用于解释本申请,不应构成限定。
具体的,关于所述第二指示信息的信令实现,可参考图7实施例中的相关内容,这里不再赘述。
实施图12实施例,网络设备在第一带宽上进行子带级别的子带资源调度,并在子带上选择合适的interlace结构,然后以子带上的interlace为基本单元进行资源调度。这样,在多带宽场景下可实现灵活传输的同时,还可以增加LBT监听成功的机率,提高上行传输的效率。
本申请中,网络设备可采用RB间隔固定的interlace进行资源分配。具体的,在进行资源分配时,网络设备既可以在第一带宽上进行全带宽级别的宽带资源调度,也可以在第一带宽的子带上进行子带级别的子带资源调度。
本申请中,全带宽级别的宽带资源调度方式可称为第一种资源分配方式,子带级别的子带资源调度方式可称为第二种资源分配方式。
对于全带宽级别的资源调度,网络设备的资源指示方式(即前述资源指示信息)的具体实现可参见图7实施例。对于子带级别的资源调度,网络设备的资源指示方式(即前述资源指示信息)的具体实现可参见图10实施例。
另外,网络设备还需要将用于区分这两种调度方式的标志位携带在资源指示信息中,用于指示所述网络设备所采用的资源分配方式。
具体的,在接收到资源指示信息之后,终端可以先识别上述标志位。
如果上述标志位所指示的资源分配方式是宽带资源调度,则终端在网络设备指示的带宽(即上述第一带宽)上进行LBT。当监听到的空闲的用于上行传输的带宽(即第二带宽)等于第一带宽时,终端可以在上述资源指示信息指示的全部资源上进行上行传输。当监听到的空闲的用于上行传输的(即第二带宽)小于第一带宽时,终端可以在上述资源指示信息指示的部分资源上进行上行传输。
如果上述标志位所指示的资源分配方式是子带资源调度,则终端在上述资源指示信息所指示的子带(即上述第一带宽的子带)上进行LBT。如果子带空闲时,则终端可以在该子带内的调度资源上进行上行传输,否则,终端不能在该子带上进行上行传输。这里,该子带内的调度资源是指上述资源指示信息所指示的位于该子带内的资源。
可选的,全带宽级别的宽带资源调度方式还可以转换成子带级别的子带资源调度方式。具体的,在全带宽级别的宽带资源调度方式下,如果终端进行LBT没有监听到空闲带宽,则网络设备可以采取子带资源调度方式。这样,终端可以重新进行子带LBT,可提供LBT的成功机率,及时进行上行传输。
下面详细说明在多种系统带宽和/或多种子载波间隔的场景下,如何设计本申请新定义的RB间隔固定的资源交错(interlace)。
首先,解释表1至表26涉及的术语。
具体的,在表格中,bandwidth percent表示传输带宽在系统带宽中的占比。这里,系统带宽包括传输带宽和保护带宽。RB number表示传输带宽对应的RB个数(N RB)。interlace structure表示构成每个interlace的RB个数
Figure PCTCN2018090517-appb-000013
RB spacing表示每个interlace的RB间隔,即每个interlace中相邻2个RB之间的间隔
Figure PCTCN2018090517-appb-000014
Figure PCTCN2018090517-appb-000015
其次,对于已知的系统带宽BW而言,不同的传输带宽场景下的interlace结构需满足下述两个条件:
Figure PCTCN2018090517-appb-000016
Figure PCTCN2018090517-appb-000017
其中,BW RB表示每个RB所占的带宽。threshold则表示ESTI的OCB要求。例如,对于5GHz的非授权低频频段,threshold为80%,对于60GHz非授权高频频段,threshold为70%。
具体的,上述第一个条件(即
Figure PCTCN2018090517-appb-000018
)用于确定不同的传输带宽场景下的interlace结构,使得整个传输带宽能分成整数个interlace。上述第二个条件用于控制interlace的频域跨度,使得interlace的频域跨度(
Figure PCTCN2018090517-appb-000019
)与系统带宽BW的比值满足OCB要求。
以表1为例,假设系统带宽(BW)为20MHz,子载波间隔(subcarrier spacing,SCS)为15KHz。下面选取表1中的一种具体的传输带宽场景来进行说明:bandwidth percent=90.00%。
具体的,在90.00%这种传输带宽的场景下,为了满足上述两个条件,可得出4种interlace结构,具体如下:
第一种interlace结构:每个interlace包含10个RB,每个interlace的RB间隔等于10个RB。
第二种interlace结构:每个interlace包含20个RB,每个interlace的RB间隔等于5个RB。
第三种interlace结构:每个interlace包含25个RB,每个interlace的RB间隔等于4个RB。
第四种interlace结构:每个interlace包含50个RB,每个interlace的RB间隔等于2个RB。
示例仅仅用于解释本申请,不应构成限定。表2至表26还示出了其他多种系统带宽和/或多种子载波间隔的场景下的interlace结构,这里不一一赘述。
具体的,在表1至表26中,第4列(interlace structure)中包括的多个参数值与第5列(RB spacing)中包括的多个参数值顺次对应,相对应的2个参数分别表示interlace包含的RB个数和interlace的RB间隔。例如,在90.90%这种传输带宽的场景下,表1中的第4列包括4个参数值:10,20,25,50。表1中的第5列包括4个参数值:10,5,4,2。其中,10和10对应,20和5对应,25和4对应,50和2对应。示例仅仅用于解释本申请,不应构成限定。
从表中可以看出,在一些传输带宽的场景下,无法找到满足上述两个条件的interlace结构。例如,表1中的90.90%这种传输带宽的场景,表1中的92.70%这种传输带宽的场景等。针对这些场景,可以采用相近的传输带宽场景下的interlace结构,只不过整个传输带宽不能刚好分成整数个interlace。
为了设计出本申请新定义的RB间隔固定的资源交错(interlace),即从多种系统带宽下的interlace中找出对应相同RB间隔的interlace。
例如,假设传输带宽的占比是90.00%。那么,从表1至表4分别表示的四种系统带宽场景(20MHz、40MHz、80MHz、100MHz)下的interlace结构中,可以找出4种相同的interlace结构,这4种interlace结构中的RB间隔分别是:2、4、5、10。在这四种系统带宽场景下,本申请新定义的interlace结构可以是这四种interlace结构中的任一种。
示例仅仅用于解释本申请,不应构成限定。同样的,可以从其他表格表示的多系统带宽下的interlace结构中确定出本申请新定义的interlace结构,这里不一一赘述。
不限于表1至表26所示,多种系统带宽和/或多种子载波间隔的场景下的interlace结构、各种表格参数、传输带宽、子载波间隔等的实际取值均以未来标准中的定义为准。
表1
Figure PCTCN2018090517-appb-000020
表2
Figure PCTCN2018090517-appb-000021
Figure PCTCN2018090517-appb-000022
表3
Figure PCTCN2018090517-appb-000023
Figure PCTCN2018090517-appb-000024
Figure PCTCN2018090517-appb-000025
表4
Figure PCTCN2018090517-appb-000026
Figure PCTCN2018090517-appb-000027
Figure PCTCN2018090517-appb-000028
表5
Figure PCTCN2018090517-appb-000029
表6
Figure PCTCN2018090517-appb-000030
表7
Figure PCTCN2018090517-appb-000031
表8
Figure PCTCN2018090517-appb-000032
Figure PCTCN2018090517-appb-000033
表9
Figure PCTCN2018090517-appb-000035
Figure PCTCN2018090517-appb-000036
表10
Figure PCTCN2018090517-appb-000037
表11
Figure PCTCN2018090517-appb-000038
表12
Figure PCTCN2018090517-appb-000039
表13
Figure PCTCN2018090517-appb-000040
表14
Figure PCTCN2018090517-appb-000041
表15
Figure PCTCN2018090517-appb-000042
Figure PCTCN2018090517-appb-000043
Figure PCTCN2018090517-appb-000044
表16
Figure PCTCN2018090517-appb-000045
Figure PCTCN2018090517-appb-000046
表17
Figure PCTCN2018090517-appb-000047
Figure PCTCN2018090517-appb-000048
Figure PCTCN2018090517-appb-000049
Figure PCTCN2018090517-appb-000050
表18
Figure PCTCN2018090517-appb-000051
表19
Figure PCTCN2018090517-appb-000052
Figure PCTCN2018090517-appb-000053
Figure PCTCN2018090517-appb-000054
表20
Figure PCTCN2018090517-appb-000055
Figure PCTCN2018090517-appb-000056
Figure PCTCN2018090517-appb-000057
表21
Figure PCTCN2018090517-appb-000058
表22
Figure PCTCN2018090517-appb-000059
表23
Figure PCTCN2018090517-appb-000060
Figure PCTCN2018090517-appb-000061
表24
Figure PCTCN2018090517-appb-000062
表25
Figure PCTCN2018090517-appb-000063
表26
Figure PCTCN2018090517-appb-000064
Figure PCTCN2018090517-appb-000065
另外,图14示出了本申请提供的另一种信号传输方法,可提高传输效率。如图14所示,该方法可包括:
S403,网络设备接收终端发送的调度请求(SR)。所述调度请求用于请求网络设备分配上行传输资源。
可参考图7中的步骤S101,终端可以周期性的向网络设备发送调度请求,例如终端每隔一个传输时间间隔(TTI)向网络设备发送一次所述调度请求。或者,终端也可以在事件驱动下向网络设备发送所述调度请求。例如,当有上行数据需要传输时,终端会向网络设备发送所述调度请求。这里,上行数据的到来即驱动终端发送所述调度请求的事件。关于终端发送所述调度请求的触发机制,本申请实施例不作限制。
S405,网络设备可以按照第一时间单元为基本单位为终端分配上行传输资源。这里,该第一时间单元可以为子帧(subframe)、时隙(slot)、传输间隔(TTI)、短传输间隔(short TTI)或者微时隙(mini-slot)等。
S407,网络设备可以向终端返回资源指示信息,该资源指示信息可包括:网络设备指示的终端进行上行传输的起始时间。具体的,该资源指示信息还可以包括:网络设备调度给终端的传输长度。该传输长度可以包括一个或多个上述第一时间单元。可选的,该传输长度可以通过上述第一单元的个数来表示。关于该资源指示信息的信令实现方式可参考图7实施例中描述的前述资源指示信息的信令实现,这里不再赘述。
S409,相应的,在收到上述资源指示信息后,终端需要在上行传输前执行LBT。
S411-S415,当LBT完成并检测到频谱空闲后,终端可以判断LBT完成时间是否晚于网络设备指示的上述起始时间。如果LBT完成时间不晚于上述起始时间,则终端可以按照网 络设备的指示在上述起始时间开始进行上行传输,可参考S413。如果LBT完成时间晚于上述起始时间,则终端可以在离LBT完成时间最近的第二时间单元的边界开始进行上行传输,可参考S415。
这里,边界是指第二时间单元的起始时刻或结束时刻。通常,一个时间单元(如mini-slot或者short TTI)可以对应两个边界,即起始边界和结束边界,其中,起始边界是指第二时间单元的起始时刻,结束边界是指第二时间单元的结束时刻。可以理解的,一个第二时间单元的起始边界即另一个第二时间单元的结束边界,这两个第二时间单元在时域上相邻。
具体的,上述第二时间单元可以是mini-slot或者short TTI等较小的时间单元,小于上述第一时间单元。这样,当LBT完成时间晚于网络设备调度的起始时间时,通过终端在离LBT完成时间最近的第二时间单元的边界开始上行传输,可避免终端等待网络设备的再次调度,提高了上行传输的效率。
S417,在上行传输时,终端还可以向网络设备发送指示信息,该指示信息用于指示上行传输的实际起始时间。具体的,该指示信息具体可以是上述最近的第二时间单元的索引,例如mini-slot或者short TTI的索引,也可以是上述实际传输时间相对于网络设备指示的起始时间的时间偏移量等。可选的,该指示信息还可包括第二时间单元的指示信息,即指示上行传输实际采用了哪一种结构的时间单元。
举例说明,如图15所示,假设网络设备调度终端在子帧n进行上行传输,即网络设备指示的起始时间为子帧n的起始边界。终端在收到调度信息后,需要先进行LBT。假设如图15所示,LBT完成时间处于子帧n中的第3个mini-slot(mini-slot 2),即LBT完成的时间晚于网络设备所指示的起始时间,则终端可以在离LBT完成时间最近的第二时间单元的边界进行上行传输,即在子帧n中的第4个mini-slot(mini-slot 3)的起始边界进行上行传输。这里,mini-slot 3的起始边界即mini-slot 2的结束边界。这样,即使LBT完成时间晚于网络设备调度的起始时间时,也可以避免终端等待网络设备的再次调度,可以及时的在离LBT完成时间最近的第二时间单元的边界开始上行传输,提高了上行传输的效率。
实施图14实施例,当LBT完成时间晚于网络设备调度的起始时间时,通过终端在离LBT完成时间最近的第二时间单元的边界开始上行传输,可避免终端等待网络设备的再次调度,提高了上行传输的效率。
参见图16,图16是本申请的一个实施例提供的无线通信系统700,以及无线通信系统700中的网络设备。网络设备500可以是前述方法实施例中的上述网络设备,可用于接收终端的调度请求,在非授权频段上为终端分配上行信号传输资源。终端600可以是前述方法实施例中的上述终端,可以按照网络设备500的调度指示在LBT监听到的空闲带宽进行上行传输。
如图16所示,网络设备500可包括:接收单元501和发送单元503。其中:
发送单元503,可用于向终端600发送第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端600分配的上行资源,所述上行资源为均匀分布在部分或全部 的第一带宽上的整数个资源块。
接收单元501,可用于接收终端600发送的第二指示信息。所述第二指示信息用于指示终端600监听到的空闲的用于上行传输的第二带宽。
如图16所示,终端600可包括:发送单元601和接收单元603。其中:
接收单元603,可用于接收网络设备500发送的第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端500分配的上行资源。所述第一指示信息指示的资源包括均匀分布在部分或全部的第一带宽上的整数个资源块。
发送单元601,可用于在监听到的空闲的第二带宽上进行上行传输。
发送单元601,还可用于向网络设备500发送第二指示信息。所述第二指示信息用于指示所述第二带宽。
本申请中,网络设备500可主要提供三种资源调度方式。
第一种资源调度方式,网络设备在第一带宽上进行全带宽级别的宽带资源调度,且资源调度所基于的资源交错的RB间隔是固定的,不随第一带宽的变化而变化。与LTE中定义的现有的资源交错不同的是,本申请定义的资源交错的RB间隔是固定的,不随带宽的变化而变化。
关于上述第一种资源调度方式的具体实现,可参考图7所示实施例,这里不再赘述。
第二种资源调度方式,网络设备在第一带宽上进行子带级别的子带资源调度,且资源调度以子带对应的interlace片段为基本单元。这里,interlace是RB间隔固定为N的均匀分布在第一带宽的全带宽上的interlace,即第一带宽对应的interlace。与上述第一种资源调度方式不同的是,在进行资源分配时,不是以第一带宽对应的interlace为基本单位进行资源分配。而是,将第一带宽对应的interlace划分成多个子带各自对应的interlace片段,然后以各个子带对应的interlace片段为基本单位进行资源分配。
关于上述第二种资源调度方式的具体实现,可参考图10所示实施例,这里不再赘述。
第三种资源调度方式,网络设备在第一带宽上进行子带级别的子带资源调度,并在子带上选择合适的interlace结构,然后以子带上的interlace为基本单元进行资源调度。该interlace既可以是均匀分布在子带上的数量固定的interlace,也可以是均匀分布在子带上的RB间隔固定的interlace。
关于上述第三种资源调度方式的具体实现,可参考图12所示实施例,这里不再赘述。
可以理解的,网络设备500包括的各个功能单元的具体实现可参考图7、图10或图11分别对应的方法实施例中的网络设备的相关功能,网络设备500包括的各个功能单元的具体实现可参考图7、图10或图11分别对应的方法实施例中的终端的相关功能,这里不再赘述。
另外,本发明实施例还提供了一种无线通信系统,所述无线通信系统可以是图2所示的无线通信系统200,也可以是图16所示的无线通信系统700,可包括:网络设备和终端。其中,所述终端可以是图7、图10或图12分别对应的方法实施例中的终端,所述网络设备可以是图7、图10或图12分别对应的方法实施例中的网络设备。
以图3所示终端为例,终端处理器304用于调用存储于所述存储器312中的指令来控 制发射器306在非授权频段和/或授权频段进行发送以及控制接收器308在非授权频段和/或授权频段进行接收。发射器306用于支持终端执行图7、图10或图12中涉及对数据和/或信令进行发射的过程。接收器308用于支持终端执行图7、图10或图12中涉及在对数据和/或信令进行接收的过程。存储器312用于存储终端的程序代码和数据。
具体的,所述终端可以是图4所示的终端300,所述网络设备可以是图5所示的网络设备400。所述终端也可以是图16所示的终端600,所示网络设备也可以是图16所示的网络设备500。关于所述网络和所述终端的具体实现可参考图7、图10或图12分别对应的方法实施例,这里不再赘述。
以图4所示网络设备为例,网络设备处理器405用于控制发射器407在非授权频段和/或授权频段进行发送以及控制接收器409在非授权频段和/或授权频段进行接收。发射器407用于支持网络设备执行图7、图10或图12中涉及对数据和/或信令进行发射的过程。接收器409用于支持网络设备执行图7、图10或图12中涉及对数据和/或信令进行接收的过程。存储器405用于存储网络设备的程序代码和数据。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上,实施本发明实施例,可支持灵活带宽传输,能够更好的适应下一代新空口技术支持的多带宽场景。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (39)

  1. 一种信号传输方法,其特征在于,包括:
    接收网络设备发送的第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源;所述第一指示信息指示的资源包括均匀分布在部分或全部的第一带宽上的整数个资源块;
    在监听到的空闲的第二带宽上进行上行传输,所述第二带宽小于或者等于所述第一带宽;
    向所述网络设备发送第二指示信息;所述第二指示信息用于指示所述第二带宽。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息指示的资源包括均匀分布在所述第一带宽上的一个或多个资源交错,其中,所述资源交错中的相邻2个资源块之间的间隔为N,N是正整数。
  3. 如权利要求2所述的方法,其特征在于,所述在监听到的空闲的第二带宽上进行上行传输,包括:
    如果所述第二带宽等于所述第一带宽,则在所述第一指示信息指示的资源上进行上行传输;如果所述第二带宽小于所述第一带宽,则在所述第一指示信息所指示的位于所述第二带宽内的资源上进行上行传输。
  4. 如权利要求2所述的方法,其特征在于,所述在监听到的空闲的第二带宽上进行上行传输,具体包括:
    如果所述第二带宽等于所述第一带宽,则在所述第一指示信息指示的资源上进行上行传输,且发射功率不为0;如果所述第二带宽小于所述第一带宽,则在所述第一指示信息指示的资源上进行上行传输,其中,在所述第一指示信息指示的处于所述第二带宽内的资源上进行上行传输的发射功率不为0,在所述第一指示信息指示的所述第二带宽外的资源上进行上行传输的发射功率为0。
  5. 如权利要求2-4中任一项所述的方法,其特征在于,所述第二指示信息包括以下至少一项:第二带宽的大小信息、上行传输实际占用的载波或子载波的索引信息、上行传输实际占用的载波或子载波范围信息,或者上行传输实际占用的资源块的索引信息。
  6. 如权利要求2-5中任一项所述的方法,其特征在于,所述第一指示信息具体用于指示所述网络设备在所述第一带宽的子带上分配给所述终端的上行资源;其中,所述子带上的上行资源包括所述资源交错中的部分资源块;
    所述在监听到的空闲的第二带宽上进行上行传输,包括:在监听到的空闲的子带上进行上行传输。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述第一指示信息还包括:用于指示所述网络设备所采用的资源分配方式的标志位;所述网络设备所采用的资源分配方式包括:第一种资源分配方式和第二种资源分配方式,其中,所述第一种资源分配方式是指所述网络设备在所述第一带宽上为所述终端分配上行资源,所述第二种资源分配方式是指所述网络设备在所述第一带宽的子带上为所述终端设备分配上行资源;
    所述在监听到的空闲的第二带宽上进行上行传输包括:如果所述标志位所指示的资源分配方式是所述第一种资源分配方式,则在监听到的空闲的所述第二带宽上传输上行数据;如果所述标志位所指示的资源分配方式是所述第二种资源分配方式,则在监听到的空闲的子带上传输上行数据。
  8. 如权利要求1所述的方法,其特征在于,所述第一指示信息指示的资源具体包括均匀分布在所述第一带宽的子带上的一个或多个资源交错;其中,均匀分布在所述子带上的所述资源交错中的资源块个数是固定的,或者,均匀分布在所述子带上的所述资源交错中的任意2个相邻资源块之间的间距是固定的。
  9. 一种信号传输方法,其特征在于,包括:
    向所述终端发送第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源,所述上行资源为均匀分布在部分或全部的第一带宽上的整数个资源块;
    接收所述终端发送的第二指示信息;所述第二指示信息用于指示所述终端监听到的空闲的用于上行传输的第二带宽,所述第二带宽小于或者等于所述第一带宽。
  10. 如权利要求9所述的方法,其特征在于,所述第一指示信息指示的资源包括均匀分布在所述第一带宽上的一个或多个资源交错,其中,所述资源交错中的相邻2个资源块之间的间隔固定为N,不随第一带宽的变化而变化;N是正整数。
  11. 如权利要求10所述的方法,其特征在于,所述第二指示信息包括以下至少一项:第二带宽的大小信息、上行传输实际占用的载波或子载波的索引信息、上行传输实际占用的载波或子载波范围信息,或者上行传输实际占用的资源块的索引信息。
  12. 如权利要求10或11所述的方法,其特征在于,所述第一指示信息具体用于指示所述网络设备在所述第一带宽的子带上分配给所述终端的上行资源;其中,所述子带上的上行资源包括所述资源交错中的部分资源块。
  13. 如权利要求10-12中任一项所述的方法,其特征在于,所述第一指示信息还包括:用于指示所述网络设备所采用的资源分配方式的标志位;所述网络设备所采用的资源分配方式包括:第一种资源分配方式和第二种资源分配方式,其中,所述第一种资源分配方式是指所述网络设备在所述第一带宽上为所述终端分配上行资源,所述第二种资源分配方式 是指所述网络设备在所述第一带宽的子带上为所述终端设备分配上行资源。
  14. 如权利要求9所述的方法,其特征在于,所述第一指示信息指示的资源具体包括均匀分布在所述第一带宽的子带上的一个或多个资源交错;其中,均匀分布在所述子带上的所述资源交错中的资源块个数是固定的,或者,均匀分布在所述子带上的所述资源交错中的任意2个相邻资源块之间的间距是固定的。
  15. 一种终端,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源;所述第一指示信息指示的资源包括均匀分布在部分或全部的第一带宽上的整数个资源块;
    发送单元,用于在监听到的空闲的第二带宽上进行上行传输,所述第二带宽小于或者等于所述第一带宽;
    所述发送单元,还用于向网络设备发送第二指示信息;所述第二指示信息用于指示所述第二带宽。
  16. 如权利要求15所述的终端,其特征在于,所述第一指示信息指示的资源包括均匀分布在所述第一带宽上的一个或多个资源交错,其中,所述资源交错中的相邻2个资源块之间的间隔固定为N,不随第一带宽的变化而变化;N是正整数。
  17. 如权利要求16所述的终端,其特征在于,所述发送单元用于:如果所述第二带宽等于所述第一带宽,则在所述第一指示信息指示的资源上进行上行传输;如果所述第二带宽小于所述第一带宽,则在所述第一指示信息所指示的位于所述第二带宽内的资源上进行上行传输。
  18. 如权利要求16所述的终端,其特征在于,所述发送单元用于:如果所述第二带宽等于所述第一带宽,则在所述第一指示信息指示的资源上进行上行传输,且发射功率不为0;如果所述第二带宽小于所述第一带宽,则在所述第一指示信息指示的资源上进行上行传输,其中,在所述第一指示信息指示的处于所述第二带宽内的资源上进行上行传输的发射功率不为0,在所述第一指示信息指示的所述第二带宽外的资源上进行上行传输的发射功率为0。
  19. 如权利要求16-18中任一项所述的终端,其特征在于,所述第二指示信息包括以下至少一项:第二带宽的大小信息、上行传输实际占用的载波或子载波的索引信息、上行传输实际占用的载波或子载波范围信息,或者上行传输实际占用的资源块的索引信息。
  20. 如权利要求16-19中任一项所述的终端,其特征在于,所述第一指示信息具体用于指示所述网络设备在所述第一带宽的子带上分配给所述终端的上行资源;其中,所述子 带上的上行资源包括所述资源交错中的部分资源块;
    所述发送单元用于:在监听到的空闲的子带上进行上行传输。
  21. 如权利要求15-20中任一项所述的终端,其特征在于,所述第一指示信息还包括:用于指示所述网络设备所采用的资源分配方式的标志位;所述网络设备所采用的资源分配方式包括:第一种资源分配方式和第二种资源分配方式,其中,所述第一种资源分配方式是指所述网络设备在所述第一带宽上为所述终端分配上行资源,所述第二种资源分配方式是指所述网络设备在所述第一带宽的子带上为所述终端设备分配上行资源;
    所述发送单元用于:如果所述标志位所指示的资源分配方式是所述第一种资源分配方式,则在监听到的空闲的所述第二带宽上传输上行数据;如果所述标志位所指示的资源分配方式是所述第二种资源分配方式,则在监听到的空闲的子带上传输上行数据。
  22. 如权利要求15所述的终端,其特征在于,所述第一指示信息指示的资源具体包括均匀分布在所述第一带宽的子带上的一个或多个资源交错;其中,均匀分布在所述子带上的所述资源交错中的资源块个数是固定的,或者,均匀分布在所述子带上的所述资源交错中的任意2个相邻资源块之间的间距是固定的。
  23. 一种网络设备,其特征在于,包括:
    发送单元,用于向所述终端发送第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源,所述上行资源为均匀分布在部分或全部的第一带宽上的整数个资源块;
    接收单元,用于接收所述终端发送的第二指示信息;所述第二指示信息用于指示所述终端监听到的空闲的用于上行传输的第二带宽。
  24. 如权利要求23所述的网络设备,其特征在于,所述第一指示信息指示的资源包括均匀分布在所述第一带宽上的一个或多个资源交错,其中,所述资源交错中的相邻2个资源块之间的间隔固定为N,不随第一带宽的变化而变化;N是正整数。
  25. 如权利要求24所述的网络设备,其特征在于,所述第二指示信息包括以下至少一项:第二带宽的大小信息、上行传输实际占用的载波或子载波的索引信息、上行传输实际占用的载波或子载波范围信息,或者上行传输实际占用的资源块的索引信息。
  26. 如权利要求24或25所述的网络设备,其特征在于,所述第一指示信息具体用于指示所述网络设备在所述第一带宽的子带上分配给所述终端的上行资源;其中,所述子带上的上行资源包括所述资源交错中的部分资源块。
  27. 如权利要求24-26中任一项所述的网络设备,其特征在于,所述第一指示信息还包括:用于指示所述网络设备所采用的资源分配方式的标志位;所述网络设备所采用的资 源分配方式包括:第一种资源分配方式和第二种资源分配方式,其中,所述第一种资源分配方式是指所述网络设备在所述第一带宽上为所述终端分配上行资源,所述第二种资源分配方式是指所述网络设备在所述第一带宽的子带上为所述终端设备分配上行资源。
  28. 如权利要求27所述的网络设备,其特征在于,所述第一指示信息指示的资源具体包括均匀分布在所述第一带宽的子带上的一个或多个资源交错;其中,均匀分布在所述子带上的所述资源交错中的资源块个数是固定的,或者,均匀分布在所述子带上的所述资源交错中的任意2个相邻资源块之间的间距是固定的。
  29. 一种终端,其特征在于,包括:发射器、接收器、存储器以及耦合于所述存储器的处理器,所述处理器用于调用存储于所述存储器中的指令来控制所述发射器发送信号以及控制所述接收器接收信号,其中:
    所述接收器用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源;所述第一指示信息指示的资源包括均匀分布在部分或全部的第一带宽上的整数个资源块;
    所述发射器用于在监听到的空闲的第二带宽上进行上行传输;
    所述发射器还用于向网络设备发送第二指示信息;所述第二指示信息用于指示所述第二带宽。
  30. 一种网络设备,其特征在于,包括:发射器、接收器、存储器以及耦合于所述存储器的处理器,所述处理器用于调用存储于所述存储器中的指令来控制所述发射器发送信号以及控制所述接收器接收信号,其中:
    所述发射器用于向所述终端发送第一指示信息,所述第一指示信息用于指示网络设备在第一带宽上为终端分配的上行资源,所述上行资源为均匀分布在部分或全部的第一带宽上的整数个资源块;
    所述接收器用于接收所述终端发送的第二指示信息;所述第二指示信息用于指示所述终端监听到的空闲的用于上行传输的第二带宽。
  31. 一种通信系统,其特征在于,包括:终端和网络设备,其中:
    所述终端为权利要求15-22中任一项所述的终端;
    所述网络设备为权利要求23-28中任一项所述的网络设备。
  32. 一种终端,其特征在于,所述终端包括存储器和一个或多个处理器,所述存储器与所述一个或多个处理器耦合,所述一个或多个处理器用于执行如权利要求1-8任意一项所述的方法。
  33. 一种终端,其特征在于,所述终端包括一个或多个处理器,所述一个或多个处理器与存储器耦合,读取所述存储器中的指令并根据所述指令执行如权利要求1-8任意一项 所述的方法。
  34. 一种网络设备,其特征在于,所述网络设备包括存储器和一个或多个处理器,所述存储器与所述一个或多个处理器耦合,所述一个或多个处理器用于执行如权利要求9-14任意一项所述的方法。
  35. 一种网络设备,其特征在于,所述网络设备包括一个或多个处理器,所述一个或多个处理器与存储器耦合,读取所述存储器中的指令并根据所述指令执行如权利要求9-14任意一项所述的方法。
  36. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-8任意一项所述的方法。
  37. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求9-14任意一项所述的方法。
  38. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-8任意一项所述的方法。
  39. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求9-14任意一项所述的方法。
PCT/CN2018/090517 2017-06-09 2018-06-08 一种信号传输方法、相关设备及系统 WO2018224042A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18814190.7A EP3634055B1 (en) 2017-06-09 2018-06-08 Signal transmission method, related device and system
JP2019568039A JP7091371B2 (ja) 2017-06-09 2018-06-08 信号送信方法、関連装置、及びシステム
CA3066685A CA3066685C (en) 2017-06-09 2018-06-08 Signal transmission method, related device, and system
EP22184642.1A EP4152866A1 (en) 2017-06-09 2018-06-08 Signal transmission method, related device, and system
US16/706,017 US11387969B2 (en) 2017-06-09 2019-12-06 Signal transmission method, related device, and system
US17/830,828 US20220368507A1 (en) 2017-06-09 2022-06-02 Signal transmission method, related device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710435815.6A CN109039556B (zh) 2017-06-09 2017-06-09 一种信号传输方法、相关设备及系统
CN201710435815.6 2017-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/706,017 Continuation US11387969B2 (en) 2017-06-09 2019-12-06 Signal transmission method, related device, and system

Publications (1)

Publication Number Publication Date
WO2018224042A1 true WO2018224042A1 (zh) 2018-12-13

Family

ID=64566493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090517 WO2018224042A1 (zh) 2017-06-09 2018-06-08 一种信号传输方法、相关设备及系统

Country Status (7)

Country Link
US (2) US11387969B2 (zh)
EP (2) EP3634055B1 (zh)
JP (1) JP7091371B2 (zh)
CN (2) CN112737753B (zh)
CA (1) CA3066685C (zh)
PT (1) PT3634055T (zh)
WO (1) WO2018224042A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3697154A1 (en) * 2019-02-14 2020-08-19 Panasonic Intellectual Property Corporation of America Transceiver device and scheduling device
JP2021530895A (ja) * 2018-08-03 2021-11-11 富士通株式会社 リソーススケジューリング指示方法及びその装置、通信システム
US20220109535A1 (en) * 2018-09-21 2022-04-07 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and device for supporting same
EP3926908A4 (en) * 2019-02-14 2022-04-27 Panasonic Intellectual Property Corporation of America TRANSMITTING DEVICE, RECEIVING DEVICE, TRANSMITTING METHOD, AND RECEIVING METHOD
CN114503472A (zh) * 2019-10-04 2022-05-13 Lg电子株式会社 用于在无线通信系统中发送和接收信号的方法和装置
JP2022527969A (ja) * 2019-04-03 2022-06-07 維沃移動通信有限公司 周波数領域リソース割り当て方法、端末及びネットワーク機器
CN115396080A (zh) * 2019-10-07 2022-11-25 奥罗佩法国有限责任公司 一种在宽带系统中分配频率资源的方法
RU2801312C2 (ru) * 2019-02-14 2023-08-07 Панасоник Интеллекчуал Проперти Корпорейшн Оф Америка Передающее устройство, приемное устройство, способ передачи и способ приема

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115924B2 (en) * 2017-10-19 2021-09-07 Qualcomm Incorporated Methods and apparatus for transmission and detection of multi-band wake-up
CN111066269B (zh) * 2018-02-14 2022-07-12 Lg电子株式会社 无线通信系统中发送和接收上行链路信号的方法以及设备
WO2019157726A1 (zh) * 2018-02-14 2019-08-22 Oppo广东移动通信有限公司 资源上报的方法、终端设备和网络设备
CN110740018B (zh) * 2018-07-18 2021-12-14 维沃移动通信有限公司 非授权频段上的调度方法、侦听方法和设备
WO2020032696A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 상향링크 신호 송수신 방법 및 이를 지원하는 장치
SG11202013253XA (en) * 2018-11-01 2021-01-28 Panasonic Ip Corp America Mobile station, base station, transmission method and receiving method
CN111385882B (zh) * 2018-12-28 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113261379B (zh) * 2019-01-10 2022-09-16 华为技术有限公司 数据传输的方法及装置
WO2020144168A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for uplink transmissions in unlicensed spectrum
CN112512119B (zh) * 2019-01-31 2022-02-25 华为技术有限公司 信号传输方法及装置
CN109983809B (zh) * 2019-02-15 2022-06-21 北京小米移动软件有限公司 多带宽传输时的功率配置方法、装置、设备及系统
JP7339350B2 (ja) * 2019-02-15 2023-09-05 オッポ広東移動通信有限公司 伝送帯域幅の決定方法、デバイス、及び記憶媒体
CN111757497B (zh) * 2019-03-29 2024-01-19 华为技术有限公司 控制信息的传输方法和装置
CN111867080B (zh) * 2019-04-30 2023-03-24 中国信息通信研究院 一种下行信道指示方法和设备
CN111865538B (zh) * 2019-04-30 2023-07-11 中国信息通信研究院 一种上行信道指示方法和设备
US11653386B2 (en) * 2019-09-10 2023-05-16 Qualcomm Incorporated Indication of listen-before-talk configuration for uplink communications
CN110536453B (zh) * 2019-09-16 2023-09-26 中兴通讯股份有限公司 数据传输方法、装置和系统
CN115002915B (zh) * 2019-11-08 2023-10-10 Oppo广东移动通信有限公司 信息指示方法及相关设备
CN111669237B (zh) * 2020-05-15 2022-02-25 中国信息通信研究院 一种先听后发传输方法、设备和系统
KR20230060998A (ko) * 2021-10-28 2023-05-08 삼성전자주식회사 비면허 대역에서 사이드링크 정보 송수신 방법 및 장치
US11736322B1 (en) * 2022-07-25 2023-08-22 Silicon Laboratories Inc. Signal level tracking and application to Viterbi equalization
WO2024031534A1 (en) * 2022-08-11 2024-02-15 Lenovo (Beijing) Limited Methods and apparatuses for uplink subband in a full duplex system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
CN105636211A (zh) * 2015-06-30 2016-06-01 宇龙计算机通信科技(深圳)有限公司 资源分配的指示方法及指示装置、基站和终端
CN106231614A (zh) * 2016-07-30 2016-12-14 深圳市金立通信设备有限公司 一种信号传输方法及相关网元
WO2016197825A1 (zh) * 2015-06-09 2016-12-15 中国移动通信集团公司 使用非授权频谱进行通信的方法、装置及系统
WO2017035937A1 (zh) * 2015-08-28 2017-03-09 宇龙计算机通信科技(深圳)有限公司 一种传输的方法及终端

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225416B2 (en) * 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
CN101141471A (zh) * 2006-09-05 2008-03-12 华为技术有限公司 上行资源的分配方法、上行数据的接收端及发送端装置
CN101146317A (zh) * 2006-09-15 2008-03-19 北京三星通信技术研究有限公司 资源分配及控制信令传输方法
KR101505193B1 (ko) * 2007-06-18 2015-03-23 삼성전자주식회사 직교주파수분할다중접속방식의 이동 통신시스템에서 심볼전송 방법 및 장치
CN101841913B (zh) * 2009-03-16 2012-09-05 电信科学技术研究院 确定ue监听的下行成员载波的方法和基站
CN102083229B (zh) * 2010-02-11 2013-11-20 电信科学技术研究院 非竞争随机接入的调度及前导码发送方法、系统和设备
EP2853054A4 (en) * 2012-05-21 2015-07-15 Broadcom Corp IMPROVED CONTROL CHANNEL INTERLACING HAVING DISTRIBUTED PHYSICAL RESOURCE BLOCKS
US9924509B2 (en) * 2013-09-27 2018-03-20 Qualcomm Incorporated Techniques for configuring an adaptive frame structure for wireless communications using unlicensed radio frequency spectrum
CN105164958A (zh) * 2013-11-22 2015-12-16 华为技术有限公司 一种数据传输方法和数据传输设备
US10687218B2 (en) * 2013-12-03 2020-06-16 Qualcomm Incorporated Power metric optimization and uplink DM-RS design for LTE/LTE-A uplink transmissions in unlicensed spectrum
US10659967B2 (en) * 2014-06-10 2020-05-19 Qualcomm Incorporated Channel usage beacon signal transmissions based on uplink transmissions over an unlicensed radio frequency spectrum band
US10827491B2 (en) * 2014-10-07 2020-11-03 Qualcomm Incorporated Techniques for transmitting a sounding reference signal or scheduling request over an unlicensed radio frequency spectrum band
CN106160967A (zh) * 2015-03-30 2016-11-23 中兴通讯股份有限公司 一种非授权资源的传输方法和装置
US10164746B2 (en) * 2015-05-22 2018-12-25 Qualcomm Incorporated Techniques for managing transmissions of reference signals
EP3361808B1 (en) * 2015-10-06 2023-04-05 Sony Group Corporation Device and method for listen-before-talk in the millimeter wave band
CN105611637B (zh) * 2016-02-06 2019-05-24 北京佰才邦技术有限公司 信道发送状态的指示方法和终端
US11419134B2 (en) * 2016-03-25 2022-08-16 Lg Electronics Inc. Method for transmitting and receiving uplink signal in wireless communication system supporting non-licensed band, and apparatus for supporting same
CN110832928B (zh) * 2017-05-03 2023-09-08 交互数字专利控股公司 传输适配和无授权接入

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016197825A1 (zh) * 2015-06-09 2016-12-15 中国移动通信集团公司 使用非授权频谱进行通信的方法、装置及系统
CN105636211A (zh) * 2015-06-30 2016-06-01 宇龙计算机通信科技(深圳)有限公司 资源分配的指示方法及指示装置、基站和终端
WO2017035937A1 (zh) * 2015-08-28 2017-03-09 宇龙计算机通信科技(深圳)有限公司 一种传输的方法及终端
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
CN106231614A (zh) * 2016-07-30 2016-12-14 深圳市金立通信设备有限公司 一种信号传输方法及相关网元

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530895A (ja) * 2018-08-03 2021-11-11 富士通株式会社 リソーススケジューリング指示方法及びその装置、通信システム
US11737086B2 (en) 2018-08-03 2023-08-22 Fujitsu Limited Resource scheduling indication method and apparatus and communication system
JP7205557B2 (ja) 2018-08-03 2023-01-17 富士通株式会社 リソーススケジューリング指示方法及びその装置、通信システム
US20220109535A1 (en) * 2018-09-21 2022-04-07 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and device for supporting same
RU2801312C9 (ru) * 2019-02-14 2023-09-27 Панасоник Интеллекчуал Проперти Корпорейшн Оф Америка Передающее устройство, приемное устройство, способ передачи и способ приема
WO2020164883A1 (en) * 2019-02-14 2020-08-20 Panasonic Intellectual Property Corporation Of America Transceiver device and scheduling device
US12010050B2 (en) 2019-02-14 2024-06-11 Panasonic Intellectual Property Corporation Of America Transmitting device, receiving device, transmitting method and receiving method
RU2801312C2 (ru) * 2019-02-14 2023-08-07 Панасоник Интеллекчуал Проперти Корпорейшн Оф Америка Передающее устройство, приемное устройство, способ передачи и способ приема
EP3697154A1 (en) * 2019-02-14 2020-08-19 Panasonic Intellectual Property Corporation of America Transceiver device and scheduling device
RU2809325C2 (ru) * 2019-02-14 2023-12-11 Панасоник Интеллекчуал Проперти Корпорейшн Оф Америка Приемопередающее устройство и устройство для диспетчеризации
EP3926908A4 (en) * 2019-02-14 2022-04-27 Panasonic Intellectual Property Corporation of America TRANSMITTING DEVICE, RECEIVING DEVICE, TRANSMITTING METHOD, AND RECEIVING METHOD
CN113273282A (zh) * 2019-02-14 2021-08-17 松下电器(美国)知识产权公司 收发器设备和调度设备
EP3952529A4 (en) * 2019-04-03 2022-06-08 Vivo Mobile Communication Co., Ltd. METHOD, TERMINAL AND NETWORK EQUIPMENT FOR FREQUENCY DOMAIN RESOURCE ALLOCATION
JP2022527969A (ja) * 2019-04-03 2022-06-07 維沃移動通信有限公司 周波数領域リソース割り当て方法、端末及びネットワーク機器
JP7402250B2 (ja) 2019-04-03 2023-12-20 維沃移動通信有限公司 周波数領域リソース割り当て方法、端末及びネットワーク機器
US11917685B2 (en) 2019-04-03 2024-02-27 Vivo Mobile Communication Co., Ltd. Frequency domain resource allocation method, terminal, and network device
CN114503472A (zh) * 2019-10-04 2022-05-13 Lg电子株式会社 用于在无线通信系统中发送和接收信号的方法和装置
CN115396080A (zh) * 2019-10-07 2022-11-25 奥罗佩法国有限责任公司 一种在宽带系统中分配频率资源的方法

Also Published As

Publication number Publication date
CN109039556B (zh) 2023-11-07
EP3634055A1 (en) 2020-04-08
CN112737753B (zh) 2022-02-15
CN109039556A (zh) 2018-12-18
CA3066685A1 (en) 2018-12-13
JP7091371B2 (ja) 2022-06-27
US11387969B2 (en) 2022-07-12
EP3634055A4 (en) 2021-03-17
PT3634055T (pt) 2022-11-23
CN112737753A (zh) 2021-04-30
US20200119894A1 (en) 2020-04-16
CA3066685C (en) 2023-05-09
US20220368507A1 (en) 2022-11-17
JP2020522961A (ja) 2020-07-30
EP3634055B1 (en) 2022-10-26
EP4152866A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2018224042A1 (zh) 一种信号传输方法、相关设备及系统
JP6961001B2 (ja) リソース割振り方法ならびに関係するデバイスおよびシステム
CN109996341B (zh) 控制信息的传输方法
US11218273B2 (en) Signal transmission method, related device, and system
US20210288852A1 (en) Guard band indication method and apparatus
WO2020094025A1 (zh) 一种上行控制信息的传输方法及装置
CN111108800B (zh) 一种通信方法和装置
JP2011525748A (ja) 電気通信ネットワークにおけるシグナリングリソース割当
EP3737191A1 (en) Method, apparatus and system for sending and receiving uplink data
WO2019174584A1 (zh) 一种数据传输方法、相关设备及系统
WO2021184354A1 (zh) 信息传输方法、装置、设备及存储介质
WO2018137697A1 (zh) 一种资源分配方法、相关设备及系统
WO2020164635A1 (zh) 初始信号传输方法、装置
CN112771974B (zh) 用于多时隙调度的harq过程管理
WO2019063003A1 (zh) 信息传输方法、终端设备及网络设备
CN111263440B (zh) 一种防护频带指示方法及装置
WO2019214577A1 (zh) 信号传输方法、装置
KR102199873B1 (ko) 무선 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3066685

Country of ref document: CA

Ref document number: 2019568039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018814190

Country of ref document: EP

Effective date: 20200102