WO2018223934A1 - 散热片及其制造方法 - Google Patents

散热片及其制造方法 Download PDF

Info

Publication number
WO2018223934A1
WO2018223934A1 PCT/CN2018/089842 CN2018089842W WO2018223934A1 WO 2018223934 A1 WO2018223934 A1 WO 2018223934A1 CN 2018089842 W CN2018089842 W CN 2018089842W WO 2018223934 A1 WO2018223934 A1 WO 2018223934A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat sink
dissipating
substrate
thermosetting
Prior art date
Application number
PCT/CN2018/089842
Other languages
English (en)
French (fr)
Inventor
谢佑楠
Original Assignee
深圳市鸿富诚屏蔽材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鸿富诚屏蔽材料有限公司 filed Critical 深圳市鸿富诚屏蔽材料有限公司
Publication of WO2018223934A1 publication Critical patent/WO2018223934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • the invention relates to the technical field of heat dissipation products, and in particular to a heat sink and a manufacturing method thereof.
  • the traditional heat sink is most commonly an aluminum finned heat sink.
  • the heat sink of the structure increases the heat dissipation area due to the action of the fins, which can effectively increase the heat convection area and passage of the heat sink and the air, but Fin-type heat sinks must be formed by die-casting, hot pressing or CNC, so the production cost is very high, so the price is relatively expensive on the market. It is mostly used in high-end products. Due to limited aluminum resources, a large number of radiators are also caused. The shortage of resources and the damage to the environment during processing. At the same time, because aluminum is a metal, it has a certain weight when processed into a radiator. It is not very suitable in many places where weight is required, such as wearable. Therefore, design development A new type of radiator with light weight and high efficiency is necessary.
  • the Chinese invention patent No. 201510388692.6 discloses a high efficiency insert heat sink comprising a substrate, a groove provided on the substrate, and a heat sink disposed in the groove, the heat sink of the heat sink and the entire contact of the substrate Part of the whole is subjected to rolling deformation, which can effectively ensure the crimping strength, increase the contact area between the heat sink and the heat dissipating substrate, and ensure the heat transfer effect.
  • the heat sink is fixed by the way of fixing the heat sink and the heat dissipating substrate, and there is bound to be contact.
  • the gap although the contact gap will be small, will still affect the smoothness of the heat transfer path to a certain extent, that is, affect the heat dissipation effect, and the heat sink requires multiple sets of processes to be completed in production, and the production cost and time still cannot be done. To minimize.
  • the present invention provides a heat sink and a method of manufacturing the same to solve the above problems.
  • a heat sink includes: a heat dissipating fin and a thermosetting heat dissipating substrate, wherein the heat dissipating fin is integrally molded on the thermosetting heat dissipating substrate by heat curing.
  • the bottom end surface of the heat dissipation fin is flush with the bottom plane of the thermosetting heat dissipation substrate.
  • thermosetting heat dissipation substrate is thermoformed using a thermally conductive epoxy potting compound or a hot melt resin.
  • the heat sink fin comprises a support core and a graphite layer wrapped around the outer layer of the support core.
  • the heat dissipation fin is a heat dissipation metal wire column or a graphite layer is used to wrap the support core to form a columnar heat dissipation column.
  • the support core is a heat conductive resin or a heat resistant hard plastic.
  • the support core is made of acrylonitrile butadiene styrene, polyoxymethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate.
  • a glycol ester or a polyphenylene ether is one or more of a glycol ester or a polyphenylene ether.
  • the heat dissipating fin covers the surface of the heat-resistant hard plastic plate with a graphite layer and is thermoformed into a horizontal folding plate having a wave crest, and the trough position of the lateral folding plate is solidified in the thermosetting heat-dissipating substrate; or the heat-dissipating fin
  • the sheet is covered with a graphite layer to cover the upper, lower, left and right circumferential surfaces of the heat-resistant hard plastic sheet and is thermoformed into a horizontally folded sheet having wave crests, and the trough position of the laterally folded sheet is solidified in the thermosetting heat-dissipating substrate; or the heat-dissipating fin is made of metal heat-dissipating
  • the plate is continuously bent into a transverse folded plate having a wave trough, and the trough position of the lateral folded plate is solidified in the thermosetting heat sink substrate.
  • the heat dissipating fin is bent into a specific shape by using a heat dissipating sheet, and the specific shape is a circular spiral shape or a square spiral shape or a continuous S shape projected on the thermosetting heat dissipation substrate.
  • the heat dissipation fins are formed by using a graphite layer to wrap the heat resistant plastic to form a heat dissipation sheet, and are thermoplastically formed into a specific shape, or the heat dissipation fins are made of a bendable metal heat dissipation plate.
  • the heat dissipation fin is provided with a plurality of ventilation holes.
  • the bottom surface of the thermosetting heat dissipation substrate is bonded with a soft thermal pad.
  • the soft thermal pad is integrally molded on the bottom of the thermosetting heat dissipating substrate by thermosetting.
  • the soft thermal pad is made of thermally conductive silicone, thermal grease or thermal gel.
  • the invention also provides a heat sink manufacturing method, comprising the following steps:
  • thermosetting raw material in the liquid state into the mold tank
  • the heat-fixing substrate in the mold cavity is heated to form a heat-dissipating substrate and is formed into a heat-dissipating fin integrally formed with the heat-dissipating fin.
  • the method further comprises the steps of: immersing the heat sink fin root in the thermosetting material:
  • a graphite film is attached to the formed heat conductive resin to form a heat dissipating fin, or an adhesive is attached to the heat conductive hard plastic to adhere the graphite film to form a heat dissipating fin, or the surface of the heat conductive hard plastic plate is heated and melted, and the graphite film is bonded. Forming heat-dissipating fins on the melted surface of the heat-conductive rigid plastic sheet;
  • the heat sink fins are thermoplastically shaped into a specific shape for use.
  • the method further comprises the steps of:
  • the entire mold is heated to form a fluid thermal pad to form a soft thermal pad and integrally formed on the bottom of the heat dissipation substrate of the heat sink.
  • the heat dissipation fin can be solidified on the heat dissipation substrate into an integrally formed heat dissipation fin, so that there is no small gap between the heat dissipation fin and the heat dissipation substrate to ensure heat dissipation.
  • the smooth path enhances the heat dissipation effect, and in the manufacturing process, only one piece of the heat dissipation fins needs to be heated and solidified on the heat dissipation substrate in the liquid state, and the production cost and the production time can be minimized.
  • FIG. 1 is a schematic view showing an exploded structure of a heat sink finished product in Embodiment 1 of the present invention
  • Figure 2 is a schematic enlarged view of the portion A of Figure 1;
  • FIG. 3 is a schematic perspective view showing the finished structure of a heat sink according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic perspective view of a finished product of a heat sink according to Embodiment 3 of the present invention.
  • Figure 5 is a cross-sectional structural view showing the finished product of the heat sink in Embodiment 3 of the present invention.
  • Figure 6 is a perspective view showing the structure of a circular spiral heat sink in Embodiment 4 of the present invention.
  • Figure 7 is a perspective view showing a three-dimensional structure of a square spiral heat sink according to a fourth embodiment of the present invention.
  • Figure 8 is a flow chart showing a manufacturing method in Embodiment 5 of the present invention.
  • the embodiment of the present invention provides a heat sink, as shown in FIG. 1 and FIG. 2 , comprising: a heat dissipating fin 1 and a thermosetting heat dissipating substrate 2 , wherein the heat dissipating fin 1 is integrally molded in a thermosetting manner on the thermosetting heat dissipating substrate 2 . on.
  • the thermosetting heat dissipating substrate 2 has a characteristic of being in a fluid state in an initial state, and is heated to a solid state after being heated at a certain temperature.
  • the thermosetting heat dissipating substrate 2 is thermoformed by an epoxy potting compound to ensure that the heat dissipating substrate has a light weight.
  • the thermosetting heat-dissipating substrate can also achieve the same effect by thermosetting the other thermosetting resin, such as a phenolic resin, a silicone resin or an unsaturated polyester resin.
  • heat sink fins of common materials such as metal heat sink fins
  • the metal used for metal heat dissipation is generally selected from aluminum or copper, and has a large weight and cost. High disadvantage, but even if the aluminum or copper metal heat sink fin is combined with the thermosetting heat sink substrate in the embodiment, the effect of the heat sink fin and the heat sink substrate can be achieved, and the manufacturing process is realized. Low cost, short time, and high yield.
  • the metal fins can also be made of metal foam.
  • the heat dissipation fins 1 used in the embodiment include the support core 12 and the graphite layer 11 wrapped around the outer layer of the support core.
  • the support core 12 plays a supporting role, and supports the graphite film to fully utilize the surface of the graphite film to dissipate heat.
  • the support core may also be a support having a certain heat conduction effect, and the support core 12 may be made of a heat conductive resin or a heat resistant hard. Plastics in order to be able to shape fins of various shapes.
  • the support core can be made of acrylonitrile butadiene styrene (ABS), polyoxymethylene (POM), polystyrene (PS), poly Methyl acrylate (PMMA acrylic), polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene ether (PPO)
  • ABS acrylonitrile butadiene styrene
  • POM polyoxymethylene
  • PS polystyrene
  • PMMA acrylic polycarbonate
  • PC polyethylene terephthalate
  • PET polybutylene terephthalate
  • PPO polyphenylene ether
  • the support core 12 is coated with a graphite film to form a graphite layer 11 , and the graphite material has a wide range of special properties, especially because of its special structure, the thermal conductivity of the surface direction is very high, usually 400 ⁇ 1500W/mk, which is 2-6 times of aluminum, and its density is
  • the weight per unit weight of graphite is 6-18 times that of aluminum.
  • the heat dissipating fins adopting such a structure are light in weight, high in heat dissipation efficiency, and can ensure that the fins having the surface of the graphite film are tightly combined with the thermosetting heat dissipating substrate, and the stability is higher.
  • the graphite film is a graphite film in a broad sense, and refers to a graphite base such as natural graphite, synthetic graphite original film, synthetic graphite with PET reinforced base film, graphite coated film, graphene coated film or graphite paper. A film formed of material.
  • the joint of the graphite film end-to-end is disposed on the top side or the bottom side of the support core, which is beneficial to the graphite film tightly covering the support core without loosening, especially the graphite film is connected end to end.
  • the joint is disposed on the bottom side of the support core. After the heat dissipation fin is inserted into the heat dissipation substrate, the joint can be fixed on the bottom of the heat dissipation substrate, which is more favorable for the graphite film to be tightly coupled.
  • the bottom end surface of the heat dissipation fin is flush with the bottom plane of the thermosetting heat dissipation substrate, and therefore the heat dissipation fin on the heat dissipation substrate is arranged in the exploded structure diagram of the heat sink product shown in FIG.
  • the hole is a through hole.
  • the hole is a blind hole, that is, the way in which the heat dissipating fin is inserted into the bottom is immersed in the mold of the thermosetting heat dissipating substrate in the liquid state, until After curing, the bottom of the heat dissipation fin and the bottom of the heat dissipation substrate are on the same plane, so that the bottom of the heat dissipation fin can be closer to the heat source, forming a multi-point contact with the heat source on the bottom surface of the heat dissipation substrate, at least at the contact point.
  • the heat conduction path directly avoids the heat dissipation substrate, thereby greatly improving the heat dissipation effect. More critically, the implementation of this structure does not require any extra steps in the fabrication process, just press the heat sink fins down to the bottom of the mold cavity.
  • a soft thermal pad is added between the heat sink and the heat source.
  • the soft thermal pad can be deformed due to its softness, thereby squeezing out the contact gap that may exist.
  • the soft heat conduction is performed.
  • the pad can be directly pressed onto the bottom surface of the heat sink substrate of the heat sink, and a protective film can be added. When used, the protective film is removed, and then the heat sink and the soft thermal pad on the bottom surface are attached to the heat source.
  • the soft thermal pad 3 in the embodiment is solidified integrally in the bottom of the thermosetting heat dissipating substrate by the thermosetting method, and the heat dissipation of the heat sink After the fin and the heat dissipation substrate are heated and solidified, a heat sink product is formed, and then the heat sink is taken out and placed in a material of a soft thermal pad filled with a fluid state, and then placed in an oven to be heated and solidified, and the soft heat pad and the heat sink are to be The bottom of the heat-dissipating substrate is completely solidified and integrally formed to form a heat sink with a soft thermal pad, thereby eliminating the manual pressing step.
  • the soft thermal pad is made of thermal conductive silica gel, and the initial state is fluid, solidified after heating, and can form a integrally formed finned product perfectly with the heat dissipating substrate.
  • the thermal thermal pad can also have the same effect using a thermal grease or a thermal conductive gel.
  • the heat sink in this embodiment subverts the traditional heat sink structure, and uses a thermosetting material as the heat sink substrate, which can be perfectly combined with various types of heat sink fins and form an integrally formed heat sink structure, compared with One-piece die-casting or die-cutting of all-metal heat sink has the characteristics of light weight, simple processing and low cost, and better heat dissipation effect; compared with the assembled structure of polymer heat sink, it has stable structure and no heat conduction path. The gap, heat dissipation effect is better, the processing procedure is simple, and the cost is low.
  • the heat sink product and the soft thermal pad are formed by heat curing, which eliminates more manpower pressing processes and reduces labor costs, thereby further ensuring product quality.
  • the heat dissipation fins 1 are formed in a cylindrical shape, and the cylindrical heat dissipation fins 1 are arranged in a regular row on the heat dissipation substrate 2 to form a ventilation passage.
  • the cylindrical fins are arranged in a crisscross pattern to form a horizontal and vertical straight ventilation passage.
  • the cylindrical fins may directly adopt a heat-dissipating wire post, where the wire post comprises a wire or a metal column having a slightly larger diameter, and when the heat-dissipating wire is used, the wire is similarly flocked. “Planting” on the heat-dissipating substrate material in the fluid state, and then heating and solidifying. When the heat sink has a large size, the heat-dissipating wire can be replaced with a heat-dissipating metal column.
  • the graphite core is used to wrap the support core to form a columnar heat dissipation column, and the heat dissipation column having the graphite layer is regularly arranged to form a graphite heat dissipation column series, and the heat dissipation is further performed.
  • the bottom of the column is flush with the bottom of the heat dissipation substrate, so that the graphite heat dissipation column of the entire heat sink contacts the heat source, and the cylindrical graphite heat dissipation column further increases the heat dissipation area, and the certain distance between the graphite heat dissipation columns can further ensure ventilation.
  • the effect therefore, the heat dissipation effect of the entire heat sink is greatly improved. The same is true for metal heat sinks.
  • the heat dissipation fins of different structures are still used.
  • the heat dissipation fins are individually independent and need to be inserted into the heat dissipation substrate one by one. The process still does not reach the simplification, and for the heat dissipation fins, the heat is more efficiently transmitted along the surface. Therefore, as shown in FIG. 4 and FIG. 5, the heat dissipation fins are covered with a graphite layer to cover the surface of the heat resistant hard plastic plate.
  • thermoplastically formed into a horizontal folding plate with wave troughs in order to increase the heat dissipation area, the folding density (the distance between two peaks or troughs) is as large as possible, but the ventilation channel needs to be considered, and the spacing between the two peaks of the general product is required. It is set between 1mm and 10mm, and the best is 3mm. It can meet the requirements of heat dissipation area and can make the air duct of heat dissipation and ventilation have the best ventilation effect.
  • the heat-resistant hard plastic plate has the characteristics of thermoforming at a high temperature, and the graphite film is attached to the surface of the heat-resistant hard plastic plate, and then can be thermoformed into various shapes, which is simple and easy to implement in the manufacturing process.
  • the heat of the heat source quickly penetrates the heat-dissipating substrate to reach the graphite layer on the upper surface of the heat-dissipating fin, and rapidly spreads on the surface of the graphite layer to achieve a rapid heat-dissipating effect, and at a certain point of the heat-dissipating substrate, if the temperature rises rapidly At a certain value, it will also dissipate heat around the surface and transfer it to the near-point graphite film for rapid heat dissipation.
  • the graphite film 110 (ie, the graphite layer 11) is coated on the lateral circumference of the heat-resistant rigid plastic plate 120, that is, the heat dissipation fins are covered with a graphite layer.
  • the upper, lower, left and right circumferential surfaces of the thermosetting plastic sheet are thermoformed into transversely folded sheets having wave crests, and the troughs of the laterally folded sheets are solidified in the thermosetting heat dissipating substrate.
  • the heat dissipating substrate can dissipate heat
  • the graphite film on the lower surface of the heat dissipating fin can be rapidly diffused and transmitted to the upper surface, because the surface heat dissipating speed is 5 times of the body heat dissipating speed.
  • the structure in which the whole graphite film is wrapped with the heat-resistant hard plastic plate in the embodiment more effectively utilizes the heat dissipation characteristics of the surface of the graphite film, so that the surface heat dissipation and the heat dissipation of the heat dissipation substrate are combined, and the heat dissipation effect is maximized.
  • U-shaped crests or troughs can form ventilation channels to accelerate heat dissipation.
  • the front and rear sides of the heat dissipating fin need not be covered with a graphite film, otherwise the cost is high.
  • the graphite film is coated on the lower left and right circumferential surfaces of the heat-resistant hard plastic, and only the plastic plate is The wrapping action is completed by flipping 360° in the lateral direction, so the effect of the processing is very high.
  • the coating method can be selected by means of gluing, or the surface of the heat-resistant hard plastic plate can be melted, and the graphite film can be attached to the graphite film.
  • the trough of the heat dissipating fin Since the trough of the heat dissipating fin has a certain width in the lateral direction, it takes a certain time to insert the heat sink fin trough into the heat dissipating substrate in the liquid state to ensure that the fluid state material covers the trough, but due to the integral structure of the heat dissipating fin, The heat-dissipating fins are placed in the mold groove in advance, and the heat-dissipating substrate material in the fluid state is poured into the mold groove to improve the production efficiency.
  • the heat-resistant rigid plastic plate in this embodiment has the same function as the support core in the embodiment 1, and therefore, the support core in the embodiment 1 can be used in place of the heat-resistant rigid plastic plate in the embodiment, specifically Acrylonitrile-butadiene-styrene (ABS), polyoxymethylene (POM Seijing), polystyrene (PS), polymethyl methacrylate (PMMA acrylic), polycarbonate (PC), One or more of polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyphenylene ether (PPO) are used as heat-resistant rigid plastic sheets.
  • ABS Acrylonitrile-butadiene-styrene
  • POM Seijing polyoxymethylene
  • PS polystyrene
  • PMMA acrylic polymethyl methacrylate
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PPO polyphenylene ether
  • the heat dissipating fins may be continuously bent into a horizontal folding plate having a wave crest by using a metal heat sink.
  • the trough position of the lateral folding plate is solidified in the thermosetting heat dissipating substrate, and is also based on the principle of increasing the heat dissipating area and the ventilation channel. Made.
  • the problem that the weight is larger than that of the heat sink in this embodiment cannot be avoided.
  • the structure of the heat dissipation fin in the embodiment is a structure in which a plurality of fins are integrally formed by folding a heat dissipation plate, and the integral heat dissipation fin can be directly solidified on the heat dissipation substrate during the process, thereby eliminating the need for the heat dissipation fin.
  • the action of inserting one by one, and the heat conduction path of heat dissipation is to make full use of the surface heat dissipation, and therefore, the heat dissipation effect is also enhanced.
  • the structure of the heat dissipating fin is improved.
  • the heat dissipating fin is bent into different shapes, but combined with the heat dissipating substrate. There are significant differences in the way.
  • the heat dissipation fin is bent into a specific shape by using a heat dissipation sheet, and the specific shape is a circular spiral shape or a square spiral shape projected on the thermosetting heat dissipation substrate or Continuous S shape.
  • Fig. 6 a circular spiral heat sink is shown
  • Fig. 7 is a square spiral heat sink.
  • the heat dissipation fins are coated with a graphite layer to form a heat dissipation sheet, and are thermoplastically formed into a specific shape.
  • a continuous S-shaped heat-dissipating fin is inserted into the heat-dissipating substrate, thermally solidified and integrally formed with the heat-dissipating substrate, and the opposite side is facing upward, that is, the heat-dissipating fin is perpendicular to the heat-dissipating substrate.
  • the bottom surface and the two sides of the heat-resistant hard plastic plate are laminated with a graphite film.
  • the structure can be completed in one step, and the heat-resistant hard plastic plate is flipped along the graphite film. °
  • the three faces can be coated, which is equivalent to bending the graphite film into a U-shaped structure having a receiving groove, and the heat-resistant hard plastic plate is placed in the receiving groove for bonding.
  • the end joints of the graphite film are arranged on the bottom side of the heat-resistant hard plastic plate, so as to be pressed on the bottom surface of the heat-dissipating substrate, so that the graphite film does not loosen. Phenomenon, the coating is more tight and stable.
  • the bottom surface of the heat dissipation fin is completely combined with the heat dissipation substrate, and the graphite film on both sides is also combined with the heat dissipation substrate at the bottom position, so that the heat can be rapidly spread upward along the surface, and the surface heat dissipation is fully utilized.
  • the temperature of the substrate is rapidly increased to a certain value, it will also radiate heat to the surrounding area and be transmitted to the near-point graphite film for rapid heat dissipation.
  • the heat-resistant rigid plastic plate here is also equivalent to the support core in the embodiment 1, that is, a support core which can be molded into various shapes.
  • the heat dissipation fins may also be made of a bendable metal heat sink that is bent to project a circular spiral or a square spiral or a continuous S shape on the heat dissipation substrate.
  • the heat dissipation fins in the fourth embodiment are equivalent to “sideways” placement, and are easier to insert into the heat dissipation substrate material in the fluid state during production, and
  • the fixing effect of the heat dissipating substrate is better, but the ventilation passage does not form a passage in the lateral plane, so in order to increase the ventilation effect, the heat dissipating fin is provided with a plurality of ventilation holes 13.
  • the venting hole can penetrate the plurality of heat dissipation fins from the outside to the inside, so that the air can also maintain the flow in the radial direction, thereby further enhancing the heat dissipation effect.
  • This embodiment provides a method for manufacturing a heat sink, which can be applied to the fabrication of the heat sink in the above embodiment. Of course, it is not limited to the heat sink in the above embodiment. As shown in FIG. 8, the manufacturing method includes the following steps.
  • Step 101 The step of preparing the heat dissipation fins: coating the graphite film on the heat conductive hard plastic to form the heat dissipation fins.
  • the heat-conductive rigid plastic can be selected from a large piece of sheet-shaped heat-conductive rigid plastic, so that the heat-conductive rigid plastic can be made into a core of a horizontally folded integrated heat-dissipating fin, or a heat-dissipating block can be selected.
  • the rigid plastic plate can be applied to a common type of heat sink, that is, the heat sink fin is a heat sink which is arranged one by one on the heat dissipation substrate.
  • the heat conductive hard plastic is bonded to the graphite film at least on one side thereof as needed, for example, the heat dissipation fin of the single-sided graphite film mentioned in Embodiment 3, and in this embodiment, the graphite film is coated in the circumferential direction as an example.
  • the heat-dissipating fins produced by the heat-dissipating fins have an increased heat dissipation surface area, and the heat-dissipating effect is better, and the material of the graphite film is correspondingly increased
  • the thermally conductive hard plastic may also be selected to be cylindrical, and then coated with a graphite film to form columnar fins.
  • the core inside can be made of a heat conductive resin, and the graphite film is laminated on the formed heat conductive resin to form a heat dissipation fin.
  • the surface of the heat conductive hard plastic plate may be adhered to the surface of the heat conductive hard plastic plate by heating and melting the surface of the heat conductive hard plastic plate.
  • the integrally formed heat dissipating fins are formed, and the structural graphite film and the heat conductive hard plastic have the best fit, and can be adapted to bend various shapes of heat dissipating fins.
  • Step 102 Step of shaping the heat dissipating fins: thermoplastic fins are shaped into a specific shape for use.
  • the specific shape includes a general sheet-like structure in addition to a circular spiral shape or a square spiral shape or a continuous S shape projected on the thermosetting heat dissipation substrate, so that no bending is required.
  • the heat dissipating fins completed in step 101 are thermoplastically formed into a desired shape by using a bending device at a suitable temperature, for example, a laterally folded plate is used for subsequent fabrication of the heat sink in Embodiment 3, and is spirally used for subsequent fabrication examples.
  • the heat sink in 4.
  • Step 103 a step of preparing a heat-dissipating substrate material: pouring a thermosetting material in a fluid state into a mold tank.
  • the hot-melt resin is poured into the mold cavity as a thermosetting material, and the depth of the hot-melt resin is determined according to the actual required thickness of the heat-dissipating substrate.
  • the thickness of the heat-dissipating substrate is controlled to be 0.5 mm to 5 mm. Of course, when the overall size of the heat sink is large, the thickness can be appropriately increased. When the heat sink substrate is selected to be 3 mm, the sheet can be easily broken and the heat dissipation effect is optimal.
  • Step 104 The step of installing the heat dissipating fins: dipping the roots of the heat dissipating fins into the thermosetting material and fixing them in a desired shape.
  • the root portion here is the end of the heat dissipation fin facing downward.
  • the root of the horizontal folding plate is a trough position
  • the root of the spiral heat dissipation fin is a lower side
  • the orientation of the heat dissipation fin is arranged according to different requirements. Position, get heat sinks with different structures.
  • a limiting device for adjusting the position of the heat dissipating fins in the up and down direction may be disposed above the mold, for example, a bracket is provided, and then the upper and lower adjusting devices are arranged on the bracket, and the heat sink fins are fixed on the upper and lower adjusting devices.
  • the clamping device of the sheet can adjust the depth position of the heat dissipation fins in the mold slot, so that the depth of the heat dissipation fins inserted into the heat dissipation substrate is adjustable, and if the bottom of the heat dissipation fins is coplanar with the bottom of the heat dissipation substrate, the upper and lower depths
  • the adjustment device can be omitted.
  • one mold can be divided into a plurality of mold grooves, and the heat dissipation fins are respectively fixed in the respective mold grooves, thereby enabling mass production.
  • Step 105 The step of curing the heat dissipation fin and the heat dissipation substrate: heating the heat-curable material in the mold cavity to form a heat dissipation substrate and solidifying the heat dissipation fin with the heat dissipation fin.
  • the mold slot is placed in an oven, and then heated to solidify the heat sink fin and the heat sink substrate into a heat sink integrally formed. After the solidification is cooled, the heat sink can be taken out of the mold cavity.
  • Step 106 a soft thermal pad raw material preparation step: pouring a raw material in a liquid state for forming a soft thermal pad in another mold groove.
  • the other mold groove adopts a large-area accommodating groove, and can accommodate a plurality of heat sinks at one time, which is convenient for batch processing.
  • the material of the soft thermal pad of the fluid state is made of thermal silica gel.
  • Step 107 The step of setting the thickness of the soft thermal pad: the raw material of the fluid state of the soft thermal pad is scraped into a liquid cushion of a set thickness. Since the raw material is in a liquid state, when the thickness is set, a doctor blade device is generally used, so that the depth of the soft thermal pad material in the other mold groove meets the requirements.
  • Step 108 The step of installing the heat sink on the soft thermal pad material: placing the formed heat sink on the liquid cushion so that the bottom surface of the heat sink substrate of the heat sink is attached to the liquid cushion.
  • the heat sinks are arranged neatly on the soft thermal pad material in the fluid state, and the spacing should not be too large, so as to avoid wasting space.
  • Step 109 The step of curing the soft thermal pad and the heat sink: heating the entire mold to form a soft thermal pad and integrally curing the bottom of the heat dissipation substrate of the heat sink.
  • the heat sink in the other mold in the step has been solidified with the soft thermal pad in the mold slot, and the entire soft thermal pad and the heat sink thereon are taken out from the mold slot, and then the excess is cut along the periphery of the heat sink.
  • the soft thermal pad forms a complete and neat heat sink.
  • the step of cutting off the excess soft thermal pad can also be entered through a uniform product size and handed over to the automated equipment for removal. After the heat sink is finished, you can choose to attach a protective film to the bottom of the heat sink.
  • the material selection and the processing are known by those skilled in the art through the prior art, for example, a heat curing treatment, such as a thermal conductive silica gel, as a soft thermal pad, such as heat.
  • a heat curing treatment such as a thermal conductive silica gel
  • a soft thermal pad such as heat.
  • the molten resin is made into a heat dissipating substrate, but the present invention completes the process and material selection according to the technical problem to be solved by creative labor, thereby achieving fewer processes and less consumables to complete the special The manufacture of structural heat sinks.
  • the heat sink manufacturing method of the present invention does not require complicated processing equipment and does not require excessive labor cost, but can efficiently complete mass production of integrated heat sinks and mass-fit bonding. Soft thermal pad.

Abstract

一种散热片及其制造方法,该散热片包括:散热鳍片(1)及热固性散热基板(2),散热鳍片(1)以热固化方式一体成型地固化在所述热固性散热基板(2)上。由于采用了热固性散热基板(2),使得散热鳍片(1)可以在散热基板上固化为一体成型的散热片,因此不存在散热鳍片(1)与散热基板之间的微小间隙,保证散热路径畅通,增强了散热效果,而且在制作工序上只需要将一块块的散热鳍片(1)插入流质状态的散热基板上一起加热固化即可,在制作成本及制作时间上均能够做到最小化。

Description

散热片及其制造方法 技术领域
本发明涉及散热产品技术领域,具体涉及一种散热片及其制造方法。
背景技术
随着电子产品的升级换代的加速,高集成以及高性能电子设备的日益增多,工作组件体积尺寸越来越小,工作的速度和效率越来越高,发热量越来越大,散热成为一个急需解决的难题,散热问题是限制该领域发展的瓶颈之一。
传统的散热器最常见是铝制鳍片式散热器,该结构散热器由于鳍片的作用增加了足够多的散热面积,能有效地增加散热器和空气发生热对流的面积和通道,但是由于鳍片式散热器必须通过压铸、热压或者CNC的方式成型,所以制作成本很高,所以市场上售价也相对较贵,多用于高端的产品,由于铝资源有限,大量的散热器也造成资源的紧缺和加工过程中对环境的破坏,同时,由于铝是金属,加工成散热器还是有一定的重量,在很多对重量有要求的场合如可穿戴等场合不是很适合,因此,设计开发一种质轻、高效的新型散热器很有必要。
申请号为201510388692.6的中国发明专利公开了一种高效插片散热器,包括基板、在基板上设置的带槽,以及设置在带槽中的散热片,该散热器的散热片和基板的整个接触部分全部经过滚压变形,可有效保证压接强度,增加散热片和散热基板的接触面积,保证传热效果,但是该散热器采用插接的方式将散热片与散热基板固定,必然会存在接触缝隙,虽然接触缝隙会很小,但仍然会在一定程度上影响热传递路径的畅通,即影响散热效果,而且该散热器在制作上需要多套工艺才能完成,制作成本和时间上仍不能做到最小化。
发明内容
本发明提供一种散热片及其制造方法,以解决上述问题。
本发明实施例提供的一种散热片,包括:散热鳍片及热固性散热基板,散热鳍片以热固化方式一体成型地固化在所述热固性散热基板上。
优选地,散热鳍片的底部端面与热固性散热基板的底部平面齐平。
优选地,所述热固性散热基板采用导热环氧灌封胶或热熔性树脂热固成型。
优选地,散热鳍片包括支撑芯及包裹在支撑芯外层的石墨层。
优选地,所述散热鳍片为散热金属丝柱或采用石墨层包裹支撑芯形成柱状体散热柱。
优选地,所述支撑芯为导热树脂或耐热硬质塑料。
优选地,支撑芯采用丙烯腈-丁二烯-苯乙烯、聚甲醛、聚苯乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚苯醚中的一种或几种。
优选地,所述散热鳍片采用石墨层覆盖耐热硬质塑料板上表面并热塑成具有波峰波谷的横向折叠板,横向折叠板的波谷位置固化在热固性散热基板内;或者所述散热鳍片采用石墨层覆盖耐热硬质塑料板的上下左右圆周表面并热塑成具有波峰波谷的横向折叠板,横向折叠板的波谷位置固化在热固性散热基板内;或者所述散热鳍片采用金属散热板连续弯折成具有波峰波谷的横向折叠板,横向折叠板的波谷位置固化在热固性散热基板内。
优选地,所述散热鳍片采用散热片材弯折成特定形状,该特定形状为在热固性散热基板上投影呈圆形螺旋线状或方形螺旋线状或连续S形。
优选地,所述散热鳍片采用石墨层包裹耐热塑料形成散热片材,并热塑形成特定形状,或者所述散热鳍片采用可弯折的金属散热板。
优选地,所述散热鳍片设置有多个通风孔。
优选地,所述热固性散热基板的底部表面贴合有软质导热垫。
优选地,软质导热垫采用热固方式一体成型地固化在热固性散热基板的底部。
优选地,所述软质导热垫采用导热硅胶、导热硅脂或导热凝胶。
本发明还提供了一种散热片制造方法,包括如下步骤:
将流质状态的热固性原料倒入模具槽中;
将散热鳍片根部浸入到热固性原料中按所需形状固定;
对模具槽内的热固性原料加热形成散热基板并与散热鳍片固化为一体成型的散热片。
优选地,在将散热鳍片根部浸入到热固性原料中之前还包括步骤:
在成型的导热树脂上贴合石墨膜形成散热鳍片,或者在导热硬质塑料上涂附胶粘剂贴合石墨膜形成散热鳍片,或者加热融化导热硬质塑料板的表面后将石墨膜贴合在导热硬质塑料板的融化表面,冷却后形成一体成型的散热鳍片;
将散热鳍片热塑成特定形状待用。
优选地,在散热基板与散热鳍片固化为一体成型的散热片之后还包括步骤:
在另一模具槽中倒入用于形成软质导热垫的流质状态的原料;
将软质导热垫的流质状态的原料刮涂成设定厚度的流质软垫;
将成型的散热片摆放在流质软垫上使散热片的散热基板底部表面贴合该流质软垫;
加热整个所述另一模具使流质软垫形成软质导热垫且一体成型地固化在散热片的散热基板底部。
上述技术方案可以看出,由于本发明型采用热固性散热基板,使得散热鳍片可以在散热基板上固化为一体成型的散热片,因此不存在散热鳍片与散热基板之间的微小间隙,保证散热路径畅通,增强了散热效果,而且在制作工序上只需要将一块块的散热鳍片插入流质状态的散热基板上一起加热固化即可,在制作成本及制作时间上均能够做到最小化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例1中散热片成品的爆炸结构示意图;
图2是图1中A部放大结构示意图;
图3是本发明实施例2中的散热片成品立体结构示意图;
图4是本发明实施例3中的散热器成品立体结构示意图;
图5是本发明实施例3中的散热器成品剖视结构示意图;
图6是本发明实施例4中圆形螺旋线状散热片立体结构示意图;
图7是本发明实施例4中方形螺旋线状散热片立体结构示意图;
图8是本发明实施例5中制造方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1:
本发明实施例提供一种散热片,如图1、图2所示,包括:散热鳍片1及热固性散热基板2,散热鳍片1以热固化方式一体成型地固化在所述热固性散热基板2上。热固性散热基板2具有初始状态为流质状态,经过一定温度加热后进而固化为固体的特性,在本实施例中所述热固性散热基板2采用环氧灌封胶热固成型,保证散热基板具有重量轻、散热快及易加工的优点,在其他实施例中热固性散热基板还可以采用其他热固型树脂热固成型亦能够达到同样的效果,例如酚醛树脂、有机硅树脂或不饱和聚酯树脂。
对于散热鳍片,其他的实施例中可以采用普通材质的散热鳍片,例如金属散热鳍片,根据公知常识,金属散热方面所采用的金属一般选择为铝质或铜质,存在重量大、成本高的缺点,但是即便采用了该铝质或铜质的金属散热鳍片与本实施例中的热固性散热基板结合,仍然能够达到散热鳍片与散热基板零缝隙结合的效果,且制作程序上实现低成本、时间短、产出率高的效果。该金属散热鳍片还可以采用泡沫金属。
当然,为了提升散热鳍片的散热效果及实现轻质化的散热鳍片,本实施例中采用的散热鳍片1包括支撑芯12及包裹在支撑芯外层的石墨层11。支撑芯12起到支撑作用,支撑起石墨膜充分利用石墨膜表面散热,当然,更有选地,该支撑芯还可以是具有一定导热效果的支架,支撑芯12可以采用导热树脂或耐热硬质塑料以便能够塑造各种形状的鳍片,具体而言,支撑芯可以采用丙烯腈-丁二烯-苯乙烯(ABS)、聚甲醛(POM赛刚)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA亚克力)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯醚(PPO)中的一种或几种;支撑芯12外面包覆一层石墨膜形成石墨层11,石墨材料具有广泛的特殊性能,特别是因为其特殊的结构性,其表面方向的导热系数非常高,通常为400~1500W/mk,为铝的2~6倍,而其密度只有铝的三分之一,因此,单位重量的石墨是铝散热效率的6~18倍。采用此种结构的散热鳍片重量轻,散热效率高,并能够保证具有石墨膜表面的散热鳍片 与热固性散热基板紧密结合,稳定性更高。本实施例中石墨膜是广义上的石墨膜,是指天然石墨、人工合成石墨原膜、人工合成石墨带PET增强基材膜、石墨涂层膜、石墨烯涂层膜或石墨纸等石墨基材形成的薄膜。在石墨膜包覆支撑芯时,石墨膜首尾衔接的接头处设置在支撑芯的顶侧或底侧,有利于石墨膜紧密包覆支撑芯,不发生松脱现象,尤其是石墨膜首尾衔接的接头处设置在支撑芯的底侧,在散热鳍片插入到散热基板后,该接头可以固定在散热基板底部,更加有利于石墨膜衔接紧密稳定。
为了进一步增加散热效果,本实施例中散热鳍片的底部端面与热固性散热基板的底部平面齐平,因此在图1中显示的散热片成品爆炸结构示意图中散热基板上的容置散热鳍片的孔是通孔,如果散热鳍片底部未与散热基板底部齐平,则该孔为盲孔,即制作时散热鳍片一插到底的方式浸入到流质状态时的热固性散热基板的模具中,等到固化后,散热鳍片底部和散热基板的底部则在同一个平面上,如此散热鳍片的底部便能够更加接近热源,形成在散热基板的底面上与热源的多点接触,至少在该接触点上,热传导路径直接避开了散热基板,从而大幅的提升了散热效果。更为关键的是,这种结构的实现,在制作程序上无需增加任何多余步骤,只需要将散热鳍片下压至模具模腔的底部即可。
在实际的应用中,散热片与热源之间会增设一个软质导热垫,软质导热垫由于质软,因此能够产生形变,从而挤压掉可能存在的接触间隙,在其他实施例中软质导热垫可以直接以人工方式贴压在散热片的散热基板底面,并还能够增设一个防护膜,当使用时,撕去防护膜,然后将散热片连同底面的软质导热垫贴在热源上。
由于人工贴压软质导热垫需要占用过多人力成本,生产效率较低,因此,本实施例中软质导热垫3采用热固方式一体成型地固化在热固性散热基板的底部,当散热片的散热鳍片与散热基板加热固化后形成一个散热片产品,再取出该散热片置入装有流质状态的软质导热垫原料中,然后放入烤箱中加热固化,待软质导热垫与散热片的散热基板底部完全固化一体成型,形成带有软质导热垫的散热片成品,从而省去了人工贴压的步骤。本实施例中所述软质导热垫采用导热硅胶,其初始状态为流质,加热后固化,能够与散热基板完美的形成一体成型的散热片成品。在其他实施例中软质导热垫还可以采用导热硅脂或导热凝胶亦具有同样效果。
可见,本实施例中的散热片颠覆了传统的散热片结构,使用热固性材料作为散热基板,能够与各种类型的散热鳍片完美无隙的结合并形成一体成型的散热片结构,相比于全金属散热片的一体成型压铸或冲切,具有相对于重量轻、加工工序简单、成本低的特点,散热效果更佳;相比于高分子散热片的组装结构,具有结构稳固、导热路径无缝隙、散热效果更佳、加工程序简单、成本低的特点。
尤其是散热片产品与软质导热垫采用热固化一体成型的结构,省去了更多的人力贴压工序,降低人力成本的同时,进一步保证了产品质量。
实施例2:
本实施例在上述实施例1的基础上,如图3所示,将散热鳍片1设为圆柱状,圆柱状的散热鳍片1在散热基板2上呈规则队伍排列从而形成通风通道,使散热效果更佳。例如圆柱状的散热鳍片纵横交错规则排列形成横向和纵向的笔直通风通道。
其他实施例中圆柱状的散热鳍片可以直接采用散热金属丝柱,这里金属丝柱包括金属丝或直径稍大一些的金属柱,采用散热金属丝时,即通过类似植绒的方式将金属丝“种植”在流质状态的散热基板原料上,然后加热固化即可,在散热片尺寸较大时,将散热金属丝替换为散热金属柱即可。
本实施例中为了进一步减轻散热片的自身重量,且为了进一步增加散热效果,采用石墨层包裹支撑芯形成柱状体散热柱,具有石墨层的散热柱规则的排列起来形成石墨散热柱系列,加之散热柱底部与散热基板底部齐平,从而整个散热片的石墨散热柱与热源接触的点增多,圆柱形的石墨散热柱使散热面积进一步增加,且石墨散热柱之间存在的一定间距能够进一步保证通风效果,因此,整个散热片的散热效果被大大提升。对于金属散热柱亦是如此。
实施例3:
本实施例在实施例1的基础上,仍是采用不同结构的散热鳍片,对于前两个实施例而言,散热鳍片是单个独立存在的,需要一个个的插入到散热基板上,加工工序仍未达到最简化,而对于散热鳍片来说,热量沿表面传导的效率更高,因此,如图4、图5所示,散热鳍片采用石墨层覆盖耐热硬质塑料板上表面并热 塑成具有波峰波谷的横向折叠板,为了增加散热面积,折叠密度(两个波峰或波谷间的间距)越大越好,但需要考略通风通道,一般产品在两个波峰之间的间距设置在1mm~10mm之间,以3mm为最佳,既能够满足散热面积需求又能够使散热通风的风道具有最佳的通风效果。耐热硬质塑料板具有高温下热塑成型的特点,将石墨膜贴合在该耐热硬质塑料板上表面,然后可以热塑成各种形状,在制作工序上较为简单,易于实现。在热量传输路径上,热源的热量快速穿透散热基板到达散热鳍片的上表面石墨层,并在石墨层表面快速扩散,达到快速散热的效果,同时散热基板的某个点如果温度快速升高到一定值,也会向四周散热,并传输至近点的石墨膜上进行快速散热。
为了进一步增加散热效果,如图4所示,本实施例将耐热硬质塑料板120的横向圆周上均包覆了石墨膜110(即石墨层11),即散热鳍片采用石墨层覆盖耐热硬质塑料板的上下左右圆周表面并热塑成具有波峰波谷的横向折叠板,横向折叠板的波谷位置固化在热固性散热基板内。如此结构,在散热基板能够散热的同时,当热源的热量穿透散热基板的过程中即可由散热鳍片的下表面石墨膜快速扩散传输至上表面,由于表面散热的速度是体内散热速度的5倍以上,因此本实施例中采用整块石墨膜包裹耐热硬质塑料板的结构更加有效的利用了石墨膜表面散热的特点,使表面散热与散热基板散热结合,将散热效果发挥到极致。而且U形的波峰或波谷都能够形成通风通道,从而加速散热。从加工程序的角度看,散热鳍片的前后两侧无需包覆石墨膜,否则成本较高,本实施例中耐热硬质塑料板上下左右圆周表面包覆石墨膜则只需将塑料板在横向上翻转360°即完成包覆动作,因此,加工完成的效果非常高。包覆方式可以选择胶粘方式,也可以将耐热硬质塑料板的表面融化,将石墨膜贴合上去,冷却后即为一体的石墨散热板材。由于散热鳍片的波谷在横向上具有一定宽度,制作时将散热鳍片波谷插入流质状态的散热基板内需要一定时间才能够保证流质状态原料覆盖波谷,但是由于散热鳍片的一体结构,则可以事先将散热鳍片摆放在模具槽内,然后向模具槽内倒入流质状态的散热基板原料,能够提升制作效率。
本实施例中的耐热硬质塑料板与实施例1中的支撑芯具有相同的作用,因此,可以用实施例1中的支撑芯替代本实施例中的耐热硬质塑料板,具体而言,可以采用丙烯腈-丁二烯-苯乙烯(ABS)、聚甲醛(POM赛刚)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA亚克力)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、 聚对苯二甲酸丁二醇酯(PBT)、聚苯醚(PPO)中的一种或几种作为耐热硬质塑料板。
在其他实施例中散热鳍片可以采用金属散热板连续弯折成具有波峰波谷的横向折叠板,横向折叠板的波谷位置固化在热固性散热基板内,同样是基于增加散热面积与通风通道的原理设计而成。但无法避免重量较本实施例中的散热片大的问题。
可见,本实施例中散热鳍片的结构是以一块散热板材经过折叠后形成多个鳍片一体的结构,加工过程中便能够将此一体的散热鳍片直接固化在散热基板上,省去了一一插入的动作,而且散热的导热路径是充分利用了表面散热,因此,散热效果也更加强。
实施例4:
本实施例在实施例1的基础上,对散热鳍片的结构做出改进,与上述实施例3中的散热鳍片一样是采用一块散热板材弯折成不同形状,但在与散热基板的结合方式上存在明显不同。如图6、图7所示,本实施例中所述散热鳍片采用散热片材弯折成特定形状,该特定形状为在热固性散热基板上投影呈圆形螺旋线状或方形螺旋线状或连续S形。图6中是圆形螺旋线状的散热片,图7是方形螺旋线状的散热片。为了便于散热鳍片弯折成各种形状,散热鳍片采用石墨层包裹耐热塑料形成散热片材,并热塑形成特定形状。以连续S形的散热鳍片为例,其侧边插入在散热基板内,热固化后与散热基板一体成型,相对的另一侧边朝上,即散热鳍片是垂直于散热基板的。为了进一步提升散热效果,耐热硬质塑料板的底部表面及两侧表面贴合石墨膜,如此结构,在制作上能够一步到位的完成,耐热硬质塑料板沿着石墨膜贴合翻转180°就能够将三个面包覆,相当于石墨膜弯折成具有容置凹槽的U形结构,将耐热硬质塑料板置于该容置凹槽内进行贴合即可。当然,也可以将耐热硬质塑料板的四周表面均包覆石墨膜,即耐热硬质塑料板朝上的一侧也被石墨膜包覆,以增加散热面积。当耐热硬质塑料板四周表面包覆石墨膜时,石墨膜首尾相接的衔接头设置在耐热硬质塑料板的底侧,从而被压在散热基板底面,使石墨膜不发生松口的现象,包覆更加紧密稳定。在热量传输路径上,散热鳍片的底部表面与散热基板完全结合,两个侧面的石墨膜在底部位置上也与散热基板结合,能够使热量迅速沿表面向上扩散,充分 发挥了表面散热快的优势,同时散热基板的某个点如果温度快速升高到一定值,也会向四周散热,并传输至近点的石墨膜上进行快速散热。
此处的耐热硬质塑料板也是相当于实施例1中的支撑芯,即相当于一个能够被塑成各种形状的支撑芯。
在其他实施例中散热鳍片也可以采用可弯折的金属散热板,弯折成在散热基板上投影呈圆形螺旋线状或方形螺旋线状或连续S形。
相比于实施例3中的散热鳍片“平躺”放置,而本实施例4中的散热鳍片相当于“侧身”放置,在制作时更易于插入到流质状态的散热基板原料中,与散热基板的固定效果更好,但是通风通道在横向平面上未形成通路,因此为了增加通风效果,散热鳍片设置有多个通风孔13。该通风孔能够从外到内贯穿多层散热鳍片,使空气径向上也能够保持流动,进一步增强散热效果。
实施例5:
本实施例提供一种散热片的制造方法,能够适用于上述实施例中的散热片的制作,当然并不限于上述实施例中的散热片,如图8所示,该制造方法包括如下步骤。
步骤101,制作散热鳍片的步骤:在导热硬质塑料上涂附胶粘剂贴合石墨膜形成散热鳍片。
导热硬质塑料可以选择一整块大型的板材状导热硬质塑料,从而能够将该导热硬质塑料做成横向折叠的一体式散热鳍片的芯,也可以选择面积较小的一块块的导热硬质塑料板,从而能够适用于普通款式的散热片,即散热鳍片是一块块地排列在散热基板上的散热片。导热硬质塑料根据需要至少在其中一面上贴合石墨膜,例如实施例3中提到的单面包覆石墨膜的散热鳍片,而本实施例中以圆周方向上包覆石墨膜为例,生产出来的散热鳍片其散热表面积增加,散热效果更好,石墨膜的用料会相应增加。当然,在其他实施例中导热硬质塑料还可以选择为圆柱体状,然后包覆石墨膜,形成柱状的散热鳍片。
对于一块块的散热鳍片结构,无需另外塑形的散热鳍片,其内的芯可以采用导热树脂制作,在成型的导热树脂上贴合石墨膜形成散热鳍片。
在另外的实施例中,为了保证石墨膜与导热硬质塑料更加稳定的结合,可以采用加热融化导热硬质塑料板的表面后将石墨膜贴合在导热硬质塑料板的融 化表面,冷却后形成一体成型的散热鳍片,此种结构石墨膜与导热硬质塑料的贴合度达到最佳,能够适于弯折各种形状的散热鳍片。
步骤102,定型散热鳍片的步骤:将散热鳍片热塑成特定形状待用。该特定形状除了在热固性散热基板上投影呈圆形螺旋线状或方形螺旋线状或连续S形外,还好包括了普通的片状结构,因此无需进行弯折。将步骤101中完成的散热鳍片在适合的温度下采用弯折装置热塑成需要的形状,例如横向折叠板用于后续制作实施例3中的散热片,螺旋线状用于后续制作实施例4中的散热片。
步骤103,准备散热基板原料的步骤:将流质状态的热固性原料倒入模具槽中。本实施例中将热熔性树脂作为热固性原料,倒入到模具槽中,根据散热基板的实际所需厚度决定热熔性树脂的深度,本实施例中散热基板的厚度控制在0.5mm~5mm,当然在散热片整体尺寸较大时,可以适当的增加厚度,当散热基板选择为3mm时能够保证板材不易断裂,且散热效果最佳。
步骤104,安装散热鳍片的步骤:将散热鳍片根部浸入到热固性原料中按所需形状固定。此处所谓根部即为散热鳍片朝下的一端,例如横向折叠板的根部则为波谷位置,螺旋线状的散热鳍片根部为下侧边,按照不同的需求摆放散热鳍片的方位和位置,得到不同结构的散热片。在模具的上方可以设置一个用于对散热鳍片在上下方向上调整位置的限位装置,例如设置一个支架,然后在支架上设置上下调节装置,在上下调节装置上固定用于夹持散热鳍片的夹持装置,从而能够调整散热鳍片位于模具槽中的深度位置,使得散热鳍片插入散热基板的深度可调,如果需要散热鳍片的底部与散热基板的底部共平面,则上下深度的调节装置可以不使用。本步骤中一个模具可以分为多个模具槽,分别在各个模具槽中固定散热鳍片,从而能够实现批量化生产。
步骤105,散热鳍片与散热基板固化的步骤:对模具槽内的热固性原料加热形成散热基板并与散热鳍片固化为一体成型的散热片。本步骤中将模具槽放入到烤箱中,然后加热使散热鳍片与散热基板固化为一体成型的散热片。待固化冷却后,将散热片从模具槽中取出即可。
步骤106,软质导热垫原料准备步骤:在另一模具槽中倒入用于形成软质导热垫的流质状态的原料。本步骤中该另一模具槽采用较大面积的容置槽,一次性能够容纳多数个散热片,便于批量加工。流质状态的软质导热垫原料采用导热硅胶。
步骤107,设定软质导热垫厚度的步骤:将软质导热垫的流质状态的原料刮涂成设定厚度的流质软垫。由于该原料是流质状态,因此设定厚度时,一般采用刮刀设备,使该另一模具槽中软质导热垫原料的深度符合要求。
步骤108,软质导热垫原料上安装散热片的步骤:将成型的散热片摆放在流质软垫上使散热片的散热基板底部表面贴合该流质软垫。本步骤中将散热片整齐排列摆放在流质状态的软质导热垫原料上,间距不宜过大,以免浪费空间。
步骤109,软质导热垫与散热片固化的步骤:加热整个所述另一模具使流质软垫形成软质导热垫且一体成型地固化在散热片的散热基板底部。本步骤中所述另一模具中的散热片已经与该模具槽内软质导热垫固化,从模具槽中取出整块软质导热垫及其上的散热片,然后沿着散热片周缘切除多余的软质导热垫,从而形成完整的、整齐的散热片成品,对于切除多余软质导热垫的步骤,也可以通过统一的产品尺寸录入,交给自动化设备切除。在散热片成品完成后,可以选择在散热片成品的底部贴上保护膜。
可以理解的是,本实施例中提供的制造方法中,原料选择及工艺处理均是本领域技术人员通过现有技术能够获知的,例如热固化处理、例如导热硅胶做软质导热垫,例如热熔性树脂做成散热基板,但是本发明是将各个工艺处理及原料选择根据所要解决的技术问题通过创造性劳动拼合在一起而完成,从而能够实现较少的工序和较省的耗材来完成对特别结构的散热片的制造。本发明中的散热片制造方法,不需要采用复杂的加工设备,也不需要过多的人力成本,但是能够高效的完成大批量的对散热片的一体成型的制造,并大批量的贴合上软质导热垫。
以上对本发明实施例所提供的一种散热片及其制造方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想和方法,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (17)

  1. 散热片,其特征在于,包括:散热鳍片及热固性散热基板,散热鳍片以热固化方式一体成型地固化在所述热固性散热基板上。
  2. 如权利要求1所述的散热片,其特征在于,散热鳍片的底部端面与热固性散热基板的底部平面齐平。
  3. 如权利要求1所述的散热片,其特征在于,所述热固性散热基板采用导热环氧灌封胶或热固型树脂热固成型。
  4. 如权利要求1所述的散热片,其特征在于,散热鳍片包括支撑芯及包裹在支撑芯外层的石墨层。
  5. 如权利要求1所述的散热片,其特征在于,所述散热鳍片为散热金属丝柱或采用石墨层包裹支撑芯形成柱状体散热柱。
  6. 如权利要求4或5所述的散热片,其特征在于,所述支撑芯为导热树脂或耐热硬质塑料。
  7. 如权利要求4或5所述的散热片,其特征在于,支撑芯采用丙烯腈-丁二烯-苯乙烯、聚甲醛、聚苯乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚苯醚中的一种或几种。
  8. 如权利要求1所述的散热片,其特征在于,所述散热鳍片采用石墨层覆盖耐热硬质塑料板上表面并热塑成具有波峰波谷的横向折叠板,横向折叠板的波谷位置固化在热固性散热基板内;或者所述散热鳍片采用石墨层覆盖耐热硬质塑料板的上下左右圆周表面并热塑成具有波峰波谷的横向折叠板,横向折叠板的波谷位置固化在热固性散热基板内;或者所述散热鳍片采用金属散热板连续弯折成具有波峰波谷的横向折叠板,横向折叠板的波谷位置固化在热固性散热基板内。
  9. 如权利要求1所述的散热片,其特征在于,所述散热鳍片采用散热片材弯折成特定形状,该特定形状为在热固性散热基板上投影呈圆形螺旋线状或方形螺旋线状或连续S形。
  10. 如权利要求9所述的散热片,其特征在于,所述散热鳍片采用石墨层包裹耐热塑料形成散热片材,并热塑形成特定形状,或者所述散热鳍片采用可弯折的金属散热板。
  11. 如权利要求9或10所述的散热片,其特征在于,所述散热鳍片设置有多个通风孔。
  12. 如权利要求1所述的散热片,其特征在于,所述热固性散热基板的底部表面贴合有软质导热垫。
  13. 如权利要求12所述的散热片,其特征在于,软质导热垫采用热固方式一体成型地固化在热固性散热基板的底部。
  14. 如权利要求12或13所述的散热片,其特征在于,所述软质导热垫采用导热硅胶、导热硅脂或导热凝胶。
  15. 散热片制造方法,其特征在于,包括如下步骤:
    将流质状态的热固性原料倒入模具槽中;
    将散热鳍片根部浸入到热固性原料中按所需形状固定;
    对模具槽内的热固性原料加热形成散热基板并与散热鳍片固化为一体成型的散热片。
  16. 如权利要求15所述的散热片制造方法,其特征在于,在将散热鳍片根部浸入到热固性原料中之前还包括步骤:
    在成型的导热树脂上贴合石墨膜形成散热鳍片,或者在导热硬质塑料上涂附胶粘剂贴合石墨膜形成散热鳍片,或者加热融化导热硬质塑料板的表面后将石墨膜贴合在导热硬质塑料板的融化表面,冷却后形成一体成型的散热鳍片;
    将散热鳍片热塑成特定形状待用。
  17. 如权利要求15所述的散热片制造方法,其特征在于,在散热基板与散热鳍片固化为一体成型的散热片之后还包括步骤:
    在另一模具槽中倒入用于形成软质导热垫的流质状态的原料;
    将软质导热垫的流质状态的原料刮涂成设定厚度的流质软垫;
    将成型的散热片摆放在流质软垫上使散热片的散热基板底部表面贴合该流质软垫;
    加热整个所述另一模具使流质软垫形成软质导热垫且一体成型地固化在散热片的散热基板底部。
PCT/CN2018/089842 2017-06-05 2018-06-04 散热片及其制造方法 WO2018223934A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710415484.XA CN107278092B (zh) 2017-06-05 2017-06-05 散热片及其制造方法
CN201710415484.X 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018223934A1 true WO2018223934A1 (zh) 2018-12-13

Family

ID=60064531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089842 WO2018223934A1 (zh) 2017-06-05 2018-06-04 散热片及其制造方法

Country Status (2)

Country Link
CN (1) CN107278092B (zh)
WO (1) WO2018223934A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397465A (zh) * 2020-12-21 2021-02-23 希烽光电科技(南京)有限公司 一种芯片散热结构
CN112399773A (zh) * 2019-08-16 2021-02-23 上海诺基亚贝尔股份有限公司 散热装置以及散热装置的制造方法
CN115033088A (zh) * 2022-06-28 2022-09-09 北京石墨烯技术研究院有限公司 石墨烯金属高导热服务器散热器及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167020B (zh) * 2017-06-05 2023-08-11 深圳市鸿富诚新材料股份有限公司 一体式散热片的制造模具及制造方法
CN107278092B (zh) * 2017-06-05 2023-08-29 深圳市鸿富诚新材料股份有限公司 散热片及其制造方法
CN109471228A (zh) * 2018-11-27 2019-03-15 武汉光迅科技股份有限公司 一种同轴封装光器件的散热结构
CN111251243A (zh) * 2018-11-30 2020-06-09 中兴通讯股份有限公司 一种齿片工装
TWI731289B (zh) * 2018-12-24 2021-06-21 信紘科技股份有限公司 組合式散熱熱沉複合材料成品製造方法
CN110149781B (zh) * 2019-05-16 2020-12-08 珠海格力电器股份有限公司 散热装置及设有其的电器设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2271026Y (zh) * 1996-06-18 1997-12-17 叶元璋 半导体电路总成的散热构造
WO2012141793A1 (en) * 2011-04-13 2012-10-18 Altex Technologies Corporation Non-isotropic structures for heat exchangers and reactors
CN202587724U (zh) * 2012-04-27 2012-12-05 讯凯国际股份有限公司 散热鳍片及散热装置
CN104968183A (zh) * 2015-06-30 2015-10-07 安徽博隆节能电器有限公司 一种高效插片散热器
CN107036482A (zh) * 2017-06-05 2017-08-11 深圳市鸿富诚屏蔽材料有限公司 全包覆式散热片及其制造方法
CN107167020A (zh) * 2017-06-05 2017-09-15 深圳市鸿富诚屏蔽材料有限公司 一体式散热片、制造模具及其制造方法
CN107278092A (zh) * 2017-06-05 2017-10-20 深圳市鸿富诚屏蔽材料有限公司 散热片及其制造方法
CN207340385U (zh) * 2017-06-05 2018-05-08 深圳市鸿富诚屏蔽材料有限公司 散热片
CN207335516U (zh) * 2017-06-05 2018-05-08 深圳市鸿富诚屏蔽材料有限公司 全包覆式散热片

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312360A (ja) * 1996-05-21 1997-12-02 Janome Sewing Mach Co Ltd ヒートシンク及びその製造法
JP4592125B2 (ja) * 1998-10-05 2010-12-01 大陽日酸株式会社 流下液膜式凝縮蒸発器
US6771502B2 (en) * 2002-06-28 2004-08-03 Advanced Energy Technology Inc. Heat sink made from longer and shorter graphite sheets
US20070053168A1 (en) * 2004-01-21 2007-03-08 General Electric Company Advanced heat sinks and thermal spreaders
US20070063339A1 (en) * 2005-09-21 2007-03-22 Grand Power Sources Inc. Heat dissipating assembly for heat dissipating substrate and application
JP3130026U (ja) * 2006-12-27 2007-03-08 水谷電機工業株式会社 半導体素子の放熱器
CN101825412B (zh) * 2010-04-29 2011-09-28 中科恒达石墨股份有限公司 复合结构石墨散热器及其制备方法
CN102290499B (zh) * 2011-06-14 2013-04-24 东莞市永兴电子科技有限公司 一种led热管散热片的生产工艺
CN202134529U (zh) * 2011-07-22 2012-02-01 长沙理工大学 一种石墨散热器装置
JP2014067728A (ja) * 2013-12-17 2014-04-17 Starlite Co Ltd 自動車用ledランプ
JP2016184706A (ja) * 2015-03-26 2016-10-20 大日本印刷株式会社 冷却構造および冷却部品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2271026Y (zh) * 1996-06-18 1997-12-17 叶元璋 半导体电路总成的散热构造
WO2012141793A1 (en) * 2011-04-13 2012-10-18 Altex Technologies Corporation Non-isotropic structures for heat exchangers and reactors
CN202587724U (zh) * 2012-04-27 2012-12-05 讯凯国际股份有限公司 散热鳍片及散热装置
CN104968183A (zh) * 2015-06-30 2015-10-07 安徽博隆节能电器有限公司 一种高效插片散热器
CN107036482A (zh) * 2017-06-05 2017-08-11 深圳市鸿富诚屏蔽材料有限公司 全包覆式散热片及其制造方法
CN107167020A (zh) * 2017-06-05 2017-09-15 深圳市鸿富诚屏蔽材料有限公司 一体式散热片、制造模具及其制造方法
CN107278092A (zh) * 2017-06-05 2017-10-20 深圳市鸿富诚屏蔽材料有限公司 散热片及其制造方法
CN207340385U (zh) * 2017-06-05 2018-05-08 深圳市鸿富诚屏蔽材料有限公司 散热片
CN207335516U (zh) * 2017-06-05 2018-05-08 深圳市鸿富诚屏蔽材料有限公司 全包覆式散热片

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112399773A (zh) * 2019-08-16 2021-02-23 上海诺基亚贝尔股份有限公司 散热装置以及散热装置的制造方法
CN112397465A (zh) * 2020-12-21 2021-02-23 希烽光电科技(南京)有限公司 一种芯片散热结构
CN115033088A (zh) * 2022-06-28 2022-09-09 北京石墨烯技术研究院有限公司 石墨烯金属高导热服务器散热器及其制备方法

Also Published As

Publication number Publication date
CN107278092B (zh) 2023-08-29
CN107278092A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2018223934A1 (zh) 散热片及其制造方法
WO2018223935A1 (zh) 全包覆式散热片及其制造方法
JP4466644B2 (ja) ヒートシンク
CN105899041A (zh) 具有热管理特征的电子设备外壳和散热器结构
EP3609679A1 (en) Method of 3d-printing producing a component for use in a lighting device
CN207340385U (zh) 散热片
CN1988787A (zh) 散热器及其制造方法
CN207335516U (zh) 全包覆式散热片
CN103929925A (zh) 散热装置和包括该散热装置的电子装置和照明装置
JP5142682B2 (ja) グラファイト熱伝導片の加工方法。
CN107167020B (zh) 一体式散热片的制造模具及制造方法
CN1988786A (zh) 散热器及其制造方法
CN203703900U (zh) 一种led灯具塑胶散热灯体的立柱式散热结构
CN211492092U (zh) 一种建筑用环保砖模具
TWM555625U (zh) 可攜帶電子裝置之殼體轉印熱壓成型散熱塗層結構
CN207094762U (zh) 散热片和取暖器
CN112756773B (zh) 一种热屏蔽组件的加工方法及其装置
CN216650333U (zh) 散热结构以及电子设备
JP2019096702A (ja) 冷却器
JP2009004558A (ja) コの字型フィンからなるヒートシンク
TWI648023B (zh) 鍋具及其製造方法
CN207476076U (zh) 一种铲齿散热器
CN207824529U (zh) 散热效果好的光机散热片
CN105050357A (zh) 一种新型插片式散热器
TWI353439B (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812975

Country of ref document: EP

Kind code of ref document: A1