WO2018223946A1 - 用于解冻装置的解冻方法 - Google Patents

用于解冻装置的解冻方法 Download PDF

Info

Publication number
WO2018223946A1
WO2018223946A1 PCT/CN2018/089908 CN2018089908W WO2018223946A1 WO 2018223946 A1 WO2018223946 A1 WO 2018223946A1 CN 2018089908 W CN2018089908 W CN 2018089908W WO 2018223946 A1 WO2018223946 A1 WO 2018223946A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
thawing
radio frequency
treated
processed
Prior art date
Application number
PCT/CN2018/089908
Other languages
English (en)
French (fr)
Inventor
徐同
朱小兵
李鹏
王铭
戴建斌
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Priority to AU2018280473A priority Critical patent/AU2018280473B2/en
Priority to EP18813059.5A priority patent/EP3617628B1/en
Publication of WO2018223946A1 publication Critical patent/WO2018223946A1/zh
Priority to US16/706,348 priority patent/US11197352B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/688Circuits for monitoring or control for thawing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • A23B4/07Thawing subsequent to freezing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/005Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment
    • A23L3/01Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment using microwaves or dielectric heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/087Arrangement or mounting of control or safety devices of electric circuits regulating heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/48Circuits
    • H05B6/50Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices

Definitions

  • the present invention relates to the field of thawing, and in particular to a thawing method for a thawing apparatus.
  • the quality of the food is maintained during the freezing process, but the frozen food needs to be thawed before processing or eating.
  • the prior art generally thaws food by providing a heating device or a microwave device in the refrigerator.
  • the thawed food by the heating device generally requires a long thawing time, and the thawing time and temperature are difficult to grasp, which easily causes the water evaporation and juice loss of the food, and the quality of the food is lost; the food is thawed by the microwave device.
  • Fast and efficient so the nutrient loss of food is very low, but due to the difference in the penetration and absorption of water and ice by microwave, and the internal distribution of food is uneven, the melted area absorbs more energy and is prone to thaw. Uneven and local overheating problems.
  • An object of the first aspect of the present invention is to provide a defrosting method for a thawing apparatus which can judge the thawing progress of an object to be treated.
  • a further object of the first aspect of the invention is to avoid the object to be treated being decomposed.
  • the present invention provides a defrosting method for a defrosting device, the defrosting device comprising a cylinder defining a defrosting chamber for placing a workpiece to be treated and having a forward opening, disposed in the defrosting chamber a device door for opening and closing the defrosting chamber at the forward opening, a radio frequency generating module, respectively disposed horizontally at the top wall and the bottom wall of the defrosting chamber and electrically connected to the radio frequency generating module respectively And an upper electrode plate and a lower electrode plate, and a detecting module configured to detect an incident wave signal and a reflected wave signal connecting the electrical connection between the radio frequency generating module and the upper electrode plate;
  • the defrosting method includes:
  • the radio frequency generating module generates a radio frequency signal
  • the upper electrode plate and the lower electrode plate generate radio frequency waves of corresponding frequencies in the defrosting chamber according to the radio frequency signal, and thaw the objects to be processed in the defrosting chamber;
  • the step of determining a thawing progress of the to-be-processed object includes:
  • the operating power of the radio frequency generating module is reduced by 30% to 40%.
  • the step of determining a thawing progress of the to-be-processed object includes:
  • the radio frequency generating module stops working.
  • the thawing method for the thawing device further includes:
  • a visual and/or audible signal is issued to alert the user;
  • the visual and/or audible signal is ceased if the object to be treated is controlled to be removed from the defrosting chamber.
  • a defrosting method for a refrigerator including a casing defining at least one accommodating space, a compartment door body for opening and closing the accommodating space, respectively, and A defrosting device for the accommodating space, the thawing method comprising the defrosting method for the defrosting device according to any of the above.
  • the refrigerator further includes a power supply module for supplying power to the defrosting device, and any one of the compartment door bodies is provided with a defrosting switch for controlling start and stop of the defrosting program; wherein the refrigerator is used for the refrigerator Thawing methods include:
  • the thawing method for the refrigerator further includes:
  • the refrigeration system of the refrigerator stops providing cooling capacity for the accommodating space provided with the defrosting device
  • the refrigeration system of the refrigerator can be controlled to provide a cooling capacity for the accommodating space in which the defrosting device is disposed.
  • the present invention judges the thawing progress of the object to be treated by the rate of change of the dielectric coefficient of the object to be treated, and judges the thawing progress of the object to be processed by sensing the temperature of the object to be processed, and the judgment is more accurate.
  • the present invention determines the rate of change of the dielectric coefficient of the object to be processed by the detecting module to determine the thawing progress of the object to be processed.
  • the temperature of the object to be treated is already high (ie, the temperature of the object to be treated is greater than or equal to -7 ° C)
  • the thermal effect is significantly attenuated, so that the object to be treated is not decomposed. .
  • the RF thawing power is large, for example, greater than 100 W.
  • the temperature of the object to be treated itself is already high, the object to be treated is easily over-thawing.
  • the inventors of the present application have creatively recognized that when the temperature of the object to be treated is already high, the operating power of the radio frequency generating module is reduced by 30 to 40%, which can effectively prevent the object to be treated from being decomposed.
  • the present invention determines whether the defrosting is completed by the rate of change of the dielectric coefficient of the object to be treated. Compared with the prior art, by sensing the temperature of the object to be processed, it is judged whether the thawing is completed, and the judgment is more accurate, and the refusal can be further prevented.
  • the treated material is decomposed, and the test indicates that the temperature of the object to be treated which is thawed by the thawing device of the present invention is generally -4 to -2 ° C when the thawing is completed, and it is possible to prevent the blood from being thawed when the object to be treated is meat.
  • FIG. 1 is a schematic structural view of a defrosting apparatus according to an embodiment of the present invention.
  • Figure 2 is a schematic cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a schematic structural view of the thawing apparatus of Figure 1, wherein the apparatus door of the defrosting apparatus is removed to show the internal structure of the cylinder;
  • FIG. 4 is a graph showing a rate of change of a dielectric coefficient of an object to be processed according to an embodiment of the present invention
  • Figure 5 is a flow chart of a defrosting method for a defrosting device in accordance with one embodiment of the present invention
  • FIG. 6 is a flow chart of a method of determining a thawing progress of an object to be processed, in accordance with one embodiment of the present invention
  • FIG. 7 is a schematic structural view of a refrigerator in which all outer door bodies of the refrigerator are removed to show a compartment structure in a cabinet of the refrigerator according to an embodiment of the present invention
  • Figure 8 is a schematic cross-sectional view of the refrigerator shown in Figure 7;
  • Figure 9 is a schematic structural view of the compressor chamber of Figure 8.
  • Figure 10 is a detailed flow chart of a defrosting method for a refrigerator in accordance with one embodiment of the present invention.
  • the thawing apparatus 100 may include a barrel 110, a device door 120, a radio frequency generating module 130, and an upper electrode plate 140a and a lower electrode plate 140b.
  • the barrel 110 can include a top plate, a bottom plate, a back plate, and two opposing lateral side plates, which can define a defrosting chamber 114 having a forward opening for placing the object to be treated.
  • the device door 120 may be disposed at a forward opening of the defrosting chamber 114 for opening or closing the defrosting chamber 114.
  • the device door 120 can be mounted to the barrel 110 by a suitable method, such as a left open door, a right open door, or an upper open door.
  • the RF generation module 130 can be configured to generate a radio frequency signal (generally referred to as a radio frequency signal having a frequency between 300 KHz and 300 GHz).
  • the upper electrode plate 140a and the lower electrode plate 140b are respectively horizontally disposed at the top wall and the bottom wall of the defrosting chamber 114, and are respectively electrically connected to the radio frequency generating module 130 to be in the defrosting cavity according to the radio frequency signal generated by the radio frequency generating module 130.
  • a radio frequency wave of a corresponding parameter is generated in the chamber 114, and the object to be treated placed in the defrosting chamber 114 is thawed.
  • the upper electrode plate 140a is a transmitting antenna; the lower electrode plate 140b is a receiving antenna.
  • the upper electrode plate 140a and the lower electrode plate 140b may be electrically connected to the radio frequency generating module 130, respectively, using a 50 ohm electrical connection.
  • the defrosting device 100 can also include a detection module 150.
  • the detecting module 150 can be configured to detect an incident wave signal and a reflected wave signal connecting the electrical connection between the RF generating module 130 and the upper plate, and calculate the RF according to the voltage and current of the incident wave signal and the voltage and current of the reflected wave signal.
  • the load impedance of module 130 occurs. The load impedance is calculated as follows:
  • SWR is the standing wave ratio
  • Z 1 is the output impedance
  • Z 2 is the load impedance
  • U 1 is the incident wave voltage
  • I 1 is the incident wave current
  • R 1 is Output resistance
  • X 1 is the output impedance
  • U 2 is the reflected wave voltage
  • I 2 is the reflected wave current
  • R 2 is the output resistance
  • X 2 is the load impedance (as understood by those skilled in the art, the output impedance is connected to the radio frequency
  • the impedance of the electrical connection between the module 130 and the upper electrode plate 140a, the load impedance is the impedance of the object to be processed).
  • the thawing apparatus 100 can also include a load compensation module 160 that can include a compensation unit and a motor for adjusting the load of the compensation unit.
  • the compensation unit may be arranged in series with the object to be processed, that is, the load impedance of the RF generating module 130 is the sum of the impedance of the object to be processed and the impedance of the compensation unit.
  • Controlled motors may be configured to increase or decrease the load compensation unit, thereby increasing or decreasing the occurrence of radio frequency load impedance Z 2 of the module 130, and a radio frequency of occurrence of load impedance Z 2 module 130 and the output impedance Z 1 of
  • the difference ie, the value obtained by subtracting the output impedance Z 1 from the load impedance Z 2
  • the first impedance threshold is less than the second impedance threshold to improve the object to be processed. Thawing efficiency.
  • the load compensation module can be configured such that the absolute value of the difference between the load impedance Z 2 of the RF generation module 130 and the output impedance Z 1 is less than 5% of the output impedance Z 1 throughout the thawing process, for example, can be an output 1%, 3% or 5% of the impedance Z 1 .
  • the detecting module 150 can be configured to further calculate a dielectric constant of the object to be processed and a rate of change of the dielectric coefficient according to the load impedance Z 2 of the radio frequency generating module 130.
  • the formula for calculating the dielectric constant of the object to be treated is as follows:
  • f is the frequency of the radio frequency wave
  • C is the capacitance of the capacitor formed by the upper electrode plate 140a and the lower electrode plate 140b
  • is the dielectric constant of the object to be processed
  • K is an electrostatic constant
  • d is the thickness of the upper plate
  • S is the area of the upper plate.
  • the rate of change of the dielectric coefficient of the object to be treated can be obtained by calculating the change value ⁇ of the dielectric coefficient ⁇ per unit time ⁇ t, wherein the unit time ⁇ t can be 0.1 second to 1 second, for example, 0.1 second, 0.5 second or 1 second.
  • 4 is a graph showing a rate of change of a dielectric constant of an object to be processed according to an embodiment of the present invention (the ordinate is a rate of change of the dielectric coefficient of the object to be processed ⁇ / ⁇ t; and the abscissa is a thawing time of the object to be processed t , the unit is min). Referring to FIG.
  • the radio frequency generating module 130 can be configured to reduce the operating power by 30% to 40% when the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed is greater than or equal to the first rate threshold. For example, 30%, 35% or 40% to prevent the object to be treated from being excessively thawed (as understood by those skilled in the art, the temperature of excessively thawed to be treated is greater than 0 °C).
  • the first predetermined threshold may be 15-20, such as 15, 17, 18 or 20.
  • the radio frequency generation module 130 may be further configured to stop the operation when the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed falls below a second rate threshold.
  • the second preset threshold may be 1 to 2, such as 1, 1.5 or 2.
  • An indicator light and/or an alarm may be disposed on the device door 120 of the thawing device 100 to issue a visual and/or audible signal to prompt the user to take out the object to be treated after the thawing of the object to be processed is completed, and to remove the object to be treated from the thawing chamber. The work is stopped when the chamber 114 is taken out.
  • the dielectric constant of the object to be treated also changes, which is well known to those skilled in the art, but the dielectric constant is usually measured by a dedicated instrument (for example, a dielectric coefficient tester).
  • the special instrument takes up a lot of space and costs, and is not suitable for a small-sized thawing device.
  • the invention detects the incident wave signal and the reflected wave signal of the electrical connection connecting the radio frequency generating module 130 and the upper plate, and calculates the dielectric coefficient of the object to be processed, which has small occupied space and low cost, and is particularly suitable for the thawing device. .
  • the present invention determines the rate of change of the dielectric coefficient of the object to be processed by the detecting module 150 to determine the thawing progress of the object to be processed.
  • the thermal effect is significantly attenuated, so that the object to be treated is not decomposed. .
  • the RF thawing power is large, for example, greater than 100 W.
  • the inventors of the present application have creatively recognized that when the temperature of the object to be treated is already high, the operating power of the radio frequency generating module 130 is reduced by 30 to 40%, which can effectively prevent the object to be treated from being decomposed. Further, the present invention determines whether the defrosting is completed by the rate of change of the dielectric coefficient of the object to be treated. Compared with the prior art, by sensing the temperature of the object to be processed, it is judged whether the thawing is completed, and the judgment is more accurate, and the refusal can be further prevented.
  • the treated material is decomposed, and the test indicates that the temperature of the object to be treated which is thawed by the thawing device of the present invention is generally -4 to -2 ° C when the thawing is completed, and it is possible to prevent the blood from being thawed when the object to be treated is meat.
  • Fig. 2 is a schematic cross-sectional view taken along line A-A of Fig. 1.
  • the cylinder 110 may further include a vertical partition 111 and a horizontal partition 112 for defining an inner space of the cylinder 110.
  • the vertical partition 111 may be disposed to extend from the top plate of the cylinder 110 in the vertical direction to the bottom plate of the cylinder 110.
  • the radio frequency generating module 130 may be disposed between the vertical partition 111 and the rear plate of the cylinder 110.
  • the horizontal partition 112 may be disposed to extend forward from the vertical partition 111 in the horizontal direction.
  • the detection module 150 and the load compensation module 160 may be disposed between the horizontal partition 112 and the top plate of the cylinder 110.
  • the thawing chamber 114 may be enclosed by a vertical partition 111, a horizontal partition 112, and a bottom plate of the cylinder 110 and two lateral side panels.
  • the upper electrode plate 140a may be disposed on a lower surface of the horizontal partition plate 112, and the lower electrode plate 140b may be disposed on an upper surface of the bottom plate of the cylindrical body 110.
  • the vertical partition 111 may be provided with a first through port 1112 to electrically connect the radio frequency generating module 130 to the upper electrode plate 140a via the first through port 1112.
  • the barrel 110 may further include a baffle 113 extending upward from the front side end of the horizontal partition 112 in the vertical direction to the top plate of the cylinder 110 to prevent the detection module 150 and the load compensation module 160 from being exposed, reducing the defrosting device 100. Aesthetics.
  • the rear plate of the cylinder 110 may be provided with a device air inlet 115
  • the vertical partition 111 of the rear side of the defrosting chamber 114 may be provided with a thawing air inlet 1111 to allow air outside the defrosting device 100 to pass through
  • the device air inlet 115 and the defrosting air inlet 1111 enter the defrosting chamber 114 of the defrosting device 100.
  • the side plates on the lateral sides of the thawing chamber 114 may be provided with a device air outlet 118 to allow the gas in the defrosting chamber 114 to be discharged to the outside of the defrosting device 100 via the device air outlet 118.
  • the device air inlet 115 and the defrosting air inlet 1111 of the defrosting device 100 are respectively disposed on lateral sides of the radio frequency generating module 130 to facilitate heat dissipation of the radio frequency generating module 130. In some alternative embodiments, the device air inlet 115 and the defrosting air inlet 1111 of the defrosting device 100 may be disposed on the same side of the radio frequency generating module 130.
  • the present invention provides a device air inlet 115 and a device air outlet 118 on the defrosting device 100.
  • the defrosting chamber 114 can be used to place the food material, so that the storage space in the defrosting device 100 can be fully utilized. .
  • the thawing device 100 can also include a tray 170.
  • the tray 170 is disposed in the defrosting chamber 114, and the object to be treated is placed on the tray 170.
  • the tray 170 can be configured to be controllably moved in the depth direction of the defrosting chamber 114 to facilitate placement and removal of the object to be treated.
  • the lower surface of the tray 170 may be spaced from the lower electrode plate 140b by a distance of 8 to 12 mm, such as 8 mm, 10 mm, 12 mm, to prevent friction with the lower electrode plate 140b during the pulling of the tray 170. .
  • Fig. 3 is a schematic structural view of the thawing apparatus of Fig. 1 in which the apparatus door of the defrosting apparatus is removed to show the internal structure of the cylinder.
  • the barrel 110 and the device door 120 can be provided with electromagnetic shielding features 117, respectively.
  • the electromagnetic shielding feature 117 disposed on the barrel 110 and the electromagnetic shielding feature 117 disposed on the device door 120 are electrically connected to reduce the amount of magnetic leakage outward of the defrosting device 100 when the device door 120 is closed.
  • the electromagnetic shielding feature 117 may be a conductive coating applied to the inner wall of the cylinder 110 and the inner surface of the device door 120 (facing the surface of the cylinder 110), abutting against the inner wall of the cylinder 110, and inside the device door 120.
  • the thawing device 100 can also include an elastic conductive loop 180.
  • the elastic conductive ring 180 can be disposed at the periphery of the forward opening of the defrosting chamber 114 to cause squeezing deformation when the device door 120 is closed, and closely fits the device door 120, that is, the elastic conductive ring 180 A seal is formed with the device door 120.
  • the electromagnetic shielding feature 117 disposed on the barrel 110 and the electromagnetic shielding feature 117 disposed on the device door 120 may be respectively disposed in conductive contact with the elastic conductive ring 180 to reduce the defrosting device 100 outward when the device door 120 is closed. The amount of magnetic leakage.
  • the elastomeric conductive collar 180 can be made of silicone, silicone fluoride, EPDM, fluorocarbon-silicone, and silver plated aluminum.
  • the resilient conductive ring 180 can be a hollow annular structure to closely conform to the device door 120 when the device door 120 is closed.
  • the flexible conductive ring 180 may have a width of 20 to 30 mm, such as 20 mm, 25 mm or 30 mm, to improve the sealing of the defrosting device 100.
  • the device air inlet 115, the defrosting air inlet 1111, and the device air outlet 118 of the defrosting device 100 may each be provided with a conductive metal mesh 190, which may be disposed to be electromagnetically shielded from the cylindrical body 110.
  • the feature 117 is electrically connected to reduce the amount of magnetic leakage of the defrosting device 100.
  • the frequency of the radio frequency signal generated by the radio frequency generating module 130 may be 40 to 42 MHz, for example, 40 MHz, 40.48 MHz, 40.68 MHz, 41 MHz, or 42 MHz, to reduce The thawing time of the material to be treated increases the temperature uniformity of the object to be treated and reduces the rate of juice loss.
  • the frequency of the radio frequency wave may be a predetermined fixed frequency in the range of 40.48-40.68 MHz to further reduce the thawing time of the object to be treated, improve the temperature uniformity of the object to be treated, and reduce the juice loss rate. .
  • the frequency of the radio frequency wave is 40.68MHz, the thawing effect is the best.
  • the power of the RF wave is 100 W, and the structure and the working flow of the thawing device 100 are the same.
  • the thawing effect test was performed on the defrosting apparatus 100 provided with the frequencies of the respective examples and the respective comparative examples.
  • the thawing time is from the beginning of the thawing, and the thawing device 100 determines the time when the thawing is completed (that is, the RF generating module stops working); the temperature uniformity: after the thawing is completed, the temperature of the four corners and the center point of the beef are respectively measured, and the calculation is performed.
  • the difference between the average value of the corners and the temperature of the center point, the temperature uniformity is the ratio of the difference to the average value; the rate of juice loss: the weight before the thawing of the beef and the weight after thawing, and the difference between the two is calculated. Value, juice loss rate is the ratio of this difference to the weight of the beef before thawing.
  • Example 1 19 0.4 0.35
  • Example 2 18 0.4 0.32
  • Example 3 18 0.3 0.29
  • Example 4 19 0.5 0.35
  • Example 5 20 0.5 0.40 Comparative example 1 25 0.6 0.35 Comparative example 2 twenty three 0.6 0.40
  • Example 5 According to the test results of Example 5 and Comparative Example 1 in Table 2, it can be seen that under the same test conditions, the present invention is applied under the same test conditions, in the case where the power of the radio frequency wave is the same, and the structure and the working flow of the thawing device 100 are the same.
  • the thawing device 100 of the RF frequency within the scope of the embodiment has a better thawing effect than the defrosting device 100 using the RF frequency of the prior art, the former having a 20% reduction in thawing time and a 17% increase in temperature uniformity.
  • the thawing time of the thawing apparatus 100 of each embodiment of the present invention is less than 20 minutes, the temperature uniformity is below 0.5, and the juice loss rate is below 0.40%.
  • the frequency of the radio frequency wave for example, the radio frequency is 40.48 to 40.68 MHz
  • the thawing time of the thawing device 100 can be reduced to 18 minutes or less, the temperature uniformity is increased to 0.4 or less, and the juice loss rate is reduced to 0.32% or less.
  • FIG. 5 is a flow chart of a thawing method for the defrosting apparatus 100, in accordance with one embodiment of the present invention.
  • the defrosting method of the thawing apparatus 100 of the present invention may include the following steps:
  • Step S502 The radio frequency generating module 130 generates a radio frequency signal.
  • Step S504 Acquire a radio frequency signal generated by the radio frequency generating module 130.
  • Step S506 The upper electrode plate 140a and the lower electrode plate 140b generate radio frequency waves of corresponding frequencies in the defrosting chamber 114 according to the radio frequency signal, and thaw the objects to be processed placed in the defrosting chamber 114.
  • Step S508 Acquire voltage and current of the incident wave signal connecting the electrical connection between the radio frequency generating module 130 and the upper electrode plate 140a, and the voltage and current of the reflected wave signal.
  • Step S510 Calculating a rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed.
  • Step S512 determining the thawing progress of the object to be processed.
  • FIG. 6 is a flow chart of a method of determining the defrosting progress of an object to be processed, in accordance with one embodiment of the present invention.
  • the method for determining the thawing progress of an object to be processed according to the present invention may include the following steps:
  • Step S602 Acquire a rate of change ⁇ / ⁇ t of the dielectric constant of the object to be processed.
  • Step S604 determining whether the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed is greater than or equal to the first rate threshold, and if yes, executing step S606; if not, executing step S602.
  • Step S606 The operating power of the radio frequency generating module 130 is reduced by 30% to 40%. In this step, the operating power of the radio frequency generating module 130 can be reduced by 35%.
  • Step S608 Acquire a rate of change ⁇ / ⁇ t of the dielectric constant of the object to be processed.
  • Step S610 determining whether the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed is less than or equal to the second rate threshold, and if yes, executing step S612; if not, executing step S608.
  • Step S612 The radio frequency generating module 130 stops working.
  • FIG. 7 is a schematic structural view of a refrigerator 10 according to an embodiment of the present invention, in which all outer door bodies of the refrigerator 10 are removed to show a compartment structure in the cabinet 200 of the refrigerator 10;
  • the number of the accommodation spaces of the refrigerator 10 may be three, which are the refrigerating compartment 210, the variable temperature compartment 220, and the freezing compartment 230, respectively, and are used for opening and closing the refrigerating compartment 210 and the temperature changing compartment, respectively.
  • the refrigerating door body 211 of the freezing compartment 230, the temperature changing door body 221, and the freezing door body 231 are provided in the temperature changing compartment 220.
  • the refrigerating compartment 210 refers to a storage compartment having a storage temperature of 0 to +8 ° C
  • the freezing compartment 230 refers to a storage temperature of the foodstuff.
  • the storage compartment is -20 ⁇ -15 ° C
  • the temperature change compartment 220 means that the storage temperature can be changed in a wide range (for example, the adjustment range can be above 4 ° C, and can be adjusted to above 0 ° C or below 0 ° C)
  • the storage compartment generally has a storage temperature that spans refrigeration, soft freezing (typically -4 to 0 °C) and freezing temperature, preferably -16 to +4 °C.
  • the refrigerator 10 may be an air-cooled refrigerator, and the temperature change compartment 220 may include a duct cover.
  • the air duct cover and the rear inner wall of the temperature change compartment 220 are formed to form a variable temperature air duct, and the air duct cover is provided with a temperature change air inlet for providing cooling capacity to the temperature change compartment 220.
  • the device air inlet 215 and the variable temperature air inlet of the thawing device 200 can be connected by a connecting tube to facilitate cooling of the defrosting chamber 114 of the defrosting device 100.
  • the projection of the device air inlet 115 of the defrosting device 100 in the thickness direction of the rear plate of the barrel 110 may be within the variable temperature air inlet to facilitate cooling of the defrosting chamber 114 of the defrosting device 100.
  • any one of the compartment door bodies may be provided with a defrosting switch 224 for controlling the start or stop of the defrosting procedure.
  • the RF generation module 130 can be configured to begin operation when the defrosting switch 224 is open; when the defrosting switch 224 is closed, the operation is stopped. During the thawing process, the user can terminate the defrosting procedure by turning off the defrosting switch 224.
  • At least one compartment door may also be provided with a buzzer (not shown) for prompting the user that the object to be treated has been thawed.
  • the buzzer may be configured to start working when the detecting module 150 determines that the thawing of the object to be processed is completed (the rate of change of the dielectric coefficient of the object to be treated drops to less than or equal to a second predetermined threshold); when the object to be processed is from the thawing chamber When the chamber 114 is taken out, the operation is stopped.
  • the refrigeration system of the refrigerator 10 can be configured to stop providing cooling for the containment space provided with the defrosting device 100 when the defrosting switch 224 is open; when the defrosting switch 224 is closed, it can be controlled to be provided with
  • the accommodating space of the thawing apparatus 100 provides a cooling amount (i.e., an original cooling program for operating the refrigerator 10) to reduce the influence of the refrigeration system of the refrigerator 10 on the temperature of the defrosting chamber 114 when the defrosting apparatus 100 defrosts the object to be treated.
  • the refrigeration system of the refrigerator 10 may include a compressor, a condenser, a capillary, and an evaporator for providing a cooling amount.
  • the distance between the thawing device 100 and the inner walls on the lateral sides of the accommodating space in which it is disposed may be 2 to 3 mm, for example, 2 mm, 2.5 mm, or 3 mm, so that the gas in the thawing compartment is discharged into the accommodating space.
  • the thawing device 100 can be fixed in the accommodating space by an interference fit or a snap fit with the inner wall on the vertical sides of the accommodating space.
  • Fig. 9 is a schematic structural view of the compressor chamber 241 of Fig. 8.
  • the cabinet 200 of the refrigerator 10 further defines a compressor chamber 240.
  • the compressor chamber 240 may include a main control board 243, a compressor 241, a condensate collecting structure 244, and an external power supply line (not shown) for controlling the operation of the refrigerator 10, which are sequentially disposed.
  • the refrigerator 10 may further include a power supply module 242 for powering the radio frequency generating module 130.
  • the power supply module 242 can be disposed in the compressor room 240 of the refrigerator 10 to facilitate heat dissipation and maintenance of the power supply module 242.
  • the rear plate of the cylinder 110 may be provided with a second wire opening 116 for electrically connecting from the power supply module 242 to the radio frequency generating module 130 via the second wire opening 116.
  • the power supply module 242 can be fixed to the upper wall of the compressor chamber 240 to facilitate electrical connection between the RF generating module 130 and the power supply module 242.
  • the power supply module 242 can be an ACDC converter.
  • the ACDC converter can be configured to be electrically coupled to the main control board 243 to power the RF generation module 130.
  • the ACDC converter can be disposed between the main control board 243 and the compressor 241 to make the electrical connection of the power supply module 242 and the main control board 243 more convenient. It will be understood by those skilled in the art that it is easy to connect the various components of the defrosting device 100 to the control circuitry of the refrigerator 10.
  • FIG. 10 is a detailed flowchart of a defrosting method for the refrigerator 10 according to an embodiment of the present invention.
  • the defrosting method of the refrigerator 10 of the present invention may include the following steps:
  • Step S1002 It is determined whether the defrosting switch 224 is turned on, and if so, step S1004 is performed; if not, step S1002 is performed.
  • Step S1004 The power supply module 242 starts to work, the refrigeration system stops providing cooling capacity for the accommodating space provided with the defrosting device 100, the RF generating module 130 generates a radio frequency signal of 40 to 42 MHz, and the detecting module 150 detects the connection RF generating module 130 and the upper plate. The incident wave signal and the reflected wave signal of the electrical connection of 140a. In this step, the radio frequency generating module 130 generates a radio frequency signal of 40.68 MHz.
  • Step S1006 Acquire voltage and current of the incident wave signal and voltage and current of the reflected wave signal, and calculate a rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed.
  • Step S1008 determining whether the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed is greater than or equal to the first rate threshold, and if so, executing step S1010; if not, executing step S1006.
  • Step S1010 The working power of the radio frequency generating module 130 is reduced by 30% to 40%. In this step, the operating power of the radio frequency generating module 130 can be reduced by 35%.
  • Step S1012 Acquire voltage and current of the incident wave signal and voltage and current of the reflected wave signal, and calculate a rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed.
  • Step S1014 determining whether the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed is less than or equal to the second rate threshold, and if so, executing step S1016; if not, executing step S1012.
  • Step S1016 The power supply module 242 stops working, the defrosting switch 224 is reset (ie, turned off), the original cooling program of the refrigerator 10 is run, and the buzzer starts to work.
  • Step S1018 determining whether the object to be processed is taken out from the defrosting chamber 114, and if so, executing step S1020; if not; executing step S1016.
  • Step S1020 The buzzer stops working.
  • step S1004 the following steps are further included:
  • Step S1007 Acquire the voltage and current of the incident wave signal and the voltage and current of the reflected wave signal, and calculate the load impedance Z 2 of the radio frequency generating module 130.
  • Step S1009 It is determined whether the difference between the load impedance Z 2 of the radio frequency generating module 130 and the output impedance Z 1 is less than the first impedance threshold. If yes, step S1011 is performed; if not, step S1013 is performed.
  • Step S1011 The motor of the load compensation module 160 operates to increase the impedance of the compensation unit. The process returns to step S1007.
  • Step S1013 It is determined whether the difference between the load impedance Z 2 of the radio frequency generating module 130 and the output impedance Z 1 is greater than the second impedance threshold. If yes, step S1015 is performed; if not, step S1007 is performed.
  • Step S1015 The motor of the load compensation module 160 operates to reduce the impedance of the compensation unit.
  • the process returns to step S1007.
  • the power supply module 242 stops working, that is, the power supply is stopped, and the radio frequency generating module 130, the detecting module 150, and the load compensation module 160 stop working, that is, when the object to be processed is
  • the detecting module 150 stops detecting the incident wave signal and the reflected wave signal connecting the electrical connection between the radio frequency generating module 130 and the upper plate 140 a, and the load compensation module 160 stopped working.
  • a thawing workflow of the refrigerator 10 may include: when the user opens the defrosting switch 224, the power supply module 242 starts to supply power, and the refrigeration system stops providing cooling capacity for the accommodating space provided with the defrosting device 100, and the radio frequency generating module 130 A 40.68 MHz RF signal is generated, and the detection module 150 and the load compensation module 160 begin to operate.
  • the detecting module 150 detects the incident wave signal and the reflected wave signal connecting the electrical connection between the RF generating module 130 and the upper plate, and calculates the load impedance Z 2 of the RF transmitting device 130 and the rate of change ⁇ / ⁇ t of the dielectric coefficient.
  • the operating power of the RF generating module 130 is reduced by 35%, and at the same time, the load impedance of the RF generating module 130 is used throughout the thawing workflow.
  • the load compensation module 160 adjusts the impedance of the compensation unit by the motor, thereby adjusting the load impedance Z 2 of the RF generating module 130 to generate the RF.
  • the difference between the load impedance Z 2 of the module 130 and the output impedance Z 1 is always greater than or equal to the first impedance threshold and less than or equal to the second predetermined threshold.
  • the power supply module 242 stops supplying power, runs the original cooling program of the refrigerator 10, and stops the radio frequency generating module 130, the detecting module 150, and the load compensation module 160. Work, the buzzer starts working. When the user takes out the object to be treated from the defrosting chamber 114, the buzzer stops working.

Abstract

一种用于解冻装置的解冻方法,包括产生射频信号,获取射频信号,解冻腔室(114)内的上、下电极板(140a、140b)根据射频信号在解冻腔室(114)内产生相应频率的射频波解冻待处理物,获取入射波信号和反射波信号的电压和电流,计算待处理物的介电常数的变化速率,判断待处理物的解冻进度。本方法通过介电常数的变化速率来判断解冻是否完成,比现有技术中通过检测待处理物的温度进行判断的方法,更加准确,可有效防止待处理物被过分解冻。

Description

用于解冻装置的解冻方法
本申请要求了申请日为2017年06月06日,申请号为201710419633.X,发明名称为“用于解冻装置的解冻方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及解冻领域,特别是涉及一种用于解冻装置的解冻方法。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户冷冻和解冻食物,现有技术一般通过在冰箱中设置加热装置或微波装置来解冻食物。
然而,通过加热装置来解冻食物,一般需要较长的解冻时间,且解冻时间和温度不易掌握,容易造成食物的水分蒸发和汁液流失,使食物的质量受到损失;通过微波装置来解冻食物,速度快、效率高,所以食物的营养成分损失很低,但是由于微波对水和冰的穿透和吸收有差别,且食物的内部物质分布不均匀,已融化的区域吸收的能量多,易产生解冻不均匀和局部过热的问题。综合考虑,在设计上需要一种可保证食物品质的用于解冻装置的解冻方法。
发明内容
本发明第一方面的一个目的是要提供一种可判断待处理物的解冻进度的用于解冻装置的解冻方法。
本发明第一方面的一个进一步的目的是要避免待处理物被过分解冻。
本发明第二方面的一个目的是要提供一种用于冰箱的解冻方法。
特别地,本发明提供了一种用于解冻装置的解冻方法,所述解冻装置包括限定有用于放置待处理物并具有前向开口的解冻腔室的筒体、设置于所述解冻腔室的前向开口处的用于开闭所述解冻腔室的装置门体、射频发生模块、分别水平地设置于所述解冻腔室的顶壁和底壁处且分别与所述射频发生模块电连接的上电极板和下电极板、以及设置为检测连接所述射频发生模块与所述上电极板的电连线的入射波信号和反射波信号的检测模块;所述解冻方法包括:
所述射频发生模块产生射频信号;
获取所述射频信号;
所述上电极板和下电极板根据所述射频信号在所述解冻腔室内产生相应频率的射频波,并解冻所述解冻腔室内的待处理物;
获取所述入射波信号的电压和电流、以及所述反射波信号的电压和电流;
计算所述待处理物的介电常数的变化速率;
判断所述待处理物的解冻进度。
可选地,所述判断所述待处理物的解冻进度的步骤包括:
获取所述待处理物的介电常数的变化速率;
判断所述待处理物的介电系数的变化速率是否大于等于第一速率阈值;
若是,所述射频发生模块的工作功率降低30%~40%。
可选地,所述判断所述待处理物的解冻进度的步骤包括:
获取所述待处理物的介电常数的变化速率;
判断所述待处理物的介电系数的变化速率是否下降至小于等于第二速率阈值;
若是,所述射频发生模块停止工作。
可选地,所述用于解冻装置的解冻方法还包括:
若所述待处理物的介电系数的变化速率是否下降至小于等于第二速率阈值,则发出视觉和/或听觉信号提醒用户;
若所述待处理物受控地从所述解冻腔室内取出,则停止发出所述视觉和/或听觉信号。
根据本发明的第二方面,提供了一种用于冰箱的解冻方法,所述冰箱包括限定有至少一个容纳空间的箱体、分别用于开闭所述容纳空间的间室门体和设置于一个所述容纳空间的解冻装置,所述解冻方法包括以上任一所述的用于解冻装置的解冻方法。
可选地,所述冰箱还包括用于为所述解冻装置供电的供电模块,且任一所述间室门体上设置有用于控制解冻程序启停的解冻开关;其中所述用于冰箱的解冻方法包括:
若所述解冻开关打开,则所述供电模块开始工作;
若所述解冻开关关闭,则所述供电模块停止工作。
可选地,所述用于冰箱的解冻方法还包括:
若所述解冻开关打开,则所述冰箱的制冷系统停止为设置有所述解冻装置的容纳空间提供冷量;
若所述解冻开关关闭,则所述冰箱的制冷系统可受控地为设置有所述解冻装置的容纳空间提供冷量。
本发明通过待处理物的介电系数的变化速率来判断待处理物的解冻进度,相比于现有技 术通过感测待处理物的温度来判断待处理物的解冻进度,判断更加准确。
进一步地,本发明通过检测模块计算待处理物的介电系数的变化速率,来判断待处理物的解冻进度。在本发明之前,本领域技术人员普遍认为,当待处理物的温度已较高(即待处理物的温度大于等于-7℃)时,热效应会显著衰减,因而待处理物不会被过分解冻。然而实际情况并非如此,通常射频解冻功率较大,例如大于100W,当待处理物的本身温度已较高时,待处理物极易被过度解冻。本申请的发明人创造性地认识到,当待处理物的温度已较高时,将射频发生模块的工作功率降低30~40%,可有效地防止待处理物被过分解冻。
进一步地,本发明通过待处理物的介电系数的变化速率判断解冻是否完成,相比于现有技术中通过感测待处理物的温度来判断解冻是否完成,判断更加准确,可进一步防止待处理物被过分解冻,且测试表明,由本发明的解冻装置解冻的待处理物,解冻完成时的温度一般为-4~-2℃,可避免当待处理物为肉品时,解冻产生血水。
附图说明
图1是根据本发明一个实施例的解冻装置的示意性结构图;
图2是沿图1中的剖切线A-A截取的示意性剖视图;
图3是图1中解冻装置的示意性结构图,其中该解冻装置的装置门体被去除,以示出筒体的内部结构;
图4是根据本发明一个实施例的待处理物的介电系数的变化速率曲线图;
图5是根据本发明一个实施例的用于解冻装置的解冻方法的流程图;
图6是根据本发明一个实施例的判断待处理物的解冻进度的方法的流程图;
图7是根据本发明一个实施例的冰箱的示意性结构图,其中该冰箱的所有外门体皆被去除,以示出冰箱的箱体内的间室结构;
图8是图7所示冰箱的示意性剖视图;
图9是图8中压缩机室的示意性结构图;
图10是根据本发明一个实施例的用于冰箱的解冻方法的详细流程图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
图1是根据本发明一个实施例的解冻装置100的示意性结构图。参见图1,解冻装置100可包括筒体110、装置门体120、射频发生模块130、以及上电极板140a和下电极板140b。 筒体110可包括顶板、底板、后板以及相对的两个横向侧板,其内可限定有具有前向开口的解冻腔室114,解冻腔室114用于放置待处理物。装置门体120可设置于解冻腔室114的前向开口处,用于打开或关闭解冻腔室114。装置门体120可通过适当方法与筒体110安装在一起,例如左开门、右开门或上开门。射频发生模块130可配置为产生射频信号(一般指频率在300KHz~300GHz的射频信号)。上电极板140a和下电极板140b可分别水平地设置于解冻腔室114的顶壁和底壁处,且分别与射频发生模块130电连接,以根据射频发生模块130产生的射频信号在解冻腔室114内产生相应参数的射频波,并解冻放置于解冻腔室114内的待处理物。在本发明中,上电极板140a为发射天线;下电极板140b为接收天线。在一些实施例中,可采用50欧姆的电连线使上电极板140a和下电极板140b分别与射频发生模块130电连接。
在一些实施例中,解冻装置100还可包括检测模块150。检测模块150可配置为检测连接射频发生模块130与上极板的电连线的入射波信号和反射波信号,并根据入射波信号的电压和电流,以及反射波信号的电压和电流,计算射频发生模块130的负载阻抗。负载阻抗的计算公式如下:
SWR=Z 2/Z 1                   (1)
Z 1=U 1/I 1=R 1+jX 1              (2)
Z 2=U 2/I 2=R 2+jX 2               (3)
在公式(1)、(2)、(3)中:SWR为驻波比;Z 1为输出阻抗;Z 2为负载阻抗;U 1为入射波电压;I 1为入射波电流;R 1为输出电阻;X 1为输出阻抗;U 2为反射波电压;I 2为反射波电流;R 2为输出电阻;X 2为负载阻抗(本领域技术人员均可理解地,输出阻抗为连接射频发生模块130与上电极板140a的电连线的阻抗,负载阻抗为待处理物的阻抗)。
解冻装置100还可包括负载补偿模块160,负载补偿模块160可包括一补偿单元和用于调节补偿单元的负载的电机。补偿单元可设置为与待处理物串联,即射频发生模块130的负载阻抗为待处理物的阻抗与补偿单元的阻抗的和。电机可配置为受控地增大或减小补偿单元的负载,进而增大或减小射频发生模块130的负载阻抗Z 2,并使射频发生模块130的负载阻抗Z 2与输出阻抗Z 1之差(即负载阻抗Z 2减去输出阻抗Z 1得到的数值)大于等于一第一阻抗阈值且小于等于一第二阻抗阈值,且第一阻抗阈值小于第二阻抗阈值,以提高待处理物的解冻效率。在一些优选实施例中,第一阻抗阈值为输出阻抗Z 1的-6~-4%,第二阻抗阈值为输出阻抗Z 1的4~6%。进一步优选地,第一阻抗阈值为输出阻抗Z 1的-5%,第二阻抗阈值 为输出阻抗Z 1的5%。换句话说,负载补偿模块可配置为使射频发生模块130的负载阻抗Z 2与输出阻抗Z 1之差的绝对值,在整个解冻过程中一直小于输出阻抗Z 1的5%,例如可为输出阻抗Z 1的1%、3%或5%。
检测模块150可配置为进一步根据射频发生模块130的负载阻抗Z 2,计算待处理物的介电系数及介电系数的变化速率。待处理物的介电系数的计算公式如下:
X 2=I/2πfC                 (4)
ε=4πKdC/S                (5)
在公式(4)、(5)中:f为射频波的频率;C为上电极板140a与下电极板140b构成的电容器的电容;ε为待处理物的介电系数;K为静电常数;d为上极板的厚度;S为上极板的面积。
待处理物的介电系数的变化速率可通过计算单位时间Δt内的介电系数ε的变化值Δε获得,其中单位时间Δt可为0.1秒~1秒,例如0.1秒、0.5秒或1秒。图4是根据本发明一个实施例的待处理物的介电系数的变化速率曲线图(纵坐标为待处理物的介电系数的变化速率Δε/Δt;横坐标为待处理物的解冻时间t,单位为min)。参见图4,在一些优选实施例中,射频发生模块130可配置为当待处理物的介电系数的变化速率Δε/Δt大于等于第一速率阈值时,其工作功率降低30%~40%,例如30%、35%或40%,以防止待处理物被过度解冻(本领域技术人员均可理解地,过度解冻为待处理物的温度大于0℃)。第一预设阈值可为15~20,例如15、17、18或20。射频发生模块130还可配置为当待处理物的介电系数的变化速率Δε/Δt下降至小于等于第二速率阈值时,停止工作。第二预设阈值可为1~2,例如1、1.5或2。解冻装置100的装置门体120上可设置有指示灯和/或报警器,以在待处理物解冻完成后发出视觉和/或听觉信号提醒用户取出待处理物,并在待处理物从解冻腔室114内取出时停止工作。
随着待处理物的温度变化,待处理物的介电系数也会随之变化,是本领域技术人员习知的,然而介电系数通常由专用仪器(例如介电系数测试仪)测得,且专用仪器占用空间大、成本高,不适用于尺寸较小的解冻装置。本发明通过检测连接射频发生模块130与上极板的电连线的入射波信号和反射波信号,经计算得出待处理物的介电系数,占用空间小且成本低,特别适用于解冻装置。
进一步地,本发明通过检测模块150计算待处理物的介电系数的变化速率,来判断待处理物的解冻进度。在本发明之前,本领域技术人员普遍认为,当待处理物的温度已较高(即 待处理物的温度大于等于-7℃)时,热效应会显著衰减,因而待处理物不会被过分解冻。然而实际情况并非如此,通常射频解冻功率较大,例如大于100W,当待处理物的本身温度已较高时,待处理物极易被过度解冻。本申请的发明人创造性地认识到,当待处理物的温度已较高时,将射频发生模块130的工作功率降低30~40%,可有效地防止待处理物被过分解冻。进一步地,本发明通过待处理物的介电系数的变化速率判断解冻是否完成,相比于现有技术中通过感测待处理物的温度来判断解冻是否完成,判断更加准确,可进一步防止待处理物被过分解冻,且测试表明,由本发明的解冻装置解冻的待处理物,解冻完成时的温度一般为-4~-2℃,可避免当待处理物为肉品时,解冻产生血水。
图2是沿图1中的剖切线A-A截取的示意性剖视图。参见图1和图2,筒体110还可包括用于限定筒体110的内部空间的竖向隔板111和水平隔板112。竖向隔板111可设置为自筒体110的顶板沿竖向方向延伸至筒体110的底板。射频发生模块130可设置于竖向隔板111和筒体110的后板之间。水平隔板112可设置为自竖向隔板111沿水平方向向前延伸。检测模块150和负载补偿模块160可设置于水平隔板112与筒体110的顶板之间。
解冻腔室114可由竖向隔板111、水平隔板112以及筒体110的底板和两个横向侧板围成。上电极板140a可设置于水平隔板112的下表面,下电极板140b可设置于筒体110的底板的上表面。竖向隔板111可开设有第一过线口1112,以使射频发生模块130经由第一过线口1112与上电极板140a电连接。筒体110还可包括自水平隔板112的前侧端部沿竖向方向向上延伸至筒体110的顶板的挡板113,以防止检测模块150以及负载补偿模块160外露,降低解冻装置100的美观性。
在一些实施例中,筒体110的后板可开设有装置进风口115,解冻腔室114的后侧的竖向隔板111可开设有解冻进风口1111,以使解冻装置100外的空气经由装置进风口115和解冻进风口1111进入至解冻装置100的解冻腔室114。解冻腔室114的横向两侧的侧板可开设有装置出风口118,以使解冻腔室114内的气体经由装置出风口118排出至解冻装置100外。
在一些优选实施例中,解冻装置100的装置进风口115和解冻进风口1111可分别设置于射频发生模块130的横向两侧,以便于射频发生模块130的散热。在一些替代性实施例中,解冻装置100的装置进风口115和解冻进风口1111可设置于射频发生模块130的同一侧。
本发明通过在解冻装置100上设置有装置进风口115和装置出风口118,在未接收到解冻指令时,解冻腔室114可用来放置食材,使解冻装置100内的储物空间得到充分的利用。
解冻装置100还可包括托盘170。托盘170设置于解冻腔室114内,且待处理物放置于 托盘170上。托盘170可配置为可受控地在解冻腔室114的进深方向上移动,以便于待处理物的放置和取出。在一些优选实施例中,托盘170的下表面与下电极板140b的距离可为8~12mm,例如8mm、10mm、12mm,以防止在托盘170抽拉的过程中,与下电极板140b产生摩擦。
图3是图1中解冻装置的示意性结构图,其中该解冻装置的装置门体被去除,以示出筒体的内部结构。参见图1和图3,筒体110和装置门体120可分别设置有电磁屏蔽特征117。设置于筒体110的电磁屏蔽特征117和设置于装置门体120的电磁屏蔽特征117可导电连接,以在装置门体120关闭时,减少解冻装置100向外的磁泄漏量。电磁屏蔽特征117可为涂覆于筒体110的内壁和装置门体120的内表面(朝向筒体110的表面)的导电涂层、贴靠于筒体110的内壁和装置门体120的内表面的导电金属网或形成于围成筒体110的各个板体之中和装置门体120中的导电金属网等。
在一些优选实施例中,解冻装置100还可包括弹性导电环圈180。弹性导电环圈180可设置于解冻腔室114的前向开口的周缘处,以使其在装置门体120关闭时发生挤压变形,与装置门体120紧密贴合,即弹性导电环圈180与装置门体120之间形成密封。设置于筒体110的电磁屏蔽特征117和设置于装置门体120的电磁屏蔽特征117可分别设置为与弹性导电环圈180导电接触,以在装置门体120关闭时,减少解冻装置100向外的磁泄漏量。在一些优选实施例中,弹性导电环圈180可由硅酮、硅酮氟化物、EPDM、碳氟化合物-硅氟化合物以及镀银铝制成。弹性导电环圈180可为空心环状结构,以使其在装置门体120关闭时,与装置门体120紧密贴合。弹性导电环圈180的宽度可为20~30mm,例如20mm、25mm或30mm,以提高解冻装置100的密封性。在一些优选实施例中,解冻装置100的装置进风口115、解冻进风口1111和装置出风口118可均设置有导电金属网190,导电金属网190可设置为与设置于筒体110的电磁屏蔽特征117导电连接,以减少解冻装置100的磁泄漏量。
特别地,在本发明中,射频发生模块130产生的射频信号的频率(即用于解冻待处理物的电磁波)可为40~42MHz,例如40MHz、40.48MHz、40.68MHz、41MHz或42MHz,以减少待处理物的解冻时间,提高待处理物的温度均匀性及降低其汁液流失率。在优选实施例中,射频波的频率可为40.48~40.68MHz范围内预设的一固定频率,以进一步地减少待处理物的解冻时间,提高待处理物的温度均匀性及降低其汁液流失率。其中,当射频波的频率为40.68MHz时,解冻效果最好。
为了进一步理解本发明,下面结合更具体的实施例对本发明的优选实施方案进行描述,但本发明并不限于这些实施例。
表1
Figure PCTCN2018089908-appb-000001
分别设置有上述实施例1-5及对比例1-2的射频频率的解冻装置100中,射频波的功率均为100W,解冻装置100的结构及其工作流程均相同。
对设置有各实施例和各对比例的频率的解冻装置100,进行解冻效果测试。测试说明:选用1kg形状规格相同,且初始温度为-18℃的牛肉,分别放置于各实施例和各对比例的解冻装置100内的托盘170上,分别测量各实施例和各对比例的解冻时间、温度均匀性和液汁流失率。其中解冻时间为自解冻开始,至解冻装置100判断解冻完成(即射频发生模块停止工作)的时间;温度均匀性:解冻完成后,分别测量牛肉四个边角及中心点的温度,并计算四个边角的平均值与中心点温度的差值,温度均匀性为该差值与该平均值的比值;汁液流失率:分别测量牛肉解冻前的重量和解冻后的重量,并计算二者差值,汁液流失率为该差值与牛肉解冻前的重量的比值。
根据实施例1-7和根据对比例1-2的解冻效果测试结果如表2。
表2
  解冻时间(min) 温度均匀性 汁液流失率(%)
实施例1 19 0.4 0.35
实施例2 18 0.4 0.32
实施例3 18 0.3 0.29
实施例4 19 0.5 0.35
实施例5 20 0.5 0.40
对比例1 25 0.6 0.35
对比例2 23 0.6 0.40
根据表2中实施例5和对比例1的测试结果可以看出,在射频波的功率相同,且解冻装置100的结构及其工作流程均相同的情况下,在同等测试条件下,应用本发明实施例范围内的射频频率的解冻装置100的解冻效果优于应用现有技术中的射频频率的解冻装置100,前者比后者的解冻时间减少了20%,温度均匀性提高了17%。
根据表2中实施例1-5的测试结果可以看出,应用本发明各实施例的解冻装置100的解冻时间均在20min以下,温度均匀性均在0.5以下,汁液流失率均在0.40%以下。通过进一步优选射频波的频率(例如射频频率在40.48~40.68MHz),可将解冻装置100的解冻时间减少至18min以下,温度均匀性提高至0.4以下,汁液流失率降低至0.32%以下。
图5是根据本发明一个实施例的用于解冻装置100的解冻方法的流程图。参见图5,本发明的解冻装置100的解冻方法可以包括如下步骤:
步骤S502:射频发生模块130产生射频信号。
步骤S504:获取射频发生模块130产生的射频信号。
步骤S506:上电极板140a和下电极板140b根据射频信号在解冻腔室114内产生相应频率的射频波,并解冻放置于解冻腔室114内的待处理物。
步骤S508:获取连接射频发生模块130与上电极板140a的电连线的入射波信号的电压和电流、以及反射波信号的电压和电流。
步骤S510:计算待处理物的介电系数的变化速率Δε/Δt。
步骤S512:判断待处理物的解冻进度。
图6是根据本发明一个实施例的判断待处理物的解冻进度的方法的流程图。参见图6,本发明的判断待处理物的解冻进度的方法可以包括如下步骤:
步骤S602:获取待处理物的介电常数的变化速率Δε/Δt。
步骤S604:判断待处理物的介电系数的变化速率Δε/Δt是否大于等于第一速率阈值,若是,执行步骤S606;若否,执行步骤S602。
步骤S606:射频发生模块130的工作功率降低30%~40%。在该步骤中,射频发生模块130的工作功率可降低35%。
步骤S608:获取待处理物的介电常数的变化速率Δε/Δt。
步骤S610:判断待处理物的介电系数的变化速率Δε/Δt是否小于等于第二速率阈值,若是,执行步骤S612;若否,执行步骤S608。
步骤S612:射频发生模块130停止工作。
基于前述任一实施例的解冻装置100,本发明还可提供一种冰箱10。图7是根据本发明一个实施例的冰箱10的示意性结构图,其中该冰箱10的所有外门体皆被去除,以示出冰箱10的箱体200内的间室结构;图8是图9所示冰箱10的示意性剖视图。参见图1、7和8,冰箱10一般性地可包括限定有至少一个容纳空间的箱体200、用于分别开闭各个容纳空间的取放口的间室门体,以及设置于一个容纳空间的解冻装置100。在图示实施例中,冰箱10的容纳空间的数量可为三个,分别为冷藏间室210、变温间室220和冷冻间室230,以及分别用于开闭冷藏间室210、变温间室220和冷冻间室230的冷藏门体211、变温门体221和冷冻门体231,解冻装置100设置于变温间室220中。
此外,也可说明的是,本领域技术人员均熟知地,冷藏间室210是指对食材的保藏温度为0~+8℃的储物间室;冷冻间室230是指对食材的保藏温度为-20~-15℃的储物间室;变温间室220是指可较大范围地(例如调整范围可在4℃以上,且可调至0℃以上或0℃以下) 改变其保藏温度的储物间室,一般其保藏温度可跨越冷藏、软冷冻(一般为-4~0℃)和冷冻温度,优选为-16~+4℃。
在一些实施例中,根据本发明的冰箱10可以为风冷冰箱,变温间室220可包括风道盖板。风道盖板与变温间室220的后向内壁夹置形成变温风道,且风道盖板上开设有变温进风口,用于为变温间室220提供冷量。
在一些优选实施例中,解冻装置200的装置进风口215与变温进风口可通过一连接管连接,以便于为解冻装置100的解冻腔室114进行制冷。在另一些优选实施例中,解冻装置100的装置进风口115在筒体110的后板的厚度方向上的投影可处于变温进风口内,以便于为解冻装置100的解冻腔室114进行制冷。
在一些实施例中,任意一个间室门体上可设置有用于控制解冻程序开始或停止的解冻开关224。射频发生模块130可配置为当解冻开关224打开时,开始工作;当解冻开关224关闭时,停止工作。在解冻过程中,用户可通过关闭解冻开关224来终止解冻程序。至少一个间室门体上还可设置有蜂鸣器(图中未示出),用来提示用户待处理物已解冻完成。蜂鸣器可配置为当检测模块150判断待处理物解冻完成时(待处理物的介电系数的变化速率下降至小于等于第二预设阈值时),开始工作;当待处理物从解冻腔室114中取出时,停止工作。在一些优选实施例中,冰箱10的制冷系统可配置为当解冻开关224打开时,停止为设置有解冻装置100的容纳空间提供冷量;当解冻开关224关闭时,可受控地为设置有解冻装置100的容纳空间提供冷量(即运行冰箱10的原始制冷程序),以减少在解冻装置100解冻待处理物时,冰箱10的制冷系统对解冻腔室114的温度的影响。其中冰箱10的制冷系统可包括压缩机、冷凝器、毛细管和用于提供冷量的蒸发器。
解冻装置100与设置其的容纳空间的横向两侧的内壁的距离可为2~3mm,例如2mm、2.5mm或3mm,以便于解冻间室内的气体排出至该容纳空间内。解冻装置100可通过与容纳空间竖向两侧的内壁过盈配合或卡接等方式固定在容纳空间中。
图9是图8中压缩机室241的示意性结构图。参见图9,冰箱10的箱体200还限定有压缩机室240。压缩机室240可包括依次设置的用于控制冰箱10运行的主控板243、压缩机241、冷凝水收集结构244以及用于为冰箱10运行供电的外接电源线(图中未示出)。在一些实施例中,冰箱10还可包括用于为射频发生模块130供电的供电模块242。供电模块242可设置于冰箱10的压缩机室240内,以便于供电模块242的散热和维修。筒体110的后板可开设有第二过线口116,以使从供电模块242经由第二过线口116与射频发生模块130电连接。供电模块242可固定于压缩机室240的上壁,以便于射频发生模块130与供电模块 242的电连接。供电模块242可为ACDC转换器。ACDC转换器可设置为与主控板243电连接,以为射频发生模块130供电。ACDC转换器可设置于主控板243与压缩机241之间,以使供电模块242与主控板243的电连接更加方便。本领域技术人员均可理解地,将解冻装置100的各个部件与冰箱10的控制电路相连是容易实现的。
图10是根据本发明一个实施例的用于冰箱10的解冻方法的详细流程图。参见图10,本发明的冰箱10的解冻方法可以包括如下步骤:
步骤S1002:判断解冻开关224是否打开,若是,执行步骤S1004;若否,执行步骤S1002。
步骤S1004:供电模块242开始工作,制冷系统停止为设置有解冻装置100的容纳空间提供冷量,射频发生模块130产生40~42MHz的射频信号,检测模块150检测连接射频发生模块130与上极板140a的电连线的入射波信号和反射波信号。在该步骤中,射频发生模块130产生40.68MHz的射频信号
步骤S1006:获取入射波信号的电压和电流以及反射波信号的电压和电流,计算待处理物的介电系数的变化速率Δε/Δt。
步骤S1008:判断待处理物的介电系数的变化速率Δε/Δt是否大于等于第一速率阈值,若是,执行步骤S1010;若否,执行步骤S1006。
步骤S1010:射频发生模块130的工作功率降低30%~40%。在该步骤中,射频发生模块130的工作功率可降低35%。
步骤S1012:获取入射波信号的电压和电流以及反射波信号的电压和电流,计算待处理物的介电系数的变化速率Δε/Δt。
步骤S1014:判断待处理物的介电系数的变化速率Δε/Δt是否小于等于第二速率阈值,若是,执行步骤S1016;若否,执行步骤S1012。
步骤S1016:供电模块242停止工作,解冻开关224复位(即关闭),运行冰箱10的原始制冷程序,蜂鸣器开始工作。
步骤S1018:判断待处理物是否从解冻腔室114内取出,若是,执行步骤S1020;若否;执行步骤S1016。
步骤S1020:蜂鸣器停止工作。
在步骤S1004之后还包括如下步骤:
步骤S1007:获取入射波信号的电压和电流以及反射波信号的电压和电流,计算射频发生模块130的负载阻抗Z 2
步骤S1009:判断射频发生模块130的负载阻抗Z 2与输出阻抗Z 1的差值是否小于第一 阻抗阈值,若是,执行步骤S1011;若否,执行步骤S1013。
步骤S1011:负载补偿模块160的电机工作,增大补偿单元的阻抗。返回步骤S1007。
步骤S1013:判断射频发生模块130的负载阻抗Z 2与输出阻抗Z 1的差值是否大于第二阻抗阈值,若是,执行步骤S1015;若否,执行步骤S1007。
步骤S1015:负载补偿模块160的电机工作,减小补偿单元的阻抗。返回步骤S1007。(本领域技术人员可以理解地,当程序运行至步骤S1016时,供电模块242停止工作,即停止供电,射频发生模块130、检测模块150以及负载补偿模块160均停止工作,即当待处理物的介电系数的变化速率Δε/Δt下降至小于等于第二速率阈值时,检测模块150停止检测连接射频发生模块130与上极板140a的电连线的入射波信号和反射波信号,负载补偿模块160停止工作。)
本发明一个实施例的冰箱10的一个解冻工作流程可包括:当用户打开解冻开关224时,供电模块242开始供电,制冷系统停止为设置有解冻装置100的容纳空间提供冷量,射频发生模块130产生40.68MHz的射频信号,检测模块150和负载补偿模块160开始工作。检测模块150检测连接射频发生模块130与上极板的电连线的入射波信号和反射波信号,并计算射频发射装置130的负载阻抗Z 2及介电系数的变化速率Δε/Δt。当待处理物的介电系数的变化速率Δε/Δt大于等于第一速率阈值时,射频发生模块130的工作功率降低35%,同时,在整个解冻工作流程中,当射频发生模块130的负载阻抗Z 2与输出阻抗Z 1之差小于第一阻抗阈值或大于第二阻抗阈值时,负载补偿模块160通过电机调节补偿单元的阻抗大小,进而调节射频发生模块130的负载阻抗Z 2,使射频发生模块130的负载阻抗Z 2与输出阻抗Z 1之差一直大于等于第一阻抗阈值且小于等于第二预设阈值。当待处理物的介电系数的变化速率Δε/Δt小于等于第二速率阈值时,供电模块242停止供电,运行冰箱10的原始制冷程序,射频发生模块130、检测模块150和负载补偿模块160停止工作,蜂鸣器开始工作。当用户从解冻腔室114内取出待处理物时,蜂鸣器停止工作。
上文所列出的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种用于解冻装置的解冻方法,所述解冻装置包括限定有用于放置待处理物并具有前向开口的解冻腔室的筒体、设置于所述解冻腔室的前向开口处的用于开闭所述解冻腔室的装置门体、射频发生模块、分别水平地设置于所述解冻腔室的顶壁和底壁处且分别与所述射频发生模块电连接的上电极板和下电极板、以及设置为检测连接所述射频发生模块与所述上电极板的电连线的入射波信号和反射波信号的检测模块;所述解冻方法包括:
    所述射频发生模块产生射频信号;
    获取所述射频信号;
    所述上电极板和下电极板根据所述射频信号在所述解冻腔室内产生相应频率的射频波,并解冻所述解冻腔室内的待处理物;
    获取所述入射波信号的电压和电流、以及所述反射波信号的电压和电流;
    计算所述待处理物的介电常数的变化速率;
    判断所述待处理物的解冻进度。
  2. 根据权利要求1所述的用于解冻装置的解冻方法,其中所述判断所述待处理物的解冻进度的步骤包括:
    获取所述待处理物的介电常数的变化速率;
    判断所述待处理物的介电系数的变化速率是否大于等于第一速率阈值;
    若是,所述射频发生模块的工作功率降低30%~40%。
  3. 根据权利要求1所述的用于解冻装置的解冻方法,其中所述判断所述待处理物的解冻进度的步骤包括:
    获取所述待处理物的介电常数的变化速率;
    判断所述待处理物的介电系数的变化速率是否下降至小于等于第二速率阈值;
    若是,所述射频发生模块停止工作。
  4. 根据权利要求3所述的用于解冻装置的解冻方法,还包括:
    若所述待处理物的介电系数的变化速率是否下降至小于等于第二速率阈值,则发出视觉和/或听觉信号提醒用户;
    若所述待处理物受控地从所述解冻腔室内取出,则停止发出所述视觉和/或听觉信号。
  5. 一种用于冰箱的解冻方法,所述冰箱包括限定有至少一个容纳空间的箱体、分别用于开闭所述容纳空间的间室门体和设置于一个所述容纳空间的解冻装置,所述解冻方法包括 如权利要求1所述的用于解冻装置的解冻方法。
  6. 根据权利要求5所述的用于冰箱的解冻方法,所述冰箱还包括用于为所述解冻装置供电的供电模块,且任一所述间室门体上设置有用于控制解冻程序启停的解冻开关;其中所述用于冰箱的解冻方法包括:
    若所述解冻开关打开,则所述供电模块开始工作;
    若所述解冻开关关闭,则所述供电模块停止工作。
  7. 根据权利要求6所述的用于冰箱的解冻方法,还包括:
    若所述解冻开关打开,则所述冰箱的制冷系统停止为设置有所述解冻装置的容纳空间提供冷量;
    若所述解冻开关关闭,则所述冰箱的制冷系统可受控地为设置有所述解冻装置的容纳空间提供冷量。
PCT/CN2018/089908 2017-06-06 2018-06-05 用于解冻装置的解冻方法 WO2018223946A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018280473A AU2018280473B2 (en) 2017-06-06 2018-06-05 Thawing method for thawing device
EP18813059.5A EP3617628B1 (en) 2017-06-06 2018-06-05 Thawing method for thawing apparatus
US16/706,348 US11197352B2 (en) 2017-06-06 2019-12-06 Thawing method for thawing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710419633.XA CN109000403B (zh) 2017-06-06 2017-06-06 用于解冻装置的解冻方法
CN201710419633.X 2017-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/706,348 Continuation US11197352B2 (en) 2017-06-06 2019-12-06 Thawing method for thawing device

Publications (1)

Publication Number Publication Date
WO2018223946A1 true WO2018223946A1 (zh) 2018-12-13

Family

ID=64565754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089908 WO2018223946A1 (zh) 2017-06-06 2018-06-05 用于解冻装置的解冻方法

Country Status (5)

Country Link
US (1) US11197352B2 (zh)
EP (1) EP3617628B1 (zh)
CN (1) CN109000403B (zh)
AU (1) AU2018280473B2 (zh)
WO (1) WO2018223946A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380268A (zh) * 2018-12-28 2020-07-07 博西华电器(江苏)有限公司 加热装置以及冰箱
CN111380265A (zh) * 2018-12-28 2020-07-07 博西华电器(江苏)有限公司 用于加热装置的工作方法、加热装置以及冰箱
US10771036B2 (en) 2017-11-17 2020-09-08 Nxp Usa, Inc. RF heating system with phase detection for impedance network tuning
US10785834B2 (en) 2017-12-15 2020-09-22 Nxp Usa, Inc. Radio frequency heating and defrosting apparatus with in-cavity shunt capacitor
US10917948B2 (en) 2017-11-07 2021-02-09 Nxp Usa, Inc. Apparatus and methods for defrosting operations in an RF heating system
US10952289B2 (en) 2018-09-10 2021-03-16 Nxp Usa, Inc. Defrosting apparatus with mass estimation and methods of operation thereof
CN112556294A (zh) * 2019-09-25 2021-03-26 博西华电器(江苏)有限公司 加热装置及包括其的冰箱
US11039511B2 (en) 2018-12-21 2021-06-15 Nxp Usa, Inc. Defrosting apparatus with two-factor mass estimation and methods of operation thereof
US11166352B2 (en) 2018-12-19 2021-11-02 Nxp Usa, Inc. Method for performing a defrosting operation using a defrosting apparatus
CN113915936A (zh) * 2020-12-02 2022-01-11 海信(山东)冰箱有限公司 冰箱及其控制方法
EP3926262A4 (en) * 2019-02-19 2022-04-20 Qingdao Haier Refrigerator Co., Ltd. REFRIGERATION AND FREEZER
EP3926261A4 (en) * 2019-02-19 2022-05-04 Qingdao Haier Special Refrigerator Co., Ltd REFRIGERATION AND FREEZING DEVICE
US11382190B2 (en) 2017-12-20 2022-07-05 Nxp Usa, Inc. Defrosting apparatus and methods of operation thereof
US11570857B2 (en) 2018-03-29 2023-01-31 Nxp Usa, Inc. Thermal increase system and methods of operation thereof
US11800608B2 (en) 2018-09-14 2023-10-24 Nxp Usa, Inc. Defrosting apparatus with arc detection and methods of operation thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3280224A1 (en) 2016-08-05 2018-02-07 NXP USA, Inc. Apparatus and methods for detecting defrosting operation completion
CN109000407B (zh) * 2017-06-06 2020-05-26 青岛海尔股份有限公司 冰箱
CN209893774U (zh) * 2019-01-04 2020-01-03 青岛海尔股份有限公司 冷藏冷冻装置
JP2020145114A (ja) * 2019-03-07 2020-09-10 シャープ株式会社 高周波解凍装置
CN112996158B (zh) * 2019-12-13 2022-04-29 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置
KR20210099265A (ko) * 2020-02-04 2021-08-12 삼성전자주식회사 냉장고
CN113519753B (zh) * 2020-04-22 2023-10-24 青岛海尔电冰箱有限公司 用于加热装置的解冻方法及加热装置
CN113676155A (zh) * 2020-05-13 2021-11-19 恩智浦美国有限公司 具有阻抗匹配网络的双室解冻设备及其操作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156116A (ja) * 2000-11-17 2002-05-31 Sanyo Electric Co Ltd 調理器
CN101751055A (zh) * 2008-12-04 2010-06-23 乐金电子(天津)电器有限公司 微波炉的食物解冻方法
CN106288626A (zh) * 2016-08-29 2017-01-04 合肥华凌股份有限公司 一种解冻装置、冰箱及其解冻控制方法
US20170055769A1 (en) * 2015-09-01 2017-03-02 Illinois Tool Works, Inc. Multi-functional rf capacitive heating food preparation device
WO2017065533A1 (ko) * 2015-10-13 2017-04-20 삼성전자 주식회사 조리 장치 및 이의 제어 방법
CN207081265U (zh) * 2017-06-06 2018-03-09 青岛海尔股份有限公司 冰箱
CN207095160U (zh) * 2017-06-06 2018-03-13 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN207095130U (zh) * 2017-06-06 2018-03-13 青岛海尔股份有限公司 冰箱

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758452A (en) * 1954-12-03 1956-08-14 Whirlpool Seeger Corp Frozen foods defrosting chamber
US3976122A (en) * 1975-03-31 1976-08-24 Mcgraw-Edison Company Combination refrigerator-thawer apparatus
US4507530A (en) * 1983-08-15 1985-03-26 General Electric Company Automatic defrost sensing arrangement for microwave oven
US6469286B1 (en) * 1997-11-13 2002-10-22 Matsushita Electric Industrial Co., Ltd. Variable-impedance unit, microwave device using the unit, and microwave heater
US6657173B2 (en) * 1998-04-21 2003-12-02 State Board Of Higher Education On Behalf Of Oregon State University Variable frequency automated capacitive radio frequency (RF) dielectric heating system
JP4121707B2 (ja) * 1998-09-02 2008-07-23 株式会社前川製作所 食品の非接触型品温測定装置
US7119306B2 (en) * 2003-01-09 2006-10-10 Premark Feg L.L.C. Food thawing cabinet and related methods
JP4120416B2 (ja) * 2003-02-13 2008-07-16 松下電器産業株式会社 高周波加熱装置
US7891205B2 (en) * 2007-05-17 2011-02-22 Electrolux Home Products, Inc. Refrigerator defrosting and chilling compartment
KR20110035032A (ko) * 2009-09-29 2011-04-06 엘지전자 주식회사 냉장고 및 그 운전 방법
PL2773227T3 (pl) * 2011-11-04 2017-07-31 Arçelik Anonim Sirketi Chłodziarka mająca funkcję rozmrażania zamrożonych artykułów spożywczych
US20160128138A1 (en) * 2013-06-28 2016-05-05 Koninklijke Philips N.V. Method and device for processing frozen food
WO2015140013A1 (en) * 2014-03-17 2015-09-24 Koninklijke Philips N.V. Method and apparatus for controlling a cooking process of food
CN106387607A (zh) * 2016-08-29 2017-02-15 合肥华凌股份有限公司 解冻装置和冰箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156116A (ja) * 2000-11-17 2002-05-31 Sanyo Electric Co Ltd 調理器
CN101751055A (zh) * 2008-12-04 2010-06-23 乐金电子(天津)电器有限公司 微波炉的食物解冻方法
US20170055769A1 (en) * 2015-09-01 2017-03-02 Illinois Tool Works, Inc. Multi-functional rf capacitive heating food preparation device
WO2017065533A1 (ko) * 2015-10-13 2017-04-20 삼성전자 주식회사 조리 장치 및 이의 제어 방법
CN106288626A (zh) * 2016-08-29 2017-01-04 合肥华凌股份有限公司 一种解冻装置、冰箱及其解冻控制方法
CN207081265U (zh) * 2017-06-06 2018-03-09 青岛海尔股份有限公司 冰箱
CN207095160U (zh) * 2017-06-06 2018-03-13 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN207095130U (zh) * 2017-06-06 2018-03-13 青岛海尔股份有限公司 冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617628A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10917948B2 (en) 2017-11-07 2021-02-09 Nxp Usa, Inc. Apparatus and methods for defrosting operations in an RF heating system
US10771036B2 (en) 2017-11-17 2020-09-08 Nxp Usa, Inc. RF heating system with phase detection for impedance network tuning
US10785834B2 (en) 2017-12-15 2020-09-22 Nxp Usa, Inc. Radio frequency heating and defrosting apparatus with in-cavity shunt capacitor
US11382190B2 (en) 2017-12-20 2022-07-05 Nxp Usa, Inc. Defrosting apparatus and methods of operation thereof
US11570857B2 (en) 2018-03-29 2023-01-31 Nxp Usa, Inc. Thermal increase system and methods of operation thereof
US10952289B2 (en) 2018-09-10 2021-03-16 Nxp Usa, Inc. Defrosting apparatus with mass estimation and methods of operation thereof
US11800608B2 (en) 2018-09-14 2023-10-24 Nxp Usa, Inc. Defrosting apparatus with arc detection and methods of operation thereof
US11166352B2 (en) 2018-12-19 2021-11-02 Nxp Usa, Inc. Method for performing a defrosting operation using a defrosting apparatus
US11039511B2 (en) 2018-12-21 2021-06-15 Nxp Usa, Inc. Defrosting apparatus with two-factor mass estimation and methods of operation thereof
CN111380268A (zh) * 2018-12-28 2020-07-07 博西华电器(江苏)有限公司 加热装置以及冰箱
CN111380265A (zh) * 2018-12-28 2020-07-07 博西华电器(江苏)有限公司 用于加热装置的工作方法、加热装置以及冰箱
CN111380268B (zh) * 2018-12-28 2023-07-14 博西华电器(江苏)有限公司 加热装置以及冰箱
EP3926262A4 (en) * 2019-02-19 2022-04-20 Qingdao Haier Refrigerator Co., Ltd. REFRIGERATION AND FREEZER
EP3926261A4 (en) * 2019-02-19 2022-05-04 Qingdao Haier Special Refrigerator Co., Ltd REFRIGERATION AND FREEZING DEVICE
CN112556294A (zh) * 2019-09-25 2021-03-26 博西华电器(江苏)有限公司 加热装置及包括其的冰箱
CN112556294B (zh) * 2019-09-25 2023-12-22 博西华电器(江苏)有限公司 加热装置及包括其的冰箱
CN113915936A (zh) * 2020-12-02 2022-01-11 海信(山东)冰箱有限公司 冰箱及其控制方法

Also Published As

Publication number Publication date
US11197352B2 (en) 2021-12-07
US20200120765A1 (en) 2020-04-16
EP3617628B1 (en) 2024-04-17
CN109000403B (zh) 2020-05-26
CN109000403A (zh) 2018-12-14
AU2018280473A1 (en) 2019-12-19
AU2018280473B2 (en) 2021-05-20
EP3617628A1 (en) 2020-03-04
EP3617628A4 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
WO2018223946A1 (zh) 用于解冻装置的解冻方法
WO2018223939A1 (zh) 冰箱
WO2018223949A1 (zh) 冰箱
CN109000396B (zh) 用于冰箱的解冻方法及冰箱
WO2018223947A1 (zh) 冰箱
CN109000397B (zh) 用于解冻装置的解冻方法
WO2018223948A1 (zh) 用于解冻装置的解冻方法
US11473829B2 (en) Thawing method for thawing device
CN109000417B (zh) 解冻装置及具有该解冻装置的冰箱
CN109000419B (zh) 解冻装置及具有该解冻装置的冰箱
CN109000401B (zh) 冰箱
CN109000420B (zh) 解冻装置及具有该解冻装置的冰箱
CN109000400B (zh) 对开门冰箱
CN109000408B (zh) 冰箱
CN109000404B (zh) 冰箱
CN108991339B (zh) 用于解冻装置的解冻方法
CN109000410B (zh) 冰箱
CN109000411B (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018813059

Country of ref document: EP

Effective date: 20191126

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018280473

Country of ref document: AU

Date of ref document: 20180605

Kind code of ref document: A