WO2018223947A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2018223947A1
WO2018223947A1 PCT/CN2018/089910 CN2018089910W WO2018223947A1 WO 2018223947 A1 WO2018223947 A1 WO 2018223947A1 CN 2018089910 W CN2018089910 W CN 2018089910W WO 2018223947 A1 WO2018223947 A1 WO 2018223947A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
thawing
treated
weight
generating module
Prior art date
Application number
PCT/CN2018/089910
Other languages
English (en)
French (fr)
Inventor
徐同
朱小兵
李鹏
王铭
戴建斌
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2018223947A1 publication Critical patent/WO2018223947A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • A23B4/07Thawing subsequent to freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices

Definitions

  • the present invention relates to the field of thawing, and in particular to a refrigerator having a quick thawing function.
  • the quality of the food is maintained during the freezing process, but the frozen food needs to be thawed before processing or eating.
  • the prior art generally thaws food by providing a heating device or a microwave device in the refrigerator.
  • the thawed food by the heating device generally requires a long thawing time, and the thawing time and temperature are difficult to grasp, which easily causes the water evaporation and juice loss of the food, and the quality of the food is lost; the food is thawed by the microwave device.
  • Fast and efficient so the nutrient loss of food is very low, but due to the difference in the penetration and absorption of water and ice by microwave, and the internal distribution of food is uneven, the melted area absorbs more energy and is prone to thaw. Uneven and local overheating problems.
  • Comprehensive considerations require a refrigerator with high thawing efficiency, uniform thawing and guaranteed food quality.
  • a further object of the invention is to improve the thawing efficiency of the refrigerator.
  • Another further object of the invention is to prevent the material to be treated from being decomposed.
  • the present invention provides a refrigerator including a case defining at least one receiving space, a compartment door for respectively opening and closing the at least one receiving space, and a defrosting device disposed in one of the receiving spaces,
  • the thawing device includes:
  • a barrel defining a defrosting chamber having a forward opening, the defrosting chamber for placing a substance to be treated;
  • a device door disposed at a forward opening of the defrosting chamber for opening and closing the defrosting chamber
  • a radio frequency generating module configured to generate a radio frequency signal
  • the upper electrode plate and the lower electrode plate are respectively horizontally disposed at the top wall and the bottom wall of the defrosting chamber, and are respectively electrically connected to the radio frequency generating module to generate in the defrosting chamber according to the radio frequency signal a radio frequency wave of a corresponding frequency, and thawing the object to be treated in the defrosting chamber;
  • the tray is provided with at least one load cell configured to sense the weight of the object to be processed and determine the operating power of the radio frequency generating module.
  • the number of the at least one load cell is one; and the one load cell is disposed at a center of the tray; or
  • the number of the at least one load cell is a plurality; and the plurality of load cells are evenly distributed on the tray.
  • the radio frequency generating module is configured to:
  • the refrigerator further includes:
  • a thawing switch disposed on any of the compartment door bodies for controlling start and stop of the defrosting procedure; and the weighing sensor is configured to:
  • the radio frequency generating module is further configured to:
  • the operating power is 75 to 95% of the rated power
  • the operating power is rated power
  • the first weight threshold is greater than zero, the first weight threshold is less than the second weight threshold, the second weight threshold is less than the third weight threshold, and the preset range is greater than or equal to the first The weight threshold is less than or equal to the third weight threshold.
  • the refrigerator is configured to:
  • a visual and/or audible signal is issued to alert the user to overload.
  • the thawing device further includes:
  • a detecting module configured to detect an incident wave signal and a reflected wave signal connecting the electrical connection between the radio frequency generating module and the upper electrode plate, and according to the voltage and current of the incident wave signal and the reflected wave signal The voltage and current are used to calculate the load impedance of the RF generating module.
  • the thawing device further includes:
  • the load compensation module is configured to controllably increase or decrease the load impedance of the radio frequency generating module, and the difference between the load impedance and the output impedance of the radio frequency generating module is greater than or equal to a predetermined impedance threshold and less than or equal to one
  • the impedance threshold is preset to increase the thawing efficiency of the object to be treated.
  • the detecting module is configured to further calculate a rate of change of the dielectric coefficient of the object to be processed according to a load impedance of the radio frequency generating module to determine a thawing progress of the object to be processed.
  • the radio frequency generating module is configured to:
  • the current operating power is reduced by 30% to 40% to prevent the object to be treated from being excessively thawed;
  • the invention determines the working power of the radio frequency generating module by the weight of the object to be treated, has better thawing effect, and avoids unnecessary energy waste.
  • the invention reminds the user of the no-load when the weight of the object to be treated is too small, thereby avoiding the occurrence of the "air-burning" phenomenon, that is, avoiding the work of the radio frequency generating module under no-load, and reducing the failure rate of the freezing device. And avoid undesired energy consumption.
  • the weight of the object to be treated is too large, the user is reminded of the overload, and the phenomenon that the temperature difference is excessively reduced (greater than 3 ° C) due to excessive temperature difference between the inside and the outside of the object to be treated is avoided.
  • the present invention calculates the load impedance of the radio frequency generating module by detecting the incident wave signal and the reflected wave signal connecting the electrical connection between the radio frequency generating module and the upper plate, and has small occupied space and low cost, and is particularly suitable for the refrigerator.
  • the thawing device in the middle.
  • the load compensation module causes the difference between the load impedance and the output impedance of the RF generating module to be within a predetermined range (greater than or equal to a first impedance threshold and less than or equal to a second impedance threshold), thereby improving the thawing efficiency of the object to be processed.
  • the present invention determines the rate of change of the dielectric coefficient of the object to be processed by the detecting module to determine the thawing progress of the object to be processed.
  • the temperature of the object to be treated is already high (ie, the temperature of the object to be treated is greater than or equal to -7 ° C)
  • the thermal effect is significantly attenuated, so that the object to be treated is not decomposed. .
  • the RF thawing power is large, for example, greater than 100 W.
  • the inventors of the present application have creatively recognized that when the temperature of the object to be treated is already high, the operating power of the radio frequency generating module is reduced by 30 to 40%, which can effectively prevent the object to be treated from being decomposed. Further, the present invention determines whether the defrosting is completed by the rate of change of the dielectric coefficient of the object to be treated. Compared with the prior art, by sensing the temperature of the object to be processed, it is judged whether the thawing is completed, and the judgment is more accurate, and the refusal can be further prevented.
  • the treated material is decomposed, and the test indicates that the temperature of the object to be treated which is thawed by the thawing device of the present invention is generally -4 to -2 ° C when the thawing is completed, and it is possible to prevent the blood from being thawed when the object to be treated is meat.
  • FIG. 1 is a schematic structural view of a refrigerator in which all outer door bodies of the refrigerator are removed to show a compartment structure in the refrigerator case, according to an embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view of the refrigerator shown in Figure 1;
  • Figure 3 is a schematic partial enlarged view of a region A in Figure 2;
  • Figure 4 is a schematic cross-sectional view taken along line B-B of Figure 3;
  • FIG. 5 is a graph showing a rate of change of a dielectric coefficient of an object to be processed according to an embodiment of the present invention
  • Figure 6 is a schematic structural view of the compressor chamber of Figure 2;
  • Figure 7 is a schematic structural view of the thawing device of Figure 3, wherein the device door of the thawing device is removed to show the internal structure of the cylinder;
  • FIG. 8 is a flow chart of a defrosting method for a refrigerator in accordance with one embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a refrigerator 10 according to an embodiment of the present invention, in which all outer door bodies of the refrigerator 10 are removed to show a compartment structure in the cabinet 100 of the refrigerator 10;
  • FIG. 2 is a view A schematic cross-sectional view of the refrigerator 10 shown in Fig. 1;
  • Fig. 3 is a schematic partial enlarged view of a region A in Fig. 2.
  • the refrigerator 10 may generally include a cabinet 100 defining at least one receiving space, a compartment door for respectively opening and closing the pick-and-place ports of the respective receiving spaces, and a housing provided in one receiving space. Thaw device 200.
  • the thawing device 200 may include a barrel 210, a device door body 220, a radio frequency generating module 230, and an upper electrode plate 240a and a lower electrode plate 240b.
  • the barrel 210 can include a top plate, a bottom plate, a back plate, and two opposing lateral side plates, which can define a defrosting chamber 214 having a forward opening for placing the object to be treated.
  • the device door 220 can be disposed at a forward opening of the defrosting chamber 214 for opening or closing the defrosting chamber 214.
  • the device door 220 can be mounted to the barrel 210 by a suitable method, such as a left open door, a right open door, or an upper open door.
  • the RF generation module 230 can be configured to generate a radio frequency signal (generally referred to as a radio frequency signal having a frequency between 300 KHz and 300 GHz).
  • the upper electrode plate 240a and the lower electrode plate 240b are respectively horizontally disposed at the top wall and the bottom wall of the defrosting chamber 214, and are respectively electrically connected to the radio frequency generating module 230 to be in the defrosting cavity according to the radio frequency signal generated by the radio frequency generating module 230.
  • a radio frequency wave of a corresponding parameter is generated in the chamber 214, and the object to be treated placed in the defrosting chamber 214 is thawed.
  • the upper electrode plate 240a is a transmitting antenna; the lower electrode plate 240b is a receiving antenna.
  • the upper electrode plate 240a and the lower electrode plate 240b are electrically connected to the radio frequency generating module 230, respectively, using a 50 ohm electrical connection.
  • a tray 270 may also be disposed in the thawing chamber 214 for carrying the object to be treated.
  • the tray 270 may be provided with at least one load cell 271 configured to sense the weight of the object to be processed and confirm the operating power of the RF generating module 230 according to the weight of the object to be processed.
  • the invention determines the working power of the radio frequency generating module by the weight of the object to be treated, has better thawing effect, and avoids unnecessary energy waste.
  • the number of the load cells 271 may be one, two or two or the like.
  • the number of load cells 271 is one, and one load cell 271 is disposed at the center of the tray 270. In other embodiments, the number of load cells 271 is plural (two, three or more, etc.), and a plurality of load cells 271 are evenly distributed on the tray 270 so that the tray 270 can be divided into A plurality of areas of equal area, and each area is provided with a load cell 271. In this embodiment, the weight of the object to be treated is an average of the weights sensed in the plurality of load cells 271.
  • the radio frequency generating module 230 can be configured to start working when the weight of the object to be processed is within a predetermined range; when the weight of the object to be processed is not within the preset range, the work does not start.
  • the radio frequency generating module 230 can be further configured to be greater than or equal to a first weight threshold and less than a second weight threshold, and its operating power is 75-95% of its rated power, for example, 75%, 80.
  • the operating power is its rated power, wherein the first weight threshold is greater than zero, the first weight threshold The second weight threshold is less than the third weight threshold, and the preset range is greater than or equal to the first weight threshold being less than or equal to the third weight threshold.
  • the first weight threshold may be 0.4 to 0.6 kg, such as 0.4 kg, 0.5 kg or 0.6 kg; the second weight threshold may be 0.9 to 1.1 kg, such as 0.9 kg, 1.0 kg or 1.1 kg; The threshold may be 1.4 to 1.6 kg, such as 1.4 kg, 1.5 kg or 1.6 kg; the radio frequency generating module 230 may have a rated power of 100 to 150 W, such as 100 W, 120 W, 130 W or 150 W.
  • the refrigerator 10 may be configured to issue a visual and/or audible signal to alert the user to no load when the weight of the object to be treated is less than the first weight threshold; when the weight of the object to be treated is greater than the third weight threshold, A visual and/or audible signal is sent to alert the user to an overload.
  • An indicator light and/or an alarm may be disposed on the compartment door of the refrigerator 10 to provide visual and/or audible when the object to be treated is too small (less than the first weight threshold) or too large (greater than the third weight threshold). The signal alerts the user.
  • the present invention avoids the occurrence of the "air-burning" phenomenon when the weight of the object to be treated is too small, thereby avoiding the occurrence of the "air-burning" phenomenon, that is, the operation of the radio frequency generating module 230 is avoided, and the freezing device 200 is lowered. Failure rate and avoiding undesired energy consumption.
  • the weight of the object to be treated is too large, the user is reminded of the overload, and the phenomenon that the temperature difference is excessively reduced (greater than 3 ° C) due to excessive temperature difference between the inside and the outside of the object to be treated is avoided.
  • the defrosting device 200 can also include a detection module 250.
  • the detecting module 250 can be configured to detect an incident wave signal and a reflected wave signal connecting the electrical connection between the RF generating module 230 and the upper plate, and calculate the RF according to the voltage and current of the incident wave signal and the voltage and current of the reflected wave signal.
  • the load impedance of module 230 occurs. The load impedance is calculated as follows:
  • SWR is the standing wave ratio
  • Z 1 is the output impedance
  • Z 2 is the load impedance
  • U 1 is the incident wave voltage
  • I 1 is the incident wave current
  • R 1 is Output resistance
  • X 1 is the output reactance
  • U 2 is the reflected wave voltage
  • I 2 is the reflected wave current
  • R 2 is the load resistance
  • X 2 is the load reactance
  • the thawing device 200 can also include a load compensation module 260.
  • the load compensation module 260 can include a compensation unit and a motor for adjusting the load of the compensation unit.
  • the compensation unit may be arranged in series with the object to be processed, that is, the load impedance of the RF generating module 230 is the sum of the impedance of the object to be processed and the impedance of the compensation unit.
  • Controlled motors may be configured to increase or decrease the load compensation unit, and thus increase or decrease the load impedance of the RF generation module 230 Z 2, and the occurrence of radio frequency load impedance Z 2 of the module 230 and the output impedance Z 1 of
  • the difference ie, the value obtained by subtracting the output impedance Z 1 from the load impedance Z 2
  • the first impedance threshold is less than the second impedance threshold to improve the object to be processed. Thawing efficiency.
  • the load compensation module can be configured such that the absolute value of the difference between the load impedance Z 2 of the RF generation module 230 and the output impedance Z 1 is less than 5% of the output impedance Z 1 throughout the thawing process, for example, can be an output 1%, 3% or 5% of the impedance Z 1 .
  • the detecting module 250 can be configured to further calculate the dielectric constant of the object to be processed and the rate of change of the dielectric coefficient according to the load impedance Z 2 of the radio frequency generating module 230 to determine the thawing progress of the object to be processed.
  • the formula for calculating the dielectric constant of the object to be treated is as follows:
  • f is the frequency of the radio frequency wave
  • C is the capacitance of the capacitor formed by the upper electrode plate 240a and the lower electrode plate 240b
  • is the dielectric constant of the object to be treated
  • K is the electrostatic constant
  • d is the thickness of the upper plate
  • S is the area of the upper plate.
  • the rate of change of the dielectric coefficient of the object to be treated can be obtained by calculating the change value ⁇ of the dielectric coefficient ⁇ per unit time ⁇ t, wherein the unit time ⁇ t can be 0.1 second to 1 second, for example, 0.1 second, 0.5 second or 1 second.
  • 5 is a graph showing a rate of change of a dielectric constant of an object to be processed according to an embodiment of the present invention (the ordinate is a rate of change of the dielectric coefficient of the object to be processed ⁇ / ⁇ t; and the abscissa is a thawing time of the object to be processed t , the unit is min). Referring to FIG.
  • the radio frequency generating module 230 can be configured to reduce the current operating power by 30% to 40 when the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed is greater than or equal to the first rate threshold. %, for example 30%, 35% or 40%, to prevent the object to be treated from being excessively thawed (as understood by those skilled in the art, the temperature of excessively thawed to be treated is greater than 0 °C).
  • the first rate threshold can be 15-20, such as 15, 17, 18 or 20.
  • the radio frequency generating module 230 may be further configured to stop the operation when the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed falls below a second rate threshold.
  • the second rate threshold can be from 1 to 2, such as 1, 1.5 or 2.
  • any one of the compartment door bodies may be provided with a defrosting switch 124 for controlling the start or stop of the defrosting procedure.
  • the load cell can be configured to begin operation when the defrosting switch 124 is open and the device door 220 is closed; when the RF generating module 230 begins to operate, the operation is stopped.
  • the user can terminate the defrosting procedure by turning off the defrosting switch 124.
  • a buzzer (not shown) may be disposed on any of the compartment door bodies to prompt the user that the object to be treated has been thawed.
  • the buzzer may be configured to start working when the detecting module 250 determines that the thawing of the object to be processed is completed (the rate of change of the dielectric coefficient of the object to be treated drops to less than or equal to the second rate threshold); when the object to be processed is from the thawing chamber When the 214 is taken out, the work is stopped.
  • An infrared sensor may be disposed on the inner wall of the defrosting chamber 214 to sense whether or not the object to be treated is placed in the defrosting chamber 214.
  • the dielectric constant of the object to be treated also changes, which is well known to those skilled in the art, but the dielectric constant is usually measured by a dedicated instrument (for example, a dielectric coefficient tester).
  • the special instrument takes up a lot of space and costs, and is not suitable for the refrigerator.
  • the invention detects the incident wave signal and the reflected wave signal of the electrical connection connecting the radio frequency generating module 230 and the upper plate, and calculates the dielectric coefficient of the object to be processed, which occupies small space and low cost, and is particularly suitable for use in a refrigerator. Thawing device 200.
  • the present invention determines the rate of change of the dielectric coefficient of the object to be processed by the detecting module 250 to determine the thawing progress of the object to be processed.
  • the thermal effect is significantly attenuated, so that the object to be treated is not decomposed. .
  • the RF thawing power is large, for example, greater than 100 W.
  • the inventors of the present application have creatively recognized that when the temperature of the object to be treated is already high, the operating power of the radio frequency generating module 230 is reduced by 30 to 40%, which can effectively prevent the object to be treated from being decomposed. Further, the present invention determines whether the defrosting is completed by the rate of change of the dielectric coefficient of the object to be treated. Compared with the prior art, by sensing the temperature of the object to be processed, it is judged whether the thawing is completed, and the judgment is more accurate, and the refusal can be further prevented.
  • the treated material is decomposed, and the test indicates that the temperature of the object to be treated which is thawed by the thawing device of the present invention is generally -4 to -2 ° C when the thawing is completed, and it is possible to prevent the blood from being thawed when the object to be treated is meat.
  • FIG. 6 is a schematic structural view of the compressor chamber 140 of Figure 2 .
  • the cabinet 100 of the refrigerator 10 further defines a compressor chamber 140.
  • the compressor chamber 140 may include a main control board 143, a compressor 141, a condensate collecting structure 144, and an external power supply line (not shown) for controlling the operation of the refrigerator 10, which are sequentially disposed to control the operation of the refrigerator 10.
  • the refrigerator 10 may also include a power supply module 142 for powering the defrosting device 200.
  • the power supply module 142 can be disposed in the compressor room 140 of the refrigerator 10 to facilitate heat dissipation and maintenance of the power supply module 142.
  • the power supply module 142 can be fixed to the upper wall of the compressor chamber 140 to facilitate electrical connection of the thawing device 200 with the power supply module 142.
  • the power supply module 142 can be an ACDC converter.
  • the ACDC converter can be configured to be electrically coupled to the main control board 143 to power the RF generation module 230.
  • the power supply module 142 can be disposed between the main control board 143 and the compressor 141 to make the electrical connection between the power supply module 142 and the main control board 143 more convenient. It will be understood by those skilled in the art that it is easy to connect the various components of the defrosting device 200 to the control circuitry of the refrigerator 10.
  • Fig. 4 is a schematic cross-sectional view taken along line B-B of Fig. 3.
  • the barrel 210 may further include a vertical partition 211 and a horizontal partition 212 for defining an inner space of the cylinder 210.
  • the vertical partition 211 may be disposed to extend from the top plate of the cylinder 210 in the vertical direction to the bottom plate of the cylinder 210.
  • the radio frequency generating module 230 may be disposed between the vertical partition 211 and the rear plate of the cylinder 210.
  • the horizontal partition 212 may be disposed to extend forward from the vertical partition 211 in the horizontal direction.
  • the detection module 250 and the load compensation module 260 may be disposed between the horizontal partition 212 and the top plate of the cylinder 210.
  • the thawing chamber 214 may be enclosed by a vertical partition 211, a horizontal partition 212, and a bottom plate of the cylinder 210 and two lateral side panels.
  • the upper electrode plate 240a may be disposed on a lower surface of the horizontal partition plate 212
  • the lower electrode plate 240b may be disposed on an upper surface of the bottom plate of the cylindrical body 210.
  • the cylinder 210 may further include a baffle 213 extending upward from the front side end of the horizontal partition 212 in the vertical direction to the top plate of the cylinder 210 to prevent the detection module 250 and the load compensation module 260 from being exposed, reducing the defrosting device 200. Aesthetics.
  • the horizontal partition 212 may also be disposed from the rear plate of the cylinder 210 in the horizontal direction according to actual conditions (the size of the RF generating module 230 and the detecting module 250 and the load compensation module 260). Extending, the vertical partition 211 is disposed to extend from the horizontal partition 212 in the vertical direction to the bottom plate of the cylinder 210.
  • the vertical partition 211 can be provided with a first crossing port 2112 to electrically connect the RF generating module 230 to the upper electrode plate 240a via the first wire opening 2112.
  • the rear plate of the cylinder 210 can be provided with a second wire opening 216 for electrically connecting from the power supply module 142 to the RF generating module 230 via the second wire opening 216.
  • the rear plate of the cylinder 210 may be provided with a device air inlet 215, and the vertical partition 211 of the rear side of the defrosting chamber 214 may be provided with a thawing air inlet 2111 to accommodate the defrosting device 200.
  • the air in the space enters the defrosting chamber 214 of the defrosting device 200 via the device air inlet 215 and the defrosting air inlet 2111.
  • the side plates on the lateral sides of the defrosting chamber 214 may be provided with a device air outlet 218 to allow the gas in the defrosting chamber 214 to be discharged to the accommodating space via the device air outlet 218.
  • the distance between the thawing device 200 and the inner walls on the lateral sides of the accommodating space in which it is disposed may be 2 to 3 mm, for example, 2 mm, 2.5 mm, or 3 mm, so that the gas in the thawing compartment is discharged into the storage compartment.
  • the device air inlet 215 and the defrosting air inlet 2111 of the defrosting device 200 are respectively disposed on lateral sides of the radio frequency generating module 230 to facilitate heat dissipation of the radio frequency generating module 230. In some alternative embodiments, the device air inlet 215 and the defrosting air inlet 2111 of the defrosting device 200 may be disposed on the same side of the radio frequency generating module 230.
  • the present invention provides a device air inlet 215 and a device air outlet 218 on the defrosting device 200.
  • the defrosting chamber 214 can be used to place the food material, so that the storage space in the refrigerator 10 can be fully utilized.
  • the thawing device 200 can also include a tray 270.
  • the tray 270 is disposed in the defrosting chamber 214, and the object to be treated is placed on the tray 270.
  • the tray 270 can be configured to be controllably moved in the depth direction of the defrosting chamber 214 to facilitate placement and removal of the object to be treated.
  • the lower surface of the tray 270 may be spaced from the lower electrode plate 240b by a distance of 8 to 12 mm, such as 8 mm, 10 mm, 12 mm, to prevent friction with the lower electrode plate 240b during the drawing of the tray 270. .
  • the number of accommodation spaces of the refrigerator 10 may be three.
  • the refrigerator 10 may include a case 100 defining a refrigerating compartment 110, a temperature changing compartment 120, and a freezing compartment 130, and refrigerating for opening and closing the refrigerating compartment 110, the variable temperature compartment 120, and the freezing compartment 130, respectively.
  • the thawing device 200 can be disposed in the temperature changing compartment 120.
  • the thawing device 200 can be fixed in the temperature change compartment 120 by interference fit or snapping with the inner walls on the vertical sides of the temperature change compartment 120.
  • the defrosting switch 124 can be disposed on the temperature changing door body.
  • the refrigerating compartment 110 refers to a storage compartment having a storage temperature of 0 to +8 ° C for the foodstuff
  • the freezing compartment 130 refers to a storage temperature of the foodstuff.
  • the variable temperature compartment 120 means that the storage temperature can be changed over a wide range (for example, the adjustment range can be above 4 ° C, and can be adjusted to above 0 ° C or below 0 ° C)
  • the storage compartment generally has a storage temperature that spans refrigeration, soft freezing (typically -4 to 0 °C) and freezing temperature, preferably -16 to +4 °C.
  • the refrigerator 10 may be an air-cooled refrigerator, and the temperature change compartment 120 may include a duct cover 122.
  • the air duct cover 122 and the rear inner wall of the temperature change compartment 120 form a temperature change air passage, and the air duct cover 122 is provided with a temperature change air inlet 1221 for providing cooling capacity to the temperature change compartment 120.
  • the device air inlet 215 and the variable temperature air inlet 1221 of the defrosting device 200 can be connected by a connecting tube 123 to facilitate cooling of the defrosting chamber 214 of the defrosting device 200.
  • the projection of the device air inlet 215 of the thawing device 200 in the thickness direction of the rear plate of the barrel 210 may be within the temperature change air inlet 1221 to facilitate cooling of the defrosting chamber 214 of the defrosting device 200.
  • the variable temperature air inlet 1221 may be provided with a variable temperature inlet damper for conducting or blocking the variable temperature air passage.
  • the variable temperature inlet damper can be configured to: when the radio frequency generating module 230 is in the working state, the variable temperature inlet damper is closed, that is, the variable temperature air duct stops providing cooling capacity to the temperature changing compartment 120 to avoid affecting the thawing device 200 to thaw the object to be treated.
  • the variable temperature inlet damper is opened, that is, the variable temperature air duct can provide cooling capacity to the variable temperature compartment 120 according to the original refrigeration control program of the refrigerator 10, and the defrosting chamber 214 is used for placing the foodstuff.
  • FIG. 7 is a schematic structural view of the thawing apparatus 200 of Figure 3, wherein the apparatus door of the defrosting apparatus is removed to show the internal structure of the cylinder.
  • the thawing device 200 can also include an elastic conductive loop 280.
  • the elastic conductive ring 280 can be disposed at the periphery of the forward opening of the defrosting chamber 214 so as to undergo compression deformation when the device door body 220 is closed, and closely fits the device door body 220, that is, the elastic conductive ring 280 A seal is formed with the device door 220.
  • the elastomeric conductive collar 280 can be made of silicone, silicone fluoride, EPDM, fluorocarbon-silicone, and silver plated aluminum.
  • the elastic conductive ring 280 can be a hollow annular structure that fits snugly against the device door 220 when the device door 220 is closed.
  • the width of the elastic conductive ring 280 can be set to 20-30 mm, such as 20 mm, 25 mm or 30 mm, to improve the sealing of the defrosting device 200.
  • the barrel 210 and the device door 220 may be respectively provided with electromagnetic shielding features 217.
  • the electromagnetic shielding feature 217 disposed on the barrel 210 and the electromagnetic shielding feature 217 disposed on the device door 220 may be respectively disposed in conductive contact with the elastic conductive ring 280 to reduce the defrosting device 200 outward when the device door 220 is closed. The amount of magnetic leakage reduces the harm to the human body.
  • the electromagnetic shielding feature 217 may be a conductive coating applied to the inner wall of the cylinder 210 and the inner surface of the device door 220 (facing the surface of the cylinder 210), abutting against the inner wall of the cylinder 210, and inside the device door 220.
  • the device air inlet 215, the defrosting air inlet 2111, and the device air outlet 218 of the defrosting device 200 may each be provided with a conductive metal mesh 290, which may be disposed to be electromagnetically shielded from the cylindrical body 210.
  • Feature 217 is electrically connected to reduce the amount of magnetic leakage from thawing device 200.
  • the frequency of the radio frequency signal generated by the radio frequency generating module 230 may be 40 to 42 MHz, for example, 40 MHz, 40.48 MHz, 40.68 MHz, 41 MHz, or 42 MHz, to reduce The thawing time of the material to be treated increases the temperature uniformity of the object to be treated and reduces the rate of juice loss.
  • the frequency of the radio frequency wave may be a predetermined fixed frequency in the range of 40.48-40.68 MHz to further reduce the thawing time of the object to be treated, improve the temperature uniformity of the object to be treated, and reduce the juice loss rate. .
  • the frequency of the radio frequency wave is 40.68MHz, the thawing effect is the best.
  • the power of the RF wave is 100 W, and the structure and the working flow of the thawing device 200 are the same.
  • the thawing effect test was performed on the defrosting apparatus 200 provided with the frequencies of the respective examples and the respective comparative examples.
  • the thawing time is from the beginning of the thawing, until the thawing device 200 judges that the thawing is completed (ie, the RF generating module stops working);
  • the temperature uniformity after the thawing is completed, the four sides of the beef are respectively measured The temperature of the angle and the center point, and calculate the difference between the average of the four corners and the center point temperature.
  • the temperature uniformity is the absolute value of the ratio of the difference to the average value;
  • the juice loss rate before measuring the beef thawing
  • the weight and the weight after thawing, and calculate the difference between the two, the juice loss rate is the ratio of the difference to the weight of the beef before thawing.
  • Example 1 19 0.4 0.35
  • Example 2 18 0.4 0.32
  • Example 3 18 0.3 0.29
  • Example 4 19 0.5 0.35
  • Example 5 20 0.5 0.40 Comparative example 1 25 0.6 0.35 Comparative example 2 twenty three 0.6 0.40
  • Example 5 According to the test results of Example 5 and Comparative Example 1 in Table 2, it can be seen that under the same test conditions, the present invention is applied under the same test conditions, in the case where the power of the radio frequency wave is the same, and the structure and the working flow of the thawing device 200 are the same.
  • the thawing device 200 of the RF frequency within the scope of the embodiment has a better thawing effect than the defrosting device 200 using the RF frequency of the prior art, the former having a 20% reduction in thawing time and a 17% increase in temperature uniformity.
  • the thawing time of the thawing apparatus 200 of each embodiment of the present invention is less than 20 minutes, the temperature uniformity is below 0.5, and the juice loss rate is below 0.40%.
  • the frequency of the radio frequency wave for example, the radio frequency is 40.48 to 40.68 MHz
  • the thawing time of the thawing device 200 can be reduced to less than 18 minutes, the temperature uniformity is increased to 0.4 or less, and the juice loss rate is reduced to 0.32% or less.
  • FIG. 8 is a flow chart of a defrosting method for the refrigerator 10, in accordance with one embodiment of the present invention.
  • the defrosting method of the refrigerator 10 of the present invention may include the following steps: Step S802: determining whether the defrosting switch 124 is turned on, and if so, executing step S804; if not, executing step S802.
  • Step S804 The power supply module 142 starts to work.
  • Step S806 determining whether the device door 220 is closed, and if so, executing step S808; if not, executing step S806.
  • Step S808 The load cell 271 senses the weight of the object to be processed.
  • Step S810 Obtain the weight of the object to be processed.
  • Step S812 determining whether the weight of the object to be processed is greater than or equal to the first weight threshold, and if yes, executing step S816; if not, executing step S814.
  • Step S814 A visual and/or audible signal is sent to alert the user to no load.
  • Step S816 determining whether the weight of the object to be processed is greater than or equal to the second weight threshold, and if yes, executing step S818; if not, executing step S822.
  • Step S818 determining whether the weight of the object to be processed is greater than the third weight threshold, and if yes, executing step S820; if not, executing step S824.
  • Step S822 The radio frequency generating module 230 operates at a rated power of 80%. Step S826 is performed.
  • Step S824 The radio frequency generating module 230 operates at a rated power. Step S826 is performed.
  • Step S826 The temperature-increasing intake damper is closed, the radio frequency generating module 230 generates a radio frequency signal of 40 to 42 MHz, and the detecting module 250 detects an incident wave signal and a reflected wave signal connecting the electrical connection between the radio frequency generating module 230 and the upper electrode plate 240a.
  • the frequency of the radio frequency signal generated by the radio frequency generating module 230 is 40.68 MHz.
  • Step S828 Acquire voltage and current of the incident wave signal and voltage and current of the reflected wave signal, and calculate a rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed.
  • Step S830 determining whether the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed is greater than or equal to the first rate threshold, and if yes, executing step S832; if not, executing step S828.
  • Step S832 The current working power of the radio frequency generating module 230 is reduced by 30-40%. In this step, the current operating power of the RF generation module 130 is reduced by 35%.
  • Step S834 Acquire voltage and current of the incident wave signal and voltage and current of the reflected wave signal, and calculate a rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed.
  • Step S836 determining whether the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed is less than or equal to the second rate threshold, and if yes, executing step S838; if not, executing step S834.
  • Step S838 The power supply module 142 stops working, the defrosting switch 124 is reset (ie, closed), the temperature-increasing air inlet damper is opened, and the buzzer starts to work.
  • Step S840 determining whether the object to be processed is taken out from the defrosting chamber, and if so, executing step S842; if not; executing step S838.
  • Step S842 The buzzer stops working.
  • Step S829 Acquire the voltage and current of the incident wave signal and the voltage and current of the reflected wave signal, and calculate the load impedance Z 2 of the radio frequency generating module 230.
  • Step S831 It is determined whether the difference between the load impedance Z 2 of the radio frequency generating module 230 and the output impedance Z 1 is greater than the first impedance threshold. If yes, step S833 is performed; if no, step S835 is performed.
  • Step S833 The motor of the load compensation module 260 operates to reduce the impedance of the compensation unit. Go back to step S829.
  • Step S835 It is determined whether the difference between the load impedance Z 2 of the radio frequency generating module 230 and the output impedance Z 1 is less than the second impedance threshold. If yes, step S837 is performed; if no, step S829 is performed.
  • Step S837 The motor of the load compensation module 260 operates to increase the impedance of the compensation unit. Go back to step S829. (It can be understood by those skilled in the art that when the program runs to step S838, the power supply module 142 stops working, that is, the power supply is stopped, and the radio frequency generating module 230, the detecting module 250, and the load compensation module 260 are all stopped, that is, when the object to be processed is When the rate of change ⁇ ⁇ / ⁇ t of the dielectric coefficient decreases to less than or equal to the second rate threshold, the detecting module 250 stops detecting the incident wave signal and the reflected wave signal connecting the electrical connection between the radio frequency generating module 230 and the upper plate 240a, and the load compensation module 260 stopped working.)
  • a thawing workflow of the refrigerator 10 may include: when the user opens the defrosting switch 124, the power supply module 142 starts to supply power, and when the device door 220 is closed, the weighing sensor senses the weight of the object to be processed, according to The weight of the object to be processed determines whether the radio frequency generating module 230 operates and determines the operating power at the time of its operation.
  • the RF generating module 230 generates a 40.68 MHz RF signal, the variable temperature intake damper is closed, stops providing cooling for the variable temperature compartment, and the detection module 250 and the load compensation module 260 start to work.
  • the detecting module 250 detects the incident wave signal and the reflected wave signal connecting the electrical connection between the RF generating module 230 and the upper plate, and calculates the load impedance Z 2 of the RF transmitting device 230 and the rate of change ⁇ / ⁇ t of the dielectric coefficient.
  • the rate of change ⁇ / ⁇ t of the dielectric coefficient of the object to be processed is greater than or equal to the first rate threshold, the operating power of the RF generating module 230 is reduced by 35%, and at the same time, the load impedance of the RF generating module 230 is used throughout the thawing workflow.
  • the load compensation module 260 adjusts the impedance of the compensation unit by the motor, thereby adjusting the load impedance Z 2 of the RF generating module 230 to generate the RF.
  • the difference between the load impedance Z 2 of the module 230 and the output impedance Z 1 is always greater than or equal to the first impedance threshold and less than or equal to the second impedance threshold.
  • the power supply module 142 stops supplying power, the defrosting switch 124 is turned off, the variable temperature inlet damper is opened, the radio frequency generating module 230, the detecting module 250 and the load compensation Module 260 stops working and the buzzer starts working.
  • the buzzer stops working.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Electromagnetism (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Electric Ovens (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种冰箱(10),包括至少一个容纳空间的箱体(100)、开闭至少一个容纳空间的间室门体和设置于容纳空间的解冻装置(200),解冻装置(200)包括:限定有具有前向开口的用于放置待处理物的解冻腔室的筒体(210);设置于解冻腔室(214)的前向开口处以用于开闭解冻腔室(214)的装置门体(220);产生射频信号的射频发生模块(230);设置于解冻腔室(214)且分别与射频发生模块电连接的上电极板(240a)和下电极板(240b),根据射频信号在解冻腔室(214)内产生相应频率的射频波,并解冻解冻腔室(214)内的待处理物;和设置于解冻腔室(214)内的托盘(270)。托盘设置有称重传感器(271),配置为感测待处理物的重量,并确定射频发生模块(230)的工作功率。

Description

冰箱
本申请要求了申请日为2017年06月06日,申请号为201710419613.2,发明名称为“冰箱”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及解冻领域,特别是涉及一种具有快速解冻功能的冰箱。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户冷冻和解冻食物,现有技术一般通过在冰箱中设置加热装置或微波装置来解冻食物。
然而,通过加热装置来解冻食物,一般需要较长的解冻时间,且解冻时间和温度不易掌握,容易造成食物的水分蒸发和汁液流失,使食物的质量受到损失;通过微波装置来解冻食物,速度快、效率高,所以食物的营养成分损失很低,但是由于微波对水和冰的穿透和吸收有差别,且食物的内部物质分布不均匀,已融化的区域吸收的能量多,易产生解冻不均匀和局部过热的问题。综合考虑,在设计上需要一种具有高解冻效率、解冻均匀且可保证食物品质的冰箱。
发明内容
本发明的一个目的是要提供一种具有较好解冻效果的冰箱。
本发明一个进一步的目的是要提高冰箱的解冻效率。
本发明另一个进一步的目的是要避免待处理物被过分解冻。
特别地,本发明提供了一种冰箱,包括限定有至少一个容纳空间的箱体、用于分别开闭所述至少一个容纳空间的间室门体和设置于一个所述容纳空间的解冻装置,所述解冻装置包括:
筒体,其内限定有具有前向开口的解冻腔室,所述解冻腔室用于放置待处理物;
装置门体,设置于所述解冻腔室的前向开口处,用于开闭所述解冻腔室;
射频发生模块,配置为产生射频信号;
上电极板和下电极板,分别水平地设置于所述解冻腔室的顶壁和底壁处,且分别与所述射频发生模块电连接,以根据所述射频信号在所述解冻腔室内产生相应频率的射频波,并解 冻所述解冻腔室内的待处理物;和
用于承载所述待处理物的托盘,设置于所述解冻腔室内;且
所述托盘设置有至少一个称重传感器,配置为感测所述待处理物的重量,并确定所述射频发生模块的工作功率。
可选地,所述至少一个称重传感器的数量为一个;且所述一个称重传感器设置于所述托盘的中心;或
所述至少一个称重传感器的数量为多个;且所述多个称重传感器均匀分布于所述托盘上。
可选地,所述射频发生模块配置为:
当所述待处理物的重量处于一预设范围内时,开始工作;
当所述待处理物的重量不处于所述预设范围内时,不开始工作。
可选地,所述冰箱还包括:
解冻开关,设置于任一所述间室门体上,用于控制解冻程序的启停;且所述称重传感器配置为:
当所述装置门体关闭且所述解冻开关打开时,开始工作;
当所述射频发生模块开始工作时,停止工作。
可选地,所述射频发生模块进一步配置为:
当所述待处理物的重量大于等于一第一重量阈值且小于一第二重量阈值时,其工作功率为额定功率的75~95%;
当所述待处理物的重量大于等于所述第二重量阈值且小于等于一第三重量阈值时,其工作功率为额定功率;其中
所述第一重量阈值大于零,所述第一重量阈值小于所述第二重量阈值,所述第二重量阈值小于所述第三重量阈值,且所述预设范围为大于等于所述第一重量阈值小于等于所述第三重量阈值。
可选地,所述冰箱配置为:
当所述待处理物的重量小于所述第一重量阈值时,发出视觉和/或听觉信号提醒用户空载;
当所述待处理物的重量大于所述第三重量阈值时,发出视觉和/或听觉信号提醒用户过载。
可选地,所述解冻装置还包括:
检测模块,配置为检测连接所述射频发生模块与所述上电极板的电连线的入射波信号和 反射波信号,并根据所述入射波信号的电压和电流、以及所述反射波信号的电压和电流,计算所述射频发生模块的负载阻抗。
可选地,所述解冻装置还包括:
负载补偿模块,配置为可受控地增大或减小所述射频发生模块的负载阻抗,并使所述射频发生模块的负载阻抗与输出阻抗之差大于等于一预设阻抗阈值且小于等于一预设阻抗阈值,以提高所述待处理物的解冻效率。
可选地,所述检测模块配置为进一步根据所述射频发生模块的负载阻抗计算所述待处理物的介电系数的变化速率,以判断所述待处理物的解冻进度。
可选地,所述射频发生模块配置为:
当所述待处理物的介电系数的变化速率大于等于第一速率阈值时,其当前的工作功率降低30%~40%,以防止所述待处理物被过度解冻;和/或
当所述待处理物的介电系数的变化速率下降至小于等于第二速率阈值时,停止工作。
相比于现有技术中解冻功率一定的解冻装置,本发明通过待处理物的重量来确定射频发生模块的工作功率,具有更好的解冻效果,并避免了不必要的能源浪费。
进一步地,本发明通过在待处理物的重量过小时,提醒用户空载,避免了“空烧”现象的发生,也即是避免了射频发生模块空载时工作,降低了解冻装置的故障率,并避免了不期望地能耗产生。在待处理物的重量过大时,提醒用户过载,避免了由于待处理物内外温差过大(大于3℃)而过分降低其品质的现象发生。
进一步地,本发明通过检测连接射频发生模块与上极板的电连线的入射波信号和反射波信号,经计算得出射频发生模块的负载阻抗,占用空间小且成本低,特别适用于冰箱中的解冻装置。并通过负载补偿模块使射频发生模块的负载阻抗与输出阻抗之差处于一预设范围(大于等于一第一阻抗阈值且小于等于一第二阻抗阈值)内,提高了待处理物的解冻效率。
进一步地,本发明通过检测模块计算待处理物的介电系数的变化速率,来判断待处理物的解冻进度。在本发明之前,本领域技术人员普遍认为,当待处理物的温度已较高(即待处理物的温度大于等于-7℃)时,热效应会显著衰减,因而待处理物不会被过分解冻。然而实际情况并非如此,通常射频解冻功率较大,例如大于100W,当待处理物的本身温度已较高时,待处理物极易被过度解冻。本申请的发明人创造性地认识到,当待处理物的温度已较高时,将射频发生模块的工作功率降低30~40%,可有效地防止待处理物被过分解冻。进一步地,本发明通过待处理物的介电系数的变化速率判断解冻是否完成,相比于现有技术中通过感测待处理物的温度来判断解冻是否完成,判断更加准确,可进一步防止待处理物被过分解 冻,且测试表明,由本发明的解冻装置解冻的待处理物,解冻完成时的温度一般为-4~-2℃,可避免当待处理物为肉品时,解冻产生血水。
附图说明
图1是根据本发明一个实施例的冰箱的示意性结构图,其中该冰箱的所有外门体皆被去除,以示出冰箱箱体内的间室结构;
图2是图1所示冰箱的示意性剖视图;
图3是图2中区域A的示意性局部放大图;
图4是沿图3中的剖切线B-B截取的示意性剖视图;
图5是根据本发明一个实施例的待处理物的介电系数的变化速率曲线图;
图6是图2中压缩机室的示意性结构图;
图7是图3中解冻装置的示意性结构图,其中该解冻装置的装置门体被去除,以示出筒体的内部结构;
图8是根据本发明一个实施例的用于冰箱的解冻方法的流程图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
图1是根据本发明一个实施例的冰箱10的示意性结构图,其中该冰箱10的所有外门体皆被去除,以示出冰箱10的箱体100内的间室结构;图2是图1所示冰箱10的示意性剖视图;图3是图2中区域A的示意性局部放大图。参见图1至图3,冰箱10一般性地可包括限定有至少一个容纳空间的箱体100、用于分别开闭各个容纳空间的取放口的间室门体,以及设置于一个容纳空间的解冻装置200。
具体地,解冻装置200可包括筒体210、装置门体220、射频发生模块230、以及上电极板240a和下电极板240b。筒体210可包括顶板、底板、后板以及相对的两个横向侧板,其内可限定有具有前向开口的解冻腔室214,解冻腔室214用于放置待处理物。装置门体220可设置于解冻腔室214的前向开口处,用于打开或关闭解冻腔室214。装置门体220可通过适当方法与筒体210安装在一起,例如左开门、右开门或上开门。射频发生模块230可配置为产生射频信号(一般指频率在300KHz~300GHz的射频信号)。上电极板240a和下电极板240b可分别水平地设置于解冻腔室214的顶壁和底壁处,且分别与射频发生模块230电连接,以根据射频发生模块230产生的射频信号在解冻腔室214内产生相应参数的射频波,并 解冻放置于解冻腔室214内的待处理物。在本发明中,上电极板240a为发射天线;下电极板240b为接收天线。在一些实施例中,可采用50欧姆的电连线使上电极板240a和下电极板240b分别与射频发生模块230电连接。
解冻腔室214内还可设置有托盘270,用于承载待处理物。特别地,托盘270上可设置有至少一个称重传感器271,配置为感测待处理物的重量,并根据待处理物的重量来确认射频发生模块230的工作功率。相比于现有技术中解冻功率一定的解冻装置,本发明通过待处理物的重量来确定射频发生模块的工作功率,具有更好的解冻效果,并避免了不必要的能源浪费。在本发明中,称重传感器271的数量可为一个、两个或两个以上等。
在图示实施例中,称重传感器271的数量为一个,且一个称重传感器271设置于托盘270的中心。在另一些实施例中,称重传感器271的数量为多个(两个、三个或三个以上等),且多个称重传感器271均匀分布在托盘270上,以使托盘270可分为面积相等的多个区域,且每个区域内均设置有一个称重传感器271。在该实施例中,待处理物的重量为多个称重传感器271中感测到的重量的平均值。
具体地,射频发生模块230可配置为当待处理物的重量处于一预设范围内时,开始工作;当待处理物的重量不处于预设范围内时,不开始工作。在一些优选实施例中,射频发生模块230可进一步地配置为大于等于一第一重量阈值且小于一第二重量阈值时,其工作功率为其额定功率的75~95%,例如75%、80%、90%或95%;当待处理物的重量大于等于第二重量阈值且小于等于一第三重量阈值时,其工作功率为其额定功率,其中第一重量阈值大于零,第一重量阈值小于第二重量阈值,第二重量阈值小于第三重量阈值,且预设范围为大于等于第一重量阈值小于等于第三重量阈值。在本发明中,第一重量阈值可为0.4~0.6kg,例如0.4kg、0.5kg或0.6kg;第二重量阈值可为0.9~1.1kg,例如0.9kg、1.0kg或1.1kg;第三重量阈值可为1.4~1.6kg,例如1.4kg、1.5kg或1.6kg;射频发生模块230的额定功率可为100~150W,例如100W、120W、130W或150W。
在一些优选实施例中,冰箱10可配置为当待处理物的重量小于第一重量阈值时,发出视觉和/或听觉信号提醒用户空载;当待处理物的重量大于第三重量阈值时,发出视觉和/或听觉信号提醒用户过载。冰箱10的间室门体上可设置有指示灯和/或报警器,以在待处理物过小(小于第一重量阈值)或过大(大于第三重量阈值)时发出视觉和/或听觉信号提醒用户。
进一步地,本发明通过在待处理物的重量过小时,提醒用户空载,避免了“空烧”现象的发生,也即是避免了射频发生模块230空载时工作,降低了解冻装置200的故障率,并避 免了不期望地能耗的产生。在待处理物的重量过大时,提醒用户过载,避免了由于待处理物内外温差过大(大于3℃)而过分降低其品质的现象发生。
在一些实施例中,解冻装置200还可包括检测模块250。检测模块250可配置为检测连接射频发生模块230与上极板的电连线的入射波信号和反射波信号,并根据入射波信号的电压和电流,以及反射波信号的电压和电流,计算射频发生模块230的负载阻抗。负载阻抗的计算公式如下:
SWR=Z 2/Z 1        (1)
Z 1=U 1/I 1=R 1 +jX 1            (2)
Z 2=U 2/I 2=R 2+jX 2(3)
在公式(1)、(2)、(3)中:SWR为驻波比;Z 1为输出阻抗;Z 2为负载阻抗;U 1为入射波电压;I 1为入射波电流;R 1为输出电阻;X 1为输出电抗;U 2为反射波电压;I 2为反射波电流;R 2为负载电阻;X 2为负载电抗(本领域技术人员均可理解地,输出阻抗为连接射频发生模块230与上电极板240a的电连线的阻抗,负载阻抗为待处理物的阻抗)。
解冻装置200还可包括负载补偿模块260。负载补偿模块260可包括一补偿单元和用于调节补偿单元的负载的电机。补偿单元可设置为与待处理物串联,即射频发生模块230的负载阻抗为待处理物的阻抗与补偿单元的阻抗的和。电机可配置为受控地增大或减小补偿单元的负载,进而增大或减小射频发生模块230的负载阻抗Z 2,并使射频发生模块230的负载阻抗Z 2与输出阻抗Z 1之差(即负载阻抗Z 2减去输出阻抗Z 1得到的数值)大于等于一第一阻抗阈值且小于等于一第二阻抗阈值,且第一阻抗阈值小于第二阻抗阈值,以提高待处理物的解冻效率。在一些优选实施例中,第一阻抗阈值为输出阻抗Z 1的-6~-4%,第二阻抗阈值为输出阻抗Z 1的4~6%。进一步优选地,第一阻抗阈值为输出阻抗Z 1的-5%,第二阻抗阈值为输出阻抗Z 1的5%。换句话说,负载补偿模块可配置为使射频发生模块230的负载阻抗Z 2与输出阻抗Z 1之差的绝对值,在整个解冻过程中一直小于输出阻抗Z 1的5%,例如可为输出阻抗Z 1的1%、3%或5%。
检测模块250可配置为进一步根据射频发生模块230的负载阻抗Z 2,计算待处理物的介电系数及介电系数的变化速率,以判断待处理物的解冻进度。待处理物的介电系数的计算公式如下:
X 2=1/2πfC        (4)
ε=4πKdC/S             (5)
在公式(4)、(5)中:f为射频波的频率;C为上电极板240a与下电极板240b构成的电容器的电容;ε为待处理物的介电系数;K为静电常数;d为上极板的厚度;S为上极板的面积。
待处理物的介电系数的变化速率可通过计算单位时间Δt内的介电系数ε的变化值Δε获得,其中单位时间Δt可为0.1秒~1秒,例如0.1秒、0.5秒或1秒。图5是根据本发明一个实施例的待处理物的介电系数的变化速率曲线图(纵坐标为待处理物的介电系数的变化速率Δε/Δt;横坐标为待处理物的解冻时间t,单位为min)。参见图5,在一些优选实施例中,射频发生模块230可配置为当待处理物的介电系数的变化速率Δε/Δt大于等于第一速率阈值时,其当前的工作功率降低30%~40%,例如30%、35%或40%,以防止待处理物被过度解冻(本领域技术人员均可理解地,过度解冻为待处理物的温度大于0℃)。第一速率阈值可为15~20,例如15、17、18或20。射频发生模块230还可配置为当待处理物的介电系数的变化速率Δε/Δt下降至小于等于第二速率阈值时,停止工作。第二速率阈值可为1~2,例如1、1.5或2。
在一些实施例中,任意一个间室门体上可设置有用于控制解冻程序开始或停止的解冻开关124。称重传感器可配置为当解冻开关124打开且装置门体220关闭时,开始工作;当射频发生模块230开始工作时,停止工作。在解冻过程中,用户可通过关闭解冻开关124来终止解冻程序。任意一个间室门体上还可设置有蜂鸣器(图中未示出),用来提示用户待处理物已解冻完成。蜂鸣器可配置为当检测模块250判断待处理物解冻完成时(待处理物的介电系数的变化速率下降至小于等于第二速率阈值时),开始工作;当待处理物从解冻腔室214中取出时,停止工作。解冻腔室214的内壁上可设置有红外传感器,来感测解冻腔室214内是否放置有待处理物。
随着待处理物的温度变化,待处理物的介电系数也会随之变化,是本领域技术人员习知的,然而介电系数通常由专用仪器(例如介电系数测试仪)测得,且专用仪器占用空间大、成本高,不适用于冰箱。本发明通过检测连接射频发生模块230与上极板的电连线的入射波信号和反射波信号,经计算得出待处理物的介电系数,占用空间小且成本低,特别适用于冰箱中的解冻装置200。
进一步地,本发明通过检测模块250计算待处理物的介电系数的变化速率,来判断待处 理物的解冻进度。在本发明之前,本领域技术人员普遍认为,当待处理物的温度已较高(即待处理物的温度大于等于-7℃)时,热效应会显著衰减,因而待处理物不会被过分解冻。然而实际情况并非如此,通常射频解冻功率较大,例如大于100W,当待处理物的本身温度已较高时,待处理物极易被过度解冻。本申请的发明人创造性地认识到,当待处理物的温度已较高时,将射频发生模块230的工作功率降低30~40%,可有效地防止待处理物被过分解冻。进一步地,本发明通过待处理物的介电系数的变化速率判断解冻是否完成,相比于现有技术中通过感测待处理物的温度来判断解冻是否完成,判断更加准确,可进一步防止待处理物被过分解冻,且测试表明,由本发明的解冻装置解冻的待处理物,解冻完成时的温度一般为-4~-2℃,可避免当待处理物为肉品时,解冻产生血水。
图6是图2中压缩机室140的示意性结构图。参见图6,冰箱10的箱体100还限定有压缩机室140。压缩机室140可包括依次设置的用于控制冰箱10运行的主控板143、压缩机141、冷凝水收集结构144以及用于为冰箱10运行供电的外接电源线(图中未示出)。在一些实施例中,冰箱10还可包括用于为解冻装置200供电的供电模块142。供电模块142可设置于冰箱10的压缩机室140内,以便于供电模块142的散热和维修。供电模块142可固定于压缩机室140的上壁,以便于解冻装置200与供电模块142的电连接。供电模块142可为ACDC转换器。ACDC转换器可设置为与主控板143电连接,以为射频发生模块230供电。供电模块142可设置于主控板143与压缩机141之间,以使供电模块142与主控板143的电连接更加方便。本领域技术人员均可理解地,将解冻装置200的各个部件与冰箱10的控制电路相连是容易实现的。
图4是沿图3中的剖切线B-B截取的示意性剖视图。参见图3和图4,筒体210还可包括用于限定筒体210的内部空间的竖向隔板211和水平隔板212。竖向隔板211可设置为自筒体210的顶板沿竖向方向延伸至筒体210的底板。射频发生模块230可设置于竖向隔板211和筒体210的后板之间。水平隔板212可设置为自竖向隔板211沿水平方向向前延伸。检测模块250和负载补偿模块260可设置于水平隔板212与筒体210的顶板之间。解冻腔室214可由竖向隔板211、水平隔板212以及筒体210的底板和两个横向侧板围成。上电极板240a可设置于水平隔板212的下表面,下电极板240b可设置于筒体210的底板的上表面。筒体210还可包括自水平隔板212的前侧端部沿竖向方向向上延伸至筒体210的顶板的挡板213,以防止检测模块250以及负载补偿模块260外露,降低解冻装置200的美观性。在另一些实施例中,也可根据实际情况(射频发生模块230和检测模块250以及负载补偿模块260的尺寸大小),将水平隔板212设置为自筒体210的后板沿水平方向向前延伸,竖向隔 板211设置为自水平隔板212沿竖向方向延伸至筒体210的底板。
竖向隔板211可开设有第一过线口2112,以使射频发生模块230经由第一过线口2112与上电极板240a电连接。筒体210的后板可开设有第二过线口216,以使从供电模块142经由第二过线口216与射频发生模块230电连接。
在一些实施例中,筒体210的后板可开设有装置进风口215,解冻腔室214的后侧的竖向隔板211可开设有解冻进风口2111,以使设置有解冻装置200的容纳空间内的空气经由装置进风口215和解冻进风口2111进入至解冻装置200的解冻腔室214。解冻腔室214的横向两侧的侧板可开设有装置出风口218,以使解冻腔室214内的气体经由装置出风口218排出至容纳空间。解冻装置200与设置其的容纳空间的横向两侧的内壁的距离可为2~3mm,例如2mm、2.5mm或3mm,以便于解冻间室内的气体排出至储物间室内。
在一些优选实施例中,解冻装置200的装置进风口215和解冻进风口2111可分别设置于射频发生模块230的横向两侧,以便于射频发生模块230的散热。在一些替代性实施例中,解冻装置200的装置进风口215和解冻进风口2111可设置于射频发生模块230的同一侧。
本发明通过在解冻装置200上设置有装置进风口215和装置出风口218,在未接收到解冻指令时,解冻腔室214可用来放置食材,使冰箱10内的储物空间得到充分的利用。
解冻装置200还可包括托盘270。托盘270设置于解冻腔室214内,且待处理物放置于托盘270上。托盘270可配置为可受控地在解冻腔室214的进深方向上移动,以便于待处理物的放置和取出。在一些优选实施例中,托盘270的下表面与下电极板240b的距离可为8~12mm,例如8mm、10mm、12mm,以防止在托盘270抽拉的过程中,与下电极板240b产生摩擦。
参见图1至图3,在一些实施例中,冰箱10的容纳空间的数量可为三个。具体地,冰箱10可包括限定有冷藏间室110、变温间室120和冷冻间室130的箱体100,以及分别用于开闭冷藏间室110、变温间室120和冷冻间室130的冷藏门体111、变温门体121和冷冻门体131。解冻装置200可设置于变温间室120中。解冻装置200可通过与变温间室120竖向两侧的内壁过盈配合或卡接等方式固定在变温间室120中。解冻开关124可设置于变温门体上。
此外,也可说明的是,本领域技术人员均熟知地,冷藏间室110是指对食材的保藏温度为0~+8℃的储物间室;冷冻间室130是指对食材的保藏温度为-20~-15℃的储物间室;变温间室120是指可较大范围地(例如调整范围可在4℃以上,且可调至0℃以上或0℃以下)改变其保藏温度的储物间室,一般其保藏温度可跨越冷藏、软冷冻(一般为-4~0℃)和冷冻 温度,优选为-16~+4℃。
在一些实施例中,根据本发明的冰箱10可以为风冷冰箱,变温间室120可包括风道盖板122。风道盖板122与变温间室120的后向内壁夹置形成变温风道,且风道盖板122上开设有变温进风口1221,用于为变温间室120提供冷量。在一些优选实施例中,解冻装置200的装置进风口215与变温进风口1221可通过一连接管123连接,以便于为解冻装置200的解冻腔室214进行制冷。在另一些优选实施例中,解冻装置200的装置进风口215在筒体210的后板的厚度方向上的投影可处于变温进风口1221内,以便于为解冻装置200的解冻腔室214进行制冷。
变温进风口1221处可设置有变温进风风门,用来导通或阻断变温风道。变温进风风门可配置为:当射频发生模块230处于工作状态时,变温进风风门关闭,即变温风道停止为变温间室120提供冷量,以避免对解冻装置200解冻待处理物造成影响;射频发生模块230处于非工作状态时,变温进风风门打开,即变温风道可根据冰箱10的原制冷控制程序为变温间室120提供冷量,解冻腔室214用于放置食材。
图7是图3中解冻装置200的示意性结构图,其中该解冻装置的装置门体被去除,以示出筒体的内部结构。参见图7,解冻装置200还可包括弹性导电环圈280。弹性导电环圈280可设置于解冻腔室214的前向开口的周缘处,以使其在装置门体220关闭时发生挤压变形,与装置门体220紧密贴合,即弹性导电环圈280与装置门体220之间形成密封。在一些优选实施例中,弹性导电环圈280可由硅酮、硅酮氟化物、EPDM、碳氟化合物-硅氟化合物以及镀银铝制成。弹性导电环圈280可为空心环状结构,使其在装置门体220关闭时,与装置门体220紧密贴合。弹性导电环圈280的宽度可设置为20~30mm,例如20mm、25mm或30mm,以提高解冻装置200的密封性。筒体210和装置门体220可分别设置有电磁屏蔽特征217。设置于筒体210的电磁屏蔽特征217和设置于装置门体220的电磁屏蔽特征217可分别设置为与弹性导电环圈280导电接触,以在装置门体220关闭时,减少解冻装置200向外的磁泄漏量,减少对人体造成的危害。电磁屏蔽特征217可为涂覆于筒体210的内壁和装置门体220的内表面(朝向筒体210的表面)的导电涂层、贴靠于筒体210的内壁和装置门体220的内表面的导电金属网或形成于围成筒体210的各个板体之中和装置门体220中的导电金属网等。在一些优选实施例中,解冻装置200的装置进风口215、解冻进风口2111和装置出风口218可均设置有导电金属网290,导电金属网290可设置为与设置于筒体210的电磁屏蔽特征217导电连接,以减少解冻装置200的磁泄漏量。
特别地,在本发明中,射频发生模块230产生的射频信号的频率(即用于解冻待处理物 的电磁波)可为40~42MHz,例如40MHz、40.48MHz、40.68MHz、41MHz或42MHz,以减少待处理物的解冻时间,提高待处理物的温度均匀性及降低其汁液流失率。在优选实施例中,射频波的频率可为40.48~40.68MHz范围内预设的一固定频率,以进一步地减少待处理物的解冻时间,提高待处理物的温度均匀性及降低其汁液流失率。其中,当射频波的频率为40.68MHz时,解冻效果最好。
为了进一步理解本发明,下面结合更具体的实施例对本发明的优选实施方案进行描述,但本发明并不限于这些实施例。
表1
Figure PCTCN2018089910-appb-000001
分别设置有上述实施例1-5及对比例1-2的射频频率的解冻装置200中,射频波的功率均为100W,解冻装置200的结构及其工作流程均相同。
对设置有各实施例和各对比例的频率的解冻装置200,进行解冻效果测试。测试说明:选用1kg形状规格相同,且初始温度为-18℃的牛肉,分别放置于各实施例和各对比例的解冻装置200内的托盘270上,分别测量各实施例和各对比例的解冻时间、温度均匀性和液汁流失率,其中解冻时间为自解冻开始,至解冻装置200判断解冻完成(即射频发生模块停止工作)的时间;温度均匀性:解冻完成后,分别测量牛肉四个边角及中心点的温度,并计算四个边角的平均值与中心点温度的差值,温度均匀性为该差值与该平均值的比值的绝对值;汁液流失率:分别测量牛肉解冻前的重量和解冻后的重量,并计算二者差值,汁液流失率为该差值与牛肉解冻前的重量的比值。
根据实施例1-7和根据对比例1-2的解冻效果测试结果如表2。
表2
  解冻时间(min) 温度均匀性 汁液流失率(%)
实施例1 19 0.4 0.35
实施例2 18 0.4 0.32
实施例3 18 0.3 0.29
实施例4 19 0.5 0.35
实施例5 20 0.5 0.40
对比例1 25 0.6 0.35
对比例2 23 0.6 0.40
根据表2中实施例5和对比例1的测试结果可以看出,在射频波的功率相同,且解冻装置200的结构及其工作流程均相同的情况下,在同等测试条件下,应用本发明实施例范围内的射频频率的解冻装置200的解冻效果优于应用现有技术中的射频频率的解冻装置200,前 者比后者的解冻时间减少了20%,温度均匀性提高了17%。
根据表2中实施例1-5的测试结果可以看出,应用本发明各实施例的解冻装置200的解冻时间均在20min以下,温度均匀性均在0.5以下,汁液流失率均在0.40%以下。通过进一步优选射频波的频率(例如射频频率在40.48~40.68MHz),可将解冻装置200的解冻时间减少至18min以下,温度均匀性提高至0.4以下,汁液流失率降低至0.32%以下。
图8是根据本发明一个实施例的用于冰箱10的解冻方法的流程图。参见图8,本发明的冰箱10的解冻方法可以包括如下步骤:步骤S802:判断解冻开关124是否打开,若是,执行步骤S804;若否,执行步骤S802。
步骤S804:供电模块142开始工作。
步骤S806:判断装置门体220是否关闭,若是,执行步骤S808;若否,执行步骤S806。
步骤S808:称重传感器271感测待处理物的重量。
步骤S810:获取待处理物的重量。
步骤S812:判断待处理物的重量是否大于等于第一重量阈值,若是,执行步骤S816;若否,执行步骤S814。
步骤S814:发出视觉和/或听觉信号提醒用户空载。
步骤S816:判断待处理物的重量是否大于等于第二重量阈值,若是,执行步骤S818;若否,执行步骤S822。
步骤S818:判断待处理物的重量是否大于第三重量阈值,若是,执行步骤S820;若否,执行步骤S824。
步骤S822:射频发生模块230以80%的额定功率工作。执行步骤S826。
步骤S824:射频发生模块230以额定功率工作。执行步骤S826。
步骤S826:变温进风风门关闭,射频发生模块230产生40~42MHz的射频信号,检测模块250检测连接射频发生模块230与上极板240a的电连线的入射波信号和反射波信号。在该步骤中,射频发生模块230产生的射频信号的频率为40.68MHz。运行步骤S828和步骤S829。
步骤S828:获取入射波信号的电压和电流以及反射波信号的电压和电流,计算待处理物的介电系数的变化速率Δε/Δt。
步骤S830:判断待处理物的介电系数的变化速率Δε/Δt是否大于等于第一速率阈值,若是,执行步骤S832;若否,执行步骤S828。
步骤S832:射频发生模块230当前的工作功率降低30~40%。在该步骤中,射频发生模 块130当前的工作功率降低35%。
步骤S834:获取入射波信号的电压和电流以及反射波信号的电压和电流,计算待处理物的介电系数的变化速率Δε/Δt。
步骤S836:判断待处理物的介电系数的变化速率Δε/Δt是否小于等于第二速率阈值,若是,执行步骤S838;若否,执行步骤S834。
步骤S838:供电模块142停止工作,解冻开关124复位(即关闭),变温进风风门打开,蜂鸣器开始工作。
步骤S840:判断待处理物是否从解冻腔室内取出,若是,执行步骤S842;若否;执行步骤S838。
步骤S842:蜂鸣器停止工作。
步骤S829:获取入射波信号的电压和电流以及反射波信号的电压和电流,计算射频发生模块230的负载阻抗Z 2
步骤S831:判断射频发生模块230的负载阻抗Z 2与输出阻抗Z 1的差值是否大于第一阻抗阈值,若是,执行步骤S833;若否,执行步骤S835。
步骤S833:负载补偿模块260的电机工作,减小补偿单元的阻抗。返回步骤S829。
步骤S835:判断射频发生模块230的负载阻抗Z 2与输出阻抗Z 1的差值是否小于第二阻抗阈值,若是,执行步骤S837;若否,执行步骤S829。
步骤S837:负载补偿模块260的电机工作,增大补偿单元的阻抗。返回步骤S829。(本领域技术人员可以理解地,当程序运行至步骤S838时,供电模块142停止工作,即停止供电,射频发生模块230、检测模块250以及负载补偿模块260均停止工作,即当待处理物的介电系数的变化速率Δε/Δt下降至小于等于第二速率阈值时,检测模块250停止检测连接射频发生模块230与上极板240a的电连线的入射波信号和反射波信号,负载补偿模块260停止工作。)
本发明一个实施例的冰箱10的一个解冻工作流程可包括:当用户打开解冻开关124时,供电模块142开始供电,当装置门体220关闭时,称重传感器感测待处理物的重量,根据待处理物的重量判断射频发生模块230是否工作,并确定其工作时的工作功率。射频发生模块230产生40.68MHz的射频信号,变温进风风门关闭,停止为变温间室提供冷量,检测模块250和负载补偿模块260开始工作。检测模块250检测连接射频发生模块230与上极板的电连线的入射波信号和反射波信号,并计算射频发射装置230的负载阻抗Z 2及介电系数的变化速率Δε/Δt。当待处理物的介电系数的变化速率Δε/Δt大于等于第一速率阈值时,射 频发生模块230的工作功率降低35%,同时,在整个解冻工作流程中,当射频发生模块230的负载阻抗Z 2与输出阻抗Z 1之差小于第一阻抗阈值或大于第二阻抗阈值时,负载补偿模块260通过电机调节补偿单元的阻抗大小,进而调节射频发生模块230的负载阻抗Z 2,使射频发生模块230的负载阻抗Z 2与输出阻抗Z 1之差一直大于等于第一阻抗阈值且小于等于第二阻抗阈值。当待处理物的介电系数的变化速率Δε/Δt小于等于第二速率阈值时,供电模块142停止供电,解冻开关124关闭,变温进风风门打开,射频发生模块230、检测模块250和负载补偿模块260停止工作,蜂鸣器开始工作。当用户从解冻腔室214内取出待处理物时,蜂鸣器停止工作。
上文所列出的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种冰箱,包括限定有至少一个容纳空间的箱体、用于分别开闭所述至少一个容纳空间的间室门体和设置于一个所述容纳空间的解冻装置,所述解冻装置包括:
    筒体,其内限定有具有前向开口的解冻腔室,所述解冻腔室用于放置待处理物;
    装置门体,设置于所述解冻腔室的前向开口处,用于开闭所述解冻腔室;
    射频发生模块,配置为产生射频信号;
    上电极板和下电极板,分别水平地设置于所述解冻腔室的顶壁和底壁处,且分别与所述射频发生模块电连接,以根据所述射频信号在所述解冻腔室内产生相应频率的射频波,并解冻所述解冻腔室内的待处理物;和
    用于承载所述待处理物的托盘,设置于所述解冻腔室内;且
    所述托盘设置有至少一个称重传感器,配置为感测所述待处理物的重量,并确定所述射频发生模块的工作功率。
  2. 根据权利要求1所述的冰箱,其中
    所述至少一个称重传感器的数量为一个;且所述一个称重传感器设置于所述托盘的中心;或
    所述至少一个称重传感器的数量为多个;且所述多个称重传感器均匀分布于所述托盘上。
  3. 根据权利要求1所述的冰箱,其中所述射频发生模块配置为:
    当所述待处理物的重量处于一预设范围内时,开始工作;
    当所述待处理物的重量不处于所述预设范围内时,不开始工作。
  4. 根据权利要求3所述的冰箱,还包括:
    解冻开关,设置于任一所述间室门体上,用于控制解冻程序的启停;且所述称重传感器配置为:
    当所述装置门体关闭且所述解冻开关打开时,开始工作;
    当所述射频发生模块开始工作时,停止工作。
  5. 根据权利要求3所述的冰箱,其中所述射频发生模块进一步配置为:
    当所述待处理物的重量大于等于一第一重量阈值且小于一第二重量阈值时,其工作功率为额定功率的75~95%;
    当所述待处理物的重量大于等于所述第二重量阈值且小于等于一第三重量阈值时,其工作功率为额定功率;其中
    所述第一重量阈值大于零,所述第一重量阈值小于所述第二重量阈值,所述第二重量阈值小于所述第三重量阈值,且所述预设范围为大于等于所述第一重量阈值小于等于所述第三重量阈值。
  6. 根据权利要求5所述的冰箱,配置为:
    当所述待处理物的重量小于所述第一重量阈值时,发出视觉和/或听觉信号提醒用户空载;
    当所述待处理物的重量大于所述第三重量阈值时,发出视觉和/或听觉信号提醒用户过载。
  7. 根据权利要求1所述的冰箱,其中所述解冻装置还包括:
    检测模块,配置为检测连接所述射频发生模块与所述上电极板的电连线的入射波信号和反射波信号,并根据所述入射波信号的电压和电流、以及所述反射波信号的电压和电流,计算所述射频发生模块的负载阻抗。
  8. 根据权利要求7所述的冰箱,其中所述解冻装置还包括:
    负载补偿模块,配置为可受控地增大或减小所述射频发生模块的负载阻抗,并使所述射频发生模块的负载阻抗与输出阻抗之差大于等于一预设阻抗阈值且小于等于一预设阻抗阈值,以提高所述待处理物的解冻效率。
  9. 根据权利要求7所述的冰箱,其中所述检测模块配置为进一步根据所述射频发生模块的负载阻抗计算所述待处理物的介电系数的变化速率,以判断所述待处理物的解冻进度。
  10. 根据权利要求9所述的冰箱,其中所述射频发生模块配置为:
    当所述待处理物的介电系数的变化速率大于等于第一速率阈值时,其当前的工作功率降低30%~40%,以防止所述待处理物被过度解冻;和/或
    当所述待处理物的介电系数的变化速率下降至小于等于第二速率阈值时,停止工作。
PCT/CN2018/089910 2017-06-06 2018-06-05 冰箱 WO2018223947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710419613.2 2017-06-06
CN201710419613.2A CN109000402B (zh) 2017-06-06 2017-06-06 冰箱

Publications (1)

Publication Number Publication Date
WO2018223947A1 true WO2018223947A1 (zh) 2018-12-13

Family

ID=64566924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089910 WO2018223947A1 (zh) 2017-06-06 2018-06-05 冰箱

Country Status (2)

Country Link
CN (1) CN109000402B (zh)
WO (1) WO2018223947A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111317017A (zh) * 2018-12-14 2020-06-23 青岛海尔智能技术研发有限公司 射频解冻装置
CN112385763A (zh) * 2019-08-19 2021-02-23 青岛海尔特种电冰柜有限公司 解冻箱
CN114413542A (zh) * 2022-01-10 2022-04-29 海信(山东)冰箱有限公司 一种冰箱及其解冻控制方法
EP4114143A4 (en) * 2020-04-22 2023-07-26 Qingdao Haier Refrigerator Co., Ltd. DEFROST METHOD FOR HEATER, AND HEATER

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209893774U (zh) * 2019-01-04 2020-01-03 青岛海尔股份有限公司 冷藏冷冻装置
CN112799337A (zh) * 2021-04-14 2021-05-14 成都沃特塞恩电子技术有限公司 射频解冻控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052815A (zh) * 2009-11-11 2011-05-11 泰州乐金电子冷机有限公司 一种解冻冰箱
CN104186635A (zh) * 2014-09-05 2014-12-10 海信容声(广东)冰箱有限公司 一种冰箱的解冻装置
CN105972906A (zh) * 2016-05-23 2016-09-28 青岛海尔股份有限公司 冰箱储存物的解冻方法与冰箱
CN106387607A (zh) * 2016-08-29 2017-02-15 合肥华凌股份有限公司 解冻装置和冰箱
CN205957576U (zh) * 2016-07-01 2017-02-15 青岛海尔智能技术研发有限公司 一种解冻装置及具有该解冻装置的冰箱
WO2017061012A1 (ja) * 2015-10-08 2017-04-13 三菱電機株式会社 冷蔵庫

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284742B2 (en) * 2015-09-01 2022-03-29 Illinois Tool Works, Inc. Multi-functional RF capacitive heating food preparation device
KR102414251B1 (ko) * 2015-10-13 2022-06-29 삼성전자주식회사 조리 장치 및 이의 제어 방법
CN106288626A (zh) * 2016-08-29 2017-01-04 合肥华凌股份有限公司 一种解冻装置、冰箱及其解冻控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052815A (zh) * 2009-11-11 2011-05-11 泰州乐金电子冷机有限公司 一种解冻冰箱
CN104186635A (zh) * 2014-09-05 2014-12-10 海信容声(广东)冰箱有限公司 一种冰箱的解冻装置
WO2017061012A1 (ja) * 2015-10-08 2017-04-13 三菱電機株式会社 冷蔵庫
CN105972906A (zh) * 2016-05-23 2016-09-28 青岛海尔股份有限公司 冰箱储存物的解冻方法与冰箱
CN205957576U (zh) * 2016-07-01 2017-02-15 青岛海尔智能技术研发有限公司 一种解冻装置及具有该解冻装置的冰箱
CN106387607A (zh) * 2016-08-29 2017-02-15 合肥华凌股份有限公司 解冻装置和冰箱

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111317017A (zh) * 2018-12-14 2020-06-23 青岛海尔智能技术研发有限公司 射频解冻装置
CN112385763A (zh) * 2019-08-19 2021-02-23 青岛海尔特种电冰柜有限公司 解冻箱
EP4114143A4 (en) * 2020-04-22 2023-07-26 Qingdao Haier Refrigerator Co., Ltd. DEFROST METHOD FOR HEATER, AND HEATER
CN114413542A (zh) * 2022-01-10 2022-04-29 海信(山东)冰箱有限公司 一种冰箱及其解冻控制方法

Also Published As

Publication number Publication date
CN109000402A (zh) 2018-12-14
CN109000402B (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2018223946A1 (zh) 用于解冻装置的解冻方法
WO2018223939A1 (zh) 冰箱
WO2018223947A1 (zh) 冰箱
WO2018223949A1 (zh) 冰箱
CN207095130U (zh) 冰箱
WO2018223948A1 (zh) 用于解冻装置的解冻方法
CN207081264U (zh) 冰箱
CN207095160U (zh) 解冻装置及具有该解冻装置的冰箱
CN109000397B (zh) 用于解冻装置的解冻方法
CN109000417B (zh) 解冻装置及具有该解冻装置的冰箱
CN109000401B (zh) 冰箱
US20200116417A1 (en) Thawing method for thawing device
CN109000408B (zh) 冰箱
CN109000400B (zh) 对开门冰箱
CN109000420B (zh) 解冻装置及具有该解冻装置的冰箱
CN109000404B (zh) 冰箱
CN109000399A (zh) 用于解冻装置的解冻方法及冰箱
CN109000410B (zh) 冰箱
CN108991339B (zh) 用于解冻装置的解冻方法
CN109000411B (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813473

Country of ref document: EP

Kind code of ref document: A1