WO2018223929A1 - 发送上行信息的方法和装置 - Google Patents

发送上行信息的方法和装置 Download PDF

Info

Publication number
WO2018223929A1
WO2018223929A1 PCT/CN2018/089812 CN2018089812W WO2018223929A1 WO 2018223929 A1 WO2018223929 A1 WO 2018223929A1 CN 2018089812 W CN2018089812 W CN 2018089812W WO 2018223929 A1 WO2018223929 A1 WO 2018223929A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
timing advance
time length
uplink information
time
Prior art date
Application number
PCT/CN2018/089812
Other languages
English (en)
French (fr)
Inventor
闫志宇
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18813093.4A priority Critical patent/EP3468266B1/en
Priority to US16/198,770 priority patent/US10602534B2/en
Publication of WO2018223929A1 publication Critical patent/WO2018223929A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for transmitting uplink information in the field of wireless communications.
  • the uplink transmission is that the user equipment (UE) is orthogonal multiple access on the time-frequency, that is, the uplink transmissions of different UEs from the same cell do not interfere with each other.
  • the base station requires that signals from different UEs arrive at the base station substantially in time.
  • the base station can correctly decode the uplink data by receiving the uplink data sent by the UE within the cyclic prefix (CP) range. Therefore, the uplink synchronization requires that the signals of different UEs from the same subframe arrive at the base station.
  • CP cyclic prefix
  • Ultra-reliable low-latency communication is the fifth generation (5 th generation, 5G) mobile communication system, a communication scenario proposed, URLLC scenario for data transmission reliability and delay made harsh
  • 5G fifth generation
  • the requirements for example, the uplink and downlink user plane delay cannot exceed 0.5 milliseconds (ms), and the error rate within 1 ms cannot exceed 0.0001%.
  • the existing uplink synchronization method when transmitting uplink information cannot meet the requirements of the 5G mobile communication system.
  • the present application provides a method for transmitting uplink information, which can improve the reliability of uplink information transmission and reduce the delay of uplink transmission, thereby meeting the requirements of the 5G mobile communication system.
  • the first aspect provides a method for transmitting uplink information, where the method includes: receiving, by the terminal device, a timing advance coefficient; the terminal device determining, according to the timing advance coefficient and the first time length, a first timing advance amount, where the first The length of time is one of at least two different time lengths for determining the timing advance amount supported by the terminal device; the terminal device transmits the uplink information according to the first timing advance amount.
  • the 5G mobile communication system supports multiple subcarrier spacings (the types of services that are applicable to each of the subcarrier spacings are different), and the lengths of the CPs corresponding to different subcarrier spacings are different, so that the anti-delay impact performance of different subcarrier spacings is also different.
  • a shorter time length of at least two different time lengths may be used to improve the accuracy of the uplink synchronization.
  • at least two may be adopted.
  • a longer time length in different time lengths can be compatible with more devices while satisfying the delay requirement. Therefore, the terminal device uses different timing advances in different scenarios, thereby satisfying the uplink synchronization of the 5G mobile communication system. Diversified needs.
  • the method further includes: receiving, by the terminal device, the first information, where the first information is used to indicate the first time length. Therefore, the network device can flexibly determine the length of time used by the terminal device to determine the timing advance amount according to actual conditions.
  • the method further includes: receiving, by the terminal device, the second information; the resource occupied by the terminal device according to the second information and the first time The correspondence of lengths determines the first length of time.
  • the terminal device After receiving the second information, the terminal device can determine the length of time used for the uplink information to be sent according to the foregoing correspondence, and further determine the timing advance used by the uplink information to be sent. Therefore, the network device can flexibly determine the length of time used by the terminal device to determine the timing advance amount according to actual conditions.
  • the service type of the uplink information and/or the resource type corresponding to the uplink information are associated with the first time length
  • the method further includes: before the terminal device determines the first timing advance amount according to the timing advance coefficient and the first time length, the method further includes: The terminal device determines the first time length according to the correspondence between the service type of the uplink information and the first time length, and/or the terminal device determines the first time according to the correspondence between the resource type corresponding to the uplink information and the first time length. length.
  • the terminal device can determine the first time length without performing information interaction with the network device, thereby reducing the delay for transmitting the uplink information.
  • the method further includes: receiving, by the terminal device, third information, where the third information is used to indicate at least one of a service type of the uplink information and a resource type corresponding to the uplink information. .
  • the resource type includes at least one of the following parameters: a type of subcarrier spacing, a length of a cyclic prefix, a symbol length, a slot length, an operating frequency, and a subframe type. Therefore, the terminal device can flexibly determine the length of time according to actual conditions.
  • the service type includes at least one of the following parameters: quality of service, target error rate, and target block error rate. Therefore, the terminal device can flexibly determine the length of time according to actual conditions.
  • the method further includes: receiving, by the terminal device, first configuration information, where the first configuration information is used to configure at least two different lengths of time for determining a timing advance.
  • the network device can configure the terminal device with a length of time that meets the requirements of the current communication environment, so that the terminal device can flexibly determine the timing advance amount.
  • a second aspect provides a method for transmitting uplink information, where the method includes: when the terminal device is in an uplink synchronization loss state, the terminal device determines to use the first resource; and the terminal device sends the first resource to the network device by using the first resource.
  • An uplink information where the first uplink information includes information other than the random access preamble sequence, where the length of the first resource is shorter than the length of the second resource, and the second resource is maintained by the terminal device in uplink synchronization. The resource used when the status sends the second uplink information.
  • the terminal device may send information other than the random access preamble sequence without performing uplink synchronization, and the information other than the random access preamble sequence is, for example, urgent service data, thereby reducing
  • the transmission delay of the uplink information improves the utilization of resources.
  • the uplink synchronization loss state is a state in which the time synchronization timer of the terminal device times out
  • the uplink synchronization maintenance state is a state in which the time synchronization timer of the terminal device is running.
  • the first uplink information sent by the terminal device includes unscheduled uplink information.
  • the terminal device In the scenario of the non-scheduled scenario, the terminal device usually has more urgent data to transmit. Therefore, the terminal device may not wait to wait for the uplink synchronization loss state to send the emergency data, and then send the emergency data according to the sending uplink provided in this embodiment.
  • the terminal device sends the uplink information through the short-term resource in the uplink synchronization loss state, and can reduce the delay of the uplink transmission without reducing the transmission reliability.
  • the method further includes: determining, by the terminal device, a starting point of the time domain resource of the first resource according to the time of receiving the downlink information.
  • the method further includes: the terminal device receiving, by the network device, second configuration information, where the second configuration information is used to configure the first resource. Therefore, the network device can flexibly configure resources used by the terminal device to send uplink information.
  • a third aspect provides a method for receiving uplink information, where the method includes: determining, by the network device, a first timing advance amount of the terminal device, wherein the first timing advance amount is equal to a product of a timing advance coefficient and a first time length, The first time length is one of at least two different time lengths for determining the timing advance amount supported by the terminal device, where the first timing advance amount is used by the terminal device to send uplink information; the network device is from the terminal The device receives the uplink information.
  • the network device determines, according to different time lengths supported by the terminal device, the timing advance used by the terminal device in different scenarios, for example, in a scenario where the delay requirement is high, The shorter time length of at least two different time lengths is used to improve the accuracy of the uplink synchronization. In the scenario where the delay requirement is low, a longer time length of at least two different time lengths may be adopted, and It meets the requirements of delay and is compatible with more devices, so that it can meet the diversified needs of 5G mobile communication systems for uplink synchronization.
  • the method further includes: the network device sending, to the terminal device, first information, where the first information is used to indicate a first time length. Therefore, the network device can flexibly determine the length of time used by the terminal device according to actual conditions.
  • the method further includes: the network device sending the second information to the terminal device, where the resource occupied by the second information corresponds to the first time length relationship. Therefore, the network device can flexibly determine the length of time used by the terminal device according to actual conditions.
  • the service type of the uplink information and/or the resource type corresponding to the uplink information are associated with the first time length.
  • the method further includes: the network device according to the network device Determining, by the network device, the first time length according to the correspondence between the service type of the uplink information and the first time length, and/or determining, by the network device, the first according to the correspondence between the resource type corresponding to the uplink information and the first time length length of time.
  • the network device can flexibly determine the length of time used by the terminal device according to actual conditions.
  • the method further includes: the network device sends, to the terminal device, third information, where the third information is used to indicate at least one of a service type of the uplink information and a resource type corresponding to the uplink information.
  • the network device may pre-configure resources for the uplink information to be sent by the terminal device, where the third information is used to indicate the configured resource, and the network device may also indicate, by using the third information, the service type to which the uplink information to be sent by the terminal device belongs, and thus, the network device
  • the length of time used by the terminal device can be flexibly determined according to actual conditions.
  • the resource type includes at least one of the following parameters: a type of subcarrier spacing, a length of a cyclic prefix, a symbol length, a slot length, an operating frequency, and a subframe type.
  • the service type includes at least one of the following parameters: quality of service, target error rate, and target block error rate.
  • the method further includes: the network device sending, to the terminal device, first configuration information, where the first configuration information is used to configure the at least two different lengths of time for determining the timing advance.
  • the network device can configure the terminal device with a length of time that meets the requirements of the current communication environment, so that the terminal device can flexibly determine the timing advance amount.
  • a fourth aspect provides a method for receiving uplink information, where the method includes: determining, by a network device, a first resource, where a length of time of the first resource is less than a length of time of the second resource, where the first resource is used by the terminal device Sending the first uplink information in the uplink synchronization loss state, where the first uplink information includes information other than the random access preamble sequence, and the second resource is used by the terminal device to send the second uplink information in the uplink synchronization maintenance state; the network The device sends the second configuration information to the terminal device, where the second configuration information is used to configure the first resource.
  • the network device may indicate the size of the time domain resource included in the first resource by using the second configuration information.
  • the terminal device determines to use the first resource, and passes the first resource.
  • the first uplink information is sent to the network device, where the first uplink information includes information other than the random access preamble sequence.
  • the first uplink information may be at least one of service data, feedback information, and request information. Therefore, the network device can receive information other than the random access preamble sequence without waiting for the terminal device to perform uplink synchronization, reduce the transmission delay of the uplink information, and improve resource utilization.
  • the method further includes: receiving, by the network device, the first uplink information from the terminal device by using the first resource, where the first uplink information includes unscheduled uplink information.
  • the terminal device In a scenario without scheduling, the terminal device usually has more urgent data to transmit. Therefore, the terminal device may not wait to wait for the uplink synchronization loss state to send the emergency data, and then send the emergency data according to the sending uplink information provided by the application. In the method, the terminal device sends the uplink information through the resource with a small duration in the uplink synchronization loss state, and can reduce the delay of the uplink transmission without reducing the transmission reliability.
  • the first resource and the second resource are separated by at least one time unit in the time domain.
  • the terminal device when the terminal device is in the uplink synchronization loss state, and the first uplink information arrives at the network device later, since there is at least one time unit between the first resource and the second resource, the possibility that the uplink information transmitted through the first resource and the uplink information transmitted through the second resource interact with each other is greatly reduced, thereby improving the reliability of the uplink transmission.
  • the uplink synchronization loss state is a state in which the time synchronization timer of the terminal device times out
  • the uplink synchronization maintenance state is a state in which the time synchronization timer of the terminal device is running.
  • the fifth aspect provides an apparatus for transmitting uplink information, where the apparatus can implement the functions performed by the terminal device in the method related to the foregoing first aspect, and the functions can be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more corresponding units or modules of the above functions.
  • the apparatus includes a processor and a transceiver configured to support the apparatus to perform the corresponding functions of the methods involved in the first aspect above.
  • the transceiver is used to support communication between the device and other network elements.
  • the apparatus can also include a memory for coupling with the processor that retains the program instructions and data necessary for the apparatus.
  • the sixth aspect provides an apparatus for transmitting uplink information, where the apparatus can implement the functions performed by the terminal device in the method related to the second aspect, and the functions can be implemented by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more corresponding units or modules of the above functions.
  • the apparatus includes a processor and a transceiver configured to support the apparatus to perform the corresponding functions of the methods involved in the second aspect above.
  • the transceiver is used to support communication between the device and other network elements.
  • the apparatus can also include a memory for coupling with the processor that retains the program instructions and data necessary for the apparatus.
  • the seventh aspect provides an apparatus for receiving uplink information, where the apparatus can implement the functions performed by the network device in the method related to the third aspect, where the function can be implemented by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more corresponding units or modules of the above functions.
  • the apparatus includes a processor and a transceiver configured to support the apparatus to perform the corresponding functions of the methods involved in the third aspect above.
  • the transceiver is used to support communication between the device and other network elements.
  • the apparatus can also include a memory for coupling with the processor that retains the program instructions and data necessary for the apparatus.
  • the eighth aspect provides an apparatus for receiving uplink information, where the apparatus can implement the functions performed by the network device in the method related to the fourth aspect, where the function can be implemented by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more corresponding units or modules of the above functions.
  • the apparatus includes a processor and a transceiver configured to support the apparatus to perform the corresponding functions of the methods involved in the fourth aspect above.
  • the transceiver is used to support communication between the device and other network elements.
  • the apparatus can also include a memory for coupling with the processor that retains the program instructions and data necessary for the apparatus.
  • the present application further provides a network system, where the network system includes the apparatus for transmitting uplink information and the apparatus for receiving uplink information according to the seventh aspect.
  • the present application further provides a network system, where the network system includes the apparatus for transmitting uplink information and the apparatus for receiving uplink information according to the eighth aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a terminal device, or a processor, causing the terminal The device performs the method involved in the first aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a terminal device, or a processor, causing the terminal The device performs the method involved in the second aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a terminal device, or a processor, causing a network
  • the device performs the method involved in the third aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a terminal device, or a processor, causing a network
  • the device performs the method involved in the fourth aspect.
  • a computer storage medium for storing computer software instructions for use in a terminal device as referred to in the first aspect, comprising a program designed to perform the method of the first aspect.
  • a computer storage medium for storing computer software instructions for use in a terminal device of the second aspect, comprising a program designed to perform the method of the second aspect.
  • a computer storage medium for storing computer software instructions for use with the network device of the third aspect, comprising a program designed to perform the method of the third aspect.
  • a computer storage medium for storing computer software instructions for use with a network device of the fourth aspect, comprising a program designed to perform the method of the fourth aspect.
  • a communication chip in which instructions are stored which, when run on a terminal device, cause the communication chip to perform the method of the first aspect described above.
  • a communication chip in which instructions are stored which, when run on a terminal device, cause the communication chip to perform the method of the second aspect described above.
  • a communication chip in which instructions are stored which, when run on a network device, cause the communication chip to perform the method of the third aspect.
  • a communication chip in which instructions are stored which, when run on a network device, cause the communication chip to perform the method of the fourth aspect.
  • Figure 1 is a communication system to which the present application is applied;
  • FIG. 2 is a schematic diagram of a UE transmitting uplink information according to a timing advance
  • FIG. 3 is a schematic diagram of a method for transmitting uplink information provided by the present application.
  • FIG. 4 is a schematic diagram of another method for transmitting uplink information provided by the present application.
  • FIG. 5 is a schematic diagram of a resource used by a UE to send uplink information according to the present application.
  • FIG. 6 is a schematic diagram of a method for receiving uplink information provided by the present application.
  • FIG. 7 is a schematic diagram of another method for receiving uplink information provided by the present application.
  • FIG. 8 is a schematic diagram of a possible terminal device provided by the present application.
  • FIG. 9 is a schematic diagram of another possible terminal device provided by the present application.
  • FIG. 10 is a schematic diagram of still another possible terminal device provided by the present application.
  • FIG. 11 is a schematic diagram of still another possible terminal device provided by the present application.
  • FIG. 12 is a schematic diagram of a possible network device provided by the present application.
  • FIG. 13 is a schematic diagram of another possible network device provided by the present application.
  • FIG. 15 is a schematic diagram of still another possible network device provided by the present application.
  • FIG. 1 illustrates a communication system 100 to which the present application is applied.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the network device 110 and the terminal device 120 communicate through a wireless network.
  • the wireless communication module can encode the information for transmission.
  • the wireless communication module can acquire a certain number of data bits to be transmitted over the channel to the network device 110, such as data bits generated by the processing module, received from other devices, or saved in the storage module.
  • These data bits may be included in one or more transport blocks (which may also be referred to as information blocks or data blocks) that may be segmented to produce a plurality of coded blocks.
  • a terminal device may be referred to as an access terminal, a UE, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user.
  • the access terminal can be a cellular telephone, a handheld device with wireless communication capabilities, a computing device or other processing device connected to the wireless modem, an in-vehicle device, a wearable device, and a user device in a 5G mobile communication system.
  • the network device may be a base transceiver station (BTS) in a code division multiple access (CDMA) system, or may be a base station in a wideband code division multiple access (WCDMA) system (
  • the node B, NB) may also be an evolved base station (eNB) in a long term evolution (LTE) system, or may be a base station (gNB) in a 5G mobile communication system, where the base station is only
  • the network device may also be a relay station, an access point, an in-vehicle device, a wearable device, and other types of devices.
  • the communication system to which the present application is applied is merely an example.
  • the communication system to which the present application is applied is not limited thereto.
  • the number of network devices and terminal devices included in the communication system may be other numbers.
  • the communication system 100 to which the present application is applied may also be a device to device (D2D) communication system, wherein the network device 110 and the terminal device 120 are two devices that communicate in a D2D communication system.
  • D2D device to device
  • the communication system may use an uplink timing advance mechanism, and the UE sends uplink information according to the timing advance amount, and the UE looks at the UE.
  • the timing advance is essentially a negative offset between the start time of the downlink subframe and the start time of the uplink subframe.
  • the base station can control the time when the uplink signal from different UEs arrives at the base station by appropriately controlling the offset of each UE. For the UE closer to the base station, the uplink information can be sent according to a smaller timing advance, which is farther away from the base station.
  • the UE because the signal has a large transmission delay, needs to send uplink information according to a large timing advance.
  • FIG. 2 shows a schematic diagram of a UE transmitting uplink information according to a timing advance.
  • TAC timing advance command
  • the base station if the signal transmission distance between the UE and the base station is D, the base station expects to receive the uplink signal sent by the UE at time T 0, the UE needs to send information in the uplink time T 0 -T TA, where, T TA Indicates the timing advance amount, which is taken as D/c, and c represents the rate of electromagnetic wave transmission. Since the UE has mobility, the distance D of the signal transmitted between the UE and the base station also changes. Therefore, the UE needs to continuously adjust the value of the timing advance to ensure that the uplink signal arrives at the base station and the base station expects the uplink signal to reach the base station. The error of the moment is within an acceptable range.
  • the base station can determine the timing advance of each UE by measuring the uplink transmission of the UE.
  • the base station can measure the timing advance according to any uplink signal sent by the UE, and the base station can notify the UE of the timing advance by the following two methods.
  • the base station may notify the UE of the timing advance by the TAC field of the random access response (RAR).
  • RAR random access response
  • the base station measures the preamble sent by the UE.
  • the size of the TAR field of the RAR may be, for example, 11 bits, and the corresponding timing advance coefficient ranges from 0 to 1282.
  • the base station may send the UE to the UE by using a timing advance command media access control control element (TAC MAC CE).
  • TAC MAC CE timing advance command media access control control element
  • the UE performs uplink synchronization with the base station in the random access process, but the communication environment of the UE may change with time, so that the timing advance in the random access process is no longer applicable to the new communication environment, for example, :
  • the transmission delay between the UE and the base station may change greatly in a short time
  • the current transmission path disappears and switches to a new communication path, and the transmission delay of the new communication path has a large change with respect to the original communication path;
  • the crystal oscillator offset of the UE, and the accumulation of offset for a long time may cause an uplink timing error
  • the UE needs to constantly update its timing advance.
  • the size of the TAC field of the TAC MAC CE may be, for example, 6 bits, and the range of the timing advance coefficient is 0 to 63.
  • the timing advance coefficient received by the UE (that is, the timing advance coefficient indicated by the TAC field) refers to the current timing advance coefficient.
  • FIG. 3 is a schematic flowchart of a method for transmitting uplink information provided by the present application.
  • the method 300 includes:
  • the UE receives a timing advance coefficient.
  • the UE determines a first timing advance according to the timing advance coefficient and a first time length, where the first time length is one of at least two different time lengths for determining a timing advance amount supported by the UE. .
  • the UE sends uplink information according to the first timing advance amount.
  • T A represents the timing advance coefficient received by the UE, and the specific value of T A is indicated by the TAC field of the RAR or the TAC field of the TAC MAC CE, and the N TA_old represents the N TA saved by the UE last time.
  • the time granularity corresponding to the timing advance coefficient indicated by the base station is 16T s , where T s is a fixed value in the LTE system. That is, the time granularity used by the UE in the LTE system to determine the timing advance of transmitting the uplink information is fixed to one.
  • the UE supports at least two different time lengths (ie, “time granularity” for determining a timing advance for transmitting uplink information), and therefore, the UE needs to determine one current from the at least two different time lengths.
  • the length of time available e.g., the first length of time
  • the value of the timing advance coefficient received by the UE indicates how many times the UE needs to adjust the time for transmitting the uplink information.
  • the timing adjustment coefficient received by the UE is M
  • the first time length is 16T s
  • the UE needs to The time for transmitting the uplink information is adjusted by M ⁇ 16T s , and the UE may adjust the time for sending the uplink information according to other parameters, which is not limited in this application.
  • the 5G mobile communication system supports multiple subcarrier spacings (the types of services that are applicable to each seed carrier interval are different), and the lengths of the corresponding subcarrier spacing symbols are different. Correspondingly, the anti-delay impact performance of different sub-carrier spacings is also different. Therefore, the UE uses different timing advances in different scenarios, thereby satisfying the diversified requirements of the 5G mobile communication system for uplink synchronization.
  • the at least two different time lengths correspond to different quality of service requirements.
  • the time length used for determining the timing advance amount in uplink synchronization is 16T s , which is used for serving data transmission with an uplink error rate of 10% and a low transmission delay requirement.
  • 16T s can be used to determine the timing advance to complete the uplink synchronization, which is compatible while meeting the transmission requirements.
  • the at least two different time lengths for determining the timing advance amount correspond to different subcarrier spacings.
  • the subcarrier spacing used for initial access and service data transmission is different, and the sampling rates corresponding to different subcarrier spacings are different, resulting in different delay effects of different subcarrier spacings.
  • the uplink synchronization is performed in different time lengths, which can meet the requirements of the network device for the accuracy of the uplink synchronization in different scenarios.
  • the UE uses a 15Khz subcarrier spacing for initial access, and the uplink synchronization uses a length of 16T s .
  • the UE uses a subcarrier spacing of 60 Khz, and the uplink synchronization uses a time length of 8 T s ' or a shorter length T s corresponds to a sampling rate of 15 Khz subcarrier interval transmission, and T s ' corresponds to 60 Khz.
  • the sampling rate of the subcarrier spacing transmission is a different length of time in the TAR field of the RAR corresponding to the timing advance coefficient received in the TAC field of the TAC MAC CE.
  • the at least two different time lengths for determining the timing advance amount correspond to different resource types, such as at least one of a length of a cyclic prefix, a symbol length, a slot length, an operating frequency, and a subframe type.
  • at least one of a cyclic prefix length, a symbol length, a slot length, an operating frequency, and a subframe type may affect an anti-time delay spread of the UE transmitting uplink information or a performance against frequency fading and offset, and thus
  • the UE sends the uplink information by using any combination of the foregoing parameters, in order to ensure the quality of service requirements of the uplink service of the UE, the UE needs to use different time lengths as the granularity of adjusting the uplink information transmission time.
  • the at least two different time lengths correspond to different types of services, such as at least one of a quality of service, a target error rate, and a target block error rate.
  • the UE needs to adjust the sending time of the uplink information according to different time lengths.
  • the base station adjusts the time for the UE to send the uplink information by using the minimum time granularity.
  • the number of bits for indicating the timing advance coefficient is constant, when the time granularity is different, the range of the timing advance amount corresponding to each time the base station transmits the timing advance coefficient is different.
  • the range of the timing advance coefficient is [0, 63], and when the corresponding time granularity is 16T s , the base station transmits the timing advance amount corresponding to the timing advance coefficient each time.
  • the range is [0, 63] ⁇ 16T s ; when the corresponding time granularity is 8T s , the range of the timing advance corresponding to each time the base station transmits the timing advance coefficient is [0, 63] ⁇ 8T s , and so on.
  • the base station always uses the minimum granularity to adjust the time when the UE transmits the uplink information, the range of the timing advance amount corresponding to each time the base station transmits the timing advance coefficient is always small. In this way, the base station needs to frequently transmit the timing advance coefficient to cope with the uplink timing offset problem caused by the UE moving, the crystal oscillator offset, and the like, thereby causing the resource utilization efficiency of the base station to be low. Therefore, it is necessary for the UE to support a plurality of different time lengths for determining the timing advance of transmitting the uplink information, and satisfying the transmission requirements of the uplink information corresponding to different resource types and/or service types.
  • the UE When the UE supports a plurality of different time lengths for determining the timing advance required for transmitting the uplink information, the UE needs to determine according to one of the timing advance coefficient and at least two different time lengths for determining the timing advance amount supported by the UE.
  • the timing advance amount that is, the UE first determines a time length (for example, the first time length) from the at least two different time lengths, and then determines a timing advance amount according to the time length and the timing advance coefficient (for example, the first The timing advance is performed, and the uplink information is sent according to the timing advance (for example, the first timing advance).
  • the specific content of the uplink information is not limited in this application.
  • the first timing advance amount when determining, by the UE, the first timing advance amount according to the received timing advance coefficient and the first time length, determining, by the product of the received timing advance coefficient and the first time length, an adjustment value of the first timing advance amount. For example, if the received timing advance coefficient is T A and the first time length is ⁇ T, the adjustment value of the first timing advance amount is T A ⁇ T.
  • the first timing advance amount determined by the UE according to the received timing advance coefficient and the first time length may be an adjustment value of the timing advance amount, for example, when the timing advance coefficient in S310 is a value indicated by the TAR field of the RAR, in S320.
  • the first timing advance amount that is, the adjustment value T A ⁇ ⁇ T of the timing advance amount.
  • the first timing advance of the uplink information sent by the UE may also be related to other parameters, which is not limited herein.
  • the first timing advance amount of the UE transmitting the uplink information is a product of the timing advance coefficient and the first time length plus an adjustment value, and the adjustment value is 20 microseconds (us), or is 0.
  • the UE may determine the adjustment value according to the format of the carrier used when transmitting the uplink information, for example, for a frequency division duplexing (FDD) system, the adjustment value is 0; time division duplexing (TDD) For the system, the adjustment value is 20us.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • first time length refers to a time period unless otherwise specified, and may also be referred to as a time granularity of timing advance adjustment.
  • the name is not limited.
  • the timing advance coefficient in S310 may be a value that is indicated by the network device to the UE, and the UE may acquire the timing advance coefficient described in the method 300 by using the method for acquiring the timing advance coefficient in the LTE system, and no specific limitation is made herein.
  • the UE may send the uplink data according to the method shown in FIG. 2. For example, the UE may determine the downlink radio frame i according to the received downlink radio frame i-1, and determine the start time of the uplink radio frame i according to the timing advance amount TTA. T 0 -T TA , where T 0 is the starting time at which the UE receives the downlink radio frame i.
  • the UE determines the start time of the uplink radio frame i, and can determine the time for transmitting the uplink information.
  • the time when the UE sends the uplink information may be part of the time in the uplink radio frame.
  • the method 300 before determining, by the UE, the first timing advance according to the timing advance coefficient and the first time length, the method 300 further includes:
  • the UE receives the first information, where the first information is used to indicate the first time length.
  • the first information may be, for example, a TAC MAC CE or an RAR.
  • the current UE supports four types of time granularities, namely, granularity 1, granularity 2, granularity 3, and granularity 4.
  • the network device After receiving the random access information sent by the UE, the network device indicates, in the RAR, which granularity is used by the UE to transmit the uplink information, and determines the timing advance amount.
  • the network device may determine the time granularity according to the subcarrier spacing used by the uplink information to be sent by the UE, and the network device may determine the time granularity used by the UE according to whether the uplink information to be sent by the UE belongs to the uplink information of the eMBB or the uplink information of the URLLC. It should be noted that the manner in which the first information indicates the first time length may be direct or indirect.
  • the granularity 1 is 16T s
  • the granularity 2 is 8T s
  • the granularity 3 is 4T s
  • the granularity 4 is 2T s
  • the first information indicates the granularity 1
  • only 16 may be indicated
  • the granularity is 2, only Indication 8
  • when the granularity is 3, only 4 is indicated
  • when the granularity is 4, only 2 is indicated.
  • the value of T s is preset for the UE.
  • the direct indication is that the granularity 1 is 16T s , the granularity 2 is 8T s , the granularity 3 is 4T s , and the granularity 4 is 2T s . That is, after receiving the first information, the UE may determine the first time length according to the first information, where the form of the first information is not limited.
  • the network device can flexibly determine the length of time used by the UE to determine the timing advance amount according to actual conditions. In other words, the network device can flexibly determine the time granularity used by the UE to determine the timing advance according to actual conditions.
  • the first information may be located in the same data packet as the information indicating the timing advance coefficient, and the information of the first information and the indication timing advance coefficient may also be located in different data packets.
  • the method 300 before determining, by the UE, the first timing advance according to the timing advance coefficient and the first time length, the method 300 further includes:
  • the UE receives the second information.
  • the UE determines the first time length according to the correspondence between the resource occupied by the second information and the first time length.
  • the second information may be any information that the UE receives from the network device, and the resource occupied by the second information has a corresponding relationship with the first time length, and the corresponding relationship may be specified by the communication system, or the network device may send the second.
  • the information is forwarded to the UE.
  • the corresponding relationship may be, for example, a correspondence between the time domain resource occupied by the second information and the first time length, and the corresponding relationship may also be a correspondence between the frequency domain resource occupied by the second information and the first time length, and the corresponding relationship may also be The mapping relationship between the code domain resource occupied by the second information and the first time length may be, and the corresponding relationship may be at least two resources of the time domain resource, the frequency domain resource, and the code domain resource occupied by the second information, and the first The correspondence of the length of time.
  • the UE may determine the first time length corresponding to the timing advance according to the foregoing correspondence, and further determine, according to the first time length and the received timing advance coefficient, the first used to send the uplink information. Timing advance.
  • the network device can flexibly determine the length of time used by the UE to determine the timing advance amount according to actual conditions. In other words, the network device can flexibly determine the time granularity used by the UE to determine the timing advance amount according to actual conditions.
  • the second information may be located in the same data packet as the information indicating the timing advance coefficient, and the second information and the information indicating the timing advance coefficient may also be respectively located in different data packets.
  • the second information may be an indication timing advance. Coefficient information.
  • the service type of the uplink information and/or the resource type corresponding to the uplink information have a corresponding relationship with the first time length.
  • the method 300 further includes:
  • the UE determines the first time length according to the correspondence between the service type of the uplink information and the first time length, and/or,
  • the UE determines the first time length according to the correspondence between the resource type corresponding to the uplink information and the first time length.
  • the UE may not receive the first information or the second information, but determine the first time length according to the service type of the uplink information and/or the corresponding resource type, and the service type may be, for example, an eMBB service and a URLLC service.
  • the above resource type may be, for example, a type of subcarrier spacing used for transmitting uplink information.
  • the correspondence in S304 may be specified by the communication system, or may be pre-configured by the network device. For example, when the communication system specifies that the URL LC service (corresponding to the quality of service requirement -1) is sent, the UE determines the first time length of the timing advance is A, and when the eMBB service (corresponding to the quality of service requirement -2), the UE determines the timing advance.
  • the first length of time is B.
  • the first time length of the URLLC service is A
  • the first time length of the eMBB service is B, and may be pre-configured to the UE by using the network device.
  • the method for determining the first time length by the UE according to the service type of the uplink information or the resource type corresponding to the uplink information is similar to the method for determining the first time length by the network device. For brevity, details are not described herein again.
  • the UE may also determine the first time length according to the service type of the uplink information and the resource type corresponding to the uplink information.
  • the service type of the uplink information includes a service with a target error rate of 10% and a service with a target error rate of 1%.
  • the resource type corresponding to the uplink information includes a resource with a subcarrier spacing of 15 Hhz and a resource with a subcarrier spacing of 60 Khz.
  • the resources and service types that can be selected for one uplink information are the following four types: corresponding to a service with a target bit error rate of 10%.
  • the resource type is a resource with a subcarrier spacing of 15Hhz
  • a resource type corresponding to a service with a target bit error rate of 1% is a resource with a subcarrier spacing of 15Hhz
  • a resource type corresponding to a service with a target bit error rate of 10% is a subtype.
  • a resource with a carrier spacing of 60 Hhz, a resource type corresponding to a service with a target error rate of 1% is a resource with a subcarrier spacing of 60 Hhz, and the first time length corresponding to each of the four cases is different, and the UE simultaneously performs services according to the uplink information.
  • the type of the resource corresponding to the type and the uplink information determines the first length of time.
  • the UE can determine the first time length without performing information interaction with the network device, thereby reducing the delay for transmitting the uplink information.
  • the method 300 further includes:
  • the UE receives the third information, where the third information is used to indicate at least one of a service type of the uplink information and a resource type corresponding to the uplink information.
  • the network device may pre-configure resources for the uplink information to be sent by the UE, and the third information is used to indicate the configured resource.
  • the network device may also indicate, by using the third information, the service type to which the uplink information to be sent by the UE belongs.
  • the service type of the information and/or the corresponding resource type determines the first length of time.
  • the resource type includes at least one of the following parameters: a type of subcarrier spacing, a length of a cyclic prefix, a symbol length, a slot length, an operating frequency, and a subframe type.
  • the relationship between the service type of the uplink information and/or the corresponding resource type and the first time length is as described in S304.
  • the UE needs to determine the service type of the uplink information and/or the resource type corresponding to the uplink information by using the third information, and determine the first time length according to the service type of the uplink information and/or the resource type corresponding to the uplink information.
  • the higher the operating frequency for transmitting the uplink information the larger the corresponding subcarrier width, and the smaller the symbol length, the slot length and the CP length, which is more affected by the delay spread of the wireless channel.
  • the time granularity that can be used when determining the timing advance of transmitting the uplink information is smaller.
  • the subframe type or the slot type of the uplink information transmission also affects the anti-time delay extension or the anti-frequency fading and offset performance of the uplink information transmitted by the UE. For example, all the time slots are used for uplink transmission.
  • the time slot includes an uplink to downlink transition time, and the UE needs to use different time granularity to determine the timing advance of transmitting the uplink information to meet the transmission requirement of the uplink information.
  • the UE needs to use different time lengths for determining the timing advance amount to determine the timing advance amount for transmitting the uplink information.
  • the wireless communication system can flexibly use different time granularities to perform uplink synchronization of the UE according to actual conditions.
  • the service type includes at least one of the following parameters: quality of service, target error rate, and target error block rate.
  • some devices may not support smaller time granularity. Therefore, the wireless communication system can flexibly use different time granularities for uplink synchronization of the UE according to actual conditions.
  • the method 300 further includes:
  • the UE receives first configuration information, where the first configuration information is used to configure at least two different lengths of time for determining a timing advance.
  • the network device can configure the UE with a length of time that meets the requirements of the current communication environment, so that the UE can flexibly determine the timing advance.
  • the UE supports four types of time lengths for determining the timing advance.
  • the current UE is in the URLLC communication environment, and the network device can configure the shorter two of the four time lengths for the UE by using the first configuration information. Determining the timing advance amount, such that when the network device indicates the first time length to the UE by using the first information, only one time length may be indicated as the first time length from the shorter two time lengths for determining the timing advance amount .
  • the network device may configure the longer two of the four time lengths for the UE by using the first configuration information.
  • the network device When the network device indicates the first time length to the UE by using the first information, A length of time is indicated from the longer two lengths of time as the first length of time. Therefore, the UE can use a smaller time length in order to more accurately determine the timing advance, so that the time for the uplink information to arrive at the network device is more accurate, the reliability of the uplink information transmission is improved, and the delay of the uplink information transmission is reduced.
  • the UE may use a longer time length to meet the transmission requirement to avoid a large implementation complexity caused by the base station being configured for multiple time lengths.
  • the first configuration information is used to configure at least two different lengths of time for determining the timing advance amount, which may be direct or indirect.
  • the granularity 1 is 16T s
  • the granularity 2 is 8T s
  • the granularity 3 is 4T s
  • the granularity 4 is 2T s
  • the first configuration information indicates the granularity 1
  • only 16 may be indicated
  • the granularity 2 is indicated, only Indication 8
  • when the granularity is 3, only 4 is indicated when the granularity is 4, only 2 is indicated.
  • the value of T s is preset for the UE.
  • the direct indication is that the granularity 1 is 16T s , the granularity 2 is 8T s , the granularity 3 is 4T s , and the granularity 4 is 2T s .
  • the UE may also report the capability of determining the timing advance by the UE to the network device.
  • the UE reports that the UE supports at least two different lengths of time for determining the timing advance, and the network device according to the capability reported by the UE.
  • the first configuration information is configured to configure one or more time lengths for the UE to determine the timing advance amount for the UE.
  • the network device indicates, by using the first information, the first time length to the UE according to the capability reported by the UE.
  • FIG. 4 is a schematic flowchart of another method for transmitting uplink information provided by the present application.
  • the method 400 includes:
  • the UE determines to use the first resource.
  • the UE sends the first uplink information to the network device by using the first resource, where the first uplink information includes information other than the random access preamble sequence, and the time length of the first resource is less than the time of the second resource.
  • the second resource is a resource used when the UE sends the second uplink information in the uplink synchronization maintenance state.
  • the network device does not know which terminal devices have the requirement of transmitting uplink data in a certain period of time, and does not know that a certain terminal device has The size of the upstream data needs to be sent. Therefore, when the UE has an uplink data transmission requirement, the UE may be in an uplink synchronization lost state. For URLLC data, it usually has a burst and urgent feature, in this state, if the UE sends a random access preamble sequence to the network device, and waits for the network device to determine according to the timing advance coefficient sent by receiving the random access preamble sequence.
  • the timing advance, and then the uplink URLLC data is sent according to the timing advance, which will have a negative impact on the delay characteristics of the uplink URLLC data.
  • the network device can also maintain the uplink synchronization state maintained by the UE by frequently sending the timing advance coefficient to the UE. However, if the UE does not have the uplink information transmission requirement for a long period of time, the network device frequently sends the timing advance coefficient. The problem of inefficient use of resources.
  • the UE may determine that the UE is in an uplink synchronization loss state or an uplink synchronization maintenance state.
  • the specific determination method refer to the following related description.
  • the UE determines to use the first resource, and sends the first uplink information to the network device by using the first resource, where the first uplink information includes information other than the random access preamble sequence, for example, the first
  • the uplink information may be at least one of service data, feedback information, and scheduling request information.
  • the service data may be uplink URLLC data to be sent by the UE.
  • the feedback information may be a hybrid automatic repeat request (HARQ) response message HARQ-ACK for the downlink URL LC data received by the UE.
  • HARQ hybrid automatic repeat request
  • the UE receives the downlink URLLC data after receiving the downlink URL LC data. If yes, the UE feeds back an acknowledgement (ACK) on the physical uplink control channel (PUCCH). If not, it feeds back a negative acknowledgement (NACK) on the PUCCH.
  • ACK and NACK are collectively referred to as HARQ-ACK.
  • the UE can inform the network device whether uplink resources are needed for uplink shared channel (UL-SCH) transmission through a scheduling request (SR).
  • SR scheduling request
  • the network device allocates uplink resources to the UE for sending uplink data.
  • the scheduling request is sent by the UE to the base station, and the base station indicates the resource for transmitting the uplink data to the UE by using the scheduling indication information.
  • the SR sent by the UE may distinguish whether the SR is a UL data request of the URLLC or a UL data request of the eMBB.
  • the terminal device can also consider the use of uplink grant free (UL grant free) technology for uplink data transmission, which can effectively solve the reliability and low latency requirements of the URLLC technology for data transmission, and the uplink license-free license can also be called Free scheduling for the uplink.
  • UL grant free technology the uplink data transmission of the terminal device is no longer dependent on the dynamic notification of the network device, but the network device configures the terminal device to configure the resource for sending the uplink data by sending the pre-configuration information to the terminal device. Therefore, the method can be exempted.
  • the de-terminal device requests uplink scheduling from the network device, the network device receives the uplink scheduling request message, and sends scheduling information and the like for the terminal device.
  • a resource sends the first uplink information to the network device, where the first uplink information includes information other than the random access preamble sequence, such as the unscheduled uplink data, the uplink data scheduling request, and the feedback information corresponding to the downlink data.
  • the first uplink information may include a random access preamble sequence in addition to the “information other than the random access preamble sequence”.
  • the UE may send information other than the random access preamble sequence without sending a random access preamble sequence for uplink synchronization, or the UE may send the random access preamble sequence together with other information, thereby reducing uplink information. Transmission delay increases resource utilization.
  • the network device may pre-configure the first resource.
  • the time domain resource of the first resource is located in one of the multiple time slots, and the time end point of the time domain resource of the first resource is earlier than the time.
  • the end point of the slot optionally, the time domain start position of the first resource coincides with the start position of the time slot.
  • the first resource occupies the first five symbols of the seven symbols included in one slot, so that even if the UE1 is in the uplink synchronization loss state, the UE1 sends uplink information to the first resource as long as the uplink synchronization of the UE.
  • the uplink information sent by the UE may arrive at the network device earlier than the time when the uplink information sent by the UE2 in the synchronization maintenance state in the next time slot arrives at the network device. Therefore, the reliability of the uplink transmission of the UE1 is improved while reducing the uplink transmission delay of the UE1.
  • the uplink synchronization loss state may be a state in which the UE's time synchronization timer expires
  • the uplink synchronization maintenance state may be a state in which the UE's time synchronization timer is running.
  • the network device configures a parameter of the synchronization timer for the UE, and the UE determines whether the uplink synchronization loss state or the uplink synchronization maintenance state is used by the parameter of the synchronization timer.
  • the UE receives the TAC, the UE starts or restarts the synchronization timer. .
  • the uplink synchronization is considered to be lost; and when the synchronization timer is running, the UE considers that the uplink synchronization is maintained.
  • the method for determining, by the UE, that the UE is in an uplink synchronization loss state or an uplink synchronization maintenance state is not limited.
  • the UE may also compare the difference between the first time and the second time, where the first time is the actual time when the UE currently receives the downlink radio frame (assumed to be the radio frame i), and the second time is the UE receives the last time according to the last time.
  • the UE determines that the UE is in the uplink synchronization loss state, and determines that the UE is in the uplink synchronization state if the absolute value of the difference between the first time and the second time is less than or equal to the first time threshold. status.
  • the first time threshold is a preset value.
  • the first uplink information in the method 400 includes unscheduled uplink information.
  • the UE In the scenario of the non-scheduled scenario, the UE usually has more urgent data (such as URLLC service data) to be transmitted. Therefore, the UE may not have time to wait for the emergency data to be sent from the uplink synchronization loss state to the uplink synchronization maintenance state, and the emergency data is provided according to the present application.
  • the method of transmitting the uplink information the UE sends the uplink information through the resource with a small duration in the uplink synchronization loss state, and can reduce the delay of the uplink transmission without reducing the transmission reliability.
  • the method 400 before the sending, by the UE, the first uplink information to the network device by using the first resource, the method 400 further includes:
  • the UE determines a starting point of the time domain resource of the first resource according to the time of receiving the downlink information.
  • the UE when the UE sends the uplink information, the UE is in the uplink synchronization loss state, and the previously received TAC is invalid.
  • the UE can determine the time position of the radio frame i according to the time position of the radio frame i-1, thereby determining the wireless.
  • the start time of the frame i is T 0
  • the uplink information is sent by the first resource according to the T 0
  • the time domain resource of the first resource may be part of the time resource of the radio frame i.
  • the method 400 further includes:
  • the UE receives second configuration information, where the second configuration information is used to configure the first resource.
  • the network device may indicate, by using the second configuration information, a size of the time domain resource included in the first resource.
  • the network device may configure the first resource to be a resource corresponding to the first six symbols of one slot, or configure the first resource to be the first five symbols of a slot. Resources, and so on, can improve resource utilization while meeting transmission reliability requirements.
  • the second configuration information is used to configure the first resource and the second resource.
  • the network device may configure the first resource to be a resource including four symbols, and configure the first
  • the two resources are resources including 7 symbols, and the first resource and the second resource are separated by 3 symbols, so that the delay of the uplink transmission can be reduced while satisfying the transmission reliability requirement.
  • FIG. 6 is a schematic flowchart of a method for receiving uplink information provided by the present application.
  • the method 600 includes:
  • the network device determines a first timing advance of the UE, where the first timing advance is equal to a product of a timing advance coefficient and a first time length, where the first time length is at least two different uses supported by the UE. Determining one of the time lengths of the timing advance amount, the first timing advance amount being used by the UE to transmit uplink information.
  • the network device receives the uplink information from the UE.
  • the network device first determines a first time length from at least two different time lengths supported by the UE, and then determines a first timing advance amount according to the first time length and the timing advance coefficient.
  • the timing advance is T TA
  • the timing advance coefficient is (N TA + N TA offset )
  • T TA (N TA + N TA offset ) ⁇ T s
  • N TA T A ⁇ 16
  • T A corresponds to the TAC field of the TAC MAC CE.
  • the network device may send the T A to the UE to facilitate the UE to determine the first timing advance.
  • the network device detects uplink information that is sent by the UE according to the first timing advance amount at a predetermined time.
  • both the network device and the UE can be identical to the network device and UE in method 300, and the actions of network device and UE and access network device and UE in method 300 The corresponding actions are for the sake of brevity and will not be described here.
  • a shorter time length of at least two different time lengths may be adopted to improve the accuracy of the uplink synchronization.
  • a longer time length of at least two different time lengths may be adopted, and more devices may be compatible while satisfying the delay requirement, and the network device determines according to different time lengths supported by the UE.
  • the timing advance used by the UE in different scenarios can meet the diversified requirements of the 5G mobile communication system for uplink synchronization.
  • the method 600 further includes:
  • the network device sends first information to the UE, where the first information is used to indicate a first time length.
  • the first information in method 600 can be identical to the first information in method 300. Therefore, the network device can flexibly determine the length of time used by the UE to determine the first timing advance amount according to actual conditions.
  • the method 600 further includes:
  • the network device sends the second information to the UE, where the resource occupied by the second information has a corresponding relationship with the first time length.
  • the second information in method 600 can be identical to the second information in method 300. Therefore, the network device can flexibly determine the length of time used by the UE to determine the first timing advance amount according to actual conditions.
  • the service type of the uplink information and/or the resource type corresponding to the uplink information are associated with the first time length.
  • the method 600 further includes:
  • the network device determines the first time length according to the correspondence between the service type of the uplink information and the first time length, and/or,
  • the network device determines the first time length according to the correspondence between the resource type corresponding to the uplink information and the first time length.
  • the network device can flexibly determine the length of time used by the UE to determine the first timing advance amount according to actual conditions.
  • the method 600 further includes:
  • the network device sends, to the UE, third information, where the third information is used to indicate at least one of a service type of the uplink information and a resource type corresponding to the uplink information.
  • the network device may pre-configure resources for the uplink information to be sent by the UE, and the third information is used to indicate the configured resource.
  • the network device may also indicate, by using the third information, the service type to which the uplink information to be sent by the UE belongs, so that the network device may The actual situation flexibly determines the length of time used by the UE to determine the first timing advance.
  • the resource type includes at least one of the following parameters: a type of subcarrier spacing, a length of a cyclic prefix, a symbol length, a slot length, an operating frequency, and a subframe type.
  • the service type includes at least one of the following parameters: quality of service, target error rate, and target block error rate.
  • the method 600 further includes:
  • the network device sends first configuration information to the UE, where the first configuration information is used to configure the at least two different lengths of time for determining the timing advance.
  • the network device can configure the UE with a length of time that meets the requirements of the current communication environment, so that the UE can flexibly determine the timing advance.
  • the UE supports four types of time lengths for determining the timing advance.
  • the current UE is in the URLLC communication environment, and the network device can configure the shorter two of the four time lengths for the UE by using the configuration information, so that the UE
  • the timing advance amount can be determined more accurately, so that the time for the uplink information to reach the network device is more accurate, the reliability of the uplink information transmission is improved, and the delay of the uplink information transmission is reduced.
  • FIG. 7 is a schematic flowchart of another method for receiving uplink information provided by the present application.
  • the method 700 includes:
  • the network device determines the first resource, where the time length of the first resource is smaller than the time length of the second resource, where the first resource is used by the UE to send the first uplink information in an uplink synchronization loss state, where the first uplink information includes In addition to the random access preamble sequence, the second resource is used by the terminal device to send the second uplink information in the uplink synchronization maintenance state.
  • the network device sends second configuration information to the UE, where the second configuration information is used to configure the first resource.
  • the network device may indicate, by using the second configuration information, a size of the time domain resource included in the first resource.
  • the terminal device determines to use the first resource, and sends the first uplink information to the network device by using the first resource, where the first uplink information includes information other than the random access preamble sequence, for example,
  • the first uplink information may be at least one of service data, feedback information, and request information. Therefore, the network device can receive information other than the random access preamble sequence without waiting for the terminal device to perform uplink synchronization, reduce the transmission delay of the uplink information, and improve resource utilization.
  • both the network device and the UE can be identical to the network device and the UE in the method 400, and the actions of the network device and the UE and the access network device and the UE in the method 400 The corresponding actions are for the sake of brevity and will not be described here.
  • the method 700 further includes:
  • the network device receives the first uplink information from the UE by using the first resource, where the first uplink information includes unscheduled uplink information.
  • the UE In the scenario of the non-scheduled scenario, the UE usually has more urgent data (such as URLLC data) to be transmitted. Therefore, the UE may not be able to wait for the emergency data to be sent from the uplink synchronization loss state to the uplink synchronization maintenance state, according to the application provided by the present application.
  • the method of sending the uplink information the UE sends the uplink information through the resource with a small duration in the uplink synchronization loss state, and can reduce the delay of the uplink transmission without reducing the transmission reliability.
  • the first resource and the second resource are separated by at least one time unit in the time domain.
  • the terminal device when the terminal device is in the uplink synchronization loss state, and the first uplink information arrives at the network device later, since there is at least one time unit between the first resource and the second resource, the possibility that the uplink information transmitted through the first resource and the uplink information transmitted through the second resource interact with each other is greatly reduced, thereby improving the reliability of the uplink transmission.
  • the uplink synchronization loss state is a state in which the time synchronization timer of the UE is timed out
  • the uplink synchronization maintenance state is a state in which the time synchronization timer of the UE is running.
  • the uplink synchronization loss state may be a state in which the UE's time synchronization timer expires
  • the uplink synchronization maintenance state may be a state in which the UE's time synchronization timer is running.
  • the terminal device and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the present application may divide a functional unit into a terminal device or the like according to the above method example.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 8 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 800 includes a processing unit 802 and a communication unit 803.
  • Processing unit 802 is for controlling management of the actions of terminal device 800, for example, processing unit 802 for supporting terminal device 800 to perform S320 of FIG. 3 and/or other processes for the techniques described herein.
  • the communication unit 803 is configured to support communication between the terminal device 800 and other network entities, such as communication with network devices.
  • the terminal device 800 may further include a storage unit 801 for storing program codes and data of the terminal device 800.
  • the processing unit 802 can be a processor or a controller, and can be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific). Integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 803 can be a transceiver, a transceiver circuit, or the like.
  • the storage unit 801 can be a memory.
  • the terminal device involved in the present application may be the terminal device shown in FIG.
  • the terminal device 900 includes a processor 902, a transceiver 903, and a memory 901.
  • the transceiver 903, the processor 902, and the memory 901 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the terminal device 800 and the terminal device 900 provided by the present application use different timing advances in different scenarios, thereby satisfying the diversified requirements of the 5G mobile communication system for uplink synchronization.
  • FIG. 10 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 1000 includes a processing unit 1002 and a communication unit 1003.
  • the processing unit 1002 is configured to control and manage the actions of the terminal device 1000.
  • the processing unit 1002 is configured to support the terminal device 1000 to perform S410 of FIG. 4 and/or other processes for the techniques described herein.
  • the communication unit 1003 is for supporting communication between the terminal device 1000 and other network entities, such as communication with network devices.
  • the terminal device 1000 may further include a storage unit 1001 for storing program codes and data of the terminal device 1000.
  • the processing unit 1002 may be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1003 may be a transceiver, a transceiver circuit, or the like.
  • the storage unit 1001 may be a memory.
  • the terminal device involved in the present application may be the terminal device shown in FIG.
  • the terminal device 1100 includes a processor 1102, a transceiver 1103, and a memory 1101.
  • the transceiver 1103, the processor 1102, and the memory 1101 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the terminal device 1000 and the terminal device 1100 provided by the present application may send information other than the random access preamble sequence without performing uplink synchronization, and the information other than the random access preamble sequence is, for example, urgent service data, thereby The transmission delay of the uplink information is reduced, and the resource utilization rate is improved.
  • FIG. 12 shows a possible structural diagram of the network device involved in the above embodiment.
  • the network device 1200 includes a processing unit 1202 and a communication unit 1203.
  • the processing unit 1202 is configured to control the management of the actions of the network device 1200.
  • the processing unit 1202 is configured to support the network device 1200 to perform S610 of FIG. 6 and/or other processes for the techniques described herein.
  • the communication unit 1203 is for supporting communication between the network device 1200 and other network entities, such as communication with the terminal device.
  • the network device 1200 may further include a storage unit 1201 for storing program codes and data of the network device 1200.
  • the processing unit 1202 may be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1203 may be a transceiver, a transceiver circuit, or the like.
  • the storage unit 1201 may be a memory.
  • the network device involved in the present application may be the network device shown in FIG.
  • the network device 1300 includes a processor 1302, a transceiver 1303, and a memory 1301.
  • the transceiver 1303, the processor 1302, and the memory 1301 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the network device 1200 and the network device 1300 provided by the present application determine the timing advance used by the terminal device in different scenarios according to the different lengths of time supported by the terminal device. For example, in a scenario where the delay requirement is high, at least A shorter time length of two different time lengths to improve the accuracy of uplink synchronization. In a scenario where the delay requirement is low, a longer time length of at least two different time lengths may be used, which may be satisfied. It is compatible with more devices at the same time, so that it can meet the diversified needs of 5G mobile communication systems for uplink synchronization.
  • FIG. 14 shows a possible structural diagram of the network device involved in the above embodiment.
  • the network device 1400 includes a processing unit 1402 and a communication unit 1403.
  • Processing unit 1402 is for controlling management of the actions of network device 1400, for example, processing unit 1402 is configured to support network device 1400 to perform S710 of FIG. 7 and/or other processes for the techniques described herein.
  • the communication unit 1403 is configured to support communication between the network device 1400 and other network entities, such as communication with the terminal device.
  • the network device 1400 may also include a storage unit 1401 for storing program codes and data of the network device 1400.
  • the processing unit 1402 may be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1403 may be a transceiver, a transceiver circuit, or the like.
  • the storage unit 1401 may be a memory.
  • the network device involved in the present application may be the network device shown in FIG.
  • the network device 1500 includes a processor 1502, a transceiver 1503, and a memory 1501.
  • the transceiver 1503, the processor 1502, and the memory 1501 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the network device 1400 and the network device 1500 provided by the present application may indicate the size of the time domain resource included in the first resource by using the second configuration information.
  • the terminal device determines to use the first resource, and passes the The first resource sends the first uplink information to the network device, where the first uplink information includes information other than the random access preamble sequence, for example, the first uplink information may be at least one of service data, feedback information, and request information. . Therefore, the network device can receive information other than the random access preamble sequence without waiting for the terminal device to perform uplink synchronization, reduce the transmission delay of the uplink information, and improve resource utilization.
  • transceivers may include a transmitter and a receiver.
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the memory can be a separate device or integrated into the processor.
  • the above various devices or parts of the device can be integrated into the chip for implementation, such as integration into a baseband chip.
  • the network device or the terminal device in the device and the method embodiment are completely corresponding, and the corresponding steps are performed by the corresponding module, for example, the sending module method or the step sent by the transmitter performing the method embodiment, and the receiving module or the receiver performing the method embodiment
  • the steps of receiving, except for transmitting and receiving, may be performed by a processing module or processor.
  • a processing module or processor For the function of the specific module, reference may be made to the corresponding method embodiment, which is not described in detail.
  • the embodiment of the present application further provides a communication chip in which an instruction is stored, and when it runs on the terminal device 800, the terminal device 900, the terminal device 1000, or the terminal device 1100, the communication chip is caused to execute the foregoing various implementation manners.
  • the embodiment of the present application further provides a communication chip, where instructions are stored, and when it runs on the network device 1200, the network device 1300, the network device 1400, or the network device 1500, the communication chip is caused to execute the foregoing various implementation manners.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the present application.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal device.
  • the processor and the storage medium can also exist as discrete components in the terminal device and the network device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD), or a semiconductor medium (eg, a solid state disk (SSD)). Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送上行信息的方法,该方法包括:终端设备接收定时提前系数;该终端设备根据该定时提前系数和第一时间长度确定定时提前量,其中,该第一时间长度是该终端设备支持的至少两个不同的时间长度中的一个;该终端设备根据该定时提前量发送上行信息。例如,在对时延要求较高场景中,可以采用至少两个不同的时间长度中较短的时间长度以提高上行同步的精度,在对时延要求较低的场景中,可以采用至少两个不同的时间长度中较长的时间长度,可以在满足时延要求的同时兼容更多的设备,因此,终端设备在不同场景下使用不同的定时提前量,从而可以满足5G移动通信系统对上行同步的多样化需求。

Description

发送上行信息的方法和装置
本申请要求于2017年06月06日提交中国专利局、申请号为201710419346.9、申请名称为“发送上行信息的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及无线通信领域中发送上行信息的方法和装置。
背景技术
上行传输的一个重要特征是不同用户设备(user equipment,UE)在时频上正交多址接入(orthogonal multiple access),即,来自同一小区的不同UE的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内(intra-cell)干扰,基站要求来自不同UE的信号到达基站的时间基本上是对齐的。基站只要在循环前缀(cyclic prefix,CP)范围内接收到UE所发送的上行数据,就能够正确地解码上行数据,因此,上行同步要求来自同一子帧的不同UE的信号到达基站的时间都落在CP之内
超可靠低时延通信(ultra reliable low latency communication,URLLC)是第五代(5 th generation,5G)移动通信系统提出的一种通信场景,URLLC场景对数据的传输可靠性和时延提出了苛刻的要求,例如:上下行用户面时延不能超过0.5毫秒(ms),1ms内的误码率不能超过0.0001%。现有发送上行信息时的上行同步方法已经不能满足5G移动通信系统的需求。
发明内容
有鉴于此,本申请提供了一种发送上行信息的方法,可以提高上行信息传输的可靠性,并减小上行传输的时延,从而满足5G移动通信系统的需求。
第一方面,提供了一种发送上行信息的方法,该方法包括:终端设备接收定时提前系数;该终端设备根据该定时提前系数和第一时间长度确定第一定时提前量,其中,该第一时间长度是该终端设备支持的至少两个不同的用于确定定时提前量的时间长度中的一个;该终端设备根据该第一定时提前量发送上行信息。
5G移动通信系统支持多种子载波间隔(每种子载波间隔适用的业务类型不同),不同的子载波间隔对应的CP的长度不同,从而使得不同的子载波间隔对应的抗时延影响性能也不同,例如,在对时延要求较高场景中,可以采用至少两个不同的时间长度中较短的时间长度以提高上行同步的精度,在对时延要求较低的场景中,可以采用至少两个不同的时间长度中较长的时间长度,可以在满足时延要求的同时兼容更多的设备,因此,终端设备在不同场景下使用不同的定时提前量,从而可以满足5G移动通信系统对上行同步的多样化需求。
可选地,终端设备根据定时提前系数和第一时间长度确定第一定时提前量之前,该方法还包括:终端设备接收第一信息,该第一信息用于指示该第一时间长度。从而,网络设备可以根据实际情况灵活确定终端设备使用的用于确定定时提前量的时间长度。
可选地,终端设备根据定时提前系数和第一时间长度确定第一定时提前量之前,该方法还包括:终端设备接收第二信息;该终端设备根据该第二信息占用的资源与第一时间长度的对应关系确定第一时间长度。
终端设备接收到第二信息后,根据上述对应关系即可确定待发送的上行信息所使用的时间长度,进而确定了待发送的上行信息所使用的定时提前量。从而,网络设备可以根据实际情况灵活确定终端设备使用的用于确定定时提前量的时间长度。
可选地,上行信息的业务类型和/或上行信息对应的资源类型与第一时间长度存在对应关系,终端设备根据定时提前系数和第一时间长度确定第一定时提前量之前,该方法还包括:该终端设备根据上行信息的业务类型与第一时间长度的对应关系确定第一时间长度,和/或,该终端设备根据上行信息对应的资源类型与第一时间长度的对应关系确定第一时间长度。
根据本实施例提供的方法,终端设备无需与网络设备进行信息交互即可确定第一时间长度,从而减小了传输上行信息的时延。
可选地,终端设备确定第一时间长度之前,该方法还包括:该终端设备接收第三信息,该第三信息用于指示上行信息的业务类型和上行信息对应的资源类型中的至少一种。
可选地,资源类型包括下列参数中的至少一种:子载波间隔的类型、循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型。从而,终端设备可以根据实际情况灵活确定时间长度。
可选地,业务类型包括下列参数中的至少一种:服务质量、目标误码率和目标误块率。从而,终端设备可以根据实际情况灵活确定时间长度。
可选地,该方法还包括:终端设备接收第一配置信息,该第一配置信息用于配置至少两个不同的用于确定定时提前量的时间长度。
网络设备可以为终端设备配置符合当前通信环境的需求的时间长度,从而,终端设备可以灵活确定定时提前量。
第二方面,提供了一种发送上行信息的方法,该方法包括:当终端设备处于上行同步丢失状态时,该终端设备确定使用第一资源;该终端设备通过该第一资源向网络设备发送第一上行信息,其中,该第一上行信息包括除随机接入前导序列之外的信息,该第一资源的时间长度小于第二资源的时间长度,该第二资源为该终端设备在上行同步维持状态发送第二上行信息时使用的资源。
根据本实施例提供的方法,终端设备可以无需进行上行同步即可发送除随机接入前导序列之外的信息,该除随机接入前导序列之外的信息例如是紧急的业务数据,从而减小了上行信息的传输时延,提高了资源的利用率。
可选地,该上行同步丢失状态为该终端设备的时间同步定时器超时的状态,该上行同步维持状态为该终端设备的时间同步定时器运行的状态。
可选地,该终端设备发送的该第一上行信息包括免调度的上行信息。
在免调度的场景中,终端设备通常有较为紧急的数据需要传输,因此,终端设备可能 来不及等待从上行同步丢失状态转到上行同步维持状态后再发送紧急数据,按照本实施例提供的发送上行信息的方法,终端设备在处于上行同步丢失状态下通过时间较短的资源发送上行信息,可以在不降低传输可靠性的同时减小上行传输的时延。
可选地,该终端设备通过该第一资源向网络设备发送第一上行信息之前,该方法还包括:该终端设备根据接收下行信息的时间确定该第一资源的时域资源的起点。
可选地,该终端设备确定使用第一资源之前,该方法还包括:该终端设备从网络设备接收第二配置信息,该第二配置信息用于配置该第一资源。从而,网络设备可以灵活配置终端设备用于发送上行信息的资源。
第三方面,提供了一种接收上行信息的方法,该方法包括:网络设备确定终端设备的第一定时提前量,其中,该第一定时提前量等于定时提前系数与第一时间长度的乘积,该第一时间长度是该终端设备支持的至少两个不同的用于确定定时提前量的时间长度中的一个,该第一定时提前量用于该终端设备发送上行信息;该网络设备从该终端设备接收该上行信息。
根据本实施例提供的接收上行信息的方法,网络设备根据终端设备所支持的不同的时间长度确定终端设备在不同场景下使用的定时提前量,例如,在对时延要求较高场景中,可以采用至少两个不同的时间长度中较短的时间长度以提高上行同步的精度,在对时延要求较低的场景中,可以采用至少两个不同的时间长度中较长的时间长度,可以在满足时延要求的同时兼容更多的设备,从而可以满足5G移动通信系统对上行同步的多样化需求。
可选地,该网络设备从该终端设备接收该上行信息之前,该方法还包括:该网络设备向该终端设备发送第一信息,该第一信息用于指示第一时间长度。从而,网络设备可以根据实际情况灵活确定终端设备使用的时间长度。
可选地,该网络设备从该终端设备接收该上行信息之前,该方法还包括:该网络设备向该终端设备发送第二信息,其中,该第二信息占用的资源与第一时间长度存在对应关系。从而,网络设备可以根据实际情况灵活确定终端设备使用的时间长度。
可选地,上行信息的业务类型和/或该上行信息对应的资源类型与第一时间长度存在对应关系,该网络设备从该终端设备接收该上行信息之前,该方法还包括:该网络设备根据该上行信息的业务类型与该第一时间长度的对应关系确定该第一时间长度,和/或,该网络设备根据该上行信息对应的资源类型与该第一时间长度的对应关系确定该第一时间长度。
从而,网络设备可以根据实际情况灵活确定终端设备使用的时间长度。
可选地,该方法还包括:网络设备向终端设备发送第三信息,该第三信息用于指示上行信息的业务类型和该上行信息对应的资源类型中的至少一种。
网络设备可以预先为终端设备待发送的上行信息配置资源,第三信息用于指示配置的资源;网络设备也可以通过第三信息指示终端设备待发送的上行信息所属的业务类型,从而,网络设备可以根据实际情况灵活确定终端设备使用的时间长度。
可选地,资源类型包括下列参数中的至少一种:子载波间隔的类型、循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型。
可选地,业务类型包括下列参数中的至少一种:服务质量、目标误码率和目标误块率。
可选地,该方法还包括:网络设备向终端设备发送第一配置信息,该第一配置信息用 于配置上述至少两个不同的用于确定定时提前量的时间长度。
网络设备可以为终端设备配置符合当前通信环境的需求的时间长度,从而,终端设备可以灵活确定定时提前量。
第四方面,提供了一种接收上行信息的方法,该方法包括:网络设备确定第一资源,其中,该第一资源的时间长度小于第二资源的时间长度,该第一资源用于终端设备在上行同步丢失状态发送第一上行信息,该第一上行信息包括除随机接入前导序列之外的信息,该第二资源用于该终端设备在上行同步维持状态发送第二上行信息;该网络设备向该终端设备发送第二配置信息,该第二配置信息用于配置该第一资源。
根据本实施例的方法,网络设备可以通过第二配置信息指示第一资源包括的时域资源的大小,当终端设备处于上行同步丢失状态时,终端设备确定使用第一资源,并通过第一资源向网络设备发送第一上行信息,第一上行信息包括除随机接入前导序列之外的信息,例如,第一上行信息可以是业务数据、反馈信息和请求信息中的至少一种信息。从而,网络设备可以无需等待终端设备进行上行同步即可接收除随机接入前导序列之外的信息,减小了上行信息的传输时延,提高了资源的利用率。
可选地,该方法还包括:该网络设备通过该第一资源从该终端设备接收该第一上行信息,该第一上行信息包括免调度的上行信息。
在免调度的场景中,终端设备通常有较为紧急的数据需要传输,因此,终端设备可能来不及等待从上行同步丢失状态转到上行同步维持状态后再发送紧急数据,按照本申请提供的发送上行信息的方法,终端设备在处于上行同步丢失状态下通过时间长度较小的资源发送上行信息,可以在不降低传输可靠性的同时减小上行传输的时延。
可选地,该第一资源和该第二资源在时域上间隔至少一个时间单元。
根据本实施例提供的方法,当终端设备处于上行同步丢失状态时,且第一上行信息到达网络设备的时间较晚时,由于第一资源与第二资源之间间隔有至少一个时间单元,因此,通过第一资源传输的上行信息以及通过第二资源传输的上行信息相互影响的可能性大大降低,从而提高了上行传输的可靠性。
可选地,该上行同步丢失状态为该终端设备的时间同步定时器超时的状态,该上行同步维持状态为该终端设备的时间同步定时器运行的状态。
第五方面,提供了一种发送上行信息的装置,该装置可以实现上述第一方面所涉及的方法中终端设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元或模块。
在一种可能的设计中,该装置的结构中包括处理器和收发器,该处理器被配置为支持该装置执行上述第一方面所涉及的方法中相应的功能。该收发器用于支持该装置与其它网元之间的通信。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
第六方面,提供了一种发送上行信息的装置,该装置可以实现上述第二方面所涉及的方法中终端设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元或模块。
在一种可能的设计中,该装置的结构中包括处理器和收发器,该处理器被配置为支持该装置执行上述第二方面所涉及的方法中相应的功能。该收发器用于支持该装置与其它网 元之间的通信。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
第七方面,提供了一种接收上行信息的装置,该装置可以实现上述第三方面所涉及的方法中网络设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元或模块。
在一种可能的设计中,该装置的结构中包括处理器和收发器,该处理器被配置为支持该装置执行上述第三方面所涉及的方法中相应的功能。该收发器用于支持该装置与其它网元之间的通信。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
第八方面,提供了一种接收上行信息的装置,该装置可以实现上述第四方面所涉及的方法中网络设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元或模块。
在一种可能的设计中,该装置的结构中包括处理器和收发器,该处理器被配置为支持该装置执行上述第四方面所涉及的方法中相应的功能。该收发器用于支持该装置与其它网元之间的通信。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
第九方面,本申请还提供了一种网络系统,所述网络系统包括第五方面所述的发送上行信息的装置和第七方面所述的接收上行信息的装置。
第十方面,本申请还提供了一种网络系统,所述网络系统包括第六方面所述的发送上行信息的装置和第八方面所述的接收上行信息的装置。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得终端设备执行第一方面所涉及的方法。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得终端设备执行第二方面所涉及的方法。
第十三方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得网络设备执行第三方面所涉及的方法。
第十四方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得网络设备执行第四方面所涉及的方法。
第十五方面,提供了一种计算机存储介质,用于储存为第一方面所涉及的终端设备所用的计算机软件指令,其包含用于执行第一方面的方法所设计的程序。
第十六方面,提供了一种计算机存储介质,用于储存为第二方面所涉及的终端设备所用的计算机软件指令,其包含用于执行第二方面的方法所设计的程序。
第十七方面,提供了一种计算机存储介质,用于储存为第三方面所涉及的网络设备所用的计算机软件指令,其包含用于执行第三方面的方法所设计的程序。
第十八方面,提供了一种计算机存储介质,用于储存为第四方面所涉及的网络设备所 用的计算机软件指令,其包含用于执行第四方面的方法所设计的程序。
第十九方面,提供了一种通信芯片,其中存储有指令,当其在终端设备上运行时,使得所述通信芯片执行上述第一方面的方法。
第二十方面,提供了一种通信芯片,其中存储有指令,当其在终端设备上运行时,使得所述通信芯片执行上述第二方面的方法。
第二十一方面,提供了一种通信芯片,其中存储有指令,当其在网络设备上运行时,使得所述通信芯片执行第三方面的方法。
第二十二方面,提供了一种通信芯片,其中存储有指令,当其在网络设备上运行时,使得所述通信芯片执行第四方面的方法。
附图说明
图1是一种适用本申请的通信系统;
图2是UE按照定时提前量发送上行信息的示意图;
图3是本申请提供的一种发送上行信息的方法的示意图;
图4是本申请提供的另一种发送上行信息的方法的示意图;
图5是本申请提供的一种UE发送上行信息使用的资源的示意图;
图6是本申请提供的一种接收上行信息的方法的示意图;
图7是本申请提供的另一种接收上行信息的方法的示意图;
图8是本申请提供的一种可能的终端设备的示意图;
图9是本申请提供的另一种可能的终端设备的示意图;
图10是本申请提供的再一种可能的终端设备的示意图;
图11是本申请提供的再一种可能的终端设备的示意图;
图12是本申请提供的一种可能的网络设备的示意图;
图13是本申请提供的另一种可能的网络设备的示意图;
图14是本申请提供的再一种可能的网络设备的示意图;
图15是本申请提供的再一种可能的网络设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了一种适用本申请的通信系统100。该通信系统100包括网络设备110和终端设备120,网络设备110与终端设备120通过无线网络进行通信,当终端设备120发送数据时,无线通信模块可对信息进行编码以用于传输,具体地,无线通信模块可获取要通过信道发送至网络设备110的一定数目的数据比特,这些数据比特例如是处理模块生成的、从其它设备接收的或者在存储模块中保存的数据比特。这些数据比特可包含在一个或多个传输块(也可称为信息块或数据块)中,传输块可被分段以产生多个编码块。
在本申请中,终端设备可称为接入终端、UE、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G移动通信系统中的用户设备。
网络设备可以是码分多址(code division multiple access,CDMA)系统中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(node B,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node B,eNB),还可以是5G移动通信系统中的基站(gNB),上述基站仅是举例说明,网络设备还可以为中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的网络设备和终端设备的数量还可以是其它的数量。又例如,适用本申请的通信系统100还可以是设备到设备(device to device,D2D)通信系统,其中,网络设备110和终端设备120为D2D通信系统中进行通信的两个设备。
为了便于理解本申请,在介绍本申请提供的发送上行信息的方法前,首先对本申请涉及的概念做简要介绍。
为了保证基站侧的时间同步,即,为了保证不同UE的上行信号在期望的时间到达基站,通信系统可以使用上行定时提前(uplink timing advance)机制,UE根据定时提前量发送上行信息,在UE看来,定时提前量本质上是下行子帧的起始时刻与上行子帧的起始时刻之间的一个负偏移(negative offset)。基站通过适当地控制每个UE的偏移,可以控制来自不同UE的上行信号到达基站的时间,对于距离基站较近的UE,可以根据较小的定时提前量发送上行信息,对于距离基站较远的UE,由于信号有较大的传输延迟,因此,需要根据较大的定时提前量发送上行信息。
基站通过定时提前命令(timing advance command,TAC)通知UE定时提前量,不同的UE对应不同的定时提前量。图2示出了UE按照定时提前量发送上行信息的示意图。图2中,如果信号在UE与基站之间传输的距离为D,基站期望在T 0时刻接收到UE发送的上行信号,则UE需要在T 0-T TA时刻发送上行信息,其中,T TA表示定时提前量,其取值为D/c,c表示电磁波传输的速率。由于UE具有移动性,信号在UE与基站之间传输的距离D也会变化,因此,UE需要不断调整定时提前量的取值,以保证上行信号到达基站的时刻与基站期望该上行信号到达基站的时刻的误差在可接受范围之内。
基站通过测量UE上行传输的信号来确定每个UE的定时提前量,理论上,基站可以根据UE发送的任何上行信号都测量定时提前量,基站可以通过下列两种方式通知UE定时提前量。
方式一,
在随机接入过程中,基站可以通过随机接入响应(random access response,RAR)的TAC字段将定时提前量通知给UE,在这种情况下,基站通过测量UE发送的前导序列(preamble)来确定定时提前量,RAR的TAC字段的大小例如可以是11比特(bit),对应定时提前系数的范围是0~1282,对于随机接入来说,定时提前系数乘以16T s就得到了当前上行提前量的值,其中,16T s为时间长度,在LTE系统中,T s=1/(15000×2048)秒。
方式二,
在无线资源控制连接态,基站可以通过定时提前命令媒体接入控制控制元素(timing advance command media access control control element,TAC MAC CE)发送给UE。
UE在随机接入过程中与基站进行了上行同步,但是UE的通信环境可能会随着时间 变化而发生变化,从而导致随机接入过程中的定时提前量不再适用于新的通信环境,例如:
高速移动中的UE,其与基站之间的传输时延在短时间内会发生较大的变化;
当前传输路径消失,切换到新的通信路径,新的通信路径的传输时延相对于原通信路径有了较大的变化;
UE的晶振偏移,长时间的偏移累积可能导致上行定时出错;
UE移动导致的多普勒频移。
因此,UE需要不断地更新其定时提前量。
TAC MAC CE的TAC字段的大小例如可以是6bit,对应定时提前系数的范围是0~63,UE接收到的定时提前系数(即,TAC字段所指示的定时提前系数)指的是当前定时提前系数相对于上一次的定时提前系数的调整量。例如上一次的定时提前系数是N TA,old,UE当前在TAC MAC CE的TAC字段接收的定时提前系数是T A,则当前定时提前量的值为N TA,new乘以16T s,其中N TA,new=N TA,old+(T A-31)。
图3示出了本申请提供的一种发送上行信息的方法的示意性流程图。该方法300包括:
S310,UE接收定时提前系数。
S320,该UE根据该定时提前系数和第一时间长度确定第一定时提前量,其中,该第一时间长度是该UE支持的至少两个不同的用于确定定时提前量的时间长度中的一个。
S330,该UE根据该第一定时提前量发送上行信息。
在LTE系统中,定时提前量为T TA,T TA=(N TA+N TA offset)×T s,其中,N TA=T A×16,T A对应于RAR的TAC字段;或者,N TA=N TA_old+(T A-31)×16,T A对应于TAC MAC CE的TAC字段。上述T A表示UE接收的定时提前系数,T A的具体值由RAR的TAC字段或者TAC MAC CE的TAC字段指示,N TA_old表示UE上一次保存的N TA。可以看出,在LTE系统中,UE确定发送上行信息的定时提前量时,基站所指示的定时提前系数对应的时间粒度为16T s,其中T s在LTE系统中为固定值。即LTE系统中UE用于确定发送上行信息的定时提前量的时间粒度固定为一种。
在本申请中,UE支持至少两个不同的时间长度(即“时间粒度”,用于确定发送上行信息的定时提前量),因此,UE需要从该至少两个不同的时间长度中确定一个当前可用的时间长度(例如,第一时间长度),以便根据该时间长度和定时提前系数确定定时提前量,该至少两个不同的时间长度对应不同的通信需求。UE接收的定时提前系数的值表示UE需要将发送上行信息的时间调整多少个第一时间长度的时间,例如,UE接收的定时调整系数为M,第一时间长度为16T s,则UE需要将发送上行信息的时间调整M×16T s,UE还可能根据其它参数调整发送上行信息的时间,本申请对此不作限定。
5G移动通信系统支持多种子载波间隔(每种子载波间隔适用的业务类型不同),不同的子载波间隔的符号各自对应的CP的长度不同。相应地,不同的子载波间隔对应的抗时延影响性能也不同,因此,UE在不同场景下使用不同的定时提前量,从而可以满足5G移动通信系统对上行同步的多样化需求。
例如,该至少两个不同的时间长度对应不同的服务质量需求。在LTE系统中,上行同步时确定定时提前量使用的时间长度为16T s,该时间长度用于服务上行误码率为10%且对传输时延要求较低的数据传输。对于增强移动宽带(enhanced mobile broadband,eMBB)场景,由于其对传输的可靠性和时延的要求不高,可以采用16T s确定定时提前量,以完成 上行同步,在满足传输需求的同时可以兼容较多的终端设备;对于URLLC场景来说,由于其对传输的可靠性和时延的要求较高,可以采用比16T s更短的时间长度确定定时提前量,从而可以减小上行传输的误码率以及时延。
又例如,该至少两个不同的用于确定定时提前量的时间长度对应不同的子载波间隔。5G移动通信系统中,初始接入和业务数据发送时使用的子载波间隔不同,不同子载波间隔对应的采样率不同,从而导致不同子载波间隔的抗时延影响性能也不相同,在初始接入和业务数据发送时采用不同的时间长度进行上行同步,可以满足不同场景中网络设备对上行同步的精度的需求。例如,UE在初始接入时使用15Khz的子载波间隔,上行同步使用的时间长度为16T s。而在业务数据传输过程中UE使用60Khz的子载波间隔,上行同步使用的时间长度为8T s'或者更短的长度T s对应于15Khz的子载波间隔传输的采样率,T s'对应于60Khz的子载波间隔传输的采样率。这样,UE在RAR的TAC字段与在TAC MAC CE的TAC字段接收的定时提前系数对应的时间长度不同。
类似的,该至少两个不同的用于确定定时提前量的时间长度对应不同资源类型,例如循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型等参数中的至少一种。在无线通信系统中,循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型中的至少一种将影响UE传输上行信息的抗时延扩展或者抗频率衰落与偏移的性能,因此,UE使用上述参数的任意组合发送上行信息时,为保证UE上行业务的服务质量要求,UE需使用不同的时间长度作为调整上行信息传输时间的粒度。同样,该至少两个不同的时间长度对应不同的业务类型,例如服务质量、目标误码率和目标误块率中的至少一种。根据业务类型的不同,UE需要根据不同的时间长度调整上行信息的发送时间。
为了满足5G移动通信系统对上行同步的多样化需求。另一种方式是,无论UE发送上行信息的资源类型,也无论UE发送哪种业务类型的上行信息,基站均采用最小的时间粒度调整UE发送上行信息的时间。但是,在用于指示定时提前系数的比特数一定的情况下,当时间粒度不同时,基站每次发送定时提前系数所对应的定时提前量的范围是不同的。例如基站所指示的定时提前系数为6比特的情况下,定时提前系数的范围是[0,63],对应的时间粒度为16T s时,基站每次发送定时提前系数所对应的定时提前量的范围是[0,63]×16T s;对应的时间粒度为8T s时,基站每次发送定时提前系数所对应的定时提前量的范围是[0,63]×8T s,等等。这样,如果基站总采用最小的粒度调整UE发送上行信息的时间,基站每次发送定时提前系数所对应的定时提前量的范围总是很小。这样,基站需要频繁发送定时提前系数才能应对UE移动、晶振偏移等带来的上行定时偏移问题,从而导致基站的资源使用效率低下。因此,UE有必要支持多种不同的时间长度用于确定发送上行信息的定时提前量,满足对应不同的资源类型和/或业务类型的上行信息的传输需求。
UE支持多种不同的时间长度用于确定发送上行信息所需的定时提前量时,UE需要根据定时提前系数和自身支持的至少两个不同的用于确定定时提前量的时间长度中的一个确定定时提前量,即,UE先从该至少两个不同的时间长度中确定一个时间长度(例如,第一时间长度),再根据该时间长度和定时提前系数确定一个定时提前量(例如,第一定时提前量),并根据该定时提前量(例如,第一定时提前量)发送上行信息,本申请对该上行信息的具体内容不做限定。
可选地,该UE根据接收到的定时提前系数和第一时间长度确定第一定时提前量时, 根据接收到的定时提前系数和第一时间长度的乘积确定第一定时提前量的调整值。例如,接收到的定时提前系数为T A,第一时间长度为ΔT,则第一定时提前量的调整值为T A×ΔT。UE根据接收到的定时提前系数和第一时间长度确定的第一定时提前量可以是定时提前量的调整值,例如,当S310中的定时提前系数是RAR的TAC字段指示的值时,S320中的第一定时提前量即定时提前量的调整值T A×ΔT。可选地,该UE根据定时提前系数和第一时间长度确定第一定时提前量时,还结合历史保存的定时提前量确定第一定时提前量。例如,UE接收的定时提前系数为T A,历史定时提前量为T 1,则第一定时提前量为T 1+(T A-M)×ΔT,其中M是常量,或者
Figure PCTCN2018089812-appb-000001
N=2 n-1-1,n是用于指示定时提前系数的信息的比特数。除定时提前系数和第一时间长度的乘积外,UE发送上行信息的第一定时提前量可能还和别的参数有关系,这里不做限定。例如UE发送上行信息的第一定时提前量为定时提前系数和第一时间长度的乘积加上调整值,调整值为20微秒(us),或者为0。UE可以根据发送上行信息时使用的载波的制式确定调整值,例如,对频分双工(frequency division duplexing,FDD)系统来说,调整值为0;对时分双工(time division duplexing,TDD)系统来说,调整值为20us。
需要说明的是,本申请中所述的时间长度(例如“第一时间长度”)如无特别说明均指一段时间,其也可称为定时提前调整的时间粒度,本申请对上述参数的具体名称不做限定。
S310中的定时提前系数可以是网络设备指示给UE的数值,UE可以采用LTE系统中获取定时提前系数的方法获取方法300中所述的定时提前系数,这里不做具体限制。
UE可以按照图2所示的方法发送上行数据,例如,UE可以根据接收到的下行无线帧i-1确定下行无线帧i,并根据定时提前量T TA确定上行无线帧i的起始时刻为T 0-T TA,其中,T 0为UE接收到下行无线帧i的起始时刻。
UE确定上行无线帧i的起始时刻,即可确定发送上行信息的时间。UE发送上行信息的时间可能是上行无线帧中的部分时间。
可选地,UE根据定时提前系数和第一时间长度确定第一定时提前量之前,方法300还包括:
S301,UE接收第一信息,该第一信息用于指示第一时间长度。
第一信息例如可以是TAC MAC CE或者RAR。举例来说,当前UE支持4种时间粒度,分别为粒度1、粒度2、粒度3和粒度4。网络设备在接收到UE发送的随机接入信息后,在RAR中指示UE当前发送上行信息使用哪个粒度确定定时提前量。网络设备可以根据UE将要发送的上行信息所使用的子载波间隔确定时间粒度,网络设备也可以根据UE将要发送的上行信息属于eMBB的上行信息还是URLLC的上行信息确定UE使用的时间粒度。需要说明的是,第一信息指示第一时间长度的方式可以是直接的也可以是间接的。例如,在粒度1为16T s、粒度2为8T s、粒度3为4T s、粒度4为2T s的情况下,第一信息指示粒度1时,可只指示16;指示粒度2时,可只指示8;指示粒度3时,可只指示4;指示粒度4时,可只指示2。T s的值对UE来说是预设的。或者,第一信息指示粒度时,直接指示粒度1为16T s、粒度2为8T s、粒度3为4T s、粒度4为2T s。即UE接收第一信息后,可根据第一信息确定出第一时间长度,这里对第一信息的形式不做限定。
从而,网络设备可以根据实际情况灵活确定UE使用的用于确定定时提前量的时间长度。或者说,网络设备可以根据实际情况灵活确定UE使用的用于确定定时提前量的时间 粒度。
第一信息可以与指示定时提前系数的信息位于同一个数据包中,第一信息与指示定时提前系数的信息也可以分别位于不同的数据包中。
可选地,UE根据定时提前系数和第一时间长度确定第一定时提前量之前,方法300还包括:
S302,UE接收第二信息。
S303,该UE根据该第二信息占用的资源与第一时间长度的对应关系确定第一时间长度。
第二信息可以是UE从网络设备接收到的任意一个信息,第二信息占用的资源与第一时间长度存在对应关系,该对应关系可以是通信系统规定的,也可以是网络设备在发送第二信息前向UE指示的。该对应关系例如可以是第二信息占用的时域资源与第一时间长度的对应关系,该对应关系也可以是第二信息占用的频域资源与第一时间长度的对应关系,该对应关系还可以是第二信息占用的码域资源与第一时间长度的对应关系,该对应关系还可以是第二信息占用的时域资源、频域资源和码域资源中的至少两种资源与第一时间长度的对应关系。
UE接收到第二信息后,根据上述对应关系即可确定定时提前量所对应的第一时间长度,进而可根据该第一时间长度和所接收的定时提前系数确定发送上行信息所使用的第一定时提前量。
从而,网络设备可以根据实际情况灵活确定UE使用的用于确定定时提前量的时间长度。或者说,网络设备可以根据实际情况灵活确定UE使用的用于确定定时提前量的时间粒度。
第二信息可以与指示定时提前系数的信息位于同一个数据包中,第二信息与指示定时提前系数的信息也可以分别位于不同的数据包中,可选地,第二信息可以是指示定时提前系数的信息。
可选地,上行信息的业务类型和/或上行信息对应的资源类型与第一时间长度存在对应关系,UE根据定时提前系数和第一时间长度确定第一定时提前量之前,方法300还包括:
S304,UE根据上行信息的业务类型与第一时间长度的对应关系确定第一时间长度,和/或,
UE根据上行信息对应的资源类型与第一时间长度的对应关系确定第一时间长度。
在本申请中,UE可以不接收第一信息或者第二信息,而是根据上行信息的业务类型和/或对应的资源类型确定第一时间长度,上述业务类型例如可以是eMBB业务和URLLC业务,上述资源类型例如可以是发送上行信息使用的子载波间隔的类型。S304中的对应关系可以是通信系统规定的,也可以是网络设备预先配置的。例如,通信系统中规定发送URLLC业务(对应服务质量要求-1)时,UE确定定时提前量的第一时间长度是A,发送eMBB业务(对应服务质量要求-2)时,UE确定定时提前量的第一时间长度是B。这样,如果UE确定发送的上行信息是URLLC业务,则确定第一时间长度是A;如果UE确定发送的上行信息是eMBB业务,则确定第一时间长度是B。可选地,URLLC业务对应第一时间长度是A,eMBB业务对应第一时间长度是B也可以通过网络设备预先配置给UE。
UE根据上行信息的业务类型或上行信息对应的资源类型确定第一时间长度的方法与上述网络设备确定第一时间长度的方法类似,为了简洁,在此不再赘述。UE还可以同时根据上行信息的业务类型和上行信息对应的资源类型确定第一时间长度,例如,上行信息的业务类型包括目标误码率为10%的业务和目标误码率为1%的业务,上行信息对应的资源类型包括子载波间隔是15Hhz的资源和子载波间隔是60Khz的资源,一个上行信息可以选择的资源和业务类型有以下四种:对应于目标误码率为10%的业务的资源类型是子载波间隔是15Hhz的资源、对应于目标误码率为1%的业务的资源类型是子载波间隔是15Hhz的资源、对应于目标误码率为10%的业务的资源类型是子载波间隔是60Hhz的资源、对应于目标误码率为1%的业务的资源类型是子载波间隔是60Hhz的资源,这四种情况各自对应的第一时间长度不同,UE同时根据上行信息的业务类型和上行信息对应的资源类型确定第一时间长度。
根据本实施例提供的方法,UE无需与网络设备进行信息交互即可确定第一时间长度,从而减小了传输上行信息的时延。
可选地,UE确定第一时间长度之前,方法300还包括:
S305,UE接收第三信息,该第三信息用于指示上行信息的业务类型和上行信息对应的资源类型中的至少一种。
网络设备可以预先为UE待发送的上行信息配置资源,第三信息用于指示配置的资源;网络设备也可以通过第三信息指示UE待发送的上行信息所属的业务类型,从而,UE可以根据上行信息的业务类型和/或对应的资源类型确定第一时间长度。
可选地,本申请中,资源类型包括下列参数中的至少一种:子载波间隔的类型、循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型。上行信息的业务类型和/或对应的资源类型和第一时间长度的关系如S304所述。不同的是,UE需要通过第三信息确定上行信息的业务类型和/或上行信息对应的资源类型,并根据上行信息的业务类型和/或上行信息对应的资源类型确定第一时间长度。
在无线通信系统中,循环前缀的长度越长、上行信息传输时受无线信道的时延扩展影响越小,在对传输要求不变的前提下,在确定发送上行信息的定时提前量时能够使用的时间粒度越大;上行信息的符号长度、时隙长度越长,上行信息传输时受短时时延扩展影响越小,在对传输要求不变的前提下,在确定发送上行信息的定时提前量时能够使用的时间粒度越大。对于工作频率,用于传输上行信息的工作频率越高,其对应的子载波宽度越大,符号长度、时隙长度和CP长度都越小,其受无线信道的时延扩展影响越大,在对传输要求不变的前提下,在确定发送上行信息的定时提前量时能够使用的时间粒度越小。另外,上行信息传输的子帧类型或者时隙类型也影响UE传输上行信息的抗时延扩展或者抗频率衰落与偏移的性能,例如,有的时隙的全部时间均用于上行传输,有的时隙中包括有上行到下行的转换时间,UE需要使用不同的时间粒度确定发送上行信息的定时提前量才能满足上行信息的传输需求。
因此,对应不同的上述参数,为保证UE的上行业务的服务质量要求,UE需使用不同的用于确定定时提前量的时间长度来确定发送上行信息的定时提前量。
从而,该无线通信系统可以根据实际情况灵活使用不同的时间粒度进行UE的上行同步。
可选地,本申请中,业务类型包括下列参数中的至少一种:服务质量、目标误码率和目标误块率。
用于确定发送上行信息的定时提前量的时间粒度越小,对发送上行信息的传输定时调整越精确,才能达到较高的服务质量、较低的目标误码率和较低的目标误块率,但是,有些设备可能不支持较小的时间粒度,因此,无线通信系统可以根据实际情况灵活使用不同的时间粒度进行UE的上行同步。
可选地,方法300还包括:
S340,UE接收第一配置信息,该第一配置信息用于配置至少两个不同的用于确定定时提前量的时间长度。
网络设备可以为UE配置符合当前通信环境的需求的时间长度,从而,UE可以灵活确定定时提前量。例如,UE支持4种用于确定定时提前量的时间长度,当前UE处于URLLC通信环境中,网络设备可以通过第一配置信息为UE配置该4种时间长度中较短的两个时间长度用于确定定时提前量,这样,网络设备通过第一信息向UE指示第一时间长度时,可仅从该较短的两个用于确定定时提前量的时间长度中指示一个时间长度作为第一时间长度。当UE处于eMBB通信环境中,网络设备可以通过第一配置信息为UE配置该4种时间长度中较长的两个时间长度,网络设备通过第一信息向UE指示第一时间长度时,可仅从该较长的两个时间长度中指示一个时间长度作为第一时间长度。从而,UE可以使用较小的时间长度以便于更加精确地确定定时提前量,使得上行信息到达网络设备的时间更加精确,提高了上行信息传输的可靠性,减小了上行信息传输的时延,或者,UE可以在满足传输需求的前提下使用较长的时间长度以避免基站配置多种时间长度导致的较大的实现复杂度。
需要说明的是,第一配置信息用于配置至少两个不同的用于确定定时提前量的时间长度,可以是直接的也可以是间接的。例如,粒度1为16T s、粒度2为8T s、粒度3为4T s、粒度4为2T s的情况下,第一配置信息指示粒度1时,可只指示16;指示粒度2时,可只指示8;指示粒度3时,可只指示4;指示粒度4时,可只指示2。T s的值对UE来说是预设的。或者,第一配置信息指示粒度时,直接指示粒度1为16T s、粒度2为8T s、粒度3为4T s、粒度4为2T s
可选地,UE还可以向网络设备上报自身确定定时提前量的能力,例如,UE上报该UE支持至少两个不同的用于确定定时提前量的时间长度,网络设备根据该UE上报的能力,通过第一配置信息配置为UE配置一种或者一种以上的时间长度用于该UE确定定时提前量。或者,网络设备根据该UE上报的能力,通过第一信息向UE指示第一时间长度。
图4示出了本申请提供的另一种发送上行信息的方法的示意性流程图。该方法400包括:
S410,当UE处于上行同步丢失状态时,该UE确定使用第一资源。
S420,该UE通过该第一资源向网络设备发送第一上行信息,其中,该第一上行信息包括除随机接入前导序列之外的信息,该第一资源的时间长度小于第二资源的时间长度,该第二资源为该UE在上行同步维持状态发送第二上行信息时使用的资源。
在终端设备在一段时间内一直没有向网络设备发送上行信息的情况下,网络设备并不知道在某个时间段内具体是哪些终端设备有发送上行数据的需求,也不知道某个终端设备 有多大尺寸的上行数据需要发送。因此,在UE有上行数据传输需求时,可能UE是处于上行同步丢失状态的。对于URLLC数据,其通常有突发且紧急的特征,在该状态下,如果UE通过向网络设备发送随机接入前导序列,并等待网络设备根据接收该随机接入前导序列发送的定时提前系数确定定时提前量,然后根据定时提前量发送上行URLLC数据,将对上行URLLC数据的时延特性造成负面影响。当然,网络设备也可以通过频繁为UE发送定时提前系数使UE一直保持的上行同步维持状态,但如果UE在很长一段时间内都没有上行信息传输的需求,网络设备频繁发送定时提前系数也将造成资源使用效率低下的问题。
在本实施例中,UE可以判断该UE处于上行同步丢失状态或者上行同步维持状态,具体的判断方法可参见下列相关描述。
当UE处于上行同步丢失状态时,UE确定使用第一资源,并通过第一资源向网络设备发送第一上行信息,第一上行信息包括除随机接入前导序列之外的信息,例如,第一上行信息可以是业务数据、反馈信息和调度请求信息中的至少一种信息。
例如,业务数据可以是UE待发送的上行URLLC数据。反馈信息可以是针对UE接收的下行URLLC数据的混合自动重传请求(hybrid automatic repeat request,HARQ)应答信息HARQ-ACK,在支持HARQ传输的情况下,UE在接收到下行URLLC数据后,如果接收正确,则UE在物理上行控制信道(physical uplink control channel,PUCCH)上反馈肯定应答(acknowledgement,ACK),如果不正确,则在PUCCH上反馈否定应答(negative acknowledgement,NACK)。ACK和NACK统称为HARQ-ACK对于上行传输,UE可通过调度请求(scheduling request,SR)告诉网络设备是否需要上行资源以便用于上行共享信道(uplink shared channel,UL-SCH)传输。网络设备收到SR后,给UE分配上行资源用于UE发送上行数据。由UE向基站发送调度请求,基站通过调度指示信息向UE指示用于发送上行数据的资源。为满足基站对待发送URLLC数据的UE的快速调度,UE发送的SR可区分该SR为URLLC的UL数据请求还是eMBB的UL数据请求。
终端设备还可以考虑使用上行免许可(Uplink grant free,UL grant free)技术进行上行数据的传输,可以有效解决URLLC技术对数据传输的可靠性和低时延的要求,上行免许可也可称之为上行免调度。使用UL grant free技术,终端设备的上行数据传输不再依赖于网络设备的动态通知,而是网络设备通过向终端设备发送预配置信息为终端设备配置发送上行数据的资源,因此,该方法可免去终端设备向网络设备请求上行调度、网络设备接收上行调度请求消息并为终端设备发送调度信息等时间。不过,在终端设备使用UL grant free技术进行上行数据传输时,可能处于上行同步丢失的状态,为保证UE可以在有上行传输需求,且未获得上行信息发送的定时提前量的情况下,通过第一资源向网络设备发送第一上行信息,第一上行信息包括除随机接入前导序列之外的信息,例如免调度的上行数据、上行数据调度请求、下行数据对应的反馈信息等。需要说明的是,第一上行信息除了包括“除随机接入前导序列之外的信息”之外,第一上行信息也可以包括随机接入前导序列。
从而,UE可以无需发送随机接入前导序列进行上行同步即可发送除随机接入前导序列之外的信息,或者,UE可以将随机接入前导序列与其它信息一起发送,减小了上行信息的传输时延,提高了资源的利用率。
网络设备可以预先配置第一资源,如图5所示,该第一资源的时域资源位于多个时隙中的一个时隙内,第一资源的时域资源的时间结束点早于该时隙的结束点,可选地,第一资源的时域起始位置与该时隙的起始位置重合。图5中,第一资源占用1个时隙所包括的7个符号中的前5个符号,这样,即使UE1处于上行同步丢失状态,UE1在第一资源发送上行信息时,只要UE的上行同步偏差没有超过两个符号的时间,UE发送的上行信息到达网络设备时可以早于处于同步维持状态的UE2在下一个时隙发送的上行信息到达网络设备的时间。从而,在减小UE1的上行传输时延的同时提高了UE1的上行传输的可靠性。
在本申请中,上行同步丢失状态可以是UE的时间同步定时器超时的状态,上行同步维持状态可以是UE的时间同步定时器运行的状态。例如:网络设备给UE配置一个同步定时器的参数,UE使用该同步定时器的参数确定处于上行同步丢失状态还是上行同步维持状态,当UE收到TAC时,UE会启动或重启该同步定时器。如果该同步定时器超时,则认为上行同步丢失;而当该同步定时器运行状态下,UE认为处于上行同步维持状态。本申请对UE判断该UE处于上行同步丢失状态或者上行同步维持状态的方法不作限定。
例如,UE还可以比较第一时间和第二时间的差值,其中第一时间是UE当前接收到下行无线帧(假设为无线帧i)的实际时间,第二时间是UE根据最近一次接收到的TAC以及上次接收到下行无线帧(假设为无线帧i-1)的时间确定的当前接收下行无线帧(即,无线帧i)的预测时间,如果第一时间和第二时间的差值的绝对值大于第一时间阈值,UE确定该UE处于上行同步丢失状态;如果第一时间和第二时间的差值的绝对值小于或等于第一时间阈值时,UE确定该UE处于上行同步维持状态。其中,第一时间阈值是预设的值。
可选地,方法400中的第一上行信息包括免调度的上行信息。
在免调度的场景中,UE通常有较为紧急的数据(例如URLLC业务数据)需要传输,因此,UE可能来不及等待从上行同步丢失状态转到上行同步维持状态后再发送紧急数据,按照本申请提供的发送上行信息的方法,UE在处于上行同步丢失状态下通过时间长度较小的资源发送上行信息,可以在不降低传输可靠性的同时减小上行传输的时延。
可选地,UE通过第一资源向网络设备发送第一上行信息之前,方法400还包括:
UE根据接收下行信息的时间确定所述第一资源的时域资源的起点。
例如,UE在第一资源发送上行信息时,UE处于上行同步丢失状态,之前接收到的TAC是无效的,UE可以根据无线帧i-1的时间位置确定无线帧i的时间位置,从而确定无线帧i的起始时刻为T 0,根据该T 0在第一资源发送上行信息,第一资源的时域资源可以是无线帧i的部分时间资源。
可选地,UE确定使用第一资源之前,方法400还包括:
S401,UE从网络设备接收第二配置信息,该第二配置信息用于配置第一资源。
网络设备可以通过第二配置信息指示第一资源包括的时域资源的大小。
例如,在对传输可靠性要求较低的通信场景中,网络设备可以配置第一资源为一个时隙的前6个符号对应的资源,或者配置第一资源为一个时隙的前5个符号对应的资源,等等,从而可以在满足传输可靠性要求的同时提高资源利用率。
又例如,该第二配置信息用于配置第一资源和第二资源,在对传输可靠性要求较高的通信场景中,网络设备可以配置第一资源为包括4个符号的资源,并配置第二资源为包括 7个符号的资源,第一资源和第二资源间隔3个符号,从而可以在满足传输可靠性要求的同时减小上行传输的时延。
图6示出了本申请提供的一种接收上行信息的方法的示意性流程图。该方法600包括:
S610,网络设备确定UE的第一定时提前量,其中,该第一定时提前量等于定时提前系数与第一时间长度的乘积,该第一时间长度是该UE支持的至少两个不同的用于确定定时提前量的时间长度中的一个,该第一定时提前量用于该UE发送上行信息。
S620,该网络设备从该UE接收该上行信息。
S610中,网络设备首先从UE所支持的至少两个不同的时间长度中确定第一时间长度,然后根据该第一时间长度和定时提前系数确定第一定时提前量。
例如,在LTE系统中,定时提前量为T TA,定时提前系数为(N TA+N TA offset),T TA=(N TA+N TA offset)×T s,其中,N TA=T A×16,T A对应于RAR的TAC字段;或者,N TA=N TA_old+(T A-31)×16,T A对应于TAC MAC CE的TAC字段。网络设备可以将T A发送给UE,以便于UE确定第一定时提前量。
S620中,网络设备在预定的时间检测UE按照上述第一定时提前量发送的上行信息。
本领域技术人员可以清楚地了解到:在方法600中,网络设备和UE均可等同于方法300中的网络设备和UE,且网络设备和UE的动作与方法300中的接入网设备和UE的动作相对应,为了简洁,在此不再赘述。
因此,根据本申请提供的接收上行信息的方法,例如,在对时延要求较高场景中,可以采用至少两个不同的时间长度中较短的时间长度以提高上行同步的精度,在对时延要求较低的场景中,可以采用至少两个不同的时间长度中较长的时间长度,可以在满足时延要求的同时兼容更多的设备,网络设备根据UE所支持的不同的时间长度确定UE在不同场景下使用的定时提前量,从而可以满足5G移动通信系统对上行同步的多样化需求。
可选地,网络设备从UE接收上行信息之前,方法600还包括:
S601,该网络设备向该UE发送第一信息,该第一信息用于指示第一时间长度。
方法600中的第一信息可以等同于方法300中的第一信息。因此,网络设备可以根据实际情况灵活确定UE确定第一定时提前量时使用的时间长度。
可选地,网络设备从UE接收上行信息之前,方法600还包括:
S602,该网络设备向该UE发送第二信息,其中,该第二信息占用的资源与第一时间长度存在对应关系。
方法600中的第二信息可以等同于方法300中的第二信息。因此,网络设备可以根据实际情况灵活确定UE确定第一定时提前量时使用的时间长度。
可选地,上行信息的业务类型和/或该上行信息对应的资源类型与第一时间长度存在对应关系,网络设备从UE接收上行信息之前,方法600还包括:
S603,该网络设备根据该上行信息的业务类型与该第一时间长度的对应关系确定该第一时间长度,和/或,
该网络设备根据该上行信息对应的资源类型与该第一时间长度的对应关系确定该第一时间长度。
从而,网络设备可以根据实际情况灵活确定UE确定第一定时提前量时使用的时间长度。
可选地,方法600还包括:
S630,网络设备向UE发送第三信息,该第三信息用于指示上行信息的业务类型和该上行信息对应的资源类型中的至少一种。
网络设备可以预先为UE待发送的上行信息配置资源,第三信息用于指示配置的资源;网络设备也可以通过第三信息指示UE待发送的上行信息所属的业务类型,从而,网络设备可以根据实际情况灵活确定UE确定第一定时提前量时使用的时间长度。
可选地,资源类型包括下列参数中的至少一种:子载波间隔的类型、循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型。
可选地,业务类型包括下列参数中的至少一种:服务质量、目标误码率和目标误块率。
可选地,方法600还包括:
S640,网络设备向UE发送第一配置信息,该第一配置信息用于配置上述至少两个不同的用于确定定时提前量的时间长度。
网络设备可以为UE配置符合当前通信环境的需求的时间长度,从而,UE可以灵活确定定时提前量。例如,UE支持4种用于确定定时提前量的时间长度,当前UE处于URLLC通信环境中,网络设备可以通过配置信息为UE配置该4种时间长度中较短的两个时间长度,这样,UE可以更加精确地确定定时提前量,使得上行信息到达网络设备的时间更加精确,提高了上行信息传输的可靠性,减小了上行信息传输的时延。
图7示出了本申请提供的另一种接收上行信息的方法的示意性流程图。该方法700包括:
S710,网络设备确定第一资源,其中,该第一资源的时间长度小于第二资源的时间长度,该第一资源用于UE在上行同步丢失状态发送第一上行信息,该第一上行信息包括除随机接入前导序列之外的信息,该第二资源用于该终端设备在上行同步维持状态发送第二上行信息。
S720,该网络设备向该UE发送第二配置信息,该第二配置信息用于配置该第一资源。
网络设备可以通过第二配置信息指示第一资源包括的时域资源的大小。当终端设备处于上行同步丢失状态时,终端设备确定使用第一资源,并通过第一资源向网络设备发送第一上行信息,第一上行信息包括除随机接入前导序列之外的信息,例如,第一上行信息可以是业务数据、反馈信息和请求信息中的至少一种信息。从而,网络设备可以无需等待终端设备进行上行同步即可接收除随机接入前导序列之外的信息,减小了上行信息的传输时延,提高了资源的利用率。
本领域技术人员可以清楚地了解到:在方法700中,网络设备和UE均可等同于方法400中的网络设备和UE,且网络设备和UE的动作与方法400中的接入网设备和UE的动作相对应,为了简洁,在此不再赘述。
可选地,方法700还包括:
S730,网络设备通过第一资源从UE接收第一上行信息,所述第一上行信息包括免调度的上行信息。
在免调度的场景中,UE通常有较为紧急的数据(例如URLLC数据)需要传输,因此,UE可能来不及等待从上行同步丢失状态转到上行同步维持状态后再发送紧急数据,按照本申请提供的发送上行信息的方法,UE在处于上行同步丢失状态下通过时间长度较 小的资源发送上行信息,可以在不降低传输可靠性的同时减小上行传输的时延。
可选地,所述第一资源和所述第二资源在时域上间隔至少一个时间单元。
根据本实施例提供的方法,当终端设备处于上行同步丢失状态时,且第一上行信息到达网络设备的时间较晚时,由于第一资源与第二资源之间间隔有至少一个时间单元,因此,通过第一资源传输的上行信息以及通过第二资源传输的上行信息相互影响的可能性大大降低,从而提高了上行传输的可靠性。
可选地,上行同步丢失状态为UE的时间同步定时器超时的状态,上行同步维持状态为该UE的时间同步定时器运行的状态。
在本申请中,上行同步丢失状态可以是UE的时间同步定时器超时的状态,上行同步维持状态可以是UE的时间同步定时器运行的状态。本申请对UE判断该UE处于上行同步丢失状态或者上行同步维持状态的方法不作限定。
上文详细介绍了本申请提供的发送上行信息和接收上行信息的方法示例。可以理解的是,终端设备和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对终端设备等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备800包括:处理单元802和通信单元803。处理单元802用于对终端设备800的动作进行控制管理,例如,处理单元802用于支持终端设备800执行图3的S320和/或用于本文所描述的技术的其它过程。通信单元803用于支持终端设备800与其它网络实体的通信,例如与网络设备之间的通信。终端设备800还可以包括存储单元801,用于存储终端设备800的程序代码和数据。
其中,处理单元802可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元803可以是收发器、收发电路等。存储单元801可以是存储器。
当处理单元802为处理器,通信单元803为收发器,存储单元801为存储器时,本申请所涉及的终端设备可以为图9所示的终端设备。
参阅图9所示,该终端设备900包括:处理器902、收发器903、存储器901。其中,收发器903、处理器902以及存储器901可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的终端设备800和终端设备900,在不同场景下使用不同的定时提前量,从而可以满足5G移动通信系统对上行同步的多样化需求。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备1000包括:处理单元1002和通信单元1003。处理单元1002用于对终端设备1000的动作进行控制管理,例如,处理单元1002用于支持终端设备1000执行图4的S410和/或用于本文所描述的技术的其它过程。通信单元1003用于支持终端设备1000与其它网络实体的通信,例如与网络设备之间的通信。终端设备1000还可以包括存储单元1001,用于存储终端设备1000的程序代码和数据。
其中,处理单元1002可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1003可以是收发器、收发电路等。存储单元1001可以是存储器。
当处理单元1002为处理器,通信单元1003为收发器,存储单元1001为存储器时,本申请所涉及的终端设备可以为图11所示的终端设备。
参阅图11所示,该终端设备1100包括:处理器1102、收发器1103、存储器1101。其中,收发器1103、处理器1102以及存储器1101可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的终端设备1000和终端设备1100,可以无需进行上行同步即可发送除随机接入前导序列之外的信息,该除随机接入前导序列之外的信息例如是紧急的业务数据,从而减小了上行信息的传输时延,提高了资源的利用率。
在采用集成的单元的情况下,图12示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。网络设备1200包括:处理单元1202和通信单元1203。处理单元1202用于对网络设备1200的动作进行控制管理,例如,处理单元1202用于支持网络设备1200执行图6的S610和/或用于本文所描述的技术的其它过程。通信单元1203用于支持网络设备1200与其它网络实体的通信,例如与终端设备之间的通信。网络设备1200还可以包括存储单元1201,用于存储网络设备1200的程序代码和数据。
其中,处理单元1202可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1203可以是收发器、收发电路等。存储单元1201可以是存储器。
当处理单元1202为处理器,通信单元1203为收发器,存储单元1201为存储器时,本申请所涉及的网络设备可以为图13所示的网络设备。
参阅图13所示,该网络设备1300包括:处理器1302、收发器1303、存储器1301。其中,收发器1303、处理器1302以及存储器1301可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的网络设备1200和网络设备1300,根据终端设备所支持的不同的时间长度确定终端设备在不同场景下使用的定时提前量,例如,在对时延要求较高场景中,可以采用至少两个不同的时间长度中较短的时间长度以提高上行同步的精度,在对时延要求较低的场景中,可以采用至少两个不同的时间长度中较长的时间长度,可以在满足时延要求的同时兼容更多的设备,从而可以满足5G移动通信系统对上行同步的多样化需求。
在采用集成的单元的情况下,图14示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。网络设备1400包括:处理单元1402和通信单元1403。处理单元1402用于对网络设备1400的动作进行控制管理,例如,处理单元1402用于支持网络设备1400执行图7的S710和/或用于本文所描述的技术的其它过程。通信单元1403用于支持网络设备1400与其它网络实体的通信,例如与终端设备之间的通信。网络设备1400还可以包括存储单元1401,用于存储网络设备1400的程序代码和数据。
其中,处理单元1402可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1403可以是收发器、收发电路等。存储单元1401可以是存储器。
当处理单元1402为处理器,通信单元1403为收发器,存储单元1401为存储器时,本申请所涉及的网络设备可以为图15所示的网络设备。
参阅图15所示,该网络设备1500包括:处理器1502、收发器1503、存储器1501。其中,收发器1503、处理器1502以及存储器1501可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的网络设备1400和网络设备1500,可以通过第二配置信息指示第一资源包括的时域资源的大小,当终端设备处于上行同步丢失状态时,终端设备确定使用第一资源,并通过第一资源向网络设备发送第一上行信息,第一上行信息包括除随机接入前导序列之外的信息,例如,第一上行信息可以是业务数据、反馈信息和请求信息中的至少一种信息。从而,网络设备可以无需等待终端设备进行上行同步即可接收除随机接入前导序列之外的信息,减小了上行信息的传输时延,提高了资源的利用率。
应理解,上述收发器可以包括发射机和接收机。收发器还可以进一步包括天线,天线的数量可以为一个或多个。存储器可以是一个单独的器件,也可以集成在处理器中。上述的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
装置和方法实施例中的网络设备或终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块方法或发射器执行方法实施例中发送的步骤,接收模块或接收器执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块或处理器执行。具体模块的功能可以参考相应的方法实施例,不再详述。
本申请实施例还提供了一种通信芯片,其中存储有指令,当其在终端设备800、终端设备900、终端设备1000或终端设备1100上运行时,使得所述通信芯片执行上述各种实现方式中终端设备对应的方法。
本申请实施例还提供了一种通信芯片,其中存储有指令,当其在网络设备1200、网络设备1300、网络设备1400或网络设备1500上运行时,使得所述通信芯片执行上述各种实现方式中网络设备对应的方法。
在本申请各个实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施过程构成任何限定。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备和网络设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的 保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (32)

  1. 一种无线通信系统中发送上行信息的方法,其特征在于,所述方法包括:
    接收定时提前系数;
    根据第一时间长度和所述定时提前系数确定第一定时提前量,其中,所述第一时间长度是终端设备支持的至少两个不同的用于确定定时提前量的时间长度中的一个;
    根据所述第一定时提前量发送上行信息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据第一时间长度和所述定时提前系数确定第一定时提前量之前,所述方法还包括:
    接收第一信息,所述第一信息用于指示所述第一时间长度。
  3. 根据权利要求1所述的方法,其特征在于,所述根据第一时间长度和所述定时提前系数确定第一定时提前量之前,所述方法还包括:
    接收第二信息;
    根据所述第二信息占用的资源与所述第一时间长度的对应关系确定所述第一时间长度。
  4. 根据权利要求1所述的方法,其特征在于,所述上行信息的业务类型和/或所述上行信息对应的资源类型与所述第一时间长度存在对应关系,所述根据第一时间长度和所述定时提前系数确定第一定时提前量之前,所述方法还包括:
    根据所述上行信息的业务类型与所述第一时间长度的对应关系确定所述第一时间长度,和/或,
    根据所述上行信息对应的资源类型与所述第一时间长度的对应关系确定所述第一时间长度。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述上行信息的业务类型与所述第一时间长度的对应关系确定所述第一时间长度之前,和/或,所述根据所述上行信息对应的资源类型与所述第一时间长度的对应关系确定所述第一时间长度之前,所述方法还包括:
    接收第三信息,所述第三信息用于指示所述上行信息的业务类型和所述上行信息对应的资源类型中的至少一种。
  6. 根据权利要求4或5所述的方法,其特征在于,所述资源类型包括下列参数中的至少一种:子载波间隔的类型、循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述业务类型包括下列参数中的至少一种:服务质量、目标误码率和目标误块率。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一配置信息,所述第一配置信息用于配置所述至少两个不同的用于确定定时提前量的时间长度。
  9. 一种无线通信系统中接收上行信息的方法,其特征在于,所述方法包括:
    确定终端设备的第一定时提前量,其中,所述第一定时提前量等于定时提前系数与第 一时间长度的乘积,所述第一时间长度是所述终端设备支持的至少两个不同的用于确定定时提前量的时间长度中的一个,所述第一定时提前量用于所述终端设备发送上行信息;
    从所述终端设备接收所述上行信息。
  10. 根据权利要求9所述的方法,其特征在于,所述网络设备从所述终端设备接收所述上行信息之前,所述方法还包括:
    向所述终端设备发送第一信息,所述第一信息用于指示所述第一时间长度。
  11. 根据权利要求9所述的方法,其特征在于,所述从所述终端设备接收所述上行信息之前,所述方法还包括:
    向所述终端设备发送第二信息,其中,所述第二信息占用的资源与所述第一时间长度存在对应关系。
  12. 根据权利要求9所述的方法,其特征在于,所述上行信息的业务类型和/或所述上行信息对应的资源类型与所述第一时间长度存在对应关系,所述从所述终端设备接收所述上行信息之前,所述方法还包括:
    根据所述上行信息的业务类型与所述第一时间长度的对应关系确定所述第一时间长度,和/或,
    根据所述上行信息对应的资源类型与所述第一时间长度的对应关系确定所述第一时间长度。
  13. 根据权利要求12所述的方法,其特征在于,所述资源类型包括下列参数中的至少一种:子载波间隔的类型、循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型。
  14. 根据权利要求12或13所述的方法,其特征在于,所述业务类型包括下列参数中的至少一种:服务质量、目标误码率和目标误块率。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一配置信息,所述第一配置信息用于配置所述至少两个不同的用于确定定时提前量的时间长度。
  16. 一种无线通信系统中发送上行信息的装置,其特征在于,所述装置包括处理单元和通信单元,
    所述通信单元用于接收定时提前系数;
    所述处理单元用于根据第一时间长度和所述通信单元接收的所述定时提前系数确定第一定时提前量,其中,所述第一时间长度是所述装置支持的至少两个不同的用于确定定时提前量的时间长度中的一个;
    所述通信单元还用于根据所述处理单元确定的所述第一定时提前量发送上行信息。
  17. 根据权利要求16所述的装置,其特征在于,所述通信单元还用于:
    接收第一信息,所述第一信息用于指示所述第一时间长度。
  18. 根据权利要求16所述的装置,其特征在于,
    所述通信单元还用于:接收第二信息;
    所述处理单元还用于:根据所述第二信息占用的资源与所述第一时间长度的对应关系确定所述第一时间长度。
  19. 根据权利要求16所述的装置,其特征在于,所述上行信息的业务类型和/或所述 上行信息对应的资源类型与所述第一时间长度存在对应关系,所述处理单元还用于:
    根据所述上行信息的业务类型与所述第一时间长度的对应关系确定所述第一时间长度,和/或,
    根据所述上行信息对应的资源类型与所述第一时间长度的对应关系确定所述第一时间长度。
  20. 根据权利要求19所述的装置,其特征在于,所述通信单元还用于:
    接收第三信息,所述第三信息用于指示所述上行信息的业务类型和所述上行信息对应的资源类型中的至少一种。
  21. 根据权利要求19或21所述的装置,其特征在于,所述资源类型包括下列参数中的至少一种:子载波间隔的类型、循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,所述业务类型包括下列参数中的至少一种:服务质量、目标误码率和目标误块率。
  23. 根据权利要求17至22中任一项所述的装置,其特征在于,所述通信单元还用于:
    接收第一配置信息,所述第一配置信息用于配置所述至少两个不同的用于确定定时提前量的时间长度。
  24. 一种无线通信系统中接收上行信息的装置,其特征在于,所述装置包括处理单元和通信单元,
    所述处理单元用于确定终端设备的第一定时提前量,其中,所述第一定时提前量等于定时提前系数与第一时间长度的乘积,所述第一时间长度是所述终端设备支持的至少两个不同的用于确定定时提前量的时间长度中的一个,所述第一定时提前量用于所述终端设备发送上行信息;
    所述处理单元还用于控制所述通信单元从所述终端设备接收所述上行信息。
  25. 根据权利要求24所述的装置,其特征在于,所述通信单元还用于:
    向所述终端设备发送第一信息,所述第一信息用于指示所述第一时间长度。
  26. 根据权利要求24所述的装置,其特征在于,所述通信单元还用于:
    向所述终端设备发送第二信息,其中,所述第二信息占用的资源与所述第一时间长度存在对应关系。
  27. 根据权利要求24所述的装置,其特征在于,所述上行信息的业务类型和/或所述上行信息对应的资源类型与所述第一时间长度存在对应关系,所述通信单元还用于:
    根据所述上行信息的业务类型与所述第一时间长度的对应关系确定所述第一时间长度,和/或,
    根据所述上行信息对应的资源类型与所述第一时间长度的对应关系确定所述第一时间长度。
  28. 根据权利要求27所述的装置,其特征在于,所述资源类型包括下列参数中的至少一种:子载波间隔的类型、循环前缀的长度、符号长度、时隙长度、工作频率和子帧类型。
  29. 根据权利要求27或28所述的装置,其特征在于,所述业务类型包括下列参数中的至少一种:服务质量、目标误码率和目标误块率。
  30. 根据权利要求24至29中任一项所述的装置,其特征在于,所述通信单元还用于:
    向所述终端设备发送第一配置信息,所述第一配置信息用于配置所述至少两个不同的用于确定定时提前量的时间长度。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被通信装置的处理单元或处理器运行时,使得所述通信装置执行权利要求1至15中任一项所述的方法。
  32. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,使得所述通信装置执行权利要求1至15中任一项所述的方法。
PCT/CN2018/089812 2017-06-06 2018-06-04 发送上行信息的方法和装置 WO2018223929A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18813093.4A EP3468266B1 (en) 2017-06-06 2018-06-04 Method and apparatus for sending uplink information
US16/198,770 US10602534B2 (en) 2017-06-06 2018-11-22 Uplink information sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710419346.9A CN109005585A (zh) 2017-06-06 2017-06-06 发送上行信息的方法和装置
CN201710419346.9 2017-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/198,770 Continuation US10602534B2 (en) 2017-06-06 2018-11-22 Uplink information sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2018223929A1 true WO2018223929A1 (zh) 2018-12-13

Family

ID=64566096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089812 WO2018223929A1 (zh) 2017-06-06 2018-06-04 发送上行信息的方法和装置

Country Status (4)

Country Link
US (1) US10602534B2 (zh)
EP (1) EP3468266B1 (zh)
CN (2) CN109005585A (zh)
WO (1) WO2018223929A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3080482C (en) * 2017-10-31 2023-09-26 Ntt Docomo, Inc. User terminal and transmission timing control method
US11102777B2 (en) 2017-11-10 2021-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Timing advance offset for uplink-downlink switching in new radio
KR102102060B1 (ko) * 2017-11-28 2020-04-17 연세대학교 산학협력단 무허가 다중 접속을 위한 스케줄링 방법 및 이를 위한 사용자 단말
US11343666B2 (en) * 2018-02-13 2022-05-24 Qualcomm Incorporated Waveform design of discovery signals
WO2019159134A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Optimized time synchronization for a ue
US10813069B2 (en) * 2018-06-29 2020-10-20 Qualcomm Incorporated Techniques and apparatuses for using different timing advance values for different numerologies
US11438930B2 (en) * 2019-01-11 2022-09-06 Qualcomm Incorporated Timing indication for a two-step random access channel procedure
CN111277351B (zh) * 2019-01-28 2022-12-06 维沃移动通信有限公司 一种信息处理方法、终端设备和网络侧设备
CN111278101A (zh) * 2019-01-28 2020-06-12 维沃移动通信有限公司 一种时间信息处理方法、终端设备和网络侧设备
CN111526577A (zh) * 2019-02-01 2020-08-11 华为技术有限公司 一种时钟同步方法及设备
CN116614894A (zh) * 2019-02-25 2023-08-18 华为技术有限公司 通信方法、终端设备和网络设备
CN111756472B (zh) * 2019-03-28 2022-03-29 华为技术有限公司 一种上行通信方法及通信装置
CN111770583B (zh) * 2019-04-01 2023-04-07 中国移动通信有限公司研究院 数据处理方法、装置、相关设备及存储介质
CN114126031A (zh) * 2019-04-26 2022-03-01 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
US20210105732A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Clarification on cumulative timing advance (ta)
CN115361737A (zh) * 2019-10-20 2022-11-18 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN112770396B (zh) * 2019-11-04 2023-07-21 维沃移动通信有限公司 信息的处理方法和设备
CN112788732B (zh) * 2019-11-09 2022-08-19 上海朗帛通信技术有限公司 一种被用于无线通信的方法和装置
CN112911539B (zh) * 2019-11-19 2022-07-29 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
EP4080950A4 (en) * 2020-01-23 2022-12-28 Huawei Technologies Co., Ltd. TIME SYNCHRONIZATION METHOD, ACCESS NETWORK DEVICE, COMMUNICATIONS DEVICE, COMPUTER STORAGE MEDIUM AND COMMUNICATIONS SYSTEM
EP4091372A1 (en) * 2020-02-07 2022-11-23 Orope France Sarl Apparatus and method of timing advance indication of same
CN114747262B (zh) * 2020-02-18 2024-07-26 Oppo广东移动通信有限公司 通信方法、装置及设备
WO2022027649A1 (zh) * 2020-08-07 2022-02-10 Oppo广东移动通信有限公司 时间精度指示方法及装置、终端设备、网络设备
WO2022155925A1 (zh) * 2021-01-22 2022-07-28 Oppo广东移动通信有限公司 无线通信方法、第一设备以及第二设备
CN115150931B (zh) * 2021-03-31 2024-07-30 华为技术有限公司 上行同步方法及相关设备
CN117119576A (zh) * 2023-03-29 2023-11-24 荣耀终端有限公司 针对时间提前量ta的处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572577A (zh) * 2008-04-30 2009-11-04 大唐移动通信设备有限公司 一种实现上行发送定时提前的方法和装置
CN102083197A (zh) * 2010-12-23 2011-06-01 华为技术有限公司 时间提前量的处理方法、设备和系统
CN102647783A (zh) * 2012-04-19 2012-08-22 北京创毅讯联科技股份有限公司 一种上行时间提前量的控制方法及基站、终端
CN104270810A (zh) * 2014-10-16 2015-01-07 武汉理工大学 一种lte-a系统上行同步方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188812B (zh) * 2007-04-13 2012-01-25 华为技术有限公司 无线通信系统、空中接口同步方法、基站及其控制装置
KR101629317B1 (ko) * 2009-06-17 2016-06-10 엘지전자 주식회사 광대역 무선 접속 시스템에서의 효율적인 스캐닝 수행 방법
CN103370972A (zh) * 2012-02-15 2013-10-23 华为技术有限公司 通信方法、用户设备和基站
CN103857030B (zh) * 2012-12-04 2017-07-04 中兴通讯股份有限公司 一种实现rach同步的方法及系统
KR102345347B1 (ko) * 2014-01-28 2021-12-30 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
CN105099642B (zh) * 2014-05-19 2019-06-07 中兴通讯股份有限公司 一种数据传输方法、装置及计算机存储介质
WO2016000198A1 (zh) * 2014-07-01 2016-01-07 华为技术有限公司 一种随机接入方法与装置
US10912100B2 (en) * 2014-07-29 2021-02-02 Lg Electronics Inc. Method for transmitting control information for D2D communication in wireless communication system and device therefor
US9832800B2 (en) * 2014-08-08 2017-11-28 Electronics And Telecommunications Research Institute Method and apparatus for device to device communication
WO2016049860A1 (zh) * 2014-09-30 2016-04-07 华为技术有限公司 传输定时调整的方法及设备
CN106034354B (zh) * 2015-03-17 2019-07-23 苏州简约纳电子有限公司 一种用户设备上行同步时间调整的方法和装置
CN111741517A (zh) * 2015-08-14 2020-10-02 华为技术有限公司 一种信息的传输方法和基站以及用户设备
US10090880B2 (en) * 2015-12-18 2018-10-02 Qualcomm Incorporated Narrow band PRACH with multiple tone hopping distances
US10743268B2 (en) * 2016-06-02 2020-08-11 Lg Electronics Inc. Method and apparatus for measuring downlink synchronization in wireless communication system
US11240774B2 (en) * 2017-06-02 2022-02-01 Qualcomm Incorporated Timing advance group for new radio
US11540256B2 (en) * 2017-11-03 2022-12-27 Qualcomm Incorporated Timing advance granularity for uplink with different numerologies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572577A (zh) * 2008-04-30 2009-11-04 大唐移动通信设备有限公司 一种实现上行发送定时提前的方法和装置
CN102083197A (zh) * 2010-12-23 2011-06-01 华为技术有限公司 时间提前量的处理方法、设备和系统
CN102647783A (zh) * 2012-04-19 2012-08-22 北京创毅讯联科技股份有限公司 一种上行时间提前量的控制方法及基站、终端
CN104270810A (zh) * 2014-10-16 2015-01-07 武汉理工大学 一种lte-a系统上行同步方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3468266A4 *

Also Published As

Publication number Publication date
CN109275185B (zh) 2020-03-20
EP3468266B1 (en) 2021-06-02
US10602534B2 (en) 2020-03-24
EP3468266A1 (en) 2019-04-10
CN109005585A (zh) 2018-12-14
EP3468266A4 (en) 2019-07-24
CN109275185A (zh) 2019-01-25
US20190090262A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
WO2018223929A1 (zh) 发送上行信息的方法和装置
JP6653394B2 (ja) アップリンク送信タイミング制御
AU2018213539B2 (en) Data transmission method, terminal device, and network device
US11497015B2 (en) Autonomous timing adjustment for a wireless device
US20190335496A1 (en) Channel listening method and apparatus
US11800477B2 (en) Method and apparatus for acquiring uplink transmission timing advance and communication system
US20200275472A1 (en) Method and device for cross-numerology scheduling
WO2020166334A1 (en) Communication system
US11464000B2 (en) Information indication method, terminal device, and network device
EP4222913A2 (en) Apparatus and methods for secondary cell (scell) enhancements in wireless communications
US11228933B2 (en) Method for transmitting information and terminal device
WO2019192153A1 (zh) 一种资源确定方法、指示方法及装置
WO2020029258A1 (zh) 信息发送和接收方法以及装置
WO2022161051A1 (zh) 载波切换方法及装置
CN113383508B (zh) 基于可用性评估的宽带通信
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
CN109379781B (zh) 一种信息发送方法及设备
WO2019001205A1 (zh) 一种功率余量报告发送、接收方法及设备
JP2023106389A (ja) ユーザ装置、ユーザ装置の方法、及び基地局装置
US20230261723A1 (en) Apparatus, Method, and Computer Program
WO2021159381A1 (zh) 上行信号处理方法、装置和系统
WO2021159400A1 (zh) 无线通信方法、装置和系统
WO2022155979A1 (zh) 功率控制方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018813093

Country of ref document: EP

Effective date: 20190104

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE