WO2018223935A1 - 全包覆式散热片及其制造方法 - Google Patents

全包覆式散热片及其制造方法 Download PDF

Info

Publication number
WO2018223935A1
WO2018223935A1 PCT/CN2018/089852 CN2018089852W WO2018223935A1 WO 2018223935 A1 WO2018223935 A1 WO 2018223935A1 CN 2018089852 W CN2018089852 W CN 2018089852W WO 2018223935 A1 WO2018223935 A1 WO 2018223935A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat sink
plastic frame
heat dissipation
dissipating
Prior art date
Application number
PCT/CN2018/089852
Other languages
English (en)
French (fr)
Inventor
谢佑楠
Original Assignee
深圳市鸿富诚屏蔽材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鸿富诚屏蔽材料有限公司 filed Critical 深圳市鸿富诚屏蔽材料有限公司
Publication of WO2018223935A1 publication Critical patent/WO2018223935A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/18Heat-exchangers or parts thereof

Definitions

  • the invention relates to the technical field of heat dissipation products, and in particular relates to a full-cover heat sink and a manufacturing method thereof.
  • the traditional heat sink is most commonly an aluminum finned heat sink.
  • the heat sink of the structure increases the heat dissipation area due to the action of the fins, which can effectively increase the heat convection area and passage of the heat sink and the air, but Fin-type heat sinks must be formed by hot pressing or CNC, so the production cost is very high, so the price is relatively expensive on the market. It is mostly used in high-end products. Due to limited aluminum resources, a large number of radiators also cause resources. The shortage and the damage to the environment during processing. At the same time, because aluminum is a data metal, it has a certain weight when processed into a heat sink. It is not very suitable in many occasions where weight is required, such as wearable. Therefore, design and development A new type of radiator with light and efficient germplasm is necessary.
  • connection gap although the contact gap will be small, will still affect the smoothness of the heat transfer path to a certain extent, that is, affect the heat dissipation effect, and the heat sink requires multiple sets of processes to be completed in production, and the production cost and time are still not Minimize it.
  • the present invention provides a fully covered heat sink to solve the above problems.
  • a fully-coated heat sink includes: a graphite film or a heat conductive metal film, and a plastic frame having a heat dissipation fin and a heat dissipation substrate, wherein the heat dissipation fins are arranged in a lateral direction on the heat dissipation substrate, and the two heat dissipation A heat dissipation slot is formed between the fins, and the graphite film or the heat conductive metal film covers the surface of the lateral contour of the plastic frame.
  • the plastic frame having the heat dissipation fins and the heat dissipation substrate is integrally formed by injection molding.
  • the graphite film or the thermally conductive metal film coats the surface of the lateral contour of the plastic frame in a hot or adhesive manner.
  • the bottom surface of the heat dissipation substrate is fitted with a soft thermal pad.
  • the soft thermal pad is integrally molded on the bottom of the thermosetting heat dissipating substrate by thermosetting.
  • the soft thermal pad is made of thermally conductive silicone, thermal grease or thermal gel.
  • the plastic frame is made of one or several mixed heat-conducting powders of acrylonitrile-butadiene-styrene, polyamide, polystyrene, polypropylene, polycarbonate, polystyrene, and polyvinyl chloride. .
  • the thermal conductive powder is composed of one or a mixture of aluminum oxide, boron nitride, aluminum nitride, silicon carbide, graphite powder and carbon fiber, and the proportion of the thermal conductive powder in the plastic frame is 40% of the total mass. ⁇ 85wt%.
  • the invention also provides a method for manufacturing a fully-coated heat sink, comprising the following steps:
  • An entire graphite film or metal heat-dissipating film is selected to cover the outer surface of the lateral contour of the plastic frame by gluing or hot pressing.
  • the step of forming the plastic material into a plastic frame with the heat dissipating fins and the heat dissipating substrate is integrally molding the plastic material into a plastic frame with the heat dissipating fins and the heat dissipating substrate by injection molding.
  • the invention adopts an integrally formed heat conductive plastic frame as a heat sink bracket, the bottom of the bracket and the heat dissipation fins are covered by a graphite film or a heat conductive metal film, thereby ensuring heat of the heat source can be along the graphite.
  • FIG. 1 is a schematic perspective view of a full-cover heat sink according to an embodiment of the present invention.
  • the embodiment of the invention provides a fully-coated heat sink, as shown in FIG. 1 , comprising: a graphite film 1 , further comprising a heat-dissipating plastic frame 2 integrally formed by the heat-dissipating fins 21 and the heat-dissipating substrate 22 formed by injection molding, and heat dissipation
  • the fins 21 are arranged in the lateral direction on the heat dissipation substrate 22, and a heat dissipation slot 23 is formed between the two heat dissipation fins 21, and the graphite film is coated on the lateral surface of the plastic frame 2 by heat pressing.
  • the graphite film is a whole graphite film and finally completes the full cladding of the plastic frame end to end.
  • the lateral direction refers to the arrangement direction of the heat dissipation fins on the heat dissipation substrate, and the horizontal surrounding contour refers to FIG.
  • the projection profile is from the front to the back in the longitudinal direction, so the graphite film changes through the grooves and protrusions when it is heat-pressed with the heat dissipation fins, thereby increasing the use area of the graphite film.
  • the first joint of the graphite film-coated plastic frame is placed at the bottom of the heat-dissipating substrate, which can facilitate the tightness of the graphite film coating without loosening.
  • a soft thermal pad is added between the heat sink and the heat source.
  • the soft thermal pad can be deformed due to its softness, thereby squeezing out the contact gap that may exist.
  • the soft heat conduction is performed.
  • the pad can be directly pressed onto the bottom surface of the heat sink substrate of the heat sink, and a protective film can be added. When used, the protective film is removed, and then the heat sink and the soft thermal pad on the bottom surface are attached to the heat source.
  • the soft thermal pad 3 in the embodiment is solidified integrally in the bottom of the thermosetting heat dissipating substrate by the thermosetting method, and the heat dissipation of the heat sink After the fin and the heat dissipation substrate are heated and solidified, a heat sink product is formed, and then the heat sink is taken out and placed in a material of a soft thermal pad filled with a fluid state, and then placed in an oven to be heated and solidified, and the soft heat pad and the heat sink are to be The bottom of the heat-dissipating substrate is completely solidified and integrally formed to form a heat sink with a soft thermal pad, thereby eliminating the manual pressing step.
  • the soft thermal pad is made of thermal conductive silica gel, and the initial state is fluid, solidified after heating, and can form a integrally formed finned product perfectly with the heat dissipating substrate.
  • the thermal thermal pad can also have the same effect using a thermal grease or a thermal conductive gel.
  • the heat conductive plastic frame adopts acrylonitrile-butadiene-styrene (ABS), polyamide 6 (PA-6 aka nylon 6), polystyrene (PS), and polypropylene (PP). ), one or a mixture of polycarbonate (PC), polystyrene (PS), and polyvinyl chloride (PVC).
  • the thermally conductive powder is preferably composed of one or a mixture of alumina, boron nitride, aluminum nitride, silicon carbide, graphite powder, carbon fiber.
  • the plastic frame In order to dissipate heat on the surface, it also enhances the radial heat dissipation in the plastic frame, that is, the heat dissipation of the plastic frame itself.
  • the proportion of the thermal conductive powder in the plastic frame is 40 to 85 wt% of the total mass, the heat conduction effect is better, and the hardness of the plastic can also reach a better level.
  • the heat dissipating fin and the heat dissipating substrate are integrally formed by injection molding, so that it is easy to manufacture and improves the production efficiency. Because it is a plastic frame, it is lighter than the metal heat sink, and is more suitable for the integrated environment, and the entire plastic frame is in the circumferential contour.
  • the upper surface is covered with a graphite film, that is, the bottom of the heat dissipating substrate is also covered with a graphite film, which can directly contact the heat source or directly through the soft thermal pad and the heat source, and is in surface contact, and is heat-dissipated compared to other point contact methods.
  • the heat dissipation substrate has a radial heat transfer path, and the surface heat dissipation effect is fully exerted.
  • the graphite film is a whole sheet with no fracture or segmentation in the middle, the surface transport path of the graphite film is a perfect circular path, and the heat of the heat source is transmitted to the graphite film at the bottom of the heat dissipation substrate, and rapidly spreads to the sides of the ring to the heat sink fins. The film is quickly distributed on the heat sink fins.
  • the structure in which the whole graphite film is wrapped around the plastic frame in the present embodiment more effectively utilizes the heat dissipation characteristics of the graphite film surface, and the heat dissipation effect is maximized.
  • the front and rear sides of the heat dissipating fin need not be covered with a graphite film, otherwise the cost is high.
  • the upper, lower, left and right circumferential surfaces of the plastic frame are covered with a graphite film, so that the roller can be loaded first. A roll of graphite film is placed at the feed end of the equipment, and even the fins arranged in series can be quickly coated, so the processing effect is very high.
  • Heat sink plastic frame processing steps the plastic is placed in an injection molding machine to form a plastic frame with heat sink fins and heat sink substrate;
  • Soft thermal pad raw material preparation step pouring a raw material in a fluid state for forming a soft thermal pad in the mold cavity.
  • the mold groove adopts a large-area accommodating groove, and can accommodate a plurality of heat sinks at one time, which is convenient for batch processing.
  • the material of the soft thermal pad of the fluid state is made of thermal silica gel.
  • Step of setting the thickness of the soft thermal pad The material of the fluid state of the soft thermal pad is scraped into a liquid cushion of a set thickness. Since the raw material is in a liquid state, when the thickness is set, a doctor blade device is generally used, so that the depth of the soft thermal pad material in the mold groove meets the requirements.
  • the step of installing the heat sink on the soft thermal pad material placing the formed heat sink on the liquid cushion so that the bottom surface of the heat sink substrate of the heat sink is attached to the liquid cushion.
  • the heat sinks are arranged neatly on the soft thermal pad material in the fluid state, and the spacing should not be too large, so as to avoid wasting space.
  • the step of curing the soft thermal pad and the heat sink heating the entire mold to form a soft thermal pad and integrally curing the bottom of the heat dissipating substrate of the heat sink.
  • the heat sink in the mold in the step has been solidified with the soft thermal pad in the mold slot, and the entire soft thermal pad and the heat sink thereon are taken out from the mold slot, and then the excess soft is cut along the periphery of the heat sink.
  • the thermal pad is formed to form a complete and neat heat sink.
  • the step of cutting off the excess soft thermal pad can also be entered through a uniform product size and handed over to the automated equipment for removal. After the finished radiator is finished, you can choose to put a protective film on the bottom of the finished radiator.
  • a heat conductive metal film may be used instead of the graphite film in the embodiment, but the adhesion and heat dissipation effects are inferior to those of the graphite film. It can be made of copper or aluminum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种全包覆式散热片及其制造方法,散热片包括:石墨膜或导热金属膜,还包括以注塑方式形成的散热鳍片与散热基板一体成型的塑料架,散热鳍片在散热基板上沿横向排列,两散热鳍片之间形成散热槽隙,石墨膜或导热金属膜以热压或胶粘的方式包覆塑料架横向四周轮廓的表面。采用一体成型的导热塑料架作为散热片支架,支架的底部及散热鳍片通过一张石墨膜或导热金属膜包覆,从而保证热源的热量能够沿着石墨膜或导热金属膜表面传导,充分发挥石墨表面散热快的优势,在制作工序上,操作简单,成本低,且成品重量轻,散热效果最佳。

Description

全包覆式散热片及其制造方法 技术领域
本发明涉及散热产品技术领域,具体涉及一种全包覆式散热片及其制造方法。
背景技术
传统的散热器最常见是铝制鳍片式散热器,该结构散热器由于鳍片的作用增加了足够多的散热面积,能有效地增加散热器和空气发生热对流的面积和通道,但是由于鳍片式散热器必须通过热压或者CNC的方式成型,所以制作成本很高,所以市场上售价也相对较贵,多用于高端的产品,由于铝资源有限,大量的散热器也造成资源的紧缺和加工过程中对环境的破坏,同时,由于铝是数据金属,加工成散热器还是有一定的重量,在很多对重量有要求的场合如可穿戴等场合不是很适合,因此,设计开发一种质轻、高效的新型散热器很有必要。
尽管随着高分子材料的兴起,也出现了高分子材料的散热片,但是多是采用石墨膜作为散热鳍片的外层然后固定在散热基板上,因此散热鳍片与散热基板之间必然存在连接间隙,虽然接触缝隙会很小,但仍然会在一定程度上影响热传递路径的畅通,即影响散热效果,而且该散热器在制作上需要多套工艺才能完成,制作成本和时间上仍不能做到最小化。
发明内容
本发明提供一种全包覆式散热片,以解决上述问题。
本发明实施例提供的一种全包覆式散热片,包括:石墨膜或导热金属膜,还包括具有散热鳍片与散热基板的塑料架,散热鳍片在散热基板上沿横向排列,两散热鳍片之间形成散热槽隙,石墨膜或导热金属膜包覆塑料架横向四周轮廓的表面。
优选地,具有散热鳍片与散热基板的塑料架采用注塑方式一体成型。
优选地,石墨膜或导热金属膜以热压或胶粘的方式包覆塑料架横向四周轮廓的表面。
优选地,散热基板的底部表面贴合有软质导热垫。
优选地,软质导热垫采用热固方式一体成型地固化在热固性散热基板的底部。
优选地,所述软质导热垫采用导热硅胶、导热硅脂或导热凝胶。
优选地,塑料架采用丙烯腈-丁二烯-苯乙烯、聚酰胺、聚苯乙烯、聚丙烯、聚碳酸酯、聚苯乙烯、聚氯乙烯中的一种或几种混合导热粉体制成。
优选地,导热粉体采用氧化铝、氮化硼、氮化铝、碳化硅、石墨粉、碳纤维中的一种或几种混合组成,导热粉体在塑料架中的占比为总质量的40~85wt%。
本发明还提供了一种全包覆式散热片制造方法,包括如下步骤:
将塑料原料制作形成带有散热鳍片和散热基板的塑料架;
选择一整张的石墨膜或金属散热膜以胶粘或热压的方式包覆塑料架的横向四周轮廓的外表面。
优选地,将塑料原料制作形成带有散热鳍片和散热基板的塑料架的步骤为通过注塑方式将塑料原料一体成型地注塑成带有散热鳍片和散热基板的塑料架。
上述技术方案可以看出,由于本发明采用一体成型的导热塑料架作为散热片支架,支架的底部及散热鳍片通过一张石墨膜或导热金属膜包覆,从而保证热源的热量能够沿着石墨膜或导热金属膜表面传导,充分发挥石墨膜或导热金属膜表面散热快的优势,在制作工序上,操作简单,成本低,且成品重量轻,散热效果最佳。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例中全覆盖式散热片的立体结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例:
本发明实施例提供一种全包覆式散热片,如图1所示,包括:石墨膜1,还包括以注塑方式形成的散热鳍片21与散热基板22一体成型的导热塑料架2,散热鳍片21在散热基板22上沿横向排列,两散热鳍片21之间形成散热槽隙23,石墨膜以热压的方式包覆塑料架2横向四周的表面。本实施例中石墨膜为一整张石墨膜并最终首尾相接完成对塑料架的全包覆,此处横向是指散热鳍片在散热基板上的排列方向,横向四周轮廓是指以图1中为参考,由前向后在纵向上的投影轮廓,因此石墨膜在与散热鳍片热压贴合时会经过凹槽和凸起的变化,从而增加石墨膜的使用面积。石墨膜包覆塑料架的首位衔接的接头处设置在散热基板底部,能够有利于石墨膜包覆的紧密性,不发生松脱现象。
在实际的应用中,散热片与热源之间会增设一个软质导热垫,软质导热垫由于质软,因此能够产生形变,从而挤压掉可能存在的接触间隙,在其他实施例中软质导热垫可以直接以人工方式贴压在散热片的散热基板底面,并还能够增设一个防护膜,当使用时,撕去防护膜,然后将散热片连同底面的软质导热垫贴在热源上。
由于人工贴压软质导热垫需要占用过多人力成本,生产效率较低,因此,本实施例中软质导热垫3采用热固方式一体成型地固化在热固性散热基板的底部,当散热片的散热鳍片与散热基板加热固化后形成一个散热片产品,再取出该散热片置入装有流质状态的软质导热垫原料中,然后放入烤箱中加热固化,待软质导热垫与散热片的散热基板底部完全固化一体成型,形成带有软质导热垫的散热片成品,从而省去了人工贴压的步骤。本实施例中所述软质导热垫采用导热硅胶,其初始状态为流质,加热后固化,能够与散热基板完美的形成一体成型的散热片成品。在其他实施例中软质导热垫还可以采用导热硅脂或导热凝胶亦具有同样效果。
本实施例中为了增加散热效果,导热塑料架采用丙烯腈-丁二烯-苯乙烯(ABS)、聚酰胺6(PA-6又名尼龙6)、聚苯乙烯(PS)、聚丙烯(PP)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚氯乙烯(PVC)中的一种或几种混合导热粉体制成。导热粉优选氧化铝、氮化硼、氮化铝、碳化硅、石墨粉、碳纤维中的一种或几 种混合组成。以便在表面散热的同时还增强塑胶架内的径向散热,即塑料架本身的散热。导热粉体在塑料架中的占比为总质量的40~85wt%时,导热效果更好,而且塑料的硬度也能够达到较好的水平。
本实施例中散热鳍片与散热基板通过注塑方式一体成型,因此易于制造,提升了生产效率,由于是塑料架,因此较金属散热片轻,更适合集成化环境中,整个塑料架在圆周轮廓上被石墨膜包覆,即尤其是散热基板的底部也覆盖了石墨膜,直接能够与热源或直接通过软质导热垫与热源接触,而且是面接触,相比于其他点接触的方式,散热效果更好,在散热基板存在径向的热量传输路径的同时,更充分发挥表面散热的效果。由于石墨膜是一整张,中间无断裂或分割,因此石墨膜的表面传输路径是完美的环形路径,热源的热量传输到散热基板底部的石墨膜上,会迅速向环形两侧扩散至散热鳍片,并在散热鳍片上迅速散发。如此结构,由于表面散热的速度是体内散热速度的百倍以上,因此本实施例中采用整块石墨膜包裹塑料架的结构更加有效的利用了石墨膜表面散热的特点,将散热效果发挥到极致。从加工程序的角度看,散热鳍片的前后两侧无需包覆石墨膜,否则成本较高,本实施例中塑料架上下左右圆周表面采用一张石墨膜包覆,因此可以先用料辊装载一卷石墨膜放在设备进料端,即便是排列设置的鳍片也能够快速包覆,因此,加工完成的效果非常高。
本实施例中的全包覆式散热片的制造方法采用如下步骤:
1.散热片塑料架加工步骤:将塑料置于注塑机中注塑形成带有散热鳍片和散热基板的塑料架;
2.石墨膜包覆塑料架形成散热片产品的步骤:选择一整张的石墨膜以热压的方式包覆塑料架的横向四周轮廓的外表面,从而形成散热片产品;
3.软质导热垫原料准备步骤:在模具槽中倒入用于形成软质导热垫的流质状态的原料。本步骤中该模具槽采用较大面积的容置槽,一次性能够容纳多数个散热片,便于批量加工。流质状态的软质导热垫原料采用导热硅胶。
4.设定软质导热垫厚度的步骤:将软质导热垫的流质状态的原料刮涂成设定厚度的流质软垫。由于该原料是流质状态,因此设定厚度时,一般采用刮刀设备,使该模具槽中软质导热垫原料的深度符合要求。
5.软质导热垫原料上安装散热片的步骤:将成型的散热片摆放在流质软垫上使散热片的散热基板底部表面贴合该流质软垫。本步骤中将散热片整齐排列 摆放在流质状态的软质导热垫原料上,间距不宜过大,以免浪费空间。
6.软质导热垫与散热片固化的步骤:加热整个所述模具使流质软垫形成软质导热垫且一体成型地固化在散热片的散热基板底部。本步骤中所述模具中的散热片已经与该模具槽内软质导热垫固化,从模具槽中取出整块软质导热垫及其上的散热片,然后沿着散热片周缘切除多余的软质导热垫,从而形成完整的、整齐的散热片成品,对于切除多余软质导热垫的步骤,也可以通过统一的产品尺寸录入,交给自动化设备切除。在散热器成品完成后,可以选择在散热器成品的底部贴上保护膜。
在其他实施例中可以采用导热金属膜替代本实施例中的石墨膜,但在贴合度和散热效果上不及石墨膜。具体可以采用铜或铝材质。
以上对本发明实施例所提供的一种全包覆式散热片及其制造方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想和方法,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 全包覆式散热片,其特征在于,包括:石墨膜或导热金属膜,还包括具有散热鳍片与散热基板的塑料架,散热鳍片在散热基板上沿横向排列,两散热鳍片之间形成散热槽隙,石墨膜或导热金属膜包覆塑料架横向四周轮廓的表面。
  2. 如权利要求1所述的全包覆式散热片,其特征在于,具有散热鳍片与散热基板的塑料架采用注塑方式一体成型。
  3. 如权利要求1所述的全包覆式散热片,其特征在于,石墨膜或导热金属膜以热压或胶粘的方式包覆塑料架横向四周轮廓的表面。
  4. 如权利要求1或2或3所述的全包覆式散热片,其特征在于,散热基板的底部表面贴合有软质导热垫。
  5. 如权利要求4所述的全包覆式散热片,其特征在于,软质导热垫采用热固方式一体成型地固化在热固性散热基板的底部。
  6. 如权利要求4所述的全包覆式散热片,其特征在于,所述软质导热垫采用导热硅胶、导热硅脂或导热凝胶。
  7. 如权利要求1所述的全包覆式散热片,其特征在于,塑料架采用丙烯腈-丁二烯-苯乙烯、聚酰胺、聚苯乙烯、聚丙烯、聚碳酸酯、聚苯乙烯、聚氯乙烯中的一种或几种混合导热粉体制成。
  8. 如权利要求7所述的全包覆式散热片,其特征在于,导热粉体采用氧化铝、氮化硼、氮化铝、碳化硅、石墨粉、碳纤维中的一种或几种混合组成,导热粉体在塑料架中的占比为总质量的40~85wt%。
  9. 全包覆式散热片制造方法,其特征在于,包括如下步骤:
    将塑料原料制作形成带有散热鳍片和散热基板的塑料架;
    选择一整张的石墨膜或金属散热膜以胶粘或热压的方式包覆塑料架的横向四周轮廓的外表面。
  10. 如权利要求9全包覆式散热片制造方法,其特征在于:
    将塑料原料制作形成带有散热鳍片和散热基板的塑料架的步骤为通过注塑方式将塑料原料一体成型地注塑成带有散热鳍片和散热基板的塑料架。
PCT/CN2018/089852 2017-06-05 2018-06-05 全包覆式散热片及其制造方法 WO2018223935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710415477.XA CN107036482A (zh) 2017-06-05 2017-06-05 全包覆式散热片及其制造方法
CN201710415477.X 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018223935A1 true WO2018223935A1 (zh) 2018-12-13

Family

ID=59540838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089852 WO2018223935A1 (zh) 2017-06-05 2018-06-05 全包覆式散热片及其制造方法

Country Status (2)

Country Link
CN (1) CN107036482A (zh)
WO (1) WO2018223935A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107278092B (zh) * 2017-06-05 2023-08-29 深圳市鸿富诚新材料股份有限公司 散热片及其制造方法
CN107167020B (zh) * 2017-06-05 2023-08-11 深圳市鸿富诚新材料股份有限公司 一体式散热片的制造模具及制造方法
CN107036482A (zh) * 2017-06-05 2017-08-11 深圳市鸿富诚屏蔽材料有限公司 全包覆式散热片及其制造方法
CN108470958A (zh) * 2018-03-27 2018-08-31 华霆(合肥)动力技术有限公司 绝缘导热层制备方法、冷却管路及电池模组
CN112399773A (zh) * 2019-08-16 2021-02-23 上海诺基亚贝尔股份有限公司 散热装置以及散热装置的制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183379A1 (en) * 2002-03-29 2003-10-02 Krassowski Daniel W. Optimized heat sink using high thermal conducting base and low thermal conducting fins
CN1498521A (zh) * 2001-03-21 2004-05-19 ��ʽ��������;��ѧ 散热片和使用该散热片的散热方法
JP2005030676A (ja) * 2003-07-11 2005-02-03 Usui Kokusai Sangyo Kaisha Ltd コイルチューブ式放熱器
CN1748011A (zh) * 2002-12-19 2006-03-15 3M创新有限公司 柔性散热片
CN102095190A (zh) * 2011-03-16 2011-06-15 上海宏源照明电器有限公司 半导体光源外壳
CN203661492U (zh) * 2013-12-05 2014-06-18 苏州聚力电机有限公司 复合式薄形化散热装置
CN107036482A (zh) * 2017-06-05 2017-08-11 深圳市鸿富诚屏蔽材料有限公司 全包覆式散热片及其制造方法
CN207335516U (zh) * 2017-06-05 2018-05-08 深圳市鸿富诚屏蔽材料有限公司 全包覆式散热片

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5302751B2 (ja) * 2009-04-21 2013-10-02 株式会社デンソー 熱交換器用アルミニウム合金クラッド材
CN102555324A (zh) * 2010-12-31 2012-07-11 上海杰远环保科技有限公司 高散热膜型金属复合材料及其制造方法
JP6216964B2 (ja) * 2011-08-09 2017-10-25 三菱アルミニウム株式会社 冷却器用クラッド材および発熱素子用冷却器
CN103162268A (zh) * 2011-12-14 2013-06-19 欧司朗股份有限公司 散热装置和具有该散热装置的照明装置
CN202902970U (zh) * 2012-10-18 2013-04-24 绿晶能源股份有限公司 人造石墨散热基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498521A (zh) * 2001-03-21 2004-05-19 ��ʽ��������;��ѧ 散热片和使用该散热片的散热方法
US20030183379A1 (en) * 2002-03-29 2003-10-02 Krassowski Daniel W. Optimized heat sink using high thermal conducting base and low thermal conducting fins
CN1748011A (zh) * 2002-12-19 2006-03-15 3M创新有限公司 柔性散热片
JP2005030676A (ja) * 2003-07-11 2005-02-03 Usui Kokusai Sangyo Kaisha Ltd コイルチューブ式放熱器
CN102095190A (zh) * 2011-03-16 2011-06-15 上海宏源照明电器有限公司 半导体光源外壳
CN203661492U (zh) * 2013-12-05 2014-06-18 苏州聚力电机有限公司 复合式薄形化散热装置
CN107036482A (zh) * 2017-06-05 2017-08-11 深圳市鸿富诚屏蔽材料有限公司 全包覆式散热片及其制造方法
CN207335516U (zh) * 2017-06-05 2018-05-08 深圳市鸿富诚屏蔽材料有限公司 全包覆式散热片

Also Published As

Publication number Publication date
CN107036482A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2018223935A1 (zh) 全包覆式散热片及其制造方法
WO2018223934A1 (zh) 散热片及其制造方法
CN104918468B (zh) 导热片和电子设备
CN104609405B (zh) 一种竖直阵列石墨烯薄膜的制备方法
JP5194232B2 (ja) 熱伝導材及びその製造方法
CN207335516U (zh) 全包覆式散热片
US20170251571A1 (en) Curable thermal interface material and cooling device, and cooling device manufacturing method thereof
CN205161023U (zh) 一种液态金属基导热膜复合结构
CN102404976A (zh) 电子装置
CN104505347A (zh) 一种在塑封过程中贴装石墨烯散热薄膜的方法
CN103906418A (zh) 散热片及其制备方法
CN1988787A (zh) 散热器及其制造方法
CN103369907A (zh) 散热模组及其使用方法
CN207340385U (zh) 散热片
CN107167020B (zh) 一体式散热片的制造模具及制造方法
CN211662769U (zh) 一种相变控温薄膜
CN206196216U (zh) 一种复合型导热垫片及通信设备的散热装置
CN204367303U (zh) 在塑封过程中贴装石墨烯散热薄膜的塑封模具
CN1988786A (zh) 散热器及其制造方法
CN209358905U (zh) 散热器、散热系统及电子设备
TW201906523A (zh) 可攜帶電子裝置之模內注塑成型散熱塗層結構
CN206848917U (zh) 导热管及电子设备
CN110355917A (zh) 一种模具加热装置
TWM555625U (zh) 可攜帶電子裝置之殼體轉印熱壓成型散熱塗層結構
CN210514933U (zh) 一种晶圆涂胶显影用抓取手臂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814043

Country of ref document: EP

Kind code of ref document: A1