WO2019001205A1 - 一种功率余量报告发送、接收方法及设备 - Google Patents

一种功率余量报告发送、接收方法及设备 Download PDF

Info

Publication number
WO2019001205A1
WO2019001205A1 PCT/CN2018/088910 CN2018088910W WO2019001205A1 WO 2019001205 A1 WO2019001205 A1 WO 2019001205A1 CN 2018088910 W CN2018088910 W CN 2018088910W WO 2019001205 A1 WO2019001205 A1 WO 2019001205A1
Authority
WO
WIPO (PCT)
Prior art keywords
power headroom
time unit
terminal device
type
headroom report
Prior art date
Application number
PCT/CN2018/088910
Other languages
English (en)
French (fr)
Inventor
闫志宇
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019001205A1 publication Critical patent/WO2019001205A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and device for transmitting and receiving a power headroom report.
  • the uplink power control in the wireless system is very important. Through the uplink power control, the terminal device can ensure the quality of the uplink data, reduce the interference to the system and other users as much as possible, and prolong the battery usage time of the terminal device.
  • the uplink power control of the base station can adapt the uplink transmission to different wireless transmission environments, including path loss, shadow, fast fading, interference within the cell, and other terminal devices between the cells.
  • the embodiment of the present application provides a method and a device for sending and receiving a power headroom report, which are used to send a power headroom report to a network device, thereby performing uplink power control.
  • a power headroom report transmission method which can be performed by a terminal device.
  • the method includes: the terminal device acquiring the first indication information, where the first indication information is used to indicate that the terminal device sends the first physical uplink shared channel in the first time unit; the terminal device sends the first power to the network device by using the first physical uplink shared channel
  • the margin report, the first time unit meets the power headroom reporting conditions.
  • the power headroom reporting conditions include at least one of the following:
  • the power headroom report of the terminal device prohibits the timer from reaching or has reached the first power headroom report prohibition timing threshold, and the path loss is greater than or equal to the first path loss threshold;
  • the periodic power headroom reporting timer of the terminal device reaches the first period power headroom reporting timing threshold
  • the terminal device receives signaling for adding the primary secondary cell.
  • a power headroom report receiving method which can be performed by a network device, such as a base station.
  • the method includes: the network device sends the first indication information to the terminal device, where the first indication information is used to indicate that the terminal device sends the first physical uplink shared channel in the first time unit; the network device sends the terminal device by using the first physical uplink shared channel.
  • the first power headroom report, the first time unit meets the power headroom reporting condition.
  • the power headroom reporting conditions include at least one of the following:
  • the power headroom report of the terminal device prohibits the timer from reaching or has reached the first power headroom report prohibition timing threshold, and the first path loss exceeds the path loss threshold;
  • the periodic power headroom reporting timer of the terminal device reaches the first period power headroom reporting timing threshold
  • the terminal device receives signaling for adding the primary secondary cell.
  • the terminal device may send a power headroom report of the scheduled physical uplink shared channel to the network device, so that the network device can report according to the first power headroom sent by the terminal device.
  • the uplink power control is performed to adapt the uplink transmission to different wireless transmission environments.
  • the length of the first time unit is less than or equal to the length of one time slot.
  • the length of the first time unit is small, that is, the network device can schedule uplink data by using a small time granularity, which increases scheduling flexibility.
  • the terminal device can send a power headroom report to the network device at a small time granularity, so that the network device can receive a relatively complete power headroom report and increase the accuracy of the uplink power control.
  • the terminal device acquires the second indication information, where the second indication information is used to indicate that the terminal device sends the second physical uplink shared channel in the second time unit; the terminal device sends the second physical uplink shared channel to the network device by using the second physical uplink shared channel.
  • the second power headroom report ; the first time unit belongs to the second time unit, and the length of the second time unit is greater than the length of the first time unit.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate that the terminal device sends the second physical uplink shared channel in the second time unit, and the network device receives the second physical uplink shared channel to receive the second terminal.
  • the second power headroom reports that the length of the second time unit is greater than the length of the first time unit.
  • the network device may use different time granularities to schedule uplink data, such as the granularity of the first time unit and the granularity of the second time unit. Then, if the terminal device only sends a power headroom report to the network device at the granularity of the second time unit, the power headroom reported may miss the power headroom of the uplink time scheduled by the network device on the first time unit. value. Therefore, in the embodiment of the present application, the terminal device can send a power headroom report to the network device in the granularity of the first time unit and the granularity of the second time unit, so that the network device can obtain a relatively complete power headroom value, and try to obtain a relatively complete power headroom value. Avoid the omission of the power headroom value and increase the accuracy of the uplink power control.
  • the first time unit belongs to the second time unit, the first time unit is the first type time unit, the second time unit is the second type time unit, and the length of the first type time unit is the first length
  • the length of the second type of time unit is a second length, and the second length is greater than the first length; the first type of time unit and the second type of time unit are both used to schedule a physical uplink shared channel.
  • the network device can schedule physical uplink shared channels with different time granularities, which increases scheduling flexibility.
  • the second type of time unit is TTI
  • the first type of time unit is sTTI
  • the second type of time unit is slot
  • the first type of time unit is Mini-slot.
  • first type of time unit and the second type of time unit An example of the first type of time unit and the second type of time unit is given. In the embodiment of the present application, the implementation manner of the first type time unit and/or the second type time unit is not limited thereto.
  • the first power headroom reports that the unit of the inhibit timing threshold is the second length; and/or the unit of the first period power headroom reporting timing threshold is the second length.
  • the unit in which the terminal device measures the path loss is usually a granularity of the second length, for example, a TTI. Then, the power control of the terminal device to transmit the PUSCH and the sPUSCH may also be the granularity of the second length. Therefore, taking the first physical uplink shared channel as the sPUSCH and the second physical uplink shared channel as the PUSCH as an example, it is a reasonable choice to configure a unified parameter for the PHR transmitted on the PUSCH and the PHR transmitted on the sPUSCH.
  • the first time unit is a first first type of time unit in which the terminal device transmits a physical uplink shared channel in the second time unit.
  • the power headroom report sent by the terminal device does not change the reference meaning of the network device scheduling, and the terminal device reports a power headroom report in the TTI.
  • the terminal device may send a power headroom report on the scheduled physical uplink shared channel after the sTTI receives the indication of scheduling the physical uplink shared channel.
  • the first sTTI here does not refer to the first sTTI in the TTI, but refers to the first sTTI in the TTI that is scheduled to send the physical uplink shared channel.
  • the terminal device acquires the second indication information, where the second indication information is used to indicate that the second physical uplink shared channel is sent in the second time unit; the terminal device sends the second information to the network device by using the second physical uplink shared channel.
  • the power headroom report wherein, the time when the terminal device acquires the first indication information is different from the time when the terminal device acquires the second indication information.
  • the network device sends the second indication information to the terminal device, where the second indication information is used to indicate that the second physical uplink shared channel is sent in the second time unit; and the network device receives the second information sent by the terminal device by using the second physical uplink shared channel.
  • the power headroom report wherein the time when the network device sends the first indication information is different from the time when the network device sends the second indication information.
  • the network device may use different time granularities to schedule uplink data, such as the granularity of the first time unit and the granularity of the second time unit. Then, if the terminal device only sends a power headroom report to the network device at the granularity of the second time unit, the power headroom reported may miss the power headroom of the uplink time scheduled by the network device on the first time unit. value. Therefore, in the embodiment of the present application, the terminal device can send a power headroom report to the network device in the granularity of the first time unit and the granularity of the second time unit, so that the network device can obtain a relatively complete power headroom value, and try to obtain a relatively complete power headroom value. Avoid the omission of the power headroom value and increase the accuracy of the uplink power control.
  • the first power headroom report corresponds to the first uplink channel set sent by the terminal device in the first time unit
  • the second power headroom report corresponds to the second uplink sent by the terminal device in the second time unit.
  • a set of channels, the second set of upstream channels being a subset of the first set of upstream channels.
  • the first power headroom report includes a real power headroom value corresponding to the third uplink channel set
  • the second power headroom report includes a virtual power headroom value corresponding to the third uplink channel set
  • the terminal device sends a first power headroom report to the network device by using the first physical uplink shared channel, and sends a second power headroom report to the network device by using the second physical uplink shared channel.
  • the first power headroom report corresponds to the first uplink channel set
  • the second power headroom report corresponds to the second uplink channel set
  • the second uplink channel set is a subset of the first uplink channel set.
  • the first power headroom report includes a real power headroom value of each cell where each uplink channel in the first uplink channel set is located, and includes a virtual power headroom value of other activated cells except the cells.
  • the second power headroom report includes real power headroom values of respective cells in which the uplink channels in the second uplink channel set are located, and includes virtual power headroom values of other activated cells except the cells.
  • the second set of uplink channels is a subset of the first set of uplink channels, then the first power headroom report includes more real power headroom values than the second power headroom report.
  • the first power headroom report includes a real power headroom value corresponding to the third uplink channel set
  • the second power headroom report includes a virtual power headroom value corresponding to the third uplink channel set, where the third uplink channel set is The complement of the two uplink channels in the first uplink channel. It can be seen that the first power headroom report can more accurately reflect the power headroom of the terminal device in the first time unit than the second power headroom report, and the network device determines that the terminal device is determined according to the received power headroom report. The need to schedule results.
  • the terminal device receives the first configuration information sent by the network device, where the first configuration information is used to indicate the first power headroom report prohibition timing threshold, the first path loss threshold, and the first cycle power headroom report. a timing threshold; the first configuration information is used to determine whether the first type of time unit and the second type of time unit satisfy a power headroom reporting condition.
  • the network device sends the first configuration information to the terminal device, where the first configuration information is used to indicate the first power headroom report prohibition timing threshold, the first path loss threshold, and the first period power headroom report timing threshold; The configuration information is used to determine whether the first type of time unit and the second type of time unit satisfy the power headroom reporting condition.
  • the network device only configures a set of parameters for the terminal device, for example, the network device sends the first configuration information to the terminal device, where the first configuration information is used to configure the first power headroom report prohibition timing threshold for the terminal device.
  • the first path loss threshold and the first period power headroom report timing threshold are used by the terminal device to determine whether the first time unit satisfies the power headroom report.
  • the terminal device determines whether the first time unit satisfies the power headroom report when the power headroom report is prohibited, and the terminal device determines whether the second time unit satisfies the power headroom report, and the power headroom report prohibition timing threshold is the same.
  • the device determines whether the first time unit satisfies the path loss threshold used in the power headroom report and the path loss threshold used by the terminal device to determine whether the second time unit satisfies the power headroom report, and the time units of the three parameters are It is the second length.
  • the unit in which the terminal device measures the path loss is usually a granularity of the second length, for example, a TTI. Then, the power control of the terminal device to transmit the PUSCH and the sPUSCH may also be the granularity of the second length. Therefore, taking the first physical uplink shared channel as the sPUSCH and the second physical uplink shared channel as the PUSCH as an example, it is a reasonable choice to configure a unified parameter for the PHR transmitted on the PUSCH and the PHR transmitted on the sPUSCH.
  • the terminal device receives the first configuration information and the second configuration information sent by the network device; the first configuration information is used to indicate the first power headroom report prohibition timing threshold, the first path loss threshold, and the first The periodic power headroom reports a timing threshold, the second configuration information is used to indicate a second power headroom report prohibition timing threshold, a second path loss threshold, and a second period power headroom reporting timing threshold; the first configuration information is used to determine the Whether the second type time unit satisfies the power headroom reporting condition, and the second configuration information is used to determine whether the first type time unit satisfies the power headroom reporting condition.
  • the network device sends the first configuration information and the second configuration information to the terminal device;
  • the first configuration information is used to indicate the first power headroom report prohibition timing threshold, the first path loss threshold, and the first cycle power headroom report a timing threshold
  • the second configuration information is used to indicate a second power headroom report prohibition timing threshold, a second path loss threshold, and a second period power headroom report timing threshold
  • the first configuration information is used to determine whether the second type time unit is The power headroom reporting condition is met
  • the second configuration information is used to determine whether the first type of time unit satisfies the power headroom reporting condition.
  • the network device configures respective parameters for the power headroom report of the first physical uplink shared channel and the power headroom report of the second physical uplink shared channel, which also facilitates the terminal device to perform according to different parameters. Judging, it will be more in line with the actual situation of the corresponding physical uplink shared channel.
  • the terminal device after the terminal device sends the first power headroom report to the network device through the first physical uplink shared channel, the terminal device resets the power headroom report inhibit timer and the periodic power headroom report timer.
  • the terminal device may reset the power headroom report prohibition timer and the periodic power headroom report timer after use, so as to perform the next judgment process for the power headroom report condition in time.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a processor and a transmitter.
  • the terminal device may further include a receiver.
  • the processor, the transmitter and the receiver may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a transmitter and a receiver.
  • the network device may further include a processor.
  • the processor, the transmitter and the receiver may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, a communication interface, and a processor coupled to the memory and the communication interface.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, a communication interface, and a processor coupled to the memory and the communication interface.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the second aspect or the second aspect above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect of the first aspect of the design Said method.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above Said method.
  • a ninth aspect provides a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any one of the first aspect or the first aspect of the first aspect The method described in the above.
  • a computer program product comprising instructions, wherein the computer program product stores instructions for causing the computer to perform any one of the possible aspects of the second aspect or the second aspect described above when it is run on a computer The method described in the above.
  • the terminal device may send a power headroom report of the scheduled physical uplink shared channel to the network device, so that the network device can perform uplink power control according to the first power headroom report sent by the terminal device,
  • the uplink transmission is adapted to different wireless transmission environments.
  • FIG. 1 is a schematic diagram of a system simultaneously using TTI and sTTI as scheduling granularity according to an embodiment of the present application;
  • 2A is a schematic diagram of a subframe and a slot, and a Mini-slot when the subcarrier spacing is 15 kHz;
  • 2B is a schematic diagram of a slot and a Mini-slot when the subcarrier spacing is 30 kHz;
  • 2C is a schematic diagram of a slot and a Mini-slot when the subcarrier spacing is 60 kHz;
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for sending and receiving a power headroom report according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a terminal device that may send a virtual power headroom report according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a network device scheduling multiple sTTIs in one TTI to send an sPUSCH according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a network device scheduling uplink data by using two scheduling granularities according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of a terminal device selecting to send both a PHR of an sPUSCH and a PHR of a PUSCH to a network device according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a first uplink channel set and a second uplink channel set in the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a communication apparatus according to an embodiment of the present application.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (User Equipment, UE), a wireless terminal device, a mobile terminal device, a Subscriber Unit, a Subscriber Station, a mobile station, a mobile station, and a remote station.
  • Station Remote Station
  • AP Access Point
  • Remote Terminal Access Terminal
  • User Terminal User Agent
  • User Equipment User Equipment
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, Global Positioning System (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS Global Positioning System
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in an LTE system or an evolved LTE system (LTE-A), or may also include a next generation in the NR system.
  • the embodiment of the present application is not limited to the next generation node B (gNB).
  • a downlink control channel for carrying control information includes, for example, a Physical Downlink Control Channel (PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH), and may also include other for transmission control.
  • PDCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • uplink data transmission is based on base station scheduling, and the basic time unit of scheduling is a subframe, and the subframe includes multiple time domain symbols.
  • the specific scheduling process is: the base station sends a downlink control channel, such as a PDCCH or an EPDCCH, and the downlink control channel may carry scheduling information for scheduling a physical uplink shared channel (PUSCH), where the scheduling information includes, for example, resource allocation information. Control information such as modulation and coding methods.
  • the terminal device detects the downlink control channel in the subframe, and performs downlink data channel reception or uplink data channel transmission according to the detected scheduling information carried in the downlink control channel.
  • the LTE system currently supports a carrier width of up to 20 MHz, and the subcarrier spacing is usually fixed at 15 kHz.
  • a resource block (RB).
  • An RB has a bandwidth of 180 kHz and consists of 12 subcarriers with a bandwidth of 15 kHz. It occupies one slot in the time domain, that is, 0.5 ms, so one RB actually occupies 0.5 ms on the time-frequency.
  • the uplink power control in the wireless system is very important. Through the uplink power control, the terminal device can ensure the quality of the uplink data, reduce the interference to the system and other users as much as possible, and prolong the battery usage time of the terminal device.
  • the uplink power control of the base station can adapt the uplink transmission to different wireless transmission environments, including path loss, shadow, fast fading, interference within the cell, and other terminal devices between the cells.
  • short TTI short transmission time interval
  • the scheduling interval of the physical layer with the most obvious impact on delay is getting smaller and smaller.
  • WCDMA wideband code division multiple access
  • HSPA high-speed packet access
  • the LTE physical layer needs to introduce the frame structure of sTTI to further shorten the scheduling interval.
  • the transmission time interval (TTI) can be shortened from 1 ms to 1 symbol (symbol) to 0.5 ms.
  • the symbols mentioned above may be orthogonal frequency division multiplexing (OFDM) symbols in an LTE system, and the OFDM symbols include Cyclic Prefix OFDM (CP-OFDM) symbols based on cyclic prefix, and discrete Fourier.
  • CP-OFDM Cyclic Prefix OFDM
  • SFT Discrete Fourier Transform
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • sTTI data transmission is a data transmission with a TTI less than 1 subframe or 1 ms, for example, the sTTI length is 0.5 ms, or the sTTI length is 1 symbol, 2 symbols, 3 symbols, 4 symbols, 5 symbols, or 6 symbols. One of them, or the sTTI length is a combination of 1 symbol, 2 symbols, 3 symbols, 4 symbols, 5 symbols, 6 symbols, or at least 2 different TTI lengths of 7 symbols, for example within 1 ms.
  • sTTIs of length 4 symbols, 3 symbols, 4 symbols, 3 symbols, or 3 symbols, 4 symbols, 3 symbols, 4 symbols, or a combination of other different TTI lengths.
  • sTTIs for the case of including 4 sTTIs in 1 ms, unless otherwise specified, there are two types of sTTIs in the embodiment of the present application, one is sTTI with a length of 3 symbols, and the other is length. 2 symbols of sTTI.
  • a packet with a TTI less than 1 subframe or 1 ms is called an sTTI packet.
  • the sTTI data transmission is in the frequency domain and can be continuously distributed or non-continuously distributed.
  • FIG. 1 includes a subframe n, a subframe n+1, and a subframe n+2.
  • the system coexists with the sTTI, and the lengths of sTTI0 and sTTI3 are 2 symbols, sTTI1, sTTI2, sTTI4, and sTTI5.
  • the length is 2 symbols.
  • the following time units are provided, including:
  • Subframe the length of one subframe is 1 ms, and includes 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols under a 15 kHz subcarrier spacing structure (numerology). Within one subframe, the symbol boundaries of various numerologies for subcarrier spacings of 15 kHz and above are aligned.
  • OFDM Orthogonal Frequency Division Multiplexing
  • ⁇ Slot is the length of time of a possible scheduling unit.
  • One slot includes the y symbols under the currently used numerology.
  • Mini-slot which is the minimum length of time for the scheduling unit.
  • the 1 MIMO symbol included in the Mini-slot may be smaller than the y symbols under the currently used numerology.
  • FIG. 2A is a schematic diagram of a subframe and a slot, and a Mini-slot when the subcarrier spacing is 15 kHz
  • FIG. 2B is a schematic diagram of a slot and a Mini-slot when the subcarrier spacing is 30 kHz
  • 2C is an illustration of a slot and a Mini-slot when the subcarrier spacing is 60 kHz.
  • the above 1 slot or 1 mini-slot can be used for the time unit of uplink (UL) transmission.
  • FIG. 3 an application scenario of an embodiment of the present application is introduced.
  • the network device and the terminal device are included in FIG. 3, and after using the method provided in this embodiment, the terminal device may send the PHR to the network device.
  • the number of the terminal devices in FIG. 3 is only an example. In a practical application, the network device can provide services for multiple terminal devices, and multiple terminal devices can send the PHR to the network device.
  • the network device in Figure 3 is for example a base station.
  • NR system 5G NR system
  • next-generation mobile communication system or other similar mobile communication system.
  • an embodiment of the present application provides a power headroom transmission and reception method.
  • the method provided in the embodiment of the present application is applied to the application scenario shown in FIG.
  • the terminal device acquires first indication information, where the first indication information is used to indicate that the terminal device sends the first physical uplink shared channel in the first time unit.
  • the network device may send the first indication information to the terminal device, and the terminal device receives the first indication information sent by the network device, and S41 in FIG. 4 takes this as an example.
  • the first indication information is implemented by using downlink control information (DCI), and is used for scheduling the terminal device to send the first PUSCH in the first time unit.
  • the network device may send the first indication information to the terminal device by using a high-level configuration message.
  • the PUSCH is a physical channel used by the terminal device to send an uplink shared channel (UL-SCH) and/or uplink control information (UCI) to the network device.
  • UL-SCH uplink shared channel
  • UCI uplink control information
  • PUSCH Physical channel
  • UL-SCH and UCI may still use the terms of PUSCH, UL-SCH and UCI in the 5G mobile communication system, and other terms may be used. Therefore, the naming of PUSCH, UL-SCH, and UCI in each communication system is not limited in the embodiment of the present application.
  • the embodiments of the present application are described by taking PUSCH, UL-SCH, and UCI as an example.
  • the terminal device can transmit UL-SCH and/or UCI on the PUSCH.
  • the terminal device sends a first power headroom report to the network device by using the first physical uplink shared channel, and the network device receives the first power headroom report by using the first physical uplink shared channel.
  • the first time unit satisfies the power headroom reporting condition.
  • the first time unit belongs to the second time unit, the first time unit is the first type time unit, the second time unit is the second type time unit, and the length of the first type time unit is the first length.
  • the length of the second type of time unit is a second length, and the second length is greater than the first length.
  • the length of the first type of time unit is less than the length of one slot. If a slot is 0.5 ms, the length of the first type of time unit is less than 0.5 ms.
  • the length is not limited thereto, for example, the length of the first type of time unit may be less than one subframe, and if one subframe is 1 ms, the length of the first type of time unit is less than 1 ms.
  • both the first type of time unit and the second type of time unit are used to schedule the PUSCH. That is to say, in the embodiment of the present application, the same communication system can use scheduling granularity of at least two time domains, wherein the first type time unit and the second type time unit can be used as the scheduling granularity used by the communication system.
  • the second type of time unit is a TTI
  • the first type of time unit may be an sTTI
  • the network device may schedule the terminal device to send the PUSCH by using the TTI, or may also schedule the terminal device to send the PUSCH by using the sTTI, where the network device passes
  • the PUSCH transmitted by the sTTI scheduling terminal device may be a short PUSCH (sPUSCH).
  • the first type of time unit is a slot
  • the second type of time unit may be a mini-slot.
  • the network device may schedule the terminal device to send the PUSCH through the slot, or may also pass the Mini-slot.
  • the slot is used to schedule the terminal device to send the PUSCH.
  • the embodiment of the present application does not limit the implementation forms of the first type of time unit and the second type of time unit.
  • the terminal device can send a power headroom report (PHR) at a specific time.
  • PHR indicates how much the terminal device is in addition to the transmission power used by the current PUSCH transmission.
  • the transmission power can be used.
  • PHR indicates how much transmission power of the terminal device can be used in addition to the current PUSCH transmission and the transmission power used by the Physical Uplink Control Channel (PUCCH) transmission.
  • PUCCH Physical Uplink Control Channel
  • the unit of PH is dB.
  • the range of PH is [-23dB, +40dB]. Since the calculation of the PH requires the transmission power of the PUSCH, the terminal device can calculate the PH in the transmission subframe of the PUSCH.
  • the PH value is defined is that it can be used as a reference for the network device to allocate uplink RB resources. For example, if the PH value is negative, it indicates that the current PUSCH transmission power has exceeded the maximum transmission power allowed by the terminal device, and the RB resource allocation of the terminal device may be considered to be reduced in the next scheduling; and if the PH value is positive, the subsequent allocation is performed. The number of RBs can continue to increase. If the trigger condition of the PHR is satisfied on one subframe, and there is PUSCH scheduling in the current subframe, the terminal device may transmit the PHR to the network device.
  • the carrier aggregation (CA) technology is supported in the system, that is, the network device allocates multiple carriers to one terminal device to improve the data transmission rate of the terminal device.
  • the CCs in the carrier aggregation are classified into a primary cell (PCell) and a secondary cell (SCell) according to the function of the bearer.
  • the concepts of the primary cell and the secondary cell are as follows: Primary Cell (PCell): The primary cell is a cell operating on the primary frequency band.
  • the terminal device performs an initial connection establishment process in the cell or starts a connection re-establishment process.
  • the cell is indicated as a primary cell in the handover process;
  • the secondary cell (SCell) the secondary cell is a cell operating on the secondary frequency band.
  • the secondary cell may be configured to provide additional radio resources; the serving cell (Serving Cell): the terminal device in the RRC connection (RRC_CONNECTED) state, if no CA is configured, There is only one Serving Cell, that is, PCell; if CA is configured, the Serving Cell set is composed of PCell and SCell.
  • the activation/deactivation mechanism of the SCell can be employed.
  • the network device schedules the terminal device to transmit the uplink shared channel only on the activated SCell.
  • the primary cell is always in an active state.
  • the maximum transmission power allowed by the terminal device in each cell is independently configured.
  • the terminal device transmits the PHR as long as any one of the cells satisfies the condition of the power headroom report.
  • the PHR transmitted by the terminal device includes respective power headroom values associated with the cells of all activated states.
  • the cell-related power headroom value for each active state is the difference between the maximum transmission power allowed by the terminal device configured on the cell and the transmission power of the uplink shared channel transmitted by the terminal device in the subframe in the cell. For example, if there are N cells in the active state, the PHR sent by the terminal device includes respective power headroom values associated with the N activated cells.
  • the terminal device sends the PHR
  • the cell that may be in the N active cells is not sent to the network device by the PUSCH.
  • the cell-related PHR that is not transmitted by the PUSCH is a virtual power margin value
  • the cell with the PUSCH is sent.
  • the associated PHR is the true power headroom value.
  • the virtual power margin value refers to the maximum transmission power allowed by the terminal device configured on the cell minus the virtual PUSCH transmission power on the cell.
  • the virtual PUSCH transmission power may be a transmission power of the PUSCH determined by the terminal device according to the transmission power determination manner of the PUSCH, and the terminal equipment is configured to transmit the preset number of PUSCHs in the cell.
  • the power adjustment amount related to the modulation and coding mode of the PUSCH is not included in the virtual PUSCH transmission power.
  • the real power headroom value refers to the maximum transmission power allowed by the terminal equipment configured on the cell minus the PUSCH transmission power on the cell.
  • the real power margin value may reflect a more practical transmission power margin of the uplink channel sent by the terminal device, and provide a more effective information for scheduling the uplink transmission of the terminal device for the network device.
  • multiple carriers can work at the same frequency on the carrier in the wireless communication system.
  • the concept of the carrier and the cell in the wireless communication system can be considered to be equivalent.
  • the carrier index of the secondary carrier and the cell identifier (Cell ID) of the secondary cell working in the secondary carrier are carried in this case, in this case,
  • Cell ID cell identifier
  • the carrier can be considered to be equivalent to the concept of a cell, for example, the terminal device accessing one carrier and accessing one cell are equivalent.
  • the terminal device after acquiring the first indication information, the terminal device starts to perform the group data packet, where the data packet is correspondingly sent in the first time unit.
  • the first power headroom report is included in the data packet.
  • the first power headroom report includes a power headroom value of all cells in an active state in the first time unit that the terminal device knows when starting the group packet.
  • the cell in the active state in the first time unit does not schedule the PUSCH, and the data packet also includes the power headroom value corresponding to the cell.
  • the corresponding power headroom value of the cell is the terminal device. Calculated virtual power headroom value. For example, referring to FIG.
  • the network device schedules the terminal device to transmit the PUSCH on the cell 1 in the subframe n+1 in the subframe n-3, and the terminal device receives the first indication information in the subframe n-3.
  • the terminal device may start grouping packets in subframe n-3, subframe n-2, subframe n-1, subframe n, or subframe n+1.
  • the terminal device starts to group the packet, it considers that the cell 2 is not scheduled to be in the subframe n+1, but the terminal device still sends the cell 1 corresponding to the cell 1 scheduled to be in the subframe n+1 on the cell 1.
  • the power headroom value and the power headroom value corresponding to the cell 2 are different.
  • the power headroom value corresponding to the cell 1 is calculated by the terminal device according to the power of the PUSCH actually transmitted by the cell 1, that is, the cell 1 corresponding to the cell.
  • the power headroom value is a real power headroom value
  • the power headroom value corresponding to the cell 2 is obtained by the terminal device according to the calculation method of the virtual power margin report, that is, the power headroom value corresponding to the cell 2 is a virtual power margin value.
  • the PHR sent by the terminal device may further include an allowed maximum transmission power of the activated cell corresponding to each of the partial or total power headroom values.
  • the terminal device determines whether the first time unit satisfies the reporting condition of the PHR. If the power headroom reporting condition is met, the terminal device sends the PHR to the network device, and if the power headroom reporting condition is not met The terminal device does not send the PHR to the network device. If the terminal device also has physical uplink shared channel scheduling on other cells in the first time unit, the terminal device may send the PHR through the first physical uplink shared channel, or may send the physical uplink shared channel on other cells in the first time unit. PHR.
  • the power headroom reporting condition includes at least one of the following:
  • the power headroom report of the terminal device prohibits the timer from reaching or has reached the first power headroom report prohibition timing threshold, and the path loss is greater than or equal to the first path loss threshold;
  • the periodic power headroom reporting timer of the terminal device reaches the first period power headroom reporting timing threshold
  • the terminal device receives signaling for adding the primary secondary cell.
  • the power headroom report prohibit timer can be expressed as prohibitPHR-Timer, and the path loss threshold can be expressed as dl-PathlossChange.
  • the power headroom report prohibits the timer from reaching the first power headroom report prohibition timing threshold, which means that when the terminal device performs the judgment, the prohibitPHR-Timer just reaches the first power headroom report prohibition timing threshold, that is, just timeout.
  • the power headroom report prohibits the timer from reaching the first power headroom report prohibition timing threshold, which means that the prohibitPHR-Timer has reached the first power headroom report prohibition timing threshold before the terminal device performs the judgment, that is, the terminal device performs the terminal threshold.
  • the predictionPHR-Timer has timed out before the judgment.
  • the periodic power headroom reporting timer can be expressed as a periodicPHR-Timer.
  • the terminal device After receiving the configuration information or the reconfiguration information of the power headroom report, the terminal device determines that the power headroom reporting condition is met, and if the terminal device is scheduled to send the PUSCH if the terminal equipment meets the condition, the terminal device sends the PHR, and the power is sent.
  • the margin report disables the timer prohibitPHR-Timer and the periodic power headroom report timer reset.
  • the terminal device After receiving the signaling for activating the configured secondary cell, the terminal device determines that the power headroom reporting condition is met, and if the terminal device is scheduled to send the PUSCH if the terminal device meets the condition, the terminal device sends the PHR, and the power is sent.
  • the margin report disables the timer prohibitPHR-Timer and the periodic power headroom report timer reset.
  • the terminal device After receiving the signaling for adding the primary secondary cell, the terminal device determines that the power headroom reporting condition is met, and if the terminal device is scheduled to send the PUSCH if the terminal device meets the condition, the terminal device sends the PHR, and the power headroom is sent.
  • the report prohibits the timer prohibitPHR-Timer and the periodic power headroom report timer reset.
  • the power headroom report prohibiting timer since the terminal device determines whether the first time unit satisfies the power headroom reporting condition, the power headroom report prohibiting timer, the path loss threshold, and the periodic power headroom reporting timer are also involved.
  • the power headroom report prohibition timer, the path loss threshold, and the periodic power headroom reporting timer used when the terminal device determines whether the first time unit satisfies the power headroom report is represented as A-prohibitPHR-Time, A-, respectively.
  • the dl-PathlossChange and the A-periodicPHR-Timer determine whether the second time unit of the second type satisfies the power headroom report prohibition timer, the path loss threshold, and the periodic power headroom report used in the power headroom report.
  • the timers are denoted as B-prohibitPHR-Time, B-dl-PathlossChange, and B-periodicPHR-Timer, respectively.
  • A-prohibitPHR-Time, A-dl-PathlossChange, A-periodicPHR-Timer, B-prohibitPHR-Time, B-dl-PathlossChange, and B-periodicPHR-Timer can all be configured by network devices.
  • the network device only configures a set of parameters for the terminal device, for example, the network device sends the first configuration information to the terminal device, where the first configuration information is used to configure the first power headroom report prohibition timing threshold for the terminal device, A path loss threshold and a first period power headroom report timing threshold. That is, the periodic power headroom reporting timing threshold of the A-periodicPHR-Timer is the same as the periodic power headroom reporting timing threshold of the B-periodicPHR-Timer, and the power margin reporting of the A-prohibitPHR-Timer prohibits the timing threshold and the B-prohibitPHR-Timer. The power headroom report prohibits the same timing threshold.
  • A-dl-PathlossChange is the same as B-dl-PathlossChange, and the time units of these three parameters are the second length. Therefore, it can be understood that the first configuration information is used to determine whether the first type of time unit and the second type of time unit satisfy the power headroom reporting condition.
  • the periodic power headroom reporting timing threshold of the A-periodicPHR-Timer is the first periodic power headroom reporting timing threshold as described above, and the periodic power headroom reporting timing threshold of the B-periodic PHR-Timer is also referred to as the timing threshold.
  • the first period power headroom reports the timing threshold; the power margin report of the A-prohibitPHR-Timer prohibits the timing threshold as the first power headroom report prohibition timing threshold as described above, and the power of the B-prohibitPHR-Timer is also hereinafter.
  • the margin report prohibition timing threshold is called the second power headroom report prohibition timing threshold;
  • A-dl-PathlossChange is the first path loss threshold as described above, and B-dl-PathlossChange is also referred to as the second path loss. Threshold.
  • the unit in which the terminal device measures the path loss is usually a granularity of the second length, for example, a TTI. Then, the power control of the terminal device to transmit the PUSCH and the sPUSCH may also be the granularity of the second length. Therefore, taking the first physical uplink shared channel as the sPUSCH and the second physical uplink shared channel as the PUSCH as an example, it is a reasonable choice to configure a unified parameter for the PHR transmitted on the PUSCH and the PHR transmitted on the sPUSCH.
  • the network device configures respective parameters of the PHR of the first physical uplink shared channel and the PHR of the second physical uplink shared channel, for example, the network device sends the first configuration information and the second configuration information to the terminal device, The terminal device receives the first configuration information and the second configuration information that are sent by the network device, where the first configuration information is used to indicate the first power headroom report prohibition timing threshold, the first path loss threshold, and the first period power headroom report timing threshold.
  • the second configuration information is used to indicate a second power headroom report prohibition timing threshold, a second path loss threshold, and a second period power headroom report timing threshold, where the first configuration information is used to determine whether the second type time unit satisfies power The remaining amount reporting condition, the second configuration information is used to determine whether the first type of time unit satisfies a power headroom reporting condition.
  • the periodic power headroom reporting timing threshold of the A-periodicPHR-Timer and the periodic power headroom reporting timing threshold of the B-periodicPHR-Timer prohibits the timing threshold, and the three pairs of A-dl-PathlossChange and B-dl-PathlossChange.
  • the possible configurations may be the same, or the configuration may be at least one of them.
  • the units of A-periodicPHR-Timer, A-prohibitPHR-Timer, and A-dl-PathlossChange are the second length, and the units of B-periodicPHR-Timer, B-prohibitPHR-Timer, and B-dl-PathlossChange are the first. length.
  • the network device can also be configured with different parameters, which is also convenient for the terminal device to judge according to different parameters, which is more consistent with the actual situation of the corresponding physical uplink shared channel.
  • multiple sTTIs may be scheduled for the sPUSCH.
  • the terminal device may select to send the PHR in each scheduled sTTI, or may also select only The PHR is sent at one of the sTTIs in the scheduled sTTI.
  • the terminal device may select any one of the scheduled sTTIs to transmit the PHR, or may also select a scheduled sTTI to transmit the PHR according to a predetermined rule.
  • the following mainly introduces why the terminal device selects a scheduled sTTI to send a PHR according to a predetermined rule, and how to select specifically.
  • the trigger condition of the PHR is satisfied at TTI#n, but sTTI#8, sTTI#9, and sTTI#10 are all scheduled for sPUSCH.
  • a predetermined rule is that the terminal device has the first sTTI sent by the sPUSCH in the TTI to transmit the PHR, that is, the first time unit is the first time that the terminal device sends the physical uplink shared channel in the second time unit.
  • a type of time unit is because, in the different sTTIs in the TTI, the PHR sent by the terminal device does not change the reference meaning of the network device scheduling, and the terminal device reports the PHR once in the TTI.
  • the terminal device When the sTTI #2 receives the indication information of the scheduling sPUSCH of the sTTI#, the terminal device does not receive the indication information of the sTTI in the TTI#n for the subsequent sTTI#3, sTTI#4, etc., which is unpredictable. For the sake of security, the terminal device needs to include the PHR when the sTTI #2 receives the indication of the scheduling sPUSCH of the sTTI #8 and prepares the data of the sPUSCH on the sTTI #8.
  • the above PHR trigger condition is judged by the TTI granularity.
  • the terminal device shall transmit the PHR in the first sTTI scheduled within the TTI.
  • the network device and the terminal device may have different understandings of which of these scheduled sTTIs is the first sTTI. For example, the terminal device may lose or fail to detect the scheduling information of the first sTTI actually in the scheduled sTII, that is, the “first sTTI” understood by the terminal device and the “first sTTI” understood by the network device. Not necessarily the same sTTI. Therefore, as a network device, the PHR can be blindly detected in a plurality of sTTIs scheduled in the TTI to prevent the PHR from being missed. After the network device detects the PHR in one of the sTTIs, the detection of the subsequent sTTI in the TTI can be stopped.
  • TTI#n schedules three sTTI transmission sPUSCHs, which are sTTI#8 scheduled in sTTI#2, sTTI#9 scheduled in sTTI#3, and sTTI scheduled in sTTI#4. #10. Then the first scheduled sTTI in the TTI should be sTTI#8.
  • the terminal device does not detect the scheduling information in sTTI#2, the terminal device does not know that sTTI#8 is the first scheduled sTTI in the TTI, and the terminal device detects the scheduling information in sTTI#3, so the terminal device will If sTTI#9 is considered to be the first scheduled sTTI in the TTI, the terminal device will send the PHR at sTTI#9. For network devices, detection can be started from sTTI#8. If PHR is not detected in sTTI#8, the network device will continue to detect sTTI#9. If the network device detects PHR in sTTI#9, the network device Detection will stop and there is no need to detect sTTI#10. In this way, the network device can be prevented from missing the PHR, and the network device can stop detecting after detecting the PHR, and can also save power consumption of the network device as much as possible.
  • the network device schedules the terminal device to send uplink data in subframe n+1 in subframe n-3, and the second sTTI scheduling of the network device in subframe n at the granularity of sTTI
  • the terminal device transmits uplink data in the second sTTI in the subframe n+1.
  • the terminal device starts to calculate the PHR of the PUSCH in the subframe n+1 after receiving the scheduling information corresponding to the subframe n+1, that is, starts the group data packet, and the terminal device does not know that the scheduling information corresponds to the scheduling information at this time.
  • the sTTI is scheduled to send the uplink data, so that the PHR transmitted by the terminal device in the subframe n+1 cannot include the power headroom value corresponding to all the channels for transmitting the uplink data at the time of reporting the PHR.
  • the length of the first time unit is smaller than the length of the second time unit, and the terminal device can also send the first power headroom report to the network device in the first time unit, so that the terminal device tries to The power headroom value of each cell with a more accurate PHR transmission time may be sent to the network device, so that the network device provides more effective information for scheduling uplink transmission of the terminal device.
  • the terminal device may further obtain the second indication information, where the second indication information is used to instruct the terminal device to send the second physical uplink shared channel in the second time unit.
  • the time when the terminal device acquires the first indication information is different from the time when the terminal device acquires the second indication information.
  • the terminal device acquires the first indication information in the third time unit, and acquires the second indication information in the fourth time unit, where the start time of the third time unit is earlier than the start time of the fourth time unit, or the third time unit The starting time is later than the starting time of the fourth time unit.
  • the network device may send the second indication information to the terminal device, and the terminal device receives the second indication information sent by the network device.
  • the second indication information is implemented by DCI, and is used for scheduling the terminal device to send the second PUSCH in the second time unit.
  • the terminal device sends a second power headroom report to the network device by using the second physical uplink shared channel, and the network device receives the second power headroom report by using the second physical uplink shared channel.
  • the second time unit satisfies the power headroom reporting condition.
  • the power headroom reporting condition here is the same as the aforementioned power headroom reporting condition.
  • the power headroom reporting condition includes multiple types, and the terminal device may send a power headroom report to the network device as long as at least one of the conditions is met, and then the power headroom that is satisfied when the terminal device sends the first power headroom report.
  • the reporting condition and the power headroom reporting condition that are met when the terminal device sends the second power headroom report may be the same type of condition, for example, the periodic power headroom reporting timer reaches the corresponding periodic power headroom reporting timing threshold.
  • the condition, or both, may be different types of conditions.
  • the power headroom reported by the terminal device when transmitting the first power headroom report condition is that the periodic power headroom report timer reaches the first period power headroom report timing.
  • the condition of the threshold, and the power headroom reporting condition satisfied by the terminal device when transmitting the second power headroom report is a condition that the terminal device receives the signaling for activating the configured secondary cell.
  • the first type of time unit is sTTI
  • the second type of time unit is TTI
  • the first physical uplink shared channel is sPUSCH
  • the second physical uplink shared channel is PUSCH
  • the terminal device is The PUSCH is scheduled to be sent
  • the sPUSCH is scheduled to be sent in at least one sTTI.
  • the trigger condition of the PHR is satisfied in TTI#n, where there are both PUSCH scheduling and sPUSCH scheduling. If the terminal device transmits the PHR only on the PUSCH, the PHR is carried in the PUSCH because the terminal device starts to transmit the PUSCH packet to the TTI#n after the TTI#n-4 receives the second indication information of the scheduled PUSCH, but the PHR is carried in the PUSCH. The terminal device is unaware of whether the network device will send sPUSCH in the sTTI in the next sTTI#2, sTTI#3 scheduling TTI#n (possibly the network device also does not expect this).
  • the terminal device determines the PHR in the PUSCH data packet when the PUSCH group packet is transmitted to the TTI #n.
  • the power headroom value corresponding to the real transmit power of the uplink channel is determined by the terminal device determining the power headroom value of the cell in which the uplink channel is located.
  • the power headroom value of the cell is the real power headroom value.
  • its corresponding power headroom value is a virtual power headroom value.
  • the terminal device receives the indication information for scheduling the sPUSCH of the sTTI#8 in the TTI#n of the network device in the sTTI#2 in the TTI#n-1, and the sTTI in the TTI#n-1.
  • the terminal device #3 receives the indication information for scheduling sPUSCH for sTTI#9 in TTI#n.
  • the terminal device does not reflect the power requirement of the sPU of the sTTI #8 or the sTTI #9 in the PHR transmitted by the terminal of the TTI #n, it is necessary for the terminal device to resend another PHR in the sPUSCH transmitted in the TTI #n. That is, the PHR2 includes the real power headroom value corresponding to the cell where the sPUSCH is transmitted in the TTI#n, and the real power headroom value includes the power headroom value determined by the real transmit power of the sPUSCH.
  • the network device can obtain the power headroom value corresponding to the uplink channel sent by the sPUSCH at the time of receiving the PHR2, thereby adjusting the subsequent uplink data scheduling result of the terminal device.
  • the terminal device may select to send the PHR to the network device on both the PUSCH and the sPUSCH, that is, on the PUSCH.
  • Report PHR1 and report PHR2 on sPUSCH For the network device, the PHR in the uplink data corresponding to the later indication information sent in the TTI may be taken as the standard. For example, for the same scheduled TTI, the indication information for scheduling the PUSCH is sent earlier, and the indication information for scheduling the sPUSCH is sent later. After the network device receives the PHR1 and the PHR2, the PHR2 may be used.
  • PHR2 is the PHR in the uplink data corresponding to the later indication information.
  • the technical solution provided by the embodiment of the present application allows a PHR of a time unit of a different length to be sent to a network device in a scheduling unit of a longer physical uplink shared channel, which effectively solves the problem of allowing uplink channels of different lengths on one carrier.
  • the PHR is reported when transmitting.
  • the terminal device acquires the first indication information, where the first indication information is used to indicate that the terminal device sends the first physical uplink shared channel in the first time unit, and the first time unit satisfies the condition that the terminal device sends the power headroom report; the terminal device And obtaining second indication information, where the second indication information is used to indicate that the second physical uplink shared channel is sent in the second time unit, and the second time unit satisfies the condition that the terminal device sends the power headroom report. Then, the terminal device sends the first power headroom report to the network device through the first physical uplink shared channel, and sends the second power headroom report to the network device by using the second physical uplink shared channel.
  • the power headroom report determined by the terminal device according to the earlier scheduling indication information cannot accurately reflect the uplink channel actually sent by the terminal.
  • the corresponding power headroom reports the value of the problem.
  • the terminal device receives the second indication information of the scheduling TTI #n transmitting the PUSCH in the TTI #n-4, and based on the acquisition time of the second indication information, the uplink channel sent by the TTI#n determined by the terminal device is
  • the channel included in the second uplink channel set is as shown in FIG. 9 , and the activated carrier of the terminal device is three carriers, for example, carrier 1, carrier 2, and carrier 3.
  • the terminal device acquires in the subframe n-4 that the network device schedules it on the subframe n, and the carrier 1 and the carrier 2 respectively transmit the uplink channel 1 and the uplink channel 2, then the second uplink channel set includes the uplink channel 1 on the carrier 1.
  • the uplink channel 2 on the carrier 2 when the terminal device starts to according to the second indication packet data packet, it knows that the network device schedules the carrier 1 to transmit the uplink channel 1 in the TTI#n, and knows that the network device schedules the carrier 2 in the TTI# n transmits the uplink channel 2, but does not know that the network device also schedules the carrier 3 to transmit the uplink channel 3 and the uplink channel 4 in sTTI #8 and sTTI #9 in TTI #n, so the second uplink channel set does not include the carrier 2 Upstream channel 3 and uplink channel 4.
  • the terminal device calculates a virtual power headroom value for the carrier 3, that is, the terminal device includes the real power headroom values of the carrier 1 and the carrier 2 in the PHR transmitted by the uplink channel 1 or the uplink channel 2 of the TTI #n, and the carrier. 3 virtual power headroom value.
  • the terminal device receives the first indication information of the network device pair sTTI#8 for scheduling the sPUSCH in the sTTI#2 in the TTI#n-1, and based on the acquisition time of the second indication information, the sTTI# determined by the terminal device 8
  • the uplink channel transmitted is a channel included in the first uplink channel set.
  • the network device since the terminal device starts to start according to the first indication packet data packet, it is known that the network device also schedules the carrier 3 to transmit the uplink channel 3 and the carrier 3 at the sTTI of the TTI#n in the sTTI#8 of the TTI#n.
  • the terminal device calculates the true power headroom value of the uplink channel 3 and the uplink channel 4 for the carrier 3.
  • the second uplink channel set transmitted at sTTI #8 refers to all uplink channels transmitted within the time range of the sTTI #8.
  • the terminal device should transmit the PHR in the first sTTI scheduled in the TTI. Then, in FIG. 9, both sTTI#8 and sTTI#9 in TTI#n have scheduled uplink channels, and according to this predetermined rule, the terminal device can transmit only the PHR of the uplink channel 3 scheduled in sTTI#8. Instead of transmitting the PHR of the uplink channel 4 scheduled in sTTI #9.
  • the first uplink control channel set may include uplink channel 1 on carrier 1, uplink channel 2 on carrier 2, and uplink channel 3 on carrier 3. The terminal device only needs to calculate the true power headroom value of the uplink channel 3 of the carrier 3.
  • the uplink channel set in the embodiment of the present application may include a physical uplink shared channel, such as a PUSCH, and may also include a short physical uplink shared channel, such as an sPUSCH, and may also include a physical uplink control channel, such as a PUCCH. Make restrictions.
  • the first uplink channel set includes an uplink channel 1 on carrier 1, an uplink channel 2 on carrier 2, and an uplink channel 3 on carrier 3.
  • the second uplink channel set includes uplink channel 1 on carrier 1. And an uplink channel 2 on carrier 2, the second uplink channel set being a subset of the first uplink channel set.
  • the terminal device sends the first PHR to the network device by using the first physical uplink shared channel, and sends the second PHR to the network device by using the second physical uplink shared channel.
  • the first PHR corresponds to the first uplink channel set
  • the second power headroom report corresponds to the second uplink channel set
  • the second uplink channel set is a subset of the first uplink channel set.
  • the first PHR includes a real power headroom value of each cell where each uplink channel in the first uplink channel set is located, and includes a virtual power headroom value of other activated cells except the cells.
  • the second PHR includes real power headroom values of the cells in which the uplink channels are located in the second uplink channel set, and includes virtual power headroom values of other activated cells except the cells.
  • the second set of uplink channels is a subset of the first set of uplink channels, then the first PHR includes more real power headroom values than the second PHR.
  • the first PHR includes a real power headroom value corresponding to the third uplink channel set
  • the second power headroom report includes a virtual power headroom value corresponding to the third uplink channel set
  • the third uplink channel set is the second uplink channel.
  • the third uplink channel set includes the uplink channel 3 of the carrier 3 transmitted by the sTTI #8 of the TTI #n. It can be seen that the first PHR can more accurately reflect the power headroom of the terminal device in the first time unit than the second PHR, and the network device determines the requirement for the scheduling result of the terminal device according to the received power headroom report.
  • the terminal device may also reset the power headroom report prohibiting timer and the periodic power headroom reporting timer to The process of judging whether to send a PHR in the next time can be performed in time.
  • the terminal device uses the end point of the second time unit in which the first time unit is located as the starting point of the power headroom report prohibition timer and the periodic power headroom report timer reset.
  • the first power headroom report corresponds to the first uplink channel set
  • the second power headroom report corresponds to the second uplink channel set
  • the first uplink channel set is sent by the terminal device in the first time unit.
  • a set of uplink channels, the second uplink channel set being a set of uplink channel components sent by the terminal device in the second time unit.
  • the terminal device obtains the first indication information after acquiring the second indication information
  • the second uplink channel set is a subset of the first uplink channel set.
  • the terminal device first acquires the second indication information, and after acquiring the second indication information, the terminal device starts to assemble the packet at the first moment, where the data packet includes the second time unit that is known by the terminal device at the first time.
  • the power headroom value corresponding to each of the uplink channels is the power headroom value corresponding to each of the uplink channels. And after the terminal device obtains the first indication information, after acquiring the first indication information, the terminal device starts to group the packet at the second moment, where the data packet includes the first time unit that is known by the terminal device at the second time.
  • the power headroom value corresponding to each of the uplink channels Taking the first time before the second time as an example, the uplink channel scheduled by the terminal device at the first time in the second time unit may not include the first time unit scheduling that is known by the terminal device at the second time.
  • the uplink channel so the uplink channel corresponding to the power headroom value of the packet at the first time of the terminal device is only a subset of the uplink channel corresponding to the power headroom value of the packet of the terminal device at the second time.
  • the uplink channel herein may include a physical uplink shared channel, and may also include a physical uplink control channel.
  • the first power headroom report includes a real power headroom value corresponding to the third uplink channel set
  • the second power headroom report includes a virtual power headroom value corresponding to the third uplink channel set.
  • the network device schedules the terminal device to transmit uplink data on carrier 1 in subframe n+1 in subframe n-3, and the first row in FIG. 5 represents carrier 1.
  • the second short TTI scheduling terminal device in the subframe n transmits the uplink data on the carrier 2 in the second short TTI in the subframe n+1, the first in FIG.
  • the second line represents carrier 2.
  • the terminal device starts to calculate the PHR of the physical uplink shared channel in the subframe n+1 when the scheduling information corresponding to the subframe n+1 is received, that is, the group packet is started, and the terminal device does not know the scheduling at this time.
  • the short TTI is scheduled to send uplink data in the subframe n corresponding to the information, that is, the terminal device considers that the uplink data is not scheduled on the carrier 2 in the subframe n+1, and the terminal device calculates the virtual power margin value for the carrier 2.
  • the PHR transmitted by the terminal device in the subframe n+1 is the second power headroom report, and the second power headroom report includes the virtual power headroom value of the carrier 2.
  • the terminal device may also send the PHR to the network device at the granularity of the short TTI, that is, the terminal device starts to calculate when receiving the scheduling information corresponding to the second short TTI in the subframe n+1.
  • the PHR of the physical uplink shared channel in the subframe n+1 is the start packet.
  • the terminal device has learned that the second short TTI in the subframe n+1 is also scheduled to send uplink data, and the terminal device will be the carrier. 2 Calculate the true power headroom value.
  • the PHR sent by the terminal device in the second short TTI of the subframe n+1 is the first power headroom report, and the first power headroom report includes the true power headroom value of the carrier 2, then the first power is considered.
  • the remaining amount report includes the real power headroom value of the physical uplink shared channel scheduled in the second short TTI in the subframe n+1, that is, the first power headroom report includes the real power corresponding to the third uplink channel set.
  • the remaining value, the second power headroom report includes a virtual power headroom value corresponding to the third uplink channel set.
  • FIG. 10 shows a schematic structural diagram of a terminal device 1000.
  • the terminal device 1000 can implement the functions of the terminal device referred to above.
  • the terminal device 1000 can include a processor 1001 and a transmitter 1002.
  • the terminal device 1000 may further include a receiver 1003.
  • the processor 1001 can be used to perform S41 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein. If the first indication information is sent by the network device to the terminal device, the S41 can be understood that the receiver 1003 of the terminal device 1000 receives the first indication information sent by the network device, and the processor 1001 acquires the receiver 1003. First indication.
  • Transmitter 1002 can be used to perform S42 in the embodiment shown in FIG.
  • the receiver 1003 can be configured to perform receiving first configuration information, second configuration information, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 11 shows a schematic structural diagram of a network device 1100.
  • the network device 1100 can implement the functions of the network devices referred to above.
  • the network device 1100 can include a receiver 1101 and a transmitter 1102.
  • the transmitter 1102 can be used to perform S41 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • S41 may be understood as: the network device 1100 sends the first indication information to the terminal device by using the transmitter 1102.
  • Receiver 1101 can be used to perform S42 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the network device 1100 may further include a processor 1103, configured to generate first indication information, second indication information, first configuration information, second configuration information, and the like, and/or used to complete the support described in this document.
  • a processor 1103 configured to generate first indication information, second indication information, first configuration information, second configuration information, and the like, and/or used to complete the support described in this document.
  • All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the terminal device 1000 and the network device 1100 are presented in the form of dividing each functional module into functions, or may be presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality. .
  • ASIC application-specific integrated circuit
  • terminal device 1000 or the network device 1100 can also be implemented by the structure of the communication device 1200 as shown in FIG.
  • the communication device 1200 can include a memory 1201, a processor 1202, and a communication interface 1203.
  • the memory 1201 and the communication interface 1203 are connected to the processor 1202.
  • the memory 1201 is for storing computer execution instructions, and when the communication device 1200 is running, the processor 1202 executes computer execution instructions stored by the memory 1201 to cause the communication device 1200 to perform the method provided by the embodiment shown in FIG.
  • the communication interface 1203 can be implemented by a transceiver or by a separate receiver and transmitter.
  • transmitter 1002 and receiver 1003 may correspond to communication interface 1203 in FIG.
  • the processor 1001 may be embedded in or independent of the memory 1201 of the communication device 1200 in hardware/software.
  • receiver 1101 and transmitter 1102 can correspond to communication interface 1203 in FIG.
  • the processor 1103 can be embedded in or independent of the memory 1201 of the communication device 1200 in hardware/software.
  • the communication device 1300 can be a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), and a central processing unit ( Central processor unit (CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), programmable logic controller (programmable logic) Device, PLD) or other integrated chip.
  • the communication device 1300 may also be a separate network element, such as a terminal device or a network device as described above.
  • the terminal device provided by the embodiment shown in FIG. 10 can also be implemented in other forms.
  • the terminal device includes a transmitting unit and a processing unit.
  • the terminal device may further include a receiving unit.
  • the processing unit can be used to perform S41 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein. If the first indication information is sent by the network device to the terminal device, the S41 can understand that the receiving unit of the terminal device receives the first indication information sent by the network device, and the processing unit acquires the first indication received by the receiving unit. information.
  • the transmitting unit can be used to perform S42 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the receiving unit may be configured to perform receiving, by the receiving, the first configuration information, the second configuration information, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the network device provided by the embodiment shown in FIG. 11 can also be implemented in other forms.
  • the network device includes a receiving unit and a transmitting unit.
  • the transmitting unit can be used to execute S41 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • S41 may be understood as: the network device sends the first indication information to the terminal device by using the sending unit.
  • the receiving unit can be used to perform S42 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the network device may further include a processing unit, configured to generate first indication information, second indication information, first configuration information, second configuration information, and the like, and/or to complete support for the technology described herein Other processes. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the terminal device 1000, the network device 1100, and the communication device 1200 provided by the embodiments of the present application can be used to perform the method provided by the embodiment shown in FIG. 4, so that the technical effects that can be obtained can be referred to the foregoing method embodiment, This will not be repeated here.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种功率余量报告发送方法及设备,用于向网络设备发送功率余量报告。其中的一种功率余量报告发送方法包括:终端设备获取第一指示信息,第一指示信息用于指示终端设备在第一时间单元发送第一物理上行共享信道;终端设备通过第一物理上行共享信道向网络设备发送第一功率余量报告,第一时间单元满足功率余量报告条件。

Description

一种功率余量报告发送、接收方法及设备
本申请要求在2017年6月29日提交中国专利局、申请号为201710518292.1、申请名称为“一种功率余量报告发送方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种功率余量报告发送、接收方法及设备。
背景技术
无线系统中的上行功率控制是非常重要的,通过上行功率控制,可以使得终端设备既保证上行数据的质量,又尽可能地减少对系统和其他用户的干扰,延长终端设备的电池的使用时间。基站通过上行功率控制可以使得上行传输适应不同的无线传输环境,包括路损、阴影、快速衰落、小区内及小区间其他终端设备的干扰等。
发明内容
本申请实施例提供一种功率余量报告发送、接收方法及设备,用于向网络设备发送功率余量报告,从而进行上行功率控制。
第一方面,提供一种功率余量报告发送方法,该方法可由终端设备执行。该方法包括:终端设备获取第一指示信息,第一指示信息用于指示终端设备在第一时间单元发送第一物理上行共享信道;终端设备通过第一物理上行共享信道向网络设备发送第一功率余量报告,第一时间单元满足功率余量报告条件。功率余量报告条件包括以下至少一种:
终端设备的功率余量报告禁止定时器达到或者已经达到第一功率余量报告禁止定时阈值,并且路径损耗大于或等于第一路径损耗阈值;
终端设备的周期功率余量报告定时器达到第一周期功率余量报告定时阈值;
终端设备接收到功率余量报告的配置信息或者重配置信息;
终端设备接收到用于激活被配置的辅小区的信令;
终端设备接收到用于添加主要辅小区的信令。
第二方面,提供一种功率余量报告接收方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备向终端设备发送第一指示信息,第一指示信息用于指示终端设备在第一时间单元发送第一物理上行共享信道;网络设备通过第一物理上行共享信道接收终端设备发送的第一功率余量报告,第一时间单元满足功率余量报告条件。功率余量报告条件包括以下至少一种:
终端设备的功率余量报告禁止定时器达到或者已经达到第一功率余量报告禁止定时阈值,并且第一路径损耗超过路径损耗阈值;
终端设备的周期功率余量报告定时器达到第一周期功率余量报告定时阈值;
终端设备接收到功率余量报告的配置信息或者重配置信息;
终端设备接收到用于激活被配置的辅小区的信令;
终端设备接收到用于添加主要辅小区的信令。
本申请实施例中,终端设备如果获取了用于指示在第一时间单元发送第一物理上行共 享信道的第一指示信息,则就可以通过第一物理上行共享信道向网络设备发送第一功率余量报告,即,通过本申请实施例提供的技术方案,终端设备可以向网络设备发送被调度的物理上行共享信道的功率余量报告,从而网络设备能够根据终端设备发送的第一功率余量报告进行上行功率控制,使得上行传输适应不同的无线传输环境。
在一个可能的设计中,第一时间单元的长度小于或等于一个时隙的长度。
本申请实施例中,第一时间单元的长度较小,即,网络设备可以采用较小的时间粒度来调度上行数据,增加了调度的灵活性。而且,终端设备可以在较小的时间粒度上向网络设备发送功率余量报告,使得网络设备能够接收较为完整的功率余量报告,增加上行功率控制的准确性。
在一个可能的设计中,终端设备获取第二指示信息,第二指示信息用于指示终端设备在第二时间单元发送第二物理上行共享信道;终端设备通过第二物理上行共享信道向网络设备发送第二功率余量报告;第一时间单元属于第二时间单元,第二时间单元的长度大于第一时间单元的长度。相应的,网络设备向终端设备发送第二指示信息,第二指示信息用于指示终端设备在第二时间单元发送第二物理上行共享信道;网络设备通过第二物理上行共享信道接收终端设备发送的第二功率余量报告,第二时间单元的长度大于第一时间单元的长度。
在本申请实施例中,网络设备可以采用不同的时间粒度来调度上行数据,例如第一时间单元的粒度和第二时间单元的粒度。那么,如果终端设备只是在第二时间单元的粒度上向网络设备发送功率余量报告,则发送的功率余量报告中可能会遗漏网络设备在第一时间单元上调度的上行时间的功率余量值。因此本申请实施例中,终端设备在第一时间单元的粒度和第二时间单元的粒度上均可以向网络设备发送功率余量报告,从而使得网络设备能够获得较为完整的功率余量值,尽量避免功率余量值的遗漏,增加上行功率控制的准确性。
在一个可能的设计中,第一时间单元属于第二时间单元,第一时间单元是第一类型时间单元,第二时间单元是第二类型时间单元,第一类型时间单元的长度为第一长度,第二类型时间单元的长度为第二长度,第二长度大于所述第一长度;第一类型时间单元和第二类型时间单元均用于调度物理上行共享信道。
即,网络设备可以采用不同的时间粒度来调度物理上行共享信道,增加了调度的灵活性。
在一个可能的设计中,第二类型时间单元为TTI,第一类型时间单元为sTTI;或,第二类型时间单元为slot,第一类型时间单元为Mini-slot。
对第一类型时间单元和第二类型时间单元进行了举例。在本申请实施例中,第一类型时间单元和/或第二类型时间单元的实现方式不限于此。
在一个可能的设计中,第一功率余量报告禁止定时阈值的单位是第二长度;和/或,第一周期功率余量报告定时阈值的单位是第二长度。
终端设备测量路径损耗的单位通常是以第二长度为粒度,例如以TTI为粒度。则终端设备发送PUSCH和sPUSCH的功率控制也可能是以第二长度为粒度的。因此,以第一物理上行共享信道是sPUSCH、第二物理上行共享信道是PUSCH为例,为PUSCH上发送的PHR和sPUSCH上发送的PHR配置统一的参数是较为合理的选择。
在一个可能的设计中,第一时间单元是终端设备在所述第二时间单元内发送物理上行共享信道的第一个第一类型时间单元。
以第一类型时间单元是TTI、第二类型时间单元是sTTI为例。在一个TTI内的不同sTTI,终端设备发送的功率余量报告对于网络设备调度的参考意义的变换不大,终端设备在该TTI内上报一次功率余量报告就可以了。而终端设备在其中的第一个sTTI接收到网络设备对TTI#n内的sTTI的调度物理上行共享信道的指示信息时,对后续的sTTI会不会还收到TTI#n内的sTTI的指示信息是不可预测的,为保险起见,终端设备在该sTTI接收到调度物理上行共享信道的指示后,可以在所调度的物理上行共享信道上发送功率余量报告。这里的第一个sTTI,不是指该TTI内的第一个sTTI,而是指该TTI内被调度发送物理上行共享信道的第一个sTTI。
在一个可能的设计中,终端设备获取第二指示信息,第二指示信息用于指示在第二时间单元发送第二物理上行共享信道;终端设备通过第二物理上行共享信道向网络设备发送第二功率余量报告;其中,终端设备获取第一指示信息的时间和终端设备获取第二指示信息的时间不同。相应的,网络设备向终端设备发送第二指示信息,第二指示信息用于指示在第二时间单元发送第二物理上行共享信道;网络设备通过第二物理上行共享信道接收终端设备发送的第二功率余量报告;其中,网络设备发送第一指示信息的时间和网络设备发送第二指示信息的时间不同。
在本申请实施例中,网络设备可以采用不同的时间粒度来调度上行数据,例如第一时间单元的粒度和第二时间单元的粒度。那么,如果终端设备只是在第二时间单元的粒度上向网络设备发送功率余量报告,则发送的功率余量报告中可能会遗漏网络设备在第一时间单元上调度的上行时间的功率余量值。因此本申请实施例中,终端设备在第一时间单元的粒度和第二时间单元的粒度上均可以向网络设备发送功率余量报告,从而使得网络设备能够获得较为完整的功率余量值,尽量避免功率余量值的遗漏,增加上行功率控制的准确性。
在一个可能的设计中,第一功率余量报告对应于终端设备在第一时间单元发送的第一上行信道集合,第二功率余量报告对应于终端设备在第二时间单元发送的第二上行信道集合,第二上行信道集合是第一上行信道集合的子集。
在一个可能的设计中,第一功率余量报告包括第三上行信道集合对应的真实功率余量值,第二功率余量报告包括第三上行信道集合对应的虚拟功率余量值。
终端设备在通过第一物理上行共享信道向网络设备发送第一功率余量报告,通过第二物理上行共享信道向网络设备发送第二功率余量报告。第一功率余量报告对应于第一上行信道集合,第二功率余量报告对应于第二上行信道集合,第二上行信道集合是第一上行信道集合的子集。具体的,第一功率余量报告中包括第一上行信道集合中各上行信道所在的各小区的真实功率余量值,并包括除这些小区外的其它激活小区的虚拟功率余量值。第二功率余量报告中包括第二上行信道集合中各上行信道所在的各小区的真实功率余量值,并包括除这些小区外的其它激活小区的虚拟功率余量值。第二上行信道集合是第一上行信道集合的子集,那么,第一功率余量报告中包括比第二功率余量报告更多的真实功率余量值。例如,第一功率余量报告包括第三上行信道集合对应的真实功率余量值,第二功率余量报告包括该第三上行信道集合对应的虚拟功率余量值,第三上行信道集合是第二上行信道在第一上行信道中的补集。由此可见,第一功率余量报告比第二功率余量报告可以更准确地体现终端设备在第一时间单元内的功率余量,满足网络设备根据接收的功率余量报告确定对终端设备的调度结果的需求。
在一个可能的设计中,终端设备接收网络设备发送的第一配置信息,第一配置信息用 于指示第一功率余量报告禁止定时阈值、第一路径损耗阈值、以及第一周期功率余量报告定时阈值;第一配置信息用于确定第一类型时间单元和第二类型时间单元是否满足功率余量报告条件。相应的,网络设备向终端设备发送第一配置信息,第一配置信息用于指示第一功率余量报告禁止定时阈值、第一路径损耗阈值、以及第一周期功率余量报告定时阈值;第一配置信息用于确定第一类型时间单元和第二类型时间单元是否满足功率余量报告条件。
在这种实施方式中,网络设备仅为终端设备配置一套参数,例如网络设备向终端设备发送第一配置信息,第一配置信息就用于为终端设备配置第一功率余量报告禁止定时阈值、第一路径损耗阈值、以及第一周期功率余量报告定时阈值。即终端设备判断第一时间单元是否满足功率余量报告时使用的周期功率余量报告定时阈值和终端设备判断第二时间单元是否满足功率余量报告时使用的周期功率余量报告定时阈值相同,终端设备判断第一时间单元是否满足功率余量报告时使用的功率余量报告禁止定时阈值和终端设备判断第二时间单元是否满足功率余量报告时使用的功率余量报告禁止定时阈值相同,终端设备判断第一时间单元是否满足功率余量报告时使用的路径损耗阈值和终端设备判断第二时间单元是否满足功率余量报告时使用的的路径损耗阈值相同,且这三个参数的时间单位都是第二长度。
终端设备测量路径损耗的单位通常是以第二长度为粒度,例如以TTI为粒度。则终端设备发送PUSCH和sPUSCH的功率控制也可能是以第二长度为粒度的。因此,以第一物理上行共享信道是sPUSCH、第二物理上行共享信道是PUSCH为例,为PUSCH上发送的PHR和sPUSCH上发送的PHR配置统一的参数是较为合理的选择。
在一个可能的设计中,终端设备接收网络设备发送的第一配置信息和第二配置信息;第一配置信息用于指示第一功率余量报告禁止定时阈值、第一路径损耗阈值、以及第一周期功率余量报告定时阈值,第二配置信息用于指示第二功率余量报告禁止定时阈值、第二路径损耗阈值、以及第二周期功率余量报告定时阈值;第一配置信息用于确定第二类型时间单元是否满足功率余量报告条件,第二配置信息用于确定第一类型时间单元是否满足功率余量报告条件。相应的,网络设备向终端设备发送第一配置信息和第二配置信息;第一配置信息用于指示第一功率余量报告禁止定时阈值、第一路径损耗阈值、以及第一周期功率余量报告定时阈值,第二配置信息用于指示第二功率余量报告禁止定时阈值、第二路径损耗阈值、以及第二周期功率余量报告定时阈值;第一配置信息用于确定第二类型时间单元是否满足功率余量报告条件,第二配置信息用于确定第一类型时间单元是否满足功率余量报告条件。
在这种实施方式中,网络设备分别为第一物理上行共享信道的功率余量报告和第二物理上行共享信道的功率余量报告配置各自的参数,这样也便于终端设备按照不同的参数来进行判断,会较为符合相应的物理上行共享信道的实际情况。
在一个可能的设计中,在终端设备通过第一物理上行共享信道向网络设备发送第一功率余量报告之后,终端设备重置功率余量报告禁止定时器和周期功率余量报告定时器。
终端设备可以在使用完毕后重置功率余量报告禁止定时器和周期功率余量报告定时器,以便及时进行下一次的对于功率余量报告条件的判断过程。
第三方面,提供一种终端设备。该终端设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件 包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,终端设备的具体结构可包括处理器和发送器。可选的,该终端设备还可以包括接收器。处理器、发送器和接收器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第四方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,网络设备的具体结构可包括发送器和接收器。可选的,该网络设备还可以包括处理器。处理器、发送器和接收器可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第五方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;通信接口,以及处理器,处理器与存储器、通信接口耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第一方面或第一方面的任意一种可能的设计中终端设备所执行的方法。
第六方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;通信接口,以及处理器,处理器与存储器、通信接口耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第二方面或第二方面的任意一种可能的设计中网络设备所执行的方法。
第七方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第八方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
通过本申请实施例提供的技术方案,终端设备可以向网络设备发送被调度的物理上行共享信道的功率余量报告,从而网络设备能够根据终端设备发送的第一功率余量报告进行上行功率控制,使得上行传输适应不同的无线传输环境。
附图说明
图1为本申请实施例中系统同时将TTI和sTTI作为调度粒度的示意图;
图2A为子载波间隔是15KHz时subframe与slot、以及Mini-slot的示意图;
图2B为子载波间隔是30KHz时slot与Mini-slot的示意图;
图2C为子载波间隔是60KHz时slot与Mini-slot的示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的一种功率余量报告发送、接收方法的流程图;
图5为本申请实施例提供的终端设备可能发送虚拟功率余量报告的示意图;
图6为本申请实施例中网络设备调度一个TTI内的多个sTTI发送sPUSCH的示意图;
图7为本申请实施例中网络设备通过两种调度粒度来调度上行数据的示意图;
图8为本申请实施例中终端设备选择将sPUSCH的PHR和PUSCH的PHR均发送给网络设备的示意图;
图9为本申请实施例中第一上行信道集合和第二上行信道集合的示意图;
图10为本申请实施例提供的终端设备的一种结构示意图;
图11为本申请实施例提供的网络设备的一种结构示意图;
图12为本申请实施例提供的通信装置的一种示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(User Equipment,UE)、无线终端设备、移动终端设备、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(Radio Frequency Identification,RFID)、传感器、全球定位系统(Global Positioning System,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB, evolutional Node B),或者也可以包括NR系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
3)下行控制信道,用于承载控制信息。本文不限制下行控制信道究竟包括哪些信道,例如包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)或增强的物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH),还可包括其他用于传输控制信息的下行控制信道。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
如上介绍了本申请实施例涉及的一些概念,下面介绍一下本申请实施例的技术背景。
长期演进(long term evolution,LTE)系统中,上行数据的传输是基于基站调度的,调度的基本时间单位是子帧(subframe),子帧包括多个时域符号。具体的调度流程为:基站发送下行控制信道,例如PDCCH或EPDCCH,该下行控制信道可以承载用于调度物理上行共享信道(physical uplink shared channel,PUSCH)的调度信息,该调度信息例如包括资源分配信息、调制编码方式等控制信息。终端设备在子帧中检测下行控制信道,并根据检测出的下行控制信道中承载的调度信息来进行下行数据信道的接收或上行数据信道的发送。
LTE系统目前所支持的载波宽度最大为20MHz,子载波间隔通常固定为15kHz。在LTE系统的帧结构中,都有资源块(resource block,RB)的概念。一个RB的带宽为180kHz,由12个带宽为15kHz的子载波组成,在时域上占用一个时隙(slot),即0.5ms,所以1个RB实际上是在时频上占据0.5ms、频域上的带宽180kHz的载波。终端设备如果在子帧n检测到用于调度PUSCH的PDCCH,则该PUSCH发送的子帧为子帧n+k。其中,对于频分双工(frequency division duplexing,FDD)系统来说,k=4。对时分双工(time division duplexing,TDD)系统来说,根据TDD的子帧配比不同和子帧n的取值不同,k的取值如表1所示:
表1
Figure PCTCN2018088910-appb-000001
无线系统中的上行功率控制是非常重要的,通过上行功率控制,可以使得终端设备既保证上行数据的质量,又尽可能地减少对系统和其他用户的干扰,延长终端设备的电池的使用时间。基站通过上行功率控制可以使得上行传输适应不同的无线传输环境,包括路损、阴影、快速衰落、小区内及小区间其他终端设备的干扰等。
下面介绍与本申请实施例相关的短TTI(short transmission time interval,sTTI)的概念。
在通讯网络中,时延是一个关键的绩效指标(key performance indicator,KPI),同时也影响着用户的使用体验。随着通讯协议的发展,对时延影响最明显的物理层的调度间隔也越来越小,在最初的宽带码分多址(wideband code division multiple access,WCDMA)系统中,调度间隔是10ms,在高速分组接入(high-speed packet access,HSPA)系统中,调度间隔缩短到2ms,而在LTE系统中,调度间隔又缩短到1ms。
小时延的业务需求导致LTE物理层需要引入sTTI的帧结构,以进一步缩短调度间隔,例如,传输时间间隔(transmission time interval,TTI)可以从1ms缩短为1个符号(symbol)到0.5ms之间。上述提及的符号,可以是LTE系统中的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,OFDM符号包括基于循环前缀的OFDM(Cyclic Prefix OFDM,CP-OFDM)符号、离散傅里叶变换(discrete fourier transform,DFT)拓展的OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)符号等。
由于TTI缩短对系统传输的时延可以带来好处,因此LTE系统可能支持sTTI数据传输。sTTI数据传输即TTI小于1个子帧或1ms的数据传输,例如sTTI长度为0.5ms,或者sTTI长度为1个符号、2个符号、3个符号、4个符号、5个符号、或6个符号中的一种,或者sTTI长度是1个符号、2个符号、3个符号、4个符号、5个符号、6个符号、或7个符号中至少2种不同TTI长度的组合,例如1ms内包含4个sTTI,长度分别是4个符号、3个符号、4个符号、3个符号,或3个符号、4个符号、3个符号、4个符号,或者是其他不同TTI长度的组合。为描述方便,对于1ms内包含4个sTTI的情况,如无特殊说明,在本申请实施例中描述为sTTI的长度有两种,一种是长度为3个符号的sTTI,一种是长度为2个符号的sTTI。同理,TTI小于1个子帧或1ms的数据包称为sTTI数据包。sTTI数据传输在频域上,可连续分布,也可非连续分布。需要说明的是,考虑到后向兼容性,系统中可能同时存在1ms的TTI传输和小于1ms的sTTI传输的情况,即系统可能同时将TTI和sTTI作为调度粒度,如图1所示。图1中包括子帧n、子帧n+1、和子帧n+2,系统中与此并存的,还包括多个sTTI,sTTI0和sTTI3的长度为2个符号,sTTI1、sTTI2、sTTI4和sTTI5的长度均为2个符号。
另外,NR系统中支持多种子载波间隔来适应不同的业务需求。在频域上,NR系统支持的子载波间隔的计算方式为f sc=f 0*2 m。其中,f 0=15kHz,m是整数。在时域上,提供了如下一些时间单位,包括:
■子帧(subframe),1个subframe的长度为1ms,在15kHz子载波间隔的结构(numerology)下包括14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。在1个subframe内,对15kHz以及15kHz以上的子载波间隔的各种numerology的符号边界是对齐的。其中,如无特殊说明,则下文中的“符号”均是指OFDM符号。
■时隙(slot),是一种可能的调度单元的时间长度。1个slot包括当前使用的numerology下的y个符号。1个subframe中包括整数个slot。例如,在子载波间隔是60KHz以下 的情况时,y=7;在子载波间隔是60kHz以上的情况时,y=14。
■迷你时隙(Mini-slot),是调度单元的最小时间长度。1个Mini-slot包括的OFDM符号可以小于当前使用的numerology下的y个符号。
可参考图2A、图2B和图2C,其中图2A为子载波间隔是15KHz时subframe与slot、以及Mini-slot的示意,图2B为子载波间隔是30KHz时slot与Mini-slot的示意,图2C为子载波间隔是60KHz时slot与Mini-slot的示意。
上述的1个slot或者1个迷你Mini-slot均可用于上行(UL)传输的时间单位。
请参考图3,介绍本申请实施例的一种应用场景。图3中包括网络设备和终端设备,采用本申请实施例提供的方法后,终端设备可向网络设备发送PHR。图3中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务,则多个终端设备都可以向网络设备发送PHR。图3中的网络设备例如为基站。
本文所提供的技术方案可以应用于5G NR系统(下文简称NR系统),还可以应用于下一代移动通信系统或其他类似的移动通信系统。
下面结合附图介绍本申请实施例提供的技术方案。
请参见图4,本申请一实施例提供一种功率余量发送、接收方法,在下文的介绍过程中,均以本申请实施例提供的方法应用于图3所示的应用场景为例。
S41、终端设备获取第一指示信息,第一指示信息用于指示终端设备在第一时间单元发送第一物理上行共享信道。
例如,网络设备可以向终端设备发送第一指示信息,则终端设备接收网络设备发送的第一指示信息,图4中的S41以此为例。例如第一指示信息通过下行控制信息(downlink control information,DCI)实现,用于调度终端设备在第一时间单元发送第一PUSCH。或者,网络设备可以通过高层配置消息向终端设备发送第一指示信息。具体的,上述PUSCH为用于终端设备向网络设备发送上行共享信道(Uplink-Shared channel,UL-SCH)和/或上行控制信息(Uplink control information,UCI)的物理信道。本领域技术人员可以理解的是,上述物理信道、UL-SCH和UCI在5G移动通信系统中可能仍然沿用PUSCH、UL-SCH和UCI的术语,也可能采用其他的术语。因此,本申请实施例对PUSCH、UL-SCH和UCI在各个通信系统中的命名不作限定。本申请实施例以PUSCH、UL-SCH和UCI为例进行说明。终端设备可以在PUSCH上发送UL-SCH和/或UCI。
S42、终端设备通过第一物理上行共享信道向网络设备发送第一功率余量报告,则网络设备通过第一物理上行共享信道接收第一功率余量报告。第一时间单元满足功率余量报告条件。
在本申请实施例中,第一时间单元属于第二时间单元,第一时间单元是第一类型时间单元,第二时间单元是第二类型时间单元,第一类型时间单元的长度为第一长度,第二类型时间单元的长度为第二长度,第二长度大于第一长度。例如第一类型时间单元的长度小于一个时隙(slot)的长度,如果一个slot为0.5ms,则第一类型时间单元的长度就小于0.5ms,当然本申请实施例中第一类型时间单元的长度不限于此,例如第一类型时间单元的长度还可以小于一个子帧,如果一个子帧为1ms,则第一类型时间单元的长度就小于1ms。在终端设备和网络设备所在的通信系统中,第一类型时间单元和第二类型时间单元均用于调度PUSCH。也就是说,本申请实施例中,同一个通信系统可以使用至少两种时域的调度粒度,其中第一类型时间单元和第二类型时间单元都可以作为通信系统所使用的调度粒度。例 如,第二类型时间单元为TTI,则第一类型时间单元可以是sTTI,则网络设备可以通过TTI来调度终端设备发送PUSCH,或者也可以通过sTTI来调度终端设备发送PUSCH,其中,网络设备通过sTTI调度终端设备发送的PUSCH可以是短PUSCH(short PUSCH,sPUSCH)。或者,第一类型时间单元为时隙(slot),则第二类型时间单元可以是迷你时隙(Mini-slot),则网络设备可以通过slot来调度终端设备发送PUSCH,或者也可以通过Mini-slot来调度终端设备发送PUSCH。当然如上只是举例,本申请实施例对于第一类型时间单元和第二类型时间单元的实现形式不做限制。
在上行功率控制的前提下,终端设备可以在特定的时间发送功率余量报告(power headroom report,PHR),PHR表示的是除了当前的PUSCH传输所使用的传输功率之外,终端设备还有多少传输功率可以使用,在这种情况下,PHR即终端设备允许的最大传输功率与当前评估得到的PUSCH传输功率之间的差值,用公式可以简单地表示为:PH=UEAllowedMaxTransPower-PuschPower。或者,PHR表示的是除了当前的PUSCH传输以及物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输所使用的传输功率之外,终端设备还有多少传输功率可以使用,在这种情况下,PHR即终端设备允许的最大传输功率与当前评估得到的PUSCH传输功率和PUCCH传输功率之间的差值,用公式可以简单地表示为:PH=UEAllowedMaxTransPower–PuschPower–PucchPower。在下文的讨论过程中,以PHR是终端设备允许的最大传输功率与当前评估得到的PUSCH传输功率之间的差值为例。
其中,PH的单位是dB。举例来说,PH的范围是[-23dB,+40dB]。由于PH的计算需要用到PUSCH的传输功率,因此终端设备可以在PUSCH的发送子帧计算PH。之所以定义PH值,原因之一在于它可以作为网络设备分配上行RB资源的一个参考依据。例如,如果PH值为负,表示当前的PUSCH传输功率已经超过终端设备允许的最大传输功率,在下次调度时可以考虑减少该终端设备的RB资源分配;而如果PH值为正,那么后续分配的RB数目还可以继续增加。在一个子帧上如果满足了PHR的触发条件,并且在当前子帧有PUSCH调度,则终端设备可以向网络设备发送PHR。
另外,系统中支持载波聚合(Carrier Aggregation,CA)技术,即网络设备把多个载波配置给一个终端设备来提升终端设备的数据传输速率。载波聚合下的CC按照承载的功能分为主小区(Primary Cell,PCell)和辅小区(Secondary Cell,SCell)。主小区和辅小区的概念如下:Primary Cell(PCell):主小区是工作在主频带上的小区。终端设备在该小区进行初始连接建立过程,或开始连接重建立过程。在切换过程中该小区被指示为主小区;Secondary Cell(SCell):辅小区是工作在辅频带上的小区。一旦无线资源控制(radio resource control,RRC)连接建立,辅小区就可能被配置以提供额外的无线资源;服务小区(Serving Cell):处于RRC连接(RRC_CONNECTED)态的终端设备,如果没有配置CA,则只有一个Serving Cell,即PCell;如果配置了CA,则Serving Cell集合是由PCell和SCell组成。为了更好地管理配置了CA的终端设备的电池消耗,可采用SCell的激活/去激活机制。通常网络设备仅在激活的SCell上调度终端设备发送上行共享信道。另外,主小区总是处于激活态。
在一个子帧上,终端设备在每个小区允许的最大传输功率是独立配置的。在一个子帧上,只要任何一个小区满足功率余量报告的条件,则终端设备就发送PHR。终端设备发送的PHR包括所有激活态的小区各自相关的功率余量值。每个激活态的小区相关的功率余量值是该小区上配置的终端设备允许的最大传输功率和终端设备在该小区内该子帧发送的 上行共享信道的发送功率之差。例如处于激活态的小区有N个,则终端设备发送的PHR中包括N个激活小区各自相关的功率余量值。但是在终端设备发送PHR的时候,该N个激活小区中可能有的小区并没有PUSCH发送给网络设备,此时,没有PUSCH发送的小区相关的PHR为虚拟功率余量值,有PUSCH发送的小区相关的PHR为真实功率余量值。虚拟功率余量值指的是该小区上配置的终端设备允许的最大传输功率减去该小区上的虚拟PUSCH发送功率。虚拟PUSCH发送功率举例来说可以是终端设备根据PUSCH的发送功率确定方式,以终端设备在该小区被配置发送预设数量的PUSCH为假设确定的PUSCH的发送功率。可选的该虚拟PUSCH发送功率中不包括PUSCH的调制编码方式相关的功率调整量。真实功率余量值指的是该小区上配置的终端设备允许的最大传输功率减去该小区上的PUSCH发送功率。和虚拟功率余量值相比,真实功率余量值可以反映更加实际的终端设备发送上行信道的发送功率余量,为网络设备提供更有效的用于调度终端设备上行传输的信息。
需要说明的是,无线通信系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为无线通信系统中的载波与小区的概念等同。例如在载波聚合场景下,当为终端设备配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如终端设备接入一个载波和接入一个小区是等同的。
本申请实施例中,终端设备获取第一指示信息后,就开始进行组数据包,该数据包对应在第一时间单元发送。该数据包中包括第一功率余量报告。该第一功率余量报告中包括终端设备在开始组包时所知晓的在第一时间单元中所有处于激活态的小区的功率余量值。如上所述,在第一时间单元中处于激活态的小区没有调度PUSCH,该数据包也会包括该小区对应的功率余量值,不同的是,此类小区相应的功率余量值是终端设备计算的虚拟功率余量值。例如请参见图5,网络设备在子帧n-3调度终端设备在子帧n+1在小区1上发送PUSCH,则终端设备在子帧n-3接收第一指示信息。在接收第一指示信息后,终端设备可能在子帧n-3、子帧n-2、子帧n-1、子帧n、或者子帧n+1开始组包。而终端设备在开始组包时,认为小区2在子帧n+1上并未被调度PUSCH,但是终端设备还是会一并发送小区1上在子帧n+1时被调度的小区1对应的功率余量值以及小区2对应的功率余量值,所不同的是,小区1对应的功率余量值是终端设备根据实际在小区1发送的PUSCH的功率计算得到的,即,小区1对应的功率余量值是真实功率余量值,而小区2对应的功率余量值是终端设备根据虚拟功率余量报告的计算方法得到,即小区2对应的功率余量值是虚拟功率余量值。
需要说明的是终端设备发送的PHR中除包括上述激活小区对应的功率余量值外,还可以包括部分或全部的功率余量值各自所对应配置的激活小区的允许的最大传输功率。
在第一时间单元到达时,终端设备会判断第一时间单元是否满足PHR的上报条件,如果满足功率余量报告条件,则终端设备会向网络设备发送PHR,而如果不满足功率余量报告条件,则终端设备不向网络设备发送PHR。如果终端设备在第一时间单元的其它小区上也有物理上行共享信道调度,则终端设备可以通过第一物理上行共享信道发送PHR,也可以通过第一时间单元的其它小区上的物理上行共享信道发送PHR。
其中,功率余量报告条件包括以下至少一种:
终端设备的功率余量报告禁止定时器达到或者已经达到第一功率余量报告禁止定时阈值,并且路径损耗大于或等于第一路径损耗阈值;
终端设备的周期功率余量报告定时器达到第一周期功率余量报告定时阈值;
终端设备接收到功率余量报告的配置信息或者重配置信息;
终端设备接收到用于激活被配置的辅小区的信令;
终端设备接收到用于添加主要辅小区的信令。
即,只要满足如上的至少一种条件,就认为满足了功率余量报告条件。功率余量报告禁止定时器可表示为prohibitPHR-Timer,路径损耗阈值可表示为dl-PathlossChange。其中,功率余量报告禁止定时器达到第一功率余量报告禁止定时阈值,是指在终端设备进行判断时prohibitPHR-Timer刚好达到第一功率余量报告禁止定时阈值,即刚好超时。而功率余量报告禁止定时器已经达到第一功率余量报告禁止定时阈值,是指在终端设备进行判断之前prohibitPHR-Timer就已经达到了第一功率余量报告禁止定时阈值,即在终端设备进行判断之前prohibitPHR-Timer就已经超时。
周期功率余量报告定时器可以表示为periodicPHR-Timer。
终端设备接收到功率余量报告的配置信息或者重配置信息后,则确定满足功率余量报告条件,终端设备在满足该条件情况下如果被调度发送PUSCH,则终端设备发送PHR,并将上述功率余量报告禁止定时器prohibitPHR-Timer和周期功率余量报告定时器复位。
终端设备接收到用于激活被配置的辅小区的信令后,则确定满足功率余量报告条件,终端设备在满足该条件情况下如果被调度发送PUSCH,则终端设备发送PHR,并将上述功率余量报告禁止定时器prohibitPHR-Timer和周期功率余量报告定时器复位。
终端设备接收到用于添加主要辅小区的信令后,则确定满足功率余量报告条件,终端设备在满足该条件情况下如果被调度发送PUSCH,则终端设备发送PHR,并将上述功率余量报告禁止定时器prohibitPHR-Timer和周期功率余量报告定时器复位。
本申请实施例中,既然终端设备要判断第一时间单元是否满足功率余量报告条件,则也涉及到功率余量报告禁止定时器、路径损耗阈值、以及周期功率余量报告定时器。例如,将终端设备判断第一时间单元是否满足功率余量报告时使用的功率余量报告禁止定时器、路径损耗阈值、以及周期功率余量报告定时器分别表示为A-prohibitPHR-Time、A-dl-PathlossChange、及A-periodicPHR-Timer,将终端设备判断第二类型的第二时间单元是否满足功率余量报告时使用的功率余量报告禁止定时器、路径损耗阈值、以及周期功率余量报告定时器分别表示为B-prohibitPHR-Time、B-dl-PathlossChange、及B-periodicPHR-Timer。其中,A-prohibitPHR-Time、A-dl-PathlossChange、A-periodicPHR-Timer、B-prohibitPHR-Time、B-dl-PathlossChange、及B-periodicPHR-Timer,都可以是网络设备来配置的。
作为一种示例,网络设备仅为终端设备配置一套参数,例如网络设备向终端设备发送第一配置信息,第一配置信息就用于为终端设备配置第一功率余量报告禁止定时阈值、第一路径损耗阈值、以及第一周期功率余量报告定时阈值。即A-periodicPHR-Timer的周期功率余量报告定时阈值的和B-periodicPHR-Timer的周期功率余量报告定时阈值相同,A-prohibitPHR-Timer的功率余量报告禁止定时阈值和B-prohibitPHR-Timer的功率余量报告禁止定时阈值相同,A-dl-PathlossChange和B-dl-PathlossChange相同,且这三个参数的时间单位都是第二长度。因此,可以理解为,第一配置信息用于确定第一类型时间单元和第二类型时间单元是否满足功率余量报告条件。其中,A-periodicPHR-Timer的周期功率余量报告定时阈值即为如前所述的第一周期功率余量报告定时阈值,下文也将 B-periodicPHR-Timer的周期功率余量报告定时阈值称为第一周期功率余量报告定时阈值;A-prohibitPHR-Timer的功率余量报告禁止定时阈值即为如前所述的第一功率余量报告禁止定时阈值,下文也将B-prohibitPHR-Timer的功率余量报告禁止定时阈值称为第二功率余量报告禁止定时阈值;A-dl-PathlossChange即为如前所述的第一路径损耗阈值,下文也将B-dl-PathlossChange称为第二路径损耗阈值。
终端设备测量路径损耗的单位通常是以第二长度为粒度,例如以TTI为粒度。则终端设备发送PUSCH和sPUSCH的功率控制也可能是以第二长度为粒度的。因此,以第一物理上行共享信道是sPUSCH、第二物理上行共享信道是PUSCH为例,为PUSCH上发送的PHR和sPUSCH上发送的PHR配置统一的参数是较为合理的选择。
作为另一种示例,网络设备分别为第一物理上行共享信道的PHR和第二物理上行共享信道的PHR配置各自的参数,例如网络设备向终端设备发送第一配置信息和第二配置信息,则终端设备接收网络设备发送的第一配置信息和第二配置信息,第一配置信息用于指示第一功率余量报告禁止定时阈值、第一路径损耗阈值、以及第一周期功率余量报告定时阈值,第二配置信息用于指示第二功率余量报告禁止定时阈值、第二路径损耗阈值、以及第二周期功率余量报告定时阈值,第一配置信息用于确定第二类型时间单元是否满足功率余量报告条件,所述第二配置信息用于确定第一类型时间单元是否满足功率余量报告条件。在这种情况下,A-periodicPHR-Timer的周期功率余量报告定时阈值和B-periodicPHR-Timer的周期功率余量报告定时阈值、A-prohibitPHR-Timer的功率余量报告禁止定时阈值和B-prohibitPHR-Timer的功率余量报告禁止定时阈值、以及A-dl-PathlossChange和B-dl-PathlossChange这三对,可能配置的结果都相同,也可能配置结果是至少有其中一对不相同。其中,A-periodicPHR-Timer、A-prohibitPHR-Timer、及A-dl-PathlossChange的单位是第二长度,B-periodicPHR-Timer、B-prohibitPHR-Timer,和B-dl-PathlossChange的单位是第一长度。
即,网络设备也可以分别配置不同的参数,这样也便于终端设备按照不同的参数来进行判断,会较为符合相应的物理上行共享信道的实际情况。
根据如前的介绍可知,在满足PHR触发条件的TTI内,可能有多个sTTI被调度了sPUSCH,下面就介绍,终端设备可以选择在被调度的每个sTTI都发送PHR,或者也可以选择只是在被调度的sTTI中的一个sTTI发送PHR。以及,如果只在被调度的sTTI中的一个sTTI发送PHR,则终端设备可以选择任意的一个被调度的sTTI发送PHR,或者也可以按照预定规则来选择一个被调度的sTTI发送PHR。下面主要介绍终端设备为何按照预定规则来选择一个被调度的sTTI发送PHR,以及具体如何选择。
请参见图6,在TTI#n满足PHR的触发条件,但是其中的sTTI#8、sTTI#9、和sTTI#10都被调度了sPUSCH。一种预定规则为:终端设备在该TTI内有sPUSCH发送的第一个sTTI发送PHR,也就是说,第一时间单元是终端设备在第二时间单元内发送物理上行共享信道的第一个第一类型时间单元。这是因为,在该TTI内的不同sTTI,终端设备发送的PHR对于网络设备调度的参考意义的变换不大,终端设备在该TTI内上报一次PHR就可以了。而终端设备在sTTI#2接收到对sTTI#的调度sPUSCH的指示信息时,对后续的sTTI#3、sTTI#4等等会不会收到TTI#n内的sTTI的指示信息是不可预测的,为保险起见,终端设备在sTTI#2接收到对sTTI#8的调度sPUSCH的指示后,准备sTTI#8上的sPUSCH的数据时,需包括PHR。
因此,上述PHR触发条件的判断是以TTI为粒度的。在满足PHR触发条件的TTI内,终端设备应该在该TTI内被调度的第一个sTTI发送PHR。
另一个问题是,如果终端设备在满足PHR触发条件的TTI内被调度的sTTI有多个,但是网络设备和终端设备对于这些被调度sTTI中哪一个是第一个sTTI可能有不同理解。例如,终端设备可能丢失或者没检测到被调度的sTII中实际的第一个sTTI的调度信息,即,终端设备所理解的“第一个sTTI”和网络设备所理解的“第一个sTTI”不一定是同一个sTTI。因此,作为网络设备来说,可以在该TTI内被调度的多个sTTI中均盲检测PHR,以防止遗漏PHR。网络设备在其中一个sTTI中检测到PHR后,即可停止对该TTI内的后续的sTTI的检测。
例如,请继续参见图6,TTI#n中共调度了3个sTTI传输sPUSCH,分别是在sTTI#2调度的sTTI#8、在sTTI#3调度的sTTI#9、以及在sTTI#4调度的sTTI#10。则实际上该TTI内的第一个被调度的sTTI应该是sTTI#8。终端设备未检测到sTTI#2中的调度信息,则终端设备不知道sTTI#8是该TTI内第一个被调度的sTTI,而终端设备检测到了sTTI#3中的调度信息,因此终端设备会认为sTTI#9是该TTI内第一个被调度的sTTI,则终端设备会在sTTI#9发送PHR。对于网络设备来说,可以从sTTI#8开始检测,如果在sTTI#8中未检测到PHR,则网络设备会继续检测sTTI#9,如果网络设备在sTTI#9中检测到了PHR,则网络设备会停止检测,无需再检测sTTI#10。这样,既能防止网络设备遗漏PHR,而且网络设备在检测到PHR后可停止检测,也能尽量节省网络设备的功耗。
假设一个场景:请参见图7,网络设备在子帧n-3调度终端设备在子帧n+1发送上行数据,而在sTTI的粒度上,网络设备在子帧n内的第2个sTTI调度终端设备在子帧n+1内的第2个sTTI发送上行数据。由于终端设备在接收到子帧n+1对应的调度信息后就已经开始计算子帧n+1中的PUSCH的PHR,即开始组数据包,而终端设备此时并不知道在该调度信息对应的子帧n内还有sTTI被调度发送上行数据,导致终端设备在子帧n+1发送的PHR不能包括上报PHR的时刻的所有发送上行数据的信道所对应的功率余量值。而通过本申请实施例提供的技术方案,第一时间单元的长度小于第二时间单元的长度,而终端设备在第一时间单元也能向网络设备发送第一功率余量报告,从而终端设备尽量可以向网络设备发送PHR发送时刻更为准确的各小区的功率余量值,为网络设备提供更有效的用于调度终端设备上行传输的信息。
另外,在本申请实施例中,终端设备还可以获取第二指示信息,第二指示信息用于指示终端设备在第二时间单元发送第二物理上行共享信道。其中,终端设备获取第一指示信息的时间和终端设备获取第二指示信息的时间不同。例如,终端设备在第三时间单元获取第一指示信息,在第四时间单元获取第二指示信息,第三时间单元的起始时刻早于第四时间单元的起始时刻,或者第三时间单元的起始时刻晚于第四时间单元的起始时刻。
例如,网络设备可以向终端设备发送第二指示信息,则终端设备接收网络设备发送的第二指示信息。例如第二指示信息通过DCI实现,用于调度终端设备在第二时间单元发送第二PUSCH。
则终端设备通过第二物理上行共享信道向网络设备发送第二功率余量报告,则网络设备通过第二物理上行共享信道接收第二功率余量报告。第二时间单元满足功率余量报告条件。这里的功率余量报告条件与前述的功率余量报告条件相同。当然,功率余量报告条件包括多种,只要满足其中的至少一种,终端设备就可以向网络设备发送功率余量报告,那么,终端设备发送第一功率余量报告时所满足的功率余量报告条件与终端设备发送第二功 率余量报告时所满足的功率余量报告条件可以是同一类型的条件,例如都是满足了周期功率余量报告定时器达到相应的周期功率余量报告定时阈值的条件,或者二者也可以是不同类型的条件,例如终端设备发送第一功率余量报告时所满足的功率余量报告条件是周期功率余量报告定时器达到第一周期功率余量报告定时阈值的条件,而终端设备发送第二功率余量报告时所满足的功率余量报告条件是终端设备接收到用于激活被配置的辅小区的信令的条件。
以第一类型时间单元是sTTI、第二类型时间单元是TTI、第一物理上行共享信道是sPUSCH、第二物理上行共享信道是PUSCH为例,在满足PHR触发条件的TTI内,如果终端设备既被调度发送PUSCH,又在至少一个sTTI被调度发送sPUSCH,下面介绍终端设备为何要选择将sPUSCH的PHR和PUSCH的PHR均发送给网络设备。
如图8所示,在TTI#n满足PHR的触发条件,其中既有PUSCH调度,也有sPUSCH调度。如果终端设备仅在PUSCH发送PHR,由于终端设备在TTI#n-4接收到调度PUSCH的第二指示信息后即开始对TTI#n发送的PUSCH组包,PHR承载在PUSCH中,但是,此时终端设备对于网络设备是否会在接下来的sTTI#2、sTTI#3调度TTI#n内的sTTI发送sPUSCH并不知情(可能网络设备对此也同样没有预期)。这样,终端设备在对TTI#n发送的PUSCH组包时,确定该PUSCH数据包中的PHR。其中,对于在TTI#n真实发送的上行信道,终端设备在确定该上行信道所在的小区的功率余量值时,该功率余量值对应于上行信道的真实发送功率,即该上行信道所在的小区的功率余量值为真实功率余量值。对于在TTI#n没有上行信道发现的小区,其对应的功率余量值为虚拟功率余量值。支持CA的场景下,如果终端设备在对TTI#n发送的PUSCH组包时,该PUSCH中包括的PHR仅能包括终端设备在组包时刻开始时确定的终端设备在TTI#n发送的上行信道所在小区所对应的真实功率余量值,对于其它小区,PHR中包括的仅是虚拟功率余量值。如图8所示,终端设备在TTI#n-1内的sTTI#2接收到网络设备对TTI#n内的sTTI#8的用于调度sPUSCH的指示信息、以及在TTI#n-1内sTTI#3接收到对TTI#n内的sTTI#9的用于调度sPUSCH的指示信息。考虑到终端设备在TTI#n的PUSCH发送的PHR中并没有体现sTTI#8或者sTTI#9的sPUSCH对于功率的需求,所以终端设备有必要在TTI#n内发送的sPUSCH中再发送另一个PHR,即为PHR2,该PHR 2中包括在TTI#n内发送的sPUSCH所在的小区对应的真实功率余量值,该真实功率余量值中包括由sPUSCH的真实发送功率确定的功率余量值。网络设备通过接收PHR2,可以获取内和sPUSCH时刻发送的上行信道对应的功率余量值,从而调整后续对终端设备的上行数据调度结果。
因此,在满足PHR触发条件的TTI内,如果终端设备既被调度发送PUSCH,又在至少一个sTTI被调度发送sPUSCH,那么终端设备可以选择在PUSCH和sPUSCH均向网络设备发送PHR,即,在PUSCH上报PHR1,在sPUSCH上报PHR2。对于网络设备来说,可以以在该TTI内接收的发送较晚的指示信息对应的上行数据中的PHR为准。例如,对于同一个被调度的TTI来说,用于调度PUSCH的指示信息发送较早,而用于调度sPUSCH的指示信息发送较晚,则网络设备接收PHR1和PHR2后,可以以PHR2为准,PHR2就是发送较晚的指示信息对应的上行数据中的PHR。
即,本申请实施例提供的技术方案,允许在较长的物理上行共享信道的调度单元中将不同长度的时间单元的PHR发送给网络设备,有效解决了在一个载波上允许不同长度的上行信道传输时的PHR上报问题。
终端设备获取第一指示信息,该第一指示信息用于指示所述终端设备在第一时间单元发送第一物理上行共享信道,第一时间单元满足终端设备发送功率余量报告的条件;终端设备还获取第二指示信息,第二指示信息用于指示在所述第二时间单元发送第二物理上行共享信道,第二时间单元满足终端设备发送功率余量报告的条件。那么,终端设备既通过第一物理上行共享信道向网络设备发送第一功率余量报告,还通过第二物理上行共享信道向所述网络设备发送第二功率余量报告。在终端设备获取第一指示信息的时间和获取第二指示信息的时间不同的情况下,可有效解决终端设备根据较早的调度指示信息确定的功率余量报告不能准确反映终端实际发送的上行信道对应的功率余量报告值的问题。
如图8举例描述,终端设备在TTI#n-4接收到调度TTI#n发送PUSCH的第二指示信息,基于该第二指示信息的获取时刻,终端设备确定的TTI#n发送的上行信道为第二上行信道集合包括的信道,如图9所示,以终端设备的激活的载波是3个载波为例,分别为载波1、载波2和载波3。终端设备在子帧n-4获取到网络设备调度其在子帧n上,载波1和载波2分别发送上行信道1和上行信道2,那么第二上行信道集合就包括载波1上的上行信道1以及载波2上的上行信道2,终端设备在开始根据第二指示信息组数据包时,知道网络设备调度了载波1在TTI#n发送上行信道1,以及知道网络设备调度了载波2在TTI#n发送上行信道2,但不知道网络设备也调度了载波3在TTI#n中的sTTI#8和sTTI#9发送上行信道3和上行信道4,因此第二上行信道集合不包括载波2上的上行信道3和上行信道4。当然,终端设备会为载波3计算虚拟功率余量值,即,终端设备在TTI#n的上行信道1或上行信道2发送的PHR中包括载波1和载波2的真实功率余量值,以及载波3的虚拟功率余量值。
之后,终端设备在TTI#n-1内的sTTI#2接收到网络设备对sTTI#8的用于调度sPUSCH的第一指示信息,基于该第二指示信息的获取时刻,终端设备确定的sTTI#8发送的上行信道为第一上行信道集合包括的信道。继续参考图9,由于终端设备在开始根据第一指示信息组数据包时,已经知道网络设备也调度了载波3在TTI#n的sTTI#8发送上行信道3和载波3在TTI#n的sTTI#9发送上行信道4,因此第一上行信道集合可以包括载波3上的上行信道3喝上行信道4。即,第一上行信道集合就包括载波1上的上行信道1、载波2上的上行信道2、以及载波3上的上行信道3和上行信道4。此时,终端设备为载波3计算的是上行信道3和上行信道4的真实功率余量值。这里,在sTTI#8发送的第二上行信道集合指的是在该sTTI#8的时间范围内发送的所有上行信道。
而如果考虑到前面的介绍,即,在满足PHR触发条件的TTI内,终端设备应该在该TTI内被调度的第一个sTTI发送PHR。那么图9中,在TTI#n内的sTTI#8和sTTI#9都有调度的上行信道,则按照这种预定规则,终端设备就可以只发送在sTTI#8调度的上行信道3的PHR,而可以不用发送在sTTI#9调度的上行信道4的PHR。在这种情况下,第一上行控制信道集合可以包括载波1上的上行信道1、载波2上的上行信道2、以及载波3上的上行信道3。终端设备只需计算载波3的上行信道3的真实功率余量值即可。
其中,本申请实施例中的上行信道集合中可以包括物理上行共享信道,例如PUSCH,也可以包括短物理上行共享信道,例如sPUSCH,还可以包括物理上行控制信道,例如PUCCH,本申请实施例不做限制。
如图9所示,第一上行信道集合包括载波1上的上行信道1、载波2上的上行信道2、以及载波3上的上行信道3,第二上行信道集合包括载波1上的上行信道1以及载波2上 的上行信道2,第二上行信道集合是第一上行信道集合的子集。终端设备通过第一物理上行共享信道向网络设备发送第一PHR,通过第二物理上行共享信道向网络设备发送第二PHR。第一PHR对应于第一上行信道集合,第二功率余量报告对应于第二上行信道集合,第二上行信道集合是第一上行信道集合的子集。具体的,第一PHR中包括第一上行信道集合中各上行信道所在的各小区的真实功率余量值,并包括除这些小区外的其它激活小区的虚拟功率余量值。第二PHR中包括第二上行信道集合中各上行信道所在的各小区的真实功率余量值,并包括除这些小区外的其它激活小区的虚拟功率余量值。第二上行信道集合是第一上行信道集合的子集,那么,第一PHR中包括比第二PHR更多的真实功率余量值。例如,第一PHR包括第三上行信道集合对应的真实功率余量值,第二功率余量报告包括该第三上行信道集合对应的虚拟功率余量值,第三上行信道集合是第二上行信道在第一上行信道中的补集。如图9举例中,第三上行信道集合包括载波3在TTI#n的sTTI#8发送的上行信道3。由此可见,第一PHR比第二PHR可以更准确地体现终端设备在第一时间单元内的功率余量,满足网络设备根据接收的功率余量报告确定对终端设备的调度结果的需求。
在本申请实施例中,终端设备在通过第一物理上行共享信道向网络设备发送第一功率余量报告之后,还可以重置功率余量报告禁止定时器和周期功率余量报告定时器,以能够及时进行下一次的判断是否发送PHR的过程。例如,终端设备将第一时间单元所在的第二时间单元的结束点作为功率余量报告禁止定时器和周期功率余量报告定时器重置的起点。
在本申请实施例中,第一功率余量报告对应于第一上行信道集合,第二功率余量报告对应于第二上行信道集合,第一上行信道集合是终端设备在第一时间单元发送的上行信道组成的集合,第二上行信道集合是终端设备在第二时间单元发送的上行信道组成的集合。如果终端设备是先获取第二指示信息后获取第一指示信息,则第二上行信道集合是第一上行信道集合的子集。例如,终端设备先获取第二指示信息,在获取第二指示信息后,终端设备在第一时刻开始组包,该数据包就包括终端设备在第一时刻所知晓的在第二时间单元调度的上行信道各自对应的功率余量值。以及,终端设备后获取第一指示信息,在获取第一指示信息后,终端设备在第二时刻开始组包,该数据包就包括终端设备在第二时刻所知晓的在第一时间单元调度的上行信道各自对应的功率余量值。以第一时刻位于第二时刻之前为例,则终端设备在第一时刻所知晓的在第二时间单元调度的上行信道中可能不包括终端设备在第二时刻所知晓的在第一时间单元调度的上行信道,因此终端设备在第一时刻组包的功率余量值对应的上行信道就只是终端设备在第二时刻组包的功率余量值对应的上行信道的子集。其中,这里的上行信道可以包括物理上行共享信道,也可以包括物理上行控制信道。
另外,在本申请实施例中,第一功率余量报告包括第三上行信道集合对应的真实功率余量值,第二功率余量报告包括第三上行信道集合对应的虚拟功率余量值。请继续参见图5。网络设备在子帧n-3调度终端设备在子帧n+1在载波1上发送上行数据,图5中的第一行就表示载波1。而在短TTI的粒度上,网络设备在子帧n内的第2个短TTI调度终端设备在子帧n+1内的第2个短TTI在载波2上发送上行数据,图5中的第二行就表示载波2。由于终端设备在接收到子帧n+1对应的调度信息时就已经开始计算子帧n+1中的物理上行共享信道的PHR,即开始组包,而终端设备此时并不知道在该调度信息对应的子帧n内还有短TTI被调度发送上行数据,即终端设备认为在子帧n+1内在载波2上没有被调度上行 数据,则终端设备会为载波2计算虚拟功率余量值。终端设备在子帧n+1发送的PHR即为第二功率余量报告,第二功率余量报告包括的就是载波2的虚拟功率余量值。而载波2中实际在子帧n+1内的第2个短TTI中被调度了物理上行共享信道,那么就认为第二功率余量报告包括在子帧n+1内的第2个短TTI中被调度了物理上行共享信道的虚拟功率余量值,此时第三上行信道集合就包括该物理上行共享信道。而本申请实施例中,终端设备在短TTI的粒度上也可以向网络设备发送PHR,即,终端设备在接收子帧n+1内的第2个短TTI对应的调度信息时也会开始计算子帧n+1中的物理上行共享信道的PHR,即开始组包,此时终端设备已经知道子帧n+1内的第2个短TTI也被调度发送上行数据,则终端设备会为载波2计算真实功率余量值。终端设备在子帧n+1的第2个短TTI发送的PHR即为第一功率余量报告,第一功率余量报告包括的就是载波2的真实功率余量值,那么就认为第一功率余量报告包括在子帧n+1内的第2个短TTI中被调度了物理上行共享信道的真实功率余量值,即,第一功率余量报告包括第三上行信道集合对应的真实功率余量值,第二功率余量报告包括第三上行信道集合对应的虚拟功率余量值。
下面结合附图介绍本申请实施例提供的装置。
图10示出了一种终端设备1000的结构示意图。该终端设备1000可以实现上文中涉及的终端设备的功能。该终端设备1000可以包括处理器1001和发送器1002。可选的,该终端设备1000还可以包括接收器1003。其中,处理器1001可以用于执行图4所示的实施例中的S41,和/或用于支持本文所描述的技术的其它过程。其中,如果第一指示信息是网络设备发送给终端设备的,则S41可以理解为,终端设备1000的接收器1003接收网络设备发送的第一指示信息,则处理器1001就获取接收器1003所接收的第一指示信息。发送器1002可以用于执行图4所示的实施例中的S42,和/或用于支持本文所描述的技术的其它过程。接收器1003可以用于执行接收网络设备发送的第一配置信息、第二配置信息,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图11示出了一种网络设备1100的结构示意图。该网络设备1100可以实现上文中涉及的网络设备的功能。该网络设备1100可以包括接收器1101和发送器1102。其中,发送器1102可以用于执行图4所示的实施例中的S41,和/或用于支持本文所描述的技术的其它过程。其中,如果第一指示信息是网络设备发送给终端设备的,则S41可以理解为,网络设备1100通过发送器1102向终端设备发送第一指示信息。接收器1101可以用于执行图4所示的实施例中的S42,和/或用于支持本文所描述的技术的其它过程。可选的,网络设备1100还可以包括处理器1103,可以用于生成第一指示信息、第二指示信息、第一配置信息、第二配置信息等,和/或,用于完成支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,终端设备1000和网络设备1100对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将终端设备1000或网络设备1100通过如图12所示的通信装置1200的结构实现。
如图12所示,通信装置1200可以包括:存储器1201、处理器1202、以及通信接口1203。其中,存储器1201以及通信接口1203与处理器1202连接。存储器1201用于存储计算机执行指令,当通信装置1200运行时,处理器1202执行存储器1201存储的计算机执行指令,以使通信装置1200执行图4所示的实施例提供的方法。具体的方法可参考上文及附图中的相关描述,此处不再赘述。其中,通信接口1203可以通过收发器实现,或者通过独立的接收器和发送器实现。
在一个示例中,发送器1002和接收器1003可以对应图12中的通信接口1203。处理器1001可以以硬件形式/软件形式内嵌于或独立于通信装置1200的存储器1201中。
在一个示例中,接收器1101和发送器1102可以对应图12中的通信接口1203。处理器1103可以以硬件形式/软件形式内嵌于或独立于通信装置1200的存储器1201中。
可选的,通信装置1300可以是现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。或者,通信装置1300也可以是单独的网元,例如为如前所述的终端设备或网络设备。
另外,图10所示的实施例提供的终端设备还可以通过其他形式实现。例如该终端设备包括发送单元和处理单元。可选的,该终端设备还可以包括接收单元。其中,处理单元可以用于执行图4所示的实施例中的S41,和/或用于支持本文所描述的技术的其它过程。其中,如果第一指示信息是网络设备发送给终端设备的,则S41可以理解为,终端设备的接收单元接收网络设备发送的第一指示信息,则处理单元就获取接收单元所接收的第一指示信息。发送单元可以用于执行图4所示的实施例中的S42,和/或用于支持本文所描述的技术的其它过程。接收单元可以用于执行接收网络设备发送的第一配置信息、第二配置信息,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
另外,图11所示的实施例提供的网络设备还可以通过其他形式实现。例如该网络设备包括接收单元和发送单元。其中,发送单元可以用于执行图4所示的实施例中的S41,和/或用于支持本文所描述的技术的其它过程。其中,如果第一指示信息是网络设备发送给终端设备的,则S41可以理解为,网络设备通过发送单元向终端设备发送第一指示信息。接收单元可以用于执行图4所示的实施例中的S42,和/或用于支持本文所描述的技术的其它过程。可选的,网络设备还可以包括处理单元,可以用于生成第一指示信息、第二指示信息、第一配置信息、第二配置信息等,和/或,用于完成支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的终端设备1000、网络设备1100、及通信装置1200可用于执行图4所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些 计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (50)

  1. 一种功率余量报告发送方法,其特征在于,包括:
    终端设备获取第一指示信息,所述第一指示信息用于指示所述终端设备在第一时间单元发送第一物理上行共享信道;
    所述终端设备通过所述第一物理上行共享信道向网络设备发送第一功率余量报告,所述第一时间单元满足功率余量报告条件;
    所述功率余量报告条件包括以下至少一种:
    所述终端设备的功率余量报告禁止定时器达到或者已经达到第一功率余量报告禁止定时阈值,并且路径损耗大于或等于第一路径损耗阈值;
    所述终端设备的周期功率余量报告定时器达到第一周期功率余量报告定时阈值;
    所述终端设备接收到功率余量报告的配置信息或者重配置信息;
    所述终端设备接收到用于激活被配置的辅小区的信令;
    所述终端设备接收到用于添加主要辅小区的信令。
  2. 如权利要求1所述的方法,其特征在于,所述第一时间单元的长度小于或等于一个时隙的长度。
  3. 如权利要求1或2所述的方法,其特征在于,
    所述终端设备获取第二指示信息,所述第二指示信息用于指示所述终端设备在第二时间单元发送第二物理上行共享信道;
    所述终端设备通过所述第二物理上行共享信道向所述网络设备发送第二功率余量报告;所述第一时间单元属于第二时间单元,所述第二时间单元的长度大于所述第一时间单元的长度。
  4. 如权利要求1-3任意一项所述的方法,其特征在于,所述第一时间单元属于第二时间单元,所述第一时间单元是第一类型时间单元,所述第二时间单元是第二类型时间单元,所述第一类型时间单元的长度为第一长度,所述第二类型时间单元的长度为第二长度,所述第二长度大于所述第一长度;所述第一类型时间单元和所述第二类型时间单元均用于调度物理上行共享信道。
  5. 如权利要求4所述的方法,其特征在于,
    所述第二类型时间单元为传输时间间隔TTI,所述第一类型时间单元为短传输时间间隔sTTI;或
    所述第二类型时间单元为时隙slot,所述第一类型时间单元为迷你时隙Mini-slot。
  6. 如权利要求4或5所述的方法,其特征在于,
    所述第一功率余量报告禁止定时阈值的单位是所述第二长度;和/或
    所述第一周期功率余量报告定时阈值的单位是所述第二长度。
  7. 如权利要求4-6任意一项所述的方法,其特征在于,
    所述第一时间单元是所述终端设备在所述第二时间单元内发送物理上行共享信道的第一个第一类型时间单元。
  8. 如权利要求4-7任意一项所述的方法,其特征在于,
    所述终端设备获取第二指示信息,所述第二指示信息用于指示在所述第二时间单元发送第二物理上行共享信道;
    所述终端设备通过所述第二物理上行共享信道向所述网络设备发送第二功率余量报 告;
    其中,所述终端设备获取所述第一指示信息的时间和所述终端设备获取所述第二指示信息的时间不同。
  9. 如权利要求8所述的方法,其特征在于,
    所述第一功率余量报告对应于所述终端设备在所述第一时间单元发送的第一上行信道集合,所述第二功率余量报告对应于所述终端设备在所述第二时间单元发送的第二上行信道集合,所述第二上行信道集合是所述第一上行信道集合的子集。
  10. 如权利要求9所述的方法,其特征在于,
    所述第一功率余量报告包括第三上行信道集合对应的真实功率余量值,所述第二功率余量报告包括所述第三上行信道集合对应的虚拟功率余量值。
  11. 如权利要求4-10任意一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一配置信息,所述第一配置信息用于指示所述第一功率余量报告禁止定时阈值、所述第一路径损耗阈值、以及所述第一周期功率余量报告定时阈值;所述第一配置信息用于确定所述第一类型时间单元和所述第二类型时间单元是否满足功率余量报告条件。
  12. 如权利要求4-10任意一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一配置信息和第二配置信息;所述第一配置信息用于指示所述第一功率余量报告禁止定时阈值、所述第一路径损耗阈值、以及所述第一周期功率余量报告定时阈值,所述第二配置信息用于指示第二功率余量报告禁止定时阈值、第二路径损耗阈值、以及第二周期功率余量报告定时阈值;所述第一配置信息用于确定所述第二类型时间单元是否满足功率余量报告条件,所述第二配置信息用于确定所述第一类型时间单元是否满足功率余量报告条件。
  13. 如权利要求1-12任意一项所述的方法,其特征在于,在所述终端设备通过所述第一物理上行共享信道向网络设备发送第一功率余量报告之后,还包括:
    所述终端设备重置所述功率余量报告禁止定时器和所述周期功率余量报告定时器。
  14. 一种功率余量报告接收方法,其特征在于,包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在第一时间单元发送第一物理上行共享信道;
    所述网络设备通过所述第一物理上行共享信道接收所述终端设备发送的第一功率余量报告,所述第一时间单元满足功率余量报告条件;
    所述功率余量报告条件包括以下至少一种:
    所述终端设备的功率余量报告禁止定时器达到或者已经达到第一功率余量报告禁止定时阈值,并且第一路径损耗超过路径损耗阈值;
    所述终端设备的周期功率余量报告定时器达到第一周期功率余量报告定时阈值;
    所述终端设备接收到功率余量报告的配置信息或者重配置信息;
    所述终端设备接收到用于激活被配置的辅小区的信令;
    所述终端设备接收到用于添加主要辅小区的信令。
  15. 如权利要求14所述的方法,其特征在于,所述第一时间单元的长度小于或等于一个时隙的长度。
  16. 如权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备在第二时间单元发送第二物理上行共享信道;
    所述网络设备通过所述第二物理上行共享信道接收所述终端设备发送的第二功率余量报告,所述第二时间单元的长度大于所述第一时间单元的长度。
  17. 如权利要求14-16任意一项所述的方法,其特征在于,所述第一时间单元属于第二时间单元,所述第一时间单元是第一类型时间单元,所述第二时间单元是第二类型时间单元,所述第一类型时间单元的长度为第一长度,所述第二类型时间单元的长度为第二长度,所述第二长度大于所述第一长度;所述第一类型时间单元和所述第二类型时间单元均用于调度物理上行共享信道。
  18. 如权利要求17所述的方法,其特征在于,
    所述第二类型时间单元为传输时间间隔TTI,所述第一类型时间单元为短传输时间间隔sTTI;或
    所述第二类型时间单元为时隙slot,所述第一类型时间单元为迷你时隙Mini-slot。
  19. 如权利要求17或18所述的方法,其特征在于,
    所述第一功率余量报告禁止定时阈值的单位是所述第二类型时间单元;和或
    所述第一周期功率余量报告定时阈值的单位是所述第二类型时间单元。
  20. 如权利要求17-19任意一项所述的方法,其特征在于,
    所述第一时间单元是所述网络设备在所述第二时间单元内接收物理上行共享信道的第一个第一类型时间单元。
  21. 如权利要求17-20任意一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示在第二时间单元发送第二物理上行共享信道;
    所述网络设备通过所述第二物理上行共享信道接收所述终端设备发送的第二功率余量报告;
    其中,所述网络设备发送所述第一指示信息的时间和所述网络设备发送所述第二指示信息的时间不同。
  22. 如权利要求21所述的方法,其特征在于,
    所述第一功率余量报告对应于所述网络设备在所述第一时间单元接收的第一上行信道集合,所述第二功率余量报告对应于所述网络设备在所述第二时间单元接收的第二上行信道集合,所述第二上行信道集合是所述第一上行信道集合的子集。
  23. 如权利要求22所述的方法,其特征在于,
    所述第一功率余量报告包括第三上行信道集合对应的真实功率余量值,所述第二功率余量报告包括所述第三上行信道集合对应的虚拟功率余量值。
  24. 如权利要求17-23任意一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息用于指示所述第一功率余量报告禁止定时阈值、所述第一路径损耗阈值、以及所述第一周期功率余量报告定时阈值;所述第一配置信息用于确定所述第一类型时间单元和所述第二类型时间单元是否满足功率余量报告条件。
  25. 如权利要求17-23任意一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一配置信息和第二配置信息;所述第一配置信息 用于指示所述第一功率余量报告禁止定时阈值、所述第一路径损耗阈值、以及所述第一周期功率余量报告定时阈值,所述第二配置信息用于指示第二功率余量报告禁止定时阈值、第二路径损耗阈值、以及第二周期功率余量报告定时阈值;所述第一配置信息用于确定所述第二类型时间单元是否满足功率余量报告条件,所述第二配置信息用于确定所述第一类型时间单元是否满足功率余量报告条件。
  26. 一种终端设备,其特征在于,包括:
    处理器,用于获取第一指示信息,所述第一指示信息用于指示所述终端设备在第一时间单元发送第一物理上行共享信道;
    发送器,用于通过所述第一物理上行共享信道向网络设备发送第一功率余量报告,所述第一时间单元满足功率余量报告条件;
    所述功率余量报告条件包括以下至少一种:
    所述终端设备的功率余量报告禁止定时器达到或者已经达到第一功率余量报告禁止定时阈值,并且路径损耗大于或等于第一路径损耗阈值;
    所述终端设备的周期功率余量报告定时器达到第一周期功率余量报告定时阈值;
    所述终端设备接收到功率余量报告的配置信息或者重配置信息;
    所述终端设备接收到用于激活被配置的辅小区的信令;
    所述终端设备接收到用于添加主要辅小区的信令。
  27. 如权利要求26所述的终端设备,其特征在于,所述第一时间单元的长度小于或等于一个时隙的长度。
  28. 如权利要求26或27所述的终端设备,其特征在于,
    所述处理器还用于:获取第二指示信息,所述第二指示信息用于指示所述终端设备在第二时间单元发送第二物理上行共享信道;
    所述发送器还用于:通过所述第二物理上行共享信道向所述网络设备发送第二功率余量报告;所述第一时间单元属于第二时间单元,所述第二时间单元的长度大于所述第一时间单元的长度。
  29. 如权利要求26-28任意一项所述的终端设备,其特征在于,所述第一时间单元属于第二时间单元,所述第一时间单元是第一类型时间单元,所述第二时间单元是第二类型时间单元,所述第一类型时间单元的长度为第一长度,所述第二类型时间单元的长度为第二长度,所述第二长度大于所述第一长度;所述第一类型时间单元和所述第二类型时间单元均用于调度物理上行共享信道。
  30. 如权利要求29所述的终端设备,其特征在于,
    所述第二类型时间单元为传输时间间隔TTI,所述第一类型时间单元为短传输时间间隔sTTI;或
    所述第二类型时间单元为时隙slot,所述第一类型时间单元为迷你时隙Mini-slot。
  31. 如权利要求29或30所述的终端设备,其特征在于,
    所述第一功率余量报告禁止定时阈值的单位是所述第二长度;和/或
    所述第一周期功率余量报告定时阈值的单位是所述第二长度。
  32. 如权利要求29-31任意一项所述的终端设备,其特征在于,
    所述第一时间单元是所述终端设备在所述第二时间单元内发送物理上行共享信道的第一个第一类型时间单元。
  33. 如权利要求29-32任意一项所述的终端设备,其特征在于,
    所述处理器还用于:获取第二指示信息,所述第二指示信息用于指示在所述第二时间单元发送第二物理上行共享信道;
    所述发送器还用于:通过所述第二物理上行共享信道向所述网络设备发送第二功率余量报告;
    其中,所述终端设备获取所述第一指示信息的时间和所述终端设备获取所述第二指示信息的时间不同。
  34. 如权利要求33所述的终端设备,其特征在于,
    所述第一功率余量报告对应于所述终端设备在所述第一时间单元发送的第一上行信道集合,所述第二功率余量报告对应于所述终端设备在所述第二时间单元发送的第二上行信道集合,所述第二上行信道集合是所述第一上行信道集合的子集。
  35. 如权利要求34所述的终端设备,其特征在于,
    所述第一功率余量报告包括第三上行信道集合对应的真实功率余量值,所述第二功率余量报告包括所述第三上行信道集合对应的虚拟功率余量值。
  36. 如权利要求29-35任意一项所述的终端设备,其特征在于,所述终端设备还包括接收器,用于:
    接收所述网络设备发送的第一配置信息,所述第一配置信息用于指示所述第一功率余量报告禁止定时阈值、所述第一路径损耗阈值、以及所述第一周期功率余量报告定时阈值;所述第一配置信息用于确定所述第一类型时间单元和所述第二类型时间单元是否满足功率余量报告条件。
  37. 如权利要求29-35任意一项所述的终端设备,其特征在于,所述终端设备还包括接收器,用于:
    接收所述网络设备发送的第一配置信息和第二配置信息;所述第一配置信息用于指示所述第一功率余量报告禁止定时阈值、所述第一路径损耗阈值、以及所述第一周期功率余量报告定时阈值,所述第二配置信息用于指示第二功率余量报告禁止定时阈值、第二路径损耗阈值、以及第二周期功率余量报告定时阈值;所述第一配置信息用于确定所述第二类型时间单元是否满足功率余量报告条件,所述第二配置信息用于确定所述第一类型时间单元是否满足功率余量报告条件。
  38. 如权利要求26-37任意一项所述的终端设备,其特征在于,所述处理器还用于:
    在所述发送器通过所述第一物理上行共享信道向网络设备发送第一功率余量报告之后,重置所述功率余量报告禁止定时器和所述周期功率余量报告定时器。
  39. 一种网络设备,其特征在于,包括:
    发送器,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在第一时间单元发送第一物理上行共享信道;
    接收器,用于通过所述第一物理上行共享信道接收所述终端设备发送的第一功率余量报告,所述第一时间单元满足功率余量报告条件;
    所述功率余量报告条件包括以下至少一种:
    所述终端设备的功率余量报告禁止定时器达到或者已经达到第一功率余量报告禁止定时阈值,并且第一路径损耗超过路径损耗阈值;
    所述终端设备的周期功率余量报告定时器达到第一周期功率余量报告定时阈值;
    所述终端设备接收到功率余量报告的配置信息或者重配置信息;
    所述终端设备接收到用于激活被配置的辅小区的信令;
    所述终端设备接收到用于添加主要辅小区的信令。
  40. 如权利要求39所述的网络设备,其特征在于,所述第一时间单元的长度小于或等于一个时隙的长度。
  41. 如权利要求39或40所述的网络设备,其特征在于,
    所述发送器还用于:向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备在第二时间单元发送第二物理上行共享信道;
    所述接收器还用于:通过所述第二物理上行共享信道接收所述终端设备发送的第二功率余量报告,所述第二时间单元的长度大于所述第一时间单元的长度。
  42. 如权利要求39-41任意一项所述的网络设备,其特征在于,所述第一时间单元属于第二时间单元,所述第一时间单元是第一类型时间单元,所述第二时间单元是第二类型时间单元,所述第一类型时间单元的长度为第一长度,所述第二类型时间单元的长度为第二长度,所述第二长度大于所述第一长度;所述第一类型时间单元和所述第二类型时间单元均用于调度物理上行共享信道。
  43. 如权利要求42所述的网络设备,其特征在于,
    所述第二类型时间单元为传输时间间隔TTI,所述第一类型时间单元为短传输时间间隔sTTI;或
    所述第二类型时间单元为时隙slot,所述第一类型时间单元为迷你时隙Mini-slot。
  44. 如权利要求42或43所述的网络设备,其特征在于,
    所述第一功率余量报告禁止定时阈值的单位是所述第二类型时间单元;和或
    所述第一周期功率余量报告定时阈值的单位是所述第二类型时间单元。
  45. 如权利要求42-44任意一项所述的网络设备,其特征在于,
    所述第一时间单元是所述网络设备在所述第二时间单元内接收物理上行共享信道的第一个第一类型时间单元。
  46. 如权利要求42-45任意一项所述的网络设备,其特征在于,
    所述发送器还用于:向所述终端设备发送第二指示信息,所述第二指示信息用于指示在第二时间单元发送第二物理上行共享信道;
    所述接收器还用于:通过所述第二物理上行共享信道接收所述终端设备发送的第二功率余量报告;
    其中,所述网络设备发送所述第一指示信息的时间和所述网络设备发送所述第二指示信息的时间不同。
  47. 如权利要求46所述的网络设备,其特征在于,
    所述第一功率余量报告对应于所述网络设备在所述第一时间单元接收的第一上行信道集合,所述第二功率余量报告对应于所述网络设备在所述第二时间单元接收的第二上行信道集合,所述第二上行信道集合是所述第一上行信道集合的子集。
  48. 如权利要求47所述的网络设备,其特征在于,
    所述第一功率余量报告包括第三上行信道集合对应的真实功率余量值,所述第二功率余量报告包括所述第三上行信道集合对应的虚拟功率余量值。
  49. 如权利要求42-48任意一项所述的网络设备,其特征在于,所述发送器还用于:
    向所述终端设备发送第一配置信息,所述第一配置信息用于指示所述第一功率余量报告禁止定时阈值、所述第一路径损耗阈值、以及所述第一周期功率余量报告定时阈值;所述第一配置信息用于确定所述第一类型时间单元和所述第二类型时间单元是否满足功率余量报告条件。
  50. 如权利要求42-48任意一项所述的网络设备,其特征在于,所述发送器还用于:
    向所述终端设备发送第一配置信息和第二配置信息;所述第一配置信息用于指示所述第一功率余量报告禁止定时阈值、所述第一路径损耗阈值、以及所述第一周期功率余量报告定时阈值,所述第二配置信息用于指示第二功率余量报告禁止定时阈值、第二路径损耗阈值、以及第二周期功率余量报告定时阈值;所述第一配置信息用于确定所述第二类型时间单元是否满足功率余量报告条件,所述第二配置信息用于确定所述第一类型时间单元是否满足功率余量报告条件。
PCT/CN2018/088910 2017-06-29 2018-05-29 一种功率余量报告发送、接收方法及设备 WO2019001205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710518292.1A CN109219126A (zh) 2017-06-29 2017-06-29 一种功率余量报告发送方法及设备
CN201710518292.1 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019001205A1 true WO2019001205A1 (zh) 2019-01-03

Family

ID=64741078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088910 WO2019001205A1 (zh) 2017-06-29 2018-05-29 一种功率余量报告发送、接收方法及设备

Country Status (2)

Country Link
CN (1) CN109219126A (zh)
WO (1) WO2019001205A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584479B (zh) * 2019-09-27 2022-08-02 维沃移动通信有限公司 功率余量报告处理方法、终端及网络设备
CN115413034A (zh) * 2021-05-28 2022-11-29 华为技术有限公司 一种通信方法及装置
CN118202713A (zh) * 2021-11-08 2024-06-14 高通股份有限公司 针对多pusch重复的功率余量报告

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936275A (zh) * 2014-03-20 2015-09-23 中兴通讯股份有限公司 一种上行功率控制的方法、系统、以及终端和基站
CN105407524A (zh) * 2015-10-30 2016-03-16 上海华为技术有限公司 Phr的发送方法和用户终端
US20160270094A1 (en) * 2015-03-09 2016-09-15 Ofinno Technologies, Llc Power Headroom in a Wireless Network
US20160330697A1 (en) * 2015-05-08 2016-11-10 Qualcomm Incorporated Physical uplink control channel management for pucch secondary cell in carrier aggregation
CN106165503A (zh) * 2014-03-14 2016-11-23 Lg电子株式会社 双连接系统中触发功率余量报告的方法及其设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104905B (zh) * 2010-08-13 2014-02-05 电信科学技术研究院 载波聚合场景下的功率余量上报方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165503A (zh) * 2014-03-14 2016-11-23 Lg电子株式会社 双连接系统中触发功率余量报告的方法及其设备
CN104936275A (zh) * 2014-03-20 2015-09-23 中兴通讯股份有限公司 一种上行功率控制的方法、系统、以及终端和基站
US20160270094A1 (en) * 2015-03-09 2016-09-15 Ofinno Technologies, Llc Power Headroom in a Wireless Network
US20160330697A1 (en) * 2015-05-08 2016-11-10 Qualcomm Incorporated Physical uplink control channel management for pucch secondary cell in carrier aggregation
CN105407524A (zh) * 2015-10-30 2016-03-16 上海华为技术有限公司 Phr的发送方法和用户终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITRI: "Discussion on PHR for sTTI operation", 3GPP TSG-RAN WG1 MEETING #89, no. R1-1708664, 5 May 2017 (2017-05-05), Hangzhou, China, XP051261444 *

Also Published As

Publication number Publication date
CN109219126A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
US11405092B2 (en) Beam management procedures
US11917692B2 (en) Uplink and downlink synchronization procedures
US11212747B2 (en) Power saving operations for communication systems
US10721704B2 (en) Network node, user equipment and methods therein for adjusting the transmit timing of uplink transmissions
US11973638B2 (en) Beam failure recovery procedure in dormant state
US20200029316A1 (en) Resource Management for Wireless Communications Using a Power Saving State
EP3522647A1 (en) Wireless communications using traffic information
WO2018223929A1 (zh) 发送上行信息的方法和装置
EP2893757B1 (en) Multiple timing advance groups (tags) for ul carrier aggregation (ca)
KR101569258B1 (ko) 사운딩 참조 신호 전송 방법 및 장치
US11581975B2 (en) Wireless device, a network node and methods therein for enabling and performing an uplink control channel transmission
US20210167928A1 (en) Secondary cell control method and apparatus
WO2016000368A1 (zh) 上行控制信道的配置和发送方法、装置及基站和用户设备
US11330595B2 (en) Method for sending control information, method for receiving control information, and apparatus
EP4184969A1 (en) Physical downlink control channel enhancement method, communication device, and system
EP3143811B1 (en) Handling timing differences in timing advance groups in a communication device
US20200177321A1 (en) Hybrid Automatic Repeat Request Harq Feedback Method And Apparatus
CN111436085B (zh) 通信方法及装置
WO2019001205A1 (zh) 一种功率余量报告发送、接收方法及设备
CA3060803A1 (en) Beam management for cells in wireless communications
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2019062583A1 (zh) 一种载波状态指示方法及设备
JP2022526560A (ja) 送信の電力をハンドリングするための無線デバイス、第1のネットワークノード、第2のネットワークノード、およびそれらによって実施される方法
EP3826370A1 (en) Data transmission method and apparatus
US12035404B2 (en) Beam management for cells in wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824056

Country of ref document: EP

Kind code of ref document: A1