WO2018223803A1 - 一种紧凑型多模式气门驱动系统 - Google Patents

一种紧凑型多模式气门驱动系统 Download PDF

Info

Publication number
WO2018223803A1
WO2018223803A1 PCT/CN2018/086443 CN2018086443W WO2018223803A1 WO 2018223803 A1 WO2018223803 A1 WO 2018223803A1 CN 2018086443 W CN2018086443 W CN 2018086443W WO 2018223803 A1 WO2018223803 A1 WO 2018223803A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
valve
rocker arm
brake
brake switch
Prior art date
Application number
PCT/CN2018/086443
Other languages
English (en)
French (fr)
Inventor
隆武强
崔靖晨
田华
王阳
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to JP2019566934A priority Critical patent/JP7061395B2/ja
Publication of WO2018223803A1 publication Critical patent/WO2018223803A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/06Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • F01L2013/0052Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams provided on an axially slidable sleeve

Definitions

  • the invention relates to a compact multi-mode valve drive system, belonging to the fields of valve drive, variable stroke and auxiliary brake.
  • a multi-mode engine with optimized engine performance in the range of drive-brake full operating conditions is proposed.
  • the two-stroke drive mode is adopted to meet the requirements of high power output; in other driving conditions, the four-stroke drive mode is adopted to meet the requirements of low fuel consumption and low emissions; Under the braking condition, the four-stroke braking mode is adopted to meet the requirements of light load, lower short slope or gentle slope of the vehicle; under the heavy load braking condition of the vehicle, the two-stroke braking mode is adopted to meet the heavy load and the lower part of the vehicle. Requirements for high-grade graded braking are required for long or steep slopes.
  • the key to the realization of the multi-mode engine is the development of a multi-mode valve drive system that can flexibly switch between the engine four-stroke drive mode, the two-stroke drive mode, the four-stroke brake mode, and the two-stroke brake mode.
  • valve drive system Since the existing practical variable valve drive system is mostly used in a four-stroke drive mode engine and cannot meet the requirements of a multi-mode engine, a valve drive system with high reliability, simple structure and multi-mode engine requirements is developed. It is imperative.
  • the object of the present invention is to design a compact multi-mode valve drive system for: (a) in order to achieve high engine power, low fuel consumption, low emissions and efficient staged braking operation, a valve drive system is required to achieve four Four modes of stroke drive, two-stroke brake, four-stroke brake and two-stroke drive. (b) In order to meet the vehicle's responsiveness requirements, especially to ensure that the power output is not interrupted, seamless switching between the four-stroke drive mode and the two-stroke drive mode is required. (c) In order to further improve the performance of the engine and to minimize the up-front investment, the present invention is required to be compatible with existing variable valve technology, that is, the existing variable valve mechanism can be used directly or through fine adjustment.
  • valve drive system In order to expand the scope of application, different options are required for different models.
  • valve drive system In order to meet the market demand, the valve drive system is required to realize a simple and compact structure, reliable operation, low cost, etc. In order to improve the versatility and replaceability of components, it is necessary to adopt standard components or design as independent modules.
  • the compact multi-mode valve drive system and the control method include an exhaust valve assembly and an intake valve assembly, a first cam shaft provided with a sleeve, and an exhaust brake cam provided Second camshaft, rocker arm, rocker fulcrum, intake side valve bridge, switching assembly, brake switch and brake switch return spring.
  • the sleeve is provided with at least an intake four-stroke cam, an intake two-stroke cam, an exhaust four-stroke cam, an exhaust two-stroke cam, a first switching groove and a second switching groove.
  • the rocker arm includes at least an intake rocker arm and an exhaust main rocker arm.
  • the rocker fulcrum includes at least an intake rocker fulcrum and an exhaust main rocker fulcrum.
  • the switching component includes a first switching component and a second switching component.
  • the intake rocker arm is in contact with the fulcrum of the intake rocker arm
  • the exhaust main rocker arm is in contact with the fulcrum of the exhaust main rocker arm
  • the brake switch is in contact with the brake switch return spring
  • the intake rocker arm is directly or through the intake side
  • the valve bridge drives the intake valve assembly.
  • the exhaust main rocker arm drives the exhaust valve assembly directly or through a valve train on the exhaust side, or drives the exhaust valve assembly through a valve bridge assembly.
  • the brake switch uses a first brake switch or a second brake switch.
  • the brake switch adopts the first brake switch
  • the first brake switch is in contact with the brake switch return spring
  • the exhaust brake cam drives the first brake switch directly or through the rocker arm, and directly or through the rocker arm.
  • the exhaust valve assembly is driven directly or through the valve train on the exhaust side, or finally the exhaust valve assembly is driven through the valve bridge assembly.
  • the second brake switch is used as the brake switch, the exhaust brake rocker arm is added, the exhaust brake rocker arm is in contact with the brake switch return spring, and the second brake switch is disposed on the fixed component or the exhaust brake rocker arm.
  • the exhaust brake cam accordingly drives the exhaust valve assembly through the exhaust brake rocker or first through the exhaust brake rocker arm and the second brake switch, or directly or through the valve drive block on the exhaust side, or through the valve
  • the bridge assembly drives the exhaust valve assembly.
  • the intake rocker arm In the four-stroke drive mode, the intake rocker arm is in contact with the intake four-stroke cam, the exhaust main rocker arm is in contact with the exhaust four-stroke cam, and the brake switch is disabled.
  • the two-stroke driving mode the intake rocker arm is in contact with the intake two-stroke cam, the exhaust main rocker arm is in contact with the exhaust two-stroke cam, and the brake switch is disabled.
  • the intake rocker arm In the four-stroke braking mode, the intake rocker arm is in contact with the intake four-stroke cam, and the exhaust main rocker arm is in contact with the exhaust four-stroke cam, and the brake switch operates.
  • the intake rocker arm In the two-stroke braking mode, the intake rocker arm is in contact with the intake two-stroke cam, the exhaust main rocker arm is in contact with the exhaust two-stroke cam, and the brake switch operates.
  • the first switching component operates.
  • the two-stroke mode When the two-stroke mode is switched to the four-stroke mode, the second switching component operates.
  • the switching assembly includes at least a retractable pin. The telescopic state of the pin is controlled by electromagnetic, hydraulic or gas.
  • a variable valve mechanism is provided between any two contact ends between the cam and the valve assembly.
  • the brake switch includes a hydraulic piston brake switch and a lock brake switch.
  • the hydraulic piston brake switch includes at least one or two hydraulic pistons, a spool valve body, a spool return spring, a check valve spool, and a check valve return spring.
  • the hydraulic piston brake switch also includes a piston bushing, a spool bushing or a combination of a piston bushing and a spool bushing.
  • the lock brake switch includes at least one or two second lock pistons, a first lock block, a second lock block, a brake lock spring, and a brake return spring.
  • the lock brake switch also includes a brake switch bushing, a hydraulic gap adjustment assembly or a combination of a brake switch bushing and a hydraulic gap adjustment assembly.
  • the first brake switch uses two hydraulic pistons or two locking pistons.
  • the second brake switch uses a hydraulic piston or a locking piston.
  • the exhaust valve assembly When the exhaust main rocker directly drives the exhaust valve assembly, the exhaust valve assembly includes a valve drive input and a valve brake input.
  • the exhaust main rocker arm is in contact with the valve drive input end, and the exhaust brake rocker arm or the brake switch is in contact with the valve brake input terminal directly or through the rocker arm.
  • the valve train block includes a drive input, a brake input, and an output.
  • the exhaust main rocker arm is in contact with the drive input end, and the exhaust brake rocker arm or the brake switch is in contact with the brake input terminal directly or through the rocker arm, and the output end drives the exhaust valve assembly.
  • the exhaust valve assembly also includes a first exhaust valve assembly and a second exhaust valve assembly, the exhaust side valve bridge assembly employing a first valve bridge assembly, a second valve bridge assembly, or a third valve bridge assembly.
  • the first valve bridge assembly includes a first valve bridge and a first transmission rod, the first valve bridge drives the first transmission rod through the boss, the first valve bridge includes a first drive input end and a first valve bridge output end, the first transmission The rod includes a first brake input end and a first transmission rod output end, the exhaust main rocker arm is in contact with the first drive input end, and the brake switch or the exhaust brake rocker arm is in contact with the first brake input end, A valve bridge output and a first transmission rod output are in contact with the first exhaust valve assembly and the second exhaust valve assembly, respectively.
  • the second valve bridge assembly includes a second valve bridge and a drive rocker return spring, the second valve bridge includes a second brake input end, a second drive input end, a second valve bridge first output end, and a second valve bridge second At the output end, the exhaust main rocker arm is in contact with the second drive input end, the brake switch or the exhaust brake rocker arm is in contact with the second brake input end, the second valve bridge first output end and the second valve bridge are The two output ends are in contact with the first exhaust valve assembly and the second exhaust valve assembly, respectively, and the rocker return spring is driven into contact with the exhaust main rocker arm.
  • the third valve bridge assembly includes a third valve bridge and a second transmission rod, the third valve bridge drives the second transmission rod through the hinge and the boss, the third valve bridge includes a third drive input end and a third valve bridge output end,
  • the second transmission rod includes a third brake input end and a second transmission rod output end, the exhaust main rocker arm is in contact with the third drive input end, and the brake switch or the exhaust brake rocker arm is in contact with the third brake input end
  • the third valve bridge output end and the second transmission rod output end are in contact with the first exhaust valve assembly and the second exhaust valve assembly, respectively.
  • the cam is in direct contact with the rocker arm or through the tappet and the push rod.
  • the first brake switch is in direct contact with the rocker arm through the tappet and the push rod.
  • the compact multi-mode valve drive system and the control method mainly comprise a first camshaft provided with a sleeve, a second camshaft provided with an exhaust brake cam, a switching component and a brake switch .
  • the sleeve is provided with an intake four-stroke cam, an intake two-stroke cam, an exhaust four-stroke cam, an exhaust two-stroke cam, and two switching grooves.
  • the first and second switching assemblies are used to control the axial position of the sleeve to achieve two-stroke and four-stroke switching; the brake switch enables switching between driving and braking modes to achieve high power, low fuel consumption, low emissions, and Efficient graded braking.
  • FIG. 1 is a schematic diagram of a first scheme of a multi-mode valve drive system.
  • FIG. 2 is a schematic diagram of a second scheme of a multi-mode valve actuation system.
  • FIG. 3 is a schematic diagram of a third scheme of a multi-mode valve drive system.
  • FIG. 4 is a schematic view of a fourth embodiment of a multi-mode valve drive system.
  • Figure 5 is a schematic view of a fifth embodiment of a multi-mode valve drive system.
  • Figure 6 is a schematic view of the first valve bridge assembly.
  • Figure 7 is a schematic view of the second valve bridge.
  • Figure 8 is a schematic illustration of a third valve bridge assembly.
  • Figure 9 is a schematic view showing the first embodiment of the sleeve.
  • Figure 10 is a schematic view showing the second embodiment of the sleeve.
  • Figure 11 is a schematic view showing the third embodiment of the sleeve.
  • Figure 12 is a schematic view of a hydraulic piston type first brake switch.
  • Figure 13 is a schematic view of a first embodiment of a hydraulic piston type second brake switch.
  • Figure 14 is a schematic view of a second embodiment of a hydraulic piston type second brake switch.
  • Figure 15 is a schematic view of a third embodiment of a hydraulic piston type second brake switch.
  • Figure 16 is a fourth schematic view of a hydraulic piston type second brake switch.
  • Figure 17 is a first schematic view of the first brake switch of the lock type.
  • Figure 18 is a schematic view of a second embodiment of the lock type first brake switch.
  • Figure 19 is a schematic view of a third embodiment of the lock type first brake switch.
  • Figure 20 is a first schematic view of the second brake switch.
  • Figure 21 is a schematic view of a second embodiment of the second brake switch.
  • Figure 22 is a schematic view of a third embodiment of the second brake switch.
  • Figure 23 is a fourth schematic view of the second brake switch.
  • Figure 24 is a schematic view of a fifth embodiment of the second brake switch.
  • Figure 25 is a fifth schematic view of a hydraulic piston type second brake switch.
  • Figure 26 is a schematic view of a valve train block.
  • Figure 27 is a schematic view of the exhaust valve head when the rocker directly drives the exhaust valve.
  • first camshaft; 102 second camshaft; 2, bushing; 201, exhaust brake cam; 251, intake four-stroke cam; 252, intake two-stroke cam; Four-stroke cam; 262, exhaust two-stroke cam; 271, first switching slot; 272, second switching slot; 301, intake rocker arm; 302, exhaust main rocker arm; 303, exhaust brake rocker arm; , intake rocker fulcrum; 402, exhaust main rocker fulcrum; 403, exhaust brake rocker fulcrum; 5001, drive input; 5002, brake input; 5003, output; 5101, valve drive input; 5102, valve brake input end; 501, first valve bridge assembly; 511, first valve bridge; 5111, first drive input end; 5112, first valve bridge output end; 512, first transmission rod; 5121, a brake input end; 5122, a first transmission rod output end; 502, a second valve bridge assembly; 521, a second valve bridge; 5211, a second brake input end; 5212, a second drive input end;
  • the present invention relates to a compact multi-mode valve actuation system that includes an exhaust valve assembly and an intake valve assembly. It also includes a first camshaft 101 provided with a sleeve 2, a second camshaft 102 provided with an exhaust brake cam 201, a rocker arm, a rocker fulcrum, an intake side valve bridge 503, a switching assembly, a brake switch 703 and brake switch return spring 73K.
  • the sleeve 2 is provided with at least an intake four-stroke cam 251, an intake two-stroke cam 252, an exhaust four-stroke cam 261, an exhaust two-stroke cam 262, a first switching groove 271 and a second switching groove 272, and the rocker arm is at least The intake rocker arm 301 and the exhaust main rocker arm 302 are included.
  • the rocker pivot point includes at least an intake rocker pivot point 401 and an exhaust main rocker arm pivot point 402.
  • the switching assembly includes a first switching assembly 701 and a second switching assembly 702.
  • the intake rocker arm 301 is in contact with the intake rocker arm fulcrum 401
  • the exhaust main rocker arm 302 is in contact with the exhaust main rocker arm fulcrum 402.
  • the brake switch 703 employs a first brake switch or a second brake switch.
  • the brake switch 703 employs the first brake switch, as shown in FIGS. 1 and 5, the first brake switch is in contact with the brake switch return spring 73K.
  • the brake switch 703 adopts the second brake switch as shown in FIG. 2 to FIG. 4, the exhaust brake rocker arm 303 is added, the exhaust brake rocker arm 303 is in contact with the brake switch return spring 73K, and the second brake switch is disposed at On the fixture or on the exhaust brake rocker arm 303.
  • the intake rocker arm 301 directly drives an intake valve assembly.
  • the intake rocker arm 301 drives a plurality of intake valve assemblies through the intake side valve bridge 503.
  • the exhaust main rocker arm 302 drives the exhaust valve assembly directly or through the valve drive block on the exhaust side; when the brake switch 703 employs the first brake switch, the exhaust brake cam 201 Firstly driving the first brake switch directly or through the rocker arm, and directly or through the rocker arm, and finally driving the exhaust valve assembly directly or through the valve drive block on the exhaust side; when the brake switch 703 adopts the second brake switch, The air brake cam 201 accordingly drives the exhaust valve assembly directly through the exhaust brake rocker arm 303 or first through the exhaust brake rocker arm 303 and the second brake switch, either directly or through the valve train on the exhaust side.
  • the exhaust main rocker arm 302 drives a plurality of exhaust valve assemblies through a valve bridge assembly on the exhaust side;
  • the brake switch 703 employs a first brake switch
  • the exhaust brake cam 201 Firstly, the first brake switch is driven directly or through the rocker arm, and directly or through the rocker arm, and finally the exhaust valve assembly is driven by the valve bridge assembly;
  • the brake switch 703 adopts the second brake switch the exhaust brake cam 201 corresponds to The exhaust valve assembly is first driven through the exhaust brake arm 303 or first through the exhaust brake rocker arm 303 and the second brake switch, and then through the valve bridge assembly.
  • FIGS. 1 - 5 are schematic illustrations of five embodiments of the system.
  • Figure 27 is a schematic view of the exhaust valve head when the rocker directly drives the exhaust valve.
  • the exhaust valve assembly includes a valve drive input 5101 and a valve brake input 5102.
  • the exhaust main rocker arm 302 is in contact with the valve drive input end 5101, and the exhaust brake rocker arm 303, or the brake switch 703 is in direct contact with the valve brake input end 5102 via the rocker arm.
  • Figure 26 is a schematic view of a valve train block.
  • the valve train block includes a drive input terminal 5001, a brake input terminal 5002, and an output terminal 5003.
  • the exhaust main rocker arm 302 is in contact with the drive input end 5001, the exhaust brake rocker arm 303, or the brake switch 703 is in direct contact with the brake input end 5002 via a rocker arm, and the output end 5003 drives the exhaust valve assembly.
  • the intake valve assembly may include a first intake valve assembly 621 and a second intake valve assembly 622 that employs an intake side valve bridge 503 to drive the two intake valves.
  • the exhaust valve assembly also includes a first exhaust valve assembly 611 and a second exhaust valve assembly 612.
  • the exhaust side valve bridge assembly employs a first valve bridge assembly 501, a second valve bridge assembly 502, or a third valve bridge assembly.
  • the first valve bridge assembly 501 includes a first valve bridge 511 and a first transmission rod 512.
  • the first valve bridge 511 drives the first transmission rod 512 through a boss.
  • the first valve bridge 511 includes a first drive input end 5111.
  • the first valve bridge output end 5112, the first transmission rod 512 includes a first brake input end 5121 and a first transmission rod output end 5122
  • the exhaust main rocker arm 302 is in contact with the first drive input end 5111
  • the brake switch 703 or the exhaust brake rocker arm 303 is in contact with the first brake input end 5121
  • the first valve bridge output end 5112 and the first transmission rod output end 5122 are respectively associated with the first exhaust valve assembly 611 and the second exhaust valve assembly 612 is in contact.
  • the second valve bridge assembly 502 includes a second valve bridge 521 and a drive rocker return spring
  • the second valve bridge 521 includes a second brake input terminal 5211, a second drive input end 5212, and a second valve bridge first.
  • the output end 5213 and the second valve bridge second output end 5214, the exhaust main rocker arm 302 is in contact with the second drive input end 5212, and the brake switch 703 or the exhaust brake rocker arm 303 is coupled to the second brake input end 5211.
  • the second valve bridge first output end 5213 and the second valve bridge second output end 5214 are in contact with the first exhaust valve assembly 611 and the second exhaust valve assembly 612, respectively, driving the rocker return spring and the exhaust main The rocker arms 302 are in contact.
  • the third valve bridge assembly includes a third valve bridge 531 and a second transmission rod 532.
  • the third valve bridge 531 drives the second transmission rod 532 through a hinge and a boss.
  • the third valve bridge 531 includes a third drive input end.
  • the second transmission rod 532 includes a third brake input end 5321 and a second transmission rod output end 5322
  • the exhaust main rocker arm 302 is in contact with the third drive input end 5311
  • the switch 703 or the exhaust brake rocker arm 303 is in contact with the third brake input end 5321
  • the third valve bridge output end 5312 and the second transmission rod output end 5322 are respectively associated with the first exhaust valve assembly 611 and the second exhaust valve Component 612 is in contact.
  • the intake rocker arm 301 In the four-stroke driving mode, the intake rocker arm 301 is in contact with the intake four-stroke cam 251, the exhaust main rocker arm 302 is in contact with the exhaust four-stroke cam 261, and the brake switch 703 is disabled.
  • the intake rocker arm 301 In the two-stroke drive mode, the intake rocker arm 301 is in contact with the intake two-stroke cam 252, the exhaust main rocker arm 302 is in contact with the exhaust two-stroke cam 262, and the brake switch 703 is disabled.
  • the intake rocker arm 301 In the four-stroke braking mode, the intake rocker arm 301 is in contact with the intake four-stroke cam 251, the exhaust main rocker arm 302 is in contact with the exhaust four-stroke cam 261, and the brake switch 703 is operated.
  • the intake rocker arm 301 In the two-stroke braking mode, the intake rocker arm 301 is in contact with the intake two-stroke cam 252, the exhaust main rocker arm 302 is in contact with the exhaust two-stroke cam 262, and the brake switch 703 is operated.
  • the purpose of setting the brake switch return spring 73K is to disable the brake switch 703, that is, the drive mode, the exhaust brake cam 201 is always in contact with the brake switch 703, avoiding the rotation of the second camshaft 102 and The opening and closing of the exhaust valve causes a collision between the components.
  • the intake four-stroke cam 251 realizes that the intake valve is opened near the top and bottom of the intake and exhaust, and is closed near the bottom dead center; the exhaust four-stroke cam 261 realizes that the exhaust valve is opened near the bottom dead center of the exhaust, Immediately after the intake and exhaust top dead center is closed; the intake two-stroke cam 252 realizes that the intake valve opens and closes near each bottom dead center; the exhaust two-stroke cam 262 realizes that the exhaust valve opens near each bottom dead center
  • the exhaust brake cam 101 realizes that the exhaust valve opens and closes near each top dead center.
  • the invention adopts two switching components to control the axial position of the sleeve to realize seamless switching of two strokes and four strokes; one brake switch realizes switching of driving and braking modes.
  • the switching assembly includes at least a retractable pin.
  • the telescopic state of the pin is controlled by electromagnetic, hydraulic or gas.
  • the switching assembly uses a conventional plunger couple that is hydraulically or gas controlled.
  • the first switching component 701 is connected to the first oil passage 811, and the second switching component 702 is connected to the second oil passage 812.
  • the pressure state of the two oil passages is controlled by two control valves.
  • the pin corresponding to the first switching component 701 is the pin 1
  • the pin corresponding to the second switching component 702 is the pin 2.
  • the maximum switchable interval is determined according to the common base circle of the cams used in the two modes to be switched.
  • the switching interval of the switching groove is determined based on the circumferential position of the contact point (cam output point) of the cam and the subsequent member, the rotation direction of the cam shaft, and the circumferential position of the switching mechanism. When any of the conditions is changed, other conditions need to be adjusted. Therefore, in the actual case, it is necessary to determine the common base circle of the cam, the rotation direction of the cam shaft, and the circumferential position of the cam output point according to the actual model, and adjust the switching interval of the switching groove and the circumferential position of the switching mechanism.
  • first camshaft 101 is rotated counterclockwise and the second camshaft 102 is rotated clockwise.
  • the circumferential position of the shifting assembly employs two different schemes, as in Figures 9 and 11. Further, the first and second switching grooves may be separated from each other, as shown in FIGS. 9 and 11; by combining the common guiding segments of the two, the two may be combined into one body, as shown in FIG.
  • the first switching assembly 701 When the four-stroke mode is switched to the two-stroke mode, the first switching assembly 701 is operated, the pin 1 is extended into the first switching groove 271, and as the first cam shaft 101 rotates, the pin 1 pushes the sleeve 2 to the left to drive
  • the cam of the intake rocker arm 301 is switched by the intake four-stroke cam 251 into the intake two-stroke cam 252, and the cam that drives the exhaust rocker arm 302 is switched by the exhaust four-stroke cam 261 to the exhaust two-stroke cam 262.
  • the second switching assembly 702 When the two-stroke mode is switched to the four-stroke mode, the second switching assembly 702 is operated, and the pin 2 is extended into the second switching groove 272. As the first camshaft 101 rotates, the pin 2 pushes the sleeve 2 to the right to drive.
  • the cam of the intake rocker arm 301 is switched by the intake two-stroke cam 252 into the intake four-stroke cam 251, and the cam that drives the exhaust rocker arm 302 is switched by the exhaust two-stroke cam 262 into the exhaust four-stroke cam 261. Note: In the system diagram, move to the left towards the outside of the paper, and vice versa.
  • the four-stroke mode and the two-stroke mode are realized by controlling the states of the respective switching components.
  • the mode switching is completed in one cycle, which is critical for fast response and continuous power output when switching between the two-stroke driving mode and the four-stroke driving mode. .
  • the brake switch includes a hydraulic piston brake switch and a lock brake switch.
  • the hydraulic piston brake switch includes at least one or two hydraulic pistons, a spool valve body 711, a spool return spring 712, a check valve spool 713, and a check valve return spring 714.
  • the purpose of the first blocking block 715 is to ensure that the one-way valve spool 713 and the one-way valve return spring 714 can be installed in the spool valve body 711 and form a one-way oil chamber 7110.
  • the first block 715 is disposed on the spool valve body 711 on the outlet side of the check valve spool 713, and Fig.
  • FIG. 14 is on the spool valve body 711 on the inlet side of the check valve spool 713.
  • a first block 715 is provided.
  • the purpose of providing the second blocking block 716 is to ensure the disassembly and assembly of the spool valve body 711 and the spool return spring 712, the fixed spring seat serving as the spool return spring 712, and the brake switch drain oil.
  • Road 7102 oil road is smooth.
  • 15 is provided with a third blocking block 719 in the brake switch control oil passage 7103 on the inlet side of the check valve spool 713, the purpose of which is to serve as a limit for the check valve spool 713 in the closed position of the check valve and to ensure The brake switch control oil passage 7103 is unblocked.
  • 25 is a fifth schematic diagram of a hydraulic piston type second brake switch, which controls the oil passage direction of the oil passage 7103 by changing the brake switch, and limits the check valve spool 713 by using a fixing member or a spool bushing 718. Bit, so that the third block 719 can be cancelled.
  • FIG. 12 is a schematic view of a hydraulic piston type first brake switch for a multi-mode valve drive system scheme as shown in Figures 1 and 5. It has two hydraulic pistons, namely a first hydraulic piston 710A and a second hydraulic piston 710B, the exhaust brake cam 201 is in contact with the second hydraulic piston 710B, and the brake of the first hydraulic piston 710A and the exhaust side valve bridge assembly The input end is in contact, and the first hydraulic piston 710A is also in contact with the brake switch return spring 73K. 13 to FIG.
  • FIG. 16 are respectively schematic views of four schemes of the hydraulic piston type second brake switch, which are used in the case of the exhaust brake rocker arm 303 shown in FIG. 2 to FIG. 4, which has a hydraulic piston 710 and a hydraulic piston.
  • the contact object at the output of the 710 is determined by the arrangement position of the brake switch 703, and the brake switch return spring 73K is in contact with the exhaust brake rocker arm 303.
  • the hydraulic piston brake switch may also include a combination of a piston bushing 717, a spool bushing 718, or a piston bushing 717 and a spool bushing 718.
  • FIG. 16 is a view including a piston bushing 717 and a spool bushing 718.
  • the piston bushing 717 or the spool bushing 718 also enhances the versatility and interchangeability of the components.
  • the brake switch control oil passage 7103 When the brake switch control oil passage 7103 is low pressure oil, the spool return spring 712 keeps the spool valve body 711 in a failed position, and the check valve return spring 714 keeps the check valve spool 713 in the closed position, at this time, the brake
  • the switch driving oil circuit 7101 is connected to the brake switch oil draining oil circuit 7102, the brake switch control oil circuit 7103 is cut off, and the hydraulic piston is in a failure position, that is, the first brake switch is disabled.
  • the piston includes a first hydraulic piston 710A and a second hydraulic piston 710B.
  • the piston is a hydraulic piston 710.
  • the lock brake switch includes at least one or two second lock pistons, a first lock block 732A, a second lock block 732B, a brake lock spring 733, and a brake return spring 734.
  • 17 to 19 are schematic views of three schemes of the lock type first brake switch, respectively, for the multi-mode valve drive system scheme shown in FIGS. 1 and 5. It has two locking pistons, a first locking piston 731A and a second locking piston 731B, the exhaust brake cam 201 is in contact with the second locking piston 731B, and the first locking piston 731A is braked with the exhaust side valve bridge assembly. The input end is in contact, and the first lock piston 731A is also in contact with the brake switch return spring 73K.
  • 20 to 24 are schematic views of five schemes of the lock type second brake switch for the case of the exhaust brake rocker arm 303 shown in Figs. It has a locking piston 731, and the contact object of the output end of the locking piston 731 is determined by the arrangement position of the brake switch 703, and the brake switch return spring 73K is in contact with the exhaust brake rocker arm 303.
  • the lockable brake switch may also include a combination of a brake switch bushing 735, a hydraulic lash adjustment assembly or a brake switch bushing 735 and a hydraulic lash adjustment assembly.
  • the brake switch bushing 735 increases the versatility and interchangeability of the components.
  • the brake switch increases the function of automatically accumulating the valve clearance due to machining, assembly, wear, cold and hot temperature changes, and reduces the impact on the premise of ensuring the transmission of the valve drive system. Improve the service life of each part to improve engine reliability, reduce noise and reduce vibration.
  • the first lock block 732A and the second lock block 732B are both pushed outward by the action of the brake lock spring 733, and finally the second lock block 732B is completely in the second position.
  • the first locking block 732A is completely within the first locking piston 731A, i.e., the movement of the first locking piston 731A and the movement of the second locking piston 731B are independent of each other, i.e., the locking first brake switch fails.
  • the locked second brake switch as shown in Figures 20-24.
  • the brake switch control oil passage 7103 When the brake switch control oil passage 7103 is high pressure oil, the brake lock spring 733 is compressed, and both the first lock block 732A and the second lock block 732B are pushed inward by the hydraulic oil, and finally the second lock block 732B is pushed to At the same time, it is in the locking piston 731 and the outer casing, that is, the locking piston 731 and the outer casing are locked integrally, that is, the locking second brake switch operates.
  • the brake switch control oil passage 7103 When the brake switch control oil passage 7103 is low pressure oil, the first lock block 732A and the second lock block 732B are both pushed outward by the action of the brake lock spring 733, and finally the second lock block 732B is completely inside the outer casing.
  • the first locking block 732A is completely within the locking piston 731, ie the movement of the locking piston 731 and the movement of the housing are independent of each other, ie the locking second brake switch fails.
  • the outer casing is the exhaust brake rocker arm 303; when the lock type second brake switch is disposed on the fixing member, the outer casing is a fixing member.
  • the dynamic seal is sealed by a conventional plunger coupler, and the static seal adopts a sealing method such as a conventional seal ring, which not only ensures zero leakage, but also has low cost.
  • the switching mechanism realizes switching between the two-stroke mode and the four-stroke mode by controlling the axial position of the sleeve 2; the brake switch 703 realizes switching between the driving mode and the braking mode.
  • the switching mechanism and the brake switch 703 cooperate to realize switching between the four-stroke driving mode, the two-stroke driving mode, the four-stroke braking mode and the two-stroke braking mode, achieving high power, low fuel consumption, low emission and high efficiency classification. move.
  • the axis-shifting mode enables seamless switching between modes to meet the responsiveness requirements of the vehicle. This is especially important for the fast response and continuous power output when switching between the two-stroke drive mode and the four-stroke drive mode.
  • the invention also realizes a variable valve event in each mode by adding a variable valve mechanism 9, and finally achieves better high power output, low fuel consumption and low emission of the engine in the driving-braking full working condition range. And the effect of efficient grading braking.
  • the integrated design of the brake switch and other components makes the system simple and compact and improves the versatility and replaceability of the components.
  • the system has simple and compact structure, high reliability, low cost, low energy consumption, zero leakage, high potential for practical use in a short period of time, and has good application prospects.
  • the invention realizes the better high power output, low fuel consumption, low emission and high efficiency stepping braking of the engine in the range of driving-braking full working conditions.
  • the integrated design of the brake switch and other components makes the system simple and compact and improves the versatility and replaceability of the components.
  • the system has simple and compact structure, high reliability, low cost, low energy consumption, zero leakage, high potential for practical use in a short period of time, and has good application prospects. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

一种紧凑型多模式气门驱动系统,属于发动机气门驱动、变冲程及辅助制动领域。它包括设置有轴套(2)的第一凸轮轴(101)、设置有排气制动凸轮(201)的第二凸轮轴(102)、切换组件(701,702)及制动开关(703)等。轴套(2)上设置进气四冲程凸轮(251)、进气二冲程凸轮(252)、排气四冲程凸轮(261)、排气二冲程凸轮(262)及两个切换槽(271,272)。采用两个切换组件(701,702)控制轴套(2)的轴向位置,实现二冲程和四冲程的无缝切换;一个制动开关(703)实现驱动和制动模式的切换。由此能够实现四冲程驱动、二冲程驱动、四冲程制动和二冲程制动四种模式的灵活切换,达到高动力、低油耗、低排放和高效分级制动,且结构简单紧凑、可靠性高、成本低廉、响应快速。

Description

一种紧凑型多模式气门驱动系统 技术领域
本发明涉及一种紧凑型多模式气门驱动系统,属于气门驱动、变冲程及辅助制动领域。
背景技术
随着发动机保有量的急剧增加,能源与环境问题以及行车安全性问题已成为制约我国可持续发展的重大问题之一。因其能够有效提高发动机动力输出、降低油耗和排放,变冲程技术备受关注。发动机小型化(Down-size)和低速化(Down-speed)已成为公认的节能减排的发展趋势。而发动机制动时,缸径越小、转速越低,制动效果越差。在车辆自身制动能力不断减弱,车辆安全性越来越受到人们的重视,越来越多的国家将辅助制动系统列为车辆必备的附件之一的大背景下,实现二冲程制动模式势在必行。
针对上述问题,提出了在驱动-制动全工况范围内分区优化发动机性能的多模式发动机。在低速大扭矩驱动工况下,采用二冲程驱动模式,以满足高动力输出的要求;在其他驱动工况下,采用四冲程驱动模式,以满足低油耗和低排放的要求;在车辆小负载制动工况下,采用四冲程制动模式,满足车辆轻载、下短坡或缓坡时的要求;在车辆大负载制动工况下,采用二冲程制动模式,满足车辆重载、下长坡或陡坡时的要求,实现高效分级制动要求。多模式发动机的实现关键在于可实现发动机四冲程驱动模式、二冲程驱动模式、四冲程制动模式和二冲程制动模式灵活切换的多模式气门驱动系统的开发。
技术问题
由于现有实用化的可变气门驱动系统大多用于四冲程驱动模式的发动机,不能满足多模式发动机的要求,因此开发一套可靠性高、结构简单紧凑且满足多模式发动机要求的气门驱动系统势在必行。
技术解决方案
本发明的目的在于:通过设计一种紧凑型多模式气门驱动系统,用于实现:(a)为了达到发动机高动力、低油耗、低排放和高效分级制动的运行,需要气门驱动系统实现四冲程驱动、二冲程制动、四冲程制动和二冲程驱动四种模式。(b)为了满足车辆对响应性的要求,特别是保证动力输出不中断,四冲程驱动模式和二冲程驱动模式之间要做到无缝切换。(c)为了进一步改善发动机的性能,并且尽可能减少前期投入,需要本发明与现有可变气门技术相兼容,即可以直接或者通过微调后采用现有可变气门机构。(d)为了拓展应用范围,需要针对不同机型,提供不同的备选方案。(d)为了满足市场需求,需要气门驱动系统实现结构简单紧凑、工作可靠、成本低廉等;为了提高零部件的通用性和可更换性,需要将各组件采用标准件或者设计成独立模块。
本发明所采用的技术方案是:这种紧凑型多模式气门驱动系统及控制方法包括排气门组件和进气门组件、设置有轴套的第一凸轮轴、设置有排气制动凸轮的第二凸轮轴、摇臂、摇臂支点、进气侧气门桥、切换组件、制动开关及制动开关复位弹簧。轴套上至少设置有进气四冲程凸轮、进气二冲程凸轮、排气四冲程凸轮、排气二冲程凸轮、第一切换槽和第二切换槽。摇臂至少包括进气摇臂和排气主摇臂。摇臂支点至少包括进气摇臂支点和排气主摇臂支点。切换组件包括第一切换组件和第二切换组件。进气摇臂与进气摇臂支点相接触,排气主摇臂与排气主摇臂支点相接触,制动开关与制动开关复位弹簧相接触,进气摇臂直接或通过进气侧气门桥驱动进气门组件。排气主摇臂直接或通过排气侧的气门传动块驱动排气门组件,或通过气门桥组件驱动排气门组件。制动开关采用第一制动开关或者第二制动开关。制动开关采用第一制动开关时,第一制动开关与制动开关复位弹簧相接触,排气制动凸轮先直接或通过摇臂驱动第一制动开关,再直接或通过摇臂,最后直接或通过排气侧的气门传动块驱动排气门组件,或最后通过气门桥组件驱动排气门组件。制动开关采用第二制动开关时,增设排气制动摇臂,排气制动摇臂与制动开关复位弹簧相接触,第二制动开关设置在固定件上或排气制动摇臂上,排气制动凸轮相应地先通过排气制动摇臂或先通过排气制动摇臂和第二制动开关,再直接或通过排气侧的气门传动块驱动排气门组件,或再通过气门桥组件驱动排气门组件。在四冲程驱动模式下,进气摇臂与进气四冲程凸轮相接触,排气主摇臂与排气四冲程凸轮相接触,制动开关失效。在二冲程驱动模式下,进气摇臂与进气二冲程凸轮相接触,排气主摇臂与排气二冲程凸轮相接触,制动开关失效。在四冲程制动模式下,进气摇臂与进气四冲程凸轮相接触,排气主摇臂与排气四冲程凸轮相接触,制动开关工作。在二冲程制动模式下,进气摇臂与进气二冲程凸轮相接触,排气主摇臂与排气二冲程凸轮相接触,制动开关工作。四冲程模式向二冲程模式切换时,第一切换组件工作。二冲程模式向四冲程模式切换时,第二切换组件工作。切换组件至少包括可伸缩的销。销的伸缩状态由电磁、液压或气体控制。在凸轮与气门组件之间的任意两个接触端之间设置可变气门机构。
制动开关包括液压活塞式制动开关和锁定式制动开关。液压活塞式制动开关至少包括一个或两个液压活塞、滑阀阀体、滑阀回复弹簧、单向阀阀芯、单向阀回复弹簧。或液压活塞式制动开关还包括活塞衬套、滑阀衬套或活塞衬套和滑阀衬套的组合结构。锁定式制动开关至少包括一个或者两个第二锁定活塞、第一锁定块、第二锁定块、制动锁定弹簧、以及制动复位弹簧。或锁定式制动开关还包括制动开关衬套、液压间隙调节组件或制动开关衬套和液压间隙调节组件的组合结构。第一制动开关采用两个液压活塞或者两个锁定活塞。第二制动开关采用一个液压活塞或者一个锁定活塞。
排气主摇臂直接驱动排气门组件时,排气门组件包含气门驱动输入端和气门制动输入端。排气主摇臂与气门驱动输入端相接触,排气制动摇臂、或制动开关直接或通过摇臂与气门制动输入端相接触。
气门传动块包括驱动输入端、制动输入端和输出端。排气主摇臂与驱动输入端相接触,排气制动摇臂、或制动开关直接或通过摇臂与制动输入端相接触,输出端驱动排气门组件。
排气门组件还包含第一排气门组件和第二排气门组件,排气侧气门桥组件采用第一气门桥组件、第二气门桥组件或第三气门桥组件。第一气门桥组件包括第一气门桥和第一传动杆,第一气门桥通过凸台驱动第一传动杆,第一气门桥包括第一驱动输入端和第一气门桥输出端,第一传动杆包括第一制动输入端和第一传动杆输出端,排气主摇臂与第一驱动输入端相接触,制动开关或排气制动摇臂与第一制动输入端相接触,第一气门桥输出端和第一传动杆输出端分别与第一排气门组件和第二排气门组件相接触。第二气门桥组件包括第二气门桥和驱动摇臂复位弹簧,第二气门桥包括第二制动输入端、第二驱动输入端、第二气门桥第一输出端和第二气门桥第二输出端,排气主摇臂与第二驱动输入端相接触,制动开关或排气制动摇臂与第二制动输入端相接触,第二气门桥第一输出端和第二气门桥第二输出端分别与第一排气门组件和第二排气门组件相接触,驱动摇臂复位弹簧与排气主摇臂相接触。第三气门桥组件包括第三气门桥和第二传动杆,第三气门桥通过铰接和凸台驱动第二传动杆,第三气门桥包括第三驱动输入端和第三气门桥输出端,第二传动杆包括第三制动输入端和第二传动杆输出端,排气主摇臂与第三驱动输入端相接触,制动开关或排气制动摇臂与第三制动输入端相接触,第三气门桥输出端和第二传动杆输出端分别与第一排气门组件和第二排气门组件相接触。
凸轮直接或通过挺柱和推杆与摇臂接触。第一制动开关直接或通过挺柱和推杆与摇臂接触。
有益效果
本发明的有益效果是:这种紧凑型多模式气门驱动系统及控制方法主要包括设置有轴套的第一凸轮轴、设置有排气制动凸轮的第二凸轮轴、切换组件以及制动开关。轴套上设置有进气四冲程凸轮、进气二冲程凸轮、排气四冲程凸轮、排气二冲程凸轮以及两个切换槽。(a)采用第一和第二切换组件控制轴套的轴向位置,实现二冲程和四冲程的切换;制动开关实现驱动和制动模式的切换,达到高动力、低油耗、低排放和高效分级制动。(b)模式间无缝切换,满足车辆对响应性的要求,这尤其是对二冲程驱动模式与四冲程驱动模式之间切换时满足响应快速且动力输出连续至关重要。(c)通过增设可变气门机构,可在每种模式下实现了可变气门事件,最终实现了发动机在驱动-制动全工况范围内更好的高动力输出、低油耗、低排放和高效分级制动的效果;针对不同机型,提供电磁、液压或气动等多种方式控制切换组件,应用范围广。(d)各部件采用集成设计,系统结构简单紧凑;各组件采用标准件或者被设计成独立模块,如制动开关,提高了零部件的通用性和可更换性。系统结构简单紧凑、可靠性高、成本低廉、短期内实用化潜力高,具有良好的应用前景。
附图说明
下面结合附图与实施例对本发明进一步说明。
图1是多模式气门驱动系统第一方案示意图。
图2是多模式气门驱动系统第二方案示意图。
图3是多模式气门驱动系统第三方案示意图。
图4是多模式气门驱动系统第四方案示意图。
图5是多模式气门驱动系统第五方案示意图。
图6是第一气门桥组件示意图。
图7是第二气门桥示意图。
图8是第三气门桥组件示意图。
图9是轴套第一方案展开示意图。
图10是轴套第二方案展开示意图。
图11是轴套第三方案展开示意图。
图12是液压活塞式第一制动开关示意图。
图13是液压活塞式第二制动开关第一方案示意图。
图14是液压活塞式第二制动开关第二方案示意图。
图15是液压活塞式第二制动开关第三方案示意图。
图16是液压活塞式第二制动开关第四方案示意图。
图17是锁定式第一制动开关第一方案示意图。
图18是锁定式第一制动开关第二方案示意图。
图19是锁定式第一制动开关第三方案示意图。
图20是锁定式第二制动开关第一方案示意图。
图21是锁定式第二制动开关第二方案示意图。
图22是锁定式第二制动开关第三方案示意图。
图23是锁定式第二制动开关第四方案示意图。
图24是锁定式第二制动开关第五方案示意图。
图25是液压活塞式第二制动开关第五方案示意图。
图26是气门传动块示意图。
图27是摇臂直接驱动排气门时的排气门头部示意图。
图中:101、第一凸轮轴;102、第二凸轮轴;2、轴套;201、排气制动凸轮;251、进气四冲程凸轮;252、进气二冲程凸轮;261、排气四冲程凸轮;262、排气二冲程凸轮;271、第一切换槽;272、第二切换槽;301、进气摇臂;302、排气主摇臂;303、排气制动摇臂;401、进气摇臂支点;402、排气主摇臂支点;403、排气制动摇臂支点;5001、驱动输入端;5002、制动输入端;5003、输出端;5101、气门驱动输入端;5102、气门制动输入端;501、第一气门桥组件;511、第一气门桥;5111、第一驱动输入端;5112、第一气门桥输出端;512、第一传动杆;5121、第一制动输入端;5122、第一传动杆输出端;502、第二气门桥组件;521、第二气门桥;5211、第二制动输入端;5212、第二驱动输入端;5213、第二气门桥第一输出端;5214、第二气门桥第二输出端;503、进气侧气门桥;611、第一排气门组件;612、第二排气门组件;621、第一进气门组件;622、第二进气门组件;61、HLA阀芯;62、HLA单向阀芯;63、HLA单向阀弹簧;64、HLA单向阀弹簧座;65、HLA阀芯复位弹簧;66、HLA限位;67、HLA低压腔;68、HLA高压腔;69、HLA阀体;701、第一切换组件;702、第二切换组件;703、制动开关;710、液压活塞;710A、第一液压活塞;710B、第二液压活塞;710k、活塞复位弹簧;711、滑阀阀体;712、滑阀回复弹簧;713、单向阀阀芯;714、单向阀回复弹簧;715、第一堵块;716、第二堵块;717、活塞衬套;718、滑阀衬套;719、第三堵块;7110、单向油腔;73K、制动开关复位弹簧;7101、制动开关驱动油路;7102、制动开关泄油油路;7103、制动开关控制油路;731、驱动活塞;731A、第一驱动活塞;731B、第二驱动活塞;732A、第一锁定块;732B、第二锁定块;733、锁定弹簧;734、驱动复位弹簧;735、驱动支点组件衬套;801、第一固定件;802、第二固定件;811、第一油路;812、第二油路;9、可变气门机构。
本发明的最佳实施方式
本发明涉及一种紧凑型多模式气门驱动系统,它包括排气门组件和进气门组件。它还包括设置有轴套2的第一凸轮轴101、设置有排气制动凸轮201的第二凸轮轴102、摇臂、摇臂支点、进气侧气门桥503、切换组件、制动开关703及制动开关复位弹簧73K。轴套2上至少设置有进气四冲程凸轮251、进气二冲程凸轮252、排气四冲程凸轮261、排气二冲程凸轮262、第一切换槽271和第二切换槽272,摇臂至少包括进气摇臂301和排气主摇臂302,摇臂支点至少包括进气摇臂支点401和排气主摇臂支点402,切换组件包括第一切换组件701和第二切换组件702。进气摇臂301与进气摇臂支点401相接触,排气主摇臂302与排气主摇臂支点402相接触。制动开关703采用第一制动开关或者第二制动开关。制动开关703采用第一制动开关时,如图1和图5,第一制动开关与制动开关复位弹簧73K相接触。制动开关703采用第二制动开关时,如图2-图4,增设排气制动摇臂303,排气制动摇臂303与制动开关复位弹簧73K相接触,第二制动开关设置在固定件上或排气制动摇臂303上。对于只有一个进气门组件的发动机,进气摇臂301直接驱动一个进气门组件。对于不止一个进气门组件的发动机,进气摇臂301通过进气侧气门桥503驱动多个进气门组件。对于只有一个排气门组件的发动机,排气主摇臂302直接或通过排气侧的气门传动块驱动排气门组件;制动开关703采用第一制动开关时,排气制动凸轮201先直接或通过摇臂驱动第一制动开关,再直接或通过摇臂,最后直接或通过排气侧的气门传动块驱动排气门组件;制动开关703采用第二制动开关时,排气制动凸轮201相应地先通过排气制动摇臂303或先通过排气制动摇臂303和第二制动开关,再直接或通过排气侧的气门传动块驱动排气门组件。对于不止一个排气门组件的发动机,排气主摇臂302通过排气侧的气门桥组件驱动多个排气门组件;制动开关703采用第一制动开关时,排气制动凸轮201先直接或通过摇臂驱动第一制动开关,再直接或通过摇臂,最后通过气门桥组件驱动排气门组件;制动开关703采用第二制动开关时,排气制动凸轮201相应地先通过排气制动摇臂303或先通过排气制动摇臂303和第二制动开关,再通过气门桥组件驱动排气门组件。凸轮直接或通过挺柱和推杆与摇臂接触,或第一制动开关直接或通过挺柱和推杆与摇臂接触,以适应不同发动机凸轮轴放置位置。凸轮与气门组件之间的任意两个接触端之间设置可变气门机构9。图1-图5是该系统的五种实施方案示意图。
图27是摇臂直接驱动排气门时的排气门头部示意图。排气主摇臂302直接驱动排气门组件时,排气门组件包含气门驱动输入端5101和气门制动输入端5102。排气主摇臂302与气门驱动输入端5101相接触,排气制动摇臂303、或制动开关703直接或通过摇臂与气门制动输入端5102相接触。
图26是气门传动块示意图。气门传动块包括驱动输入端5001、制动输入端5002和输出端5003。排气主摇臂302与驱动输入端5001相接触,排气制动摇臂303、或制动开关703直接或通过摇臂与制动输入端5002相接触,输出端5003驱动排气门组件。
对于进气侧或排气侧不止一个气门时,需要增设气门桥组件来驱动气门组件。如进气门组件可包含第一进气门组件621和第二进气门组件622,采用进气侧气门桥503来驱动两个进气门。如排气门组件还包含第一排气门组件611和第二排气门组件612。排气侧气门桥组件采用第一气门桥组件501、第二气门桥组件502或第三气门桥组件。如图6,第一气门桥组件501包括第一气门桥511和第一传动杆512,第一气门桥511通过凸台驱动第一传动杆512,第一气门桥511包括第一驱动输入端5111和第一气门桥输出端5112,第一传动杆512包括第一制动输入端5121和第一传动杆输出端5122,排气主摇臂302与第一驱动输入端5111相接触,制动开关703或排气制动摇臂303与第一制动输入端5121相接触,第一气门桥输出端5112和第一传动杆输出端5122分别与第一排气门组件611和第二排气门组件612相接触。如图7,第二气门桥组件502包括第二气门桥521和驱动摇臂复位弹簧,第二气门桥521包括第二制动输入端5211、第二驱动输入端5212、第二气门桥第一输出端5213和第二气门桥第二输出端5214,排气主摇臂302与第二驱动输入端5212相接触,制动开关703或排气制动摇臂303与第二制动输入端5211相接触,第二气门桥第一输出端5213和第二气门桥第二输出端5214分别与第一排气门组件611和第二排气门组件612相接触,驱动摇臂复位弹簧与排气主摇臂302相接触。如图8,第三气门桥组件包括第三气门桥531和第二传动杆532,第三气门桥531通过铰接和凸台驱动第二传动杆532,第三气门桥531包括第三驱动输入端5311和第三气门桥输出端5312,第二传动杆532包括第三制动输入端5321和第二传动杆输出端5322,排气主摇臂302与第三驱动输入端5311相接触,制动开关703或排气制动摇臂303与第三制动输入端5321相接触,第三气门桥输出端5312和第二传动杆输出端5322分别与第一排气门组件611和第二排气门组件612相接触。
在四冲程驱动模式下,进气摇臂301与进气四冲程凸轮251相接触,排气主摇臂302与排气四冲程凸轮261相接触,制动开关703失效。在二冲程驱动模式下,进气摇臂301与进气二冲程凸轮252相接触,排气主摇臂302与排气二冲程凸轮262相接触,制动开关703失效。在四冲程制动模式下,进气摇臂301与进气四冲程凸轮251相接触,排气主摇臂302与排气四冲程凸轮261相接触,制动开关703工作。在二冲程制动模式下,进气摇臂301与进气二冲程凸轮252相接触,排气主摇臂302与排气二冲程凸轮262相接触,制动开关703工作。设置制动开关复位弹簧73K的目的是在制动开关703失效,即驱动模式下,排气制动凸轮201始终与制动开关703相接触,避免随着第二凸轮轴102的旋转以及随着排气门的启闭,出现零部件之间的碰撞。进气四冲程凸轮251实现进气门在进排气上止点附近开启,在紧接着的下止点附近关闭;排气四冲程凸轮261实现排气门在排气下止点附近开启,在紧接着的进排气上止点附近关闭;进气二冲程凸轮252实现进气门在每个下止点附近启闭;排气二冲程凸轮262实现排气门在每个下止点附近启闭;排气制动凸轮101实现排气门在每个上止点附近启闭。本发明采用采用两个切换组件控制轴套的轴向位置,实现二冲程和四冲程的无缝切换;一个制动开关实现驱动和制动模式的切换。
切换组件至少包括可伸缩的销。销的伸缩状态由电磁、液压或气体控制。图4中,切换组件采用液压或气体控制的传统柱塞偶件。第一切换组件701与第一油路811相连,第二切换组件702与第二油路812相连,采用两个控制阀分别控制这两个油路的压力状态。当切换组件工作时,销伸出;当切换组件不工作时,销保持缩回状态。定义:第一切换组件701对应的销为销1,第二切换组件702对应的销为销2。
根据待切换的两种模式所采用的凸轮的公共基圆段,确定最大可切换区间。根据凸轮与后续部件的接触点(凸轮输出点)的周向位置、凸轮轴的旋转方向以及切换机构的周向位置,确定切换槽的切换区间。所述任意一种条件改变时,需要调节其他条件。因此,在实际情况下,需要根据实际机型来确定凸轮的公共基圆段、凸轮轴的旋转方向和凸轮输出点的周向位置,调整切换槽的切换区间和切换机构的周向位置。本发明列出的实施方案中,第一凸轮轴101为逆时针旋转,第二凸轮轴102为顺时针旋转,切换组件的周向位置采用两种不同的方案,如图9和图11。此外,第一和第二切换槽可以相互分离,如图9和图11;通过合并二者的公共导向段,可将二者合并成一体,如图10。
四冲程模式向二冲程模式切换时,第一切换组件701工作,销1伸出到第一切换槽271内,随着第一凸轮轴101的旋转,销1推动轴套2向左移动,驱动进气摇臂301的凸轮由进气四冲程凸轮251切换成进气二冲程凸轮252,驱动排气摇臂302的凸轮由排气四冲程凸轮261切换成排气二冲程凸轮262。二冲程模式向四冲程模式切换时,第二切换组件702工作,销2伸出到第二切换槽272内,随着第一凸轮轴101的旋转,销2推动轴套2向右移动,驱动进气摇臂301的凸轮由进气二冲程凸轮252切换成进气四冲程凸轮251,驱动排气摇臂302的凸轮由排气二冲程凸轮262切换成排气四冲程凸轮261。注意:系统示意图中,向着纸面外部移动为向左移动,反之为向右移动。
由上述可见,通过控制各切换组件的状态,实现四冲程模式和二冲程模式。当切换组件工作,相应的销伸出到切换槽内后,模式间切换在一个循环内完成,这对二冲程驱动模式与四冲程驱动模式之间切换时满足响应快速且动力输出连续至关重要。
制动开关包括液压活塞式制动开关和锁定式制动开关。液压活塞式制动开关至少包括一个或两个液压活塞、滑阀阀体711、滑阀回复弹簧712、单向阀阀芯713、单向阀回复弹簧714。设置第一堵块715的目的是保证单向阀阀芯713和单向阀回复弹簧714可以安装在滑阀阀体711内,并且形成单向油腔7110。图12、图13和图16中,单向阀阀芯713出口侧的滑阀阀体711上设置第一堵块715,图14在单向阀阀芯713入口侧的滑阀阀体711上设置第一堵块715。图1-图16中,设置第二堵块716的目的是保证滑阀阀体711和滑阀回复弹簧712的拆装、充当滑阀回复弹簧712的固定弹簧座以及保证制动开关泄油油路7102油路畅通。图15在单向阀阀芯713入口侧的制动开关控制油路7103内设置第三堵块719,其目的是担当单向阀阀芯713在单向阀处于关闭位置下的限位以及保证制动开关控制油路7103畅通。图25是液压活塞式第二制动开关第五方案示意图,通过改变制动开关控制油路7103的油路方向,并且利用固定件或滑阀衬套718来对单向阀阀芯713进行限位,从而可以取消第三堵块719。通过改变制动开关控制油路7103的油路方向,并且利用固定件或滑阀衬套718来对单向阀阀芯713进行限位,从而可以取消第三堵块719。图12是液压活塞式第一制动开关示意图,用于如图1和图5所示的多模式气门驱动系统方案。它具有两个液压活塞,即第一液压活塞710A和第二液压活塞710B,排气制动凸轮201与第二液压活塞710B相接触,第一液压活塞710A与排气侧气门桥组件的制动输入端相接触,第一液压活塞710A还与制动开关复位弹簧73K相接触。图13-图16分别是液压活塞式第二制动开关的四种方案示意图,用于如图2-图4所示的排气制动摇臂303的情况,它具有一个液压活塞710,液压活塞710的输出端的接触对象由制动开关703的布置位置决定,制动开关复位弹簧73K与排气制动摇臂303相接触。液压活塞式制动开关还可以包括活塞衬套717、滑阀衬套718或活塞衬套717和滑阀衬套718的组合结构。图16为包括活塞衬套717和滑阀衬套718的情况。活塞衬套717或滑阀衬套718同样提高了零部件的通用性和可更换性。
当制动开关控制油路7103为低压油时,滑阀回复弹簧712保持滑阀阀体711处于失效位置,单向阀回复弹簧714保持单向阀阀芯713处于关闭位置,此时,制动开关驱动油路7101与制动开关泄油油路7102相连,制动开关控制油路7103被截止,液压活塞处于失效位置,即第一制动开关失效。当制动开关控制油路7103切换为高压油时,滑阀回复弹簧712被压缩,滑阀阀体711移动至工作位置,制动开关泄油油路7102被截止,单向阀回复弹簧714被压缩,制动开关控制油路7103内的液压油通过制动单向阀与单向油腔7110及制动开关驱动油路7101后,推动液压活塞运行至工作位置,即第一制动开关工作。当制动开关控制油路7103再次切换为低压油时,滑阀回复弹簧712推动滑阀阀体711移动到失效位置,此时,制动开关驱动油路7101与制动开关泄油油路7102再次相连,制动开关控制油路7103再次被截止,在气门弹簧、制动开关复位弹簧73K以及排气制动凸轮201的作用下,对于图13还包括活塞复位弹簧710k的作用,液压活塞再次运行失效位置,即第一制动开关再次失效。对于图12而言,上述活塞包括第一液压活塞710A和第二液压活塞710B,对于图13到图16而言,上述活塞为液压活塞710。
锁定式制动开关至少包括一个或者两个第二锁定活塞、第一锁定块732A、第二锁定块732B、制动锁定弹簧733、以及制动复位弹簧734。图17-图19分别是锁定式第一制动开关的三种方案示意图,用于如图1和图5所示的多模式气门驱动系统方案。它具有两个锁定活塞,即第一锁定活塞731A和第二锁定活塞731B,排气制动凸轮201与第二锁定活塞731B相接触,第一锁定活塞731A与排气侧气门桥组件的制动输入端相接触,第一锁定活塞731A还与制动开关复位弹簧73K相接触。图20-图24是锁定式第二制动开关的五种方案示意图,用于如图2-图4所示的排气制动摇臂303的情况。它具有一个锁定活塞731,锁定活塞731的输出端的接触对象由制动开关703的布置位置决定,制动开关复位弹簧73K与排气制动摇臂303相接触。锁定式制动开关还可以包括制动开关衬套735、液压间隙调节组件或制动开关衬套735和液压间隙调节组件的组合结构。制动开关衬套735提高了零部件的通用性和可更换性。增设液压间隙调节组件时,制动开关在保证气门驱动系统传递动力的前提下,增加了自动补偿由于加工、装配、磨损、冷态与热态温度变化等导致气门间隙的功能,减小冲击,提高各零件的使用寿命,以提高发动机工作可靠性,降低噪声,减小振动。
对于锁定式第一制动开关而言,如图17-图19。当制动开关控制油路7103为高压油时,制动锁定弹簧733被压缩,第一锁定块732A和第二锁定块732B均被液压油推动向内运行,最终第二锁定块732B被推到同时处于第一锁定活塞731A和第二锁定活塞731B内,即第一锁定活塞731A和第二锁定活塞731B被锁定成一体,即锁定式第一制动开关工作。当制动开关控制油路7103为低压油时,制动锁定弹簧733的作用下,第一锁定块732A和第二锁定块732B均被推动向外运行,最终第二锁定块732B完全处于第二锁定活塞731B内,第一锁定块732A完全处于第一锁定活塞731A内,即第一锁定活塞731A的运动和第二锁定活塞731B的运动相互独立,即锁定式第一制动开关失效。对于锁定式第二制动开关而言,如图20-图24。当制动开关控制油路7103为高压油时,制动锁定弹簧733被压缩,第一锁定块732A和第二锁定块732B均被液压油推动向内运行,最终第二锁定块732B被推到同时处于锁定活塞731和外壳内,即锁定活塞731和外壳被锁定成一体,即锁定式第二制动开关工作。当制动开关控制油路7103为低压油时,制动锁定弹簧733的作用下,第一锁定块732A和第二锁定块732B均被推动向外运行,最终第二锁定块732B完全处于外壳内,第一锁定块732A完全处于锁定活塞731内,即锁定活塞731的运动和外壳的运动相互独立,即锁定式第二制动开关失效。对于锁定式第二制动开关设置在排气制动摇臂303上时,上述外壳为排气制动摇臂303;锁定式第二制动开关设置在固定件上时,上述外壳为固定件。
对于安装在固定件内的制动开关703而言,减少气门驱动系统的运动件数量、降低其质量,实现低能耗。本发明中,动密封采用常规柱塞偶件密封,静密封采用常规密封圈等密封方式,不仅保证零泄漏,而且成本低廉。
由上可见,切换机构通过控制轴套2的轴向位置,实现二冲程模式和四冲程模式之间的切换;制动开关703则实现了驱动模式和制动模式之间的切换。切换机构和制动开关703相配合实现了四冲程驱动模式、二冲程驱动模式、四冲程制动模式和二冲程制动模式之间的切换,达到高动力、低油耗、低排放和高效分级制动。轴移式切换方式可实现模式间无缝切换,满足车辆对响应性的要求,这尤其是对二冲程驱动模式与四冲程驱动模式之间切换时满足响应快速且动力输出连续至关重要。本发明还通过增设可变气门机构9,可在每种模式下实现了可变气门事件,最终实现了发动机在驱动-制动全工况范围内更好的高动力输出、低油耗、低排放和高效分级制动的效果。制动开关等部件采用集成设计,系统结构简单紧凑并且提高了零部件的通用性和可更换性。本系统结构简单紧凑、可靠性高、成本低廉、低能耗、零泄漏、短期内实用化潜力高,具有良好的应用前景。
本发明的实施方式
同最佳实施方式。
工业实用性
本发明实现了发动机在驱动-制动全工况范围内更好的高动力输出、低油耗、低排放和高效分级制动的效果。制动开关等部件采用集成设计,系统结构简单紧凑并且提高了零部件的通用性和可更换性。本系统结构简单紧凑、可靠性高、成本低廉、低能耗、零泄漏、短期内实用化潜力高,具有良好的应用前景。。
序列表自由内容

Claims (9)

  1. 一种紧凑型多模式气门驱动系统,它包括排气门组件和进气门组件,其特征是:它还包括设置有轴套(2)的第一凸轮轴(101)、设置有排气制动凸轮(201)的第二凸轮轴(102)、摇臂、摇臂支点、进气侧气门桥(503)、切换组件、制动开关(703)及制动开关复位弹簧(73K);所述轴套(2)上至少设置有进气四冲程凸轮(251)、进气二冲程凸轮(252)、排气四冲程凸轮(261)、排气二冲程凸轮(262)、第一切换槽(271)和第二切换槽(272),所述摇臂至少包括进气摇臂(301)和排气主摇臂(302),所述摇臂支点至少包括进气摇臂支点(401)和排气主摇臂支点(402),所述切换组件包括第一切换组件(701)和第二切换组件(702);所述进气摇臂(301)与进气摇臂支点(401)相接触,排气主摇臂(302)与排气主摇臂支点(402)相接触,进气摇臂(301)直接或通过进气侧气门桥(503)驱动进气门组件;排气主摇臂(302)直接或通过气门传动块驱动排气门组件,或通过气门桥组件驱动排气门组件;所述制动开关(703)采用第一制动开关或者第二制动开关;所述制动开关(703)采用第一制动开关时,第一制动开关与制动开关复位弹簧(73K)相接触,排气制动凸轮(201)先直接或通过摇臂驱动第一制动开关,再直接或通过摇臂,最后直接或通过排气侧的气门传动块驱动排气门组件,或最后通过气门桥组件驱动排气门组件;所述制动开关(703)采用第二制动开关时,增设排气制动摇臂(303),排气制动摇臂(303)与制动开关复位弹簧(73K)相接触,第二制动开关设置在固定件上或排气制动摇臂(303)上,排气制动凸轮(201)相应地先通过排气制动摇臂(303)或先通过排气制动摇臂(303)和第二制动开关,再直接或通过排气侧的气门传动块驱动排气门组件,或再通过气门桥组件驱动排气门组件;在四冲程驱动模式下,进气摇臂(301)与进气四冲程凸轮(251)相接触,排气主摇臂(302)与排气四冲程凸轮(261)相接触,制动开关(703)失效;在二冲程驱动模式下,进气摇臂(301)与进气二冲程凸轮(252)相接触,排气主摇臂(302)与排气二冲程凸轮(262)相接触,制动开关(703)失效;在四冲程制动模式下,进气摇臂(301)与进气四冲程凸轮(251)相接触,排气主摇臂(302)与排气四冲程凸轮(261)相接触,制动开关(703)工作;在二冲程制动模式下,进气摇臂(301)与进气二冲程凸轮(252)相接触,排气主摇臂(302)与排气二冲程凸轮(262)相接触,制动开关(703)工作;四冲程模式向二冲程模式切换时,第一切换组件(701)工作;二冲程模式向四冲程模式切换时,第二切换组件(702)工作。
  2. 根据权利要求1所述的一种紧凑型多模式气门驱动系统,其特征是:所述切换组件至少包括可伸缩的销;所述销的伸缩状态由电磁、液压或气体控制。
  3. 根据权利要求1所述的一种紧凑型多模式气门驱动系统,其特征是:所述制动开关包括液压活塞式制动开关和锁定式制动开关;所述液压活塞式制动开关至少包括一个或两个液压活塞、滑阀阀体(711)、滑阀回复弹簧(712)、单向阀阀芯(713)、单向阀回复弹簧(714);或所述液压活塞式制动开关还包括活塞衬套(717)、滑阀衬套(718)或活塞衬套(717)和滑阀衬套(718)的组合结构;所述锁定式制动开关至少包括一个或者两个第二锁定活塞、第一锁定块(732A)、第二锁定块(732B)、制动锁定弹簧(733)、以及制动复位弹簧(734);或所述锁定式制动开关还包括制动开关衬套(735)、液压间隙调节组件或制动开关衬套(735)和液压间隙调节组件的组合结构;所述第一制动开关采用两个液压活塞或者两个锁定活塞;所述第二制动开关采用一个液压活塞或者一个锁定活塞。
  4. 根据权利要求1所述的一种紧凑型多模式气门驱动系统,其特征是:所述排气主摇臂(302)直接驱动排气门组件时,所述排气门组件包含气门驱动输入端(5101)和气门制动输入端(5102);排气主摇臂(302)与气门驱动输入端(5101)相接触,排气制动摇臂(303)、或制动开关(703)直接或通过摇臂与气门制动输入端(5102)相接触。
  5. 根据权利要求1所述的一种紧凑型多模式气门驱动系统,其特征是:所述气门传动块包括驱动输入端(5001)、制动输入端(5002)和输出端(5003);排气主摇臂(302)与驱动输入端(5001)相接触,排气制动摇臂(303)、或制动开关(703)直接或通过摇臂与制动输入端(5002)相接触,输出端(5003)驱动排气门组件。
  6. 根据权利要求1所述的一种紧凑型多模式气门驱动系统,其特征是:所述排气门组件还包含第一排气门组件(611)和第二排气门组件(612),所述排气侧气门桥组件采用第一气门桥组件(501)、第二气门桥组件(502)或第三气门桥组件;所述第一气门桥组件(501)包括第一气门桥(511)和第一传动杆(512),第一气门桥(511)通过凸台驱动第一传动杆(512),第一气门桥(511)包括第一驱动输入端(5111)和第一气门桥输出端(5112),第一传动杆(512)包括第一制动输入端(5121)和第一传动杆输出端(5122),排气主摇臂(302)与第一驱动输入端(5111)相接触,制动开关(703)或排气制动摇臂(303)与第一制动输入端(5121)相接触,第一气门桥输出端(5112)和第一传动杆输出端(5122)分别与第一排气门组件(611)和第二排气门组件(612)相接触;所述第二气门桥组件(502)包括第二气门桥(521)和驱动摇臂复位弹簧,第二气门桥(521)包括第二制动输入端(5211)、第二驱动输入端(5212)、第二气门桥第一输出端(5213)和第二气门桥第二输出端(5214),排气主摇臂(302)与第二驱动输入端(5212)相接触,制动开关(703)或排气制动摇臂(303)与第二制动输入端(5211)相接触,第二气门桥第一输出端(5213)和第二气门桥第二输出端(5214)分别与第一排气门组件(611)和第二排气门组件(612)相接触,驱动摇臂复位弹簧与排气主摇臂(302)相接触;所述第三气门桥组件包括第三气门桥(531)和第二传动杆(532),第三气门桥(531)通过铰接和凸台驱动第二传动杆(532),第三气门桥(531)包括第三驱动输入端(5311)和第三气门桥输出端(5312),第二传动杆(532)包括第三制动输入端(5321)和第二传动杆输出端(5322),排气主摇臂(302)与第三驱动输入端(5311)相接触,制动开关(703)或排气制动摇臂(303)与第三制动输入端(5321)相接触,第三气门桥输出端(5312)和第二传动杆输出端(5322)分别与第一排气门组件(611)和第二排气门组件(612)相接触。
  7. 根据权利要求1所述的一种紧凑型多模式气门驱动系统,其特征是:所述凸轮与气门组件之间的任意两个接触端之间设置可变气门机构(9)。
  8. 根据权利要求1所述的一种紧凑型多模式气门驱动系统,其特征是:所述凸轮直接或通过挺柱和推杆与摇臂接触。
  9. 根据权利要求1所述的一种紧凑型多模式气门驱动系统,其特征是:所述第一制动开关直接或通过挺柱和推杆与摇臂接触。
PCT/CN2018/086443 2017-06-07 2018-05-11 一种紧凑型多模式气门驱动系统 WO2018223803A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019566934A JP7061395B2 (ja) 2017-06-07 2018-05-11 マルチモードバルブ駆動システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710420445.9A CN107060942B (zh) 2017-06-07 2017-06-07 一种紧凑型多模式气门驱动系统
CN201710420445.9 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018223803A1 true WO2018223803A1 (zh) 2018-12-13

Family

ID=59617729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086443 WO2018223803A1 (zh) 2017-06-07 2018-05-11 一种紧凑型多模式气门驱动系统

Country Status (3)

Country Link
JP (1) JP7061395B2 (zh)
CN (1) CN107060942B (zh)
WO (1) WO2018223803A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020211981A1 (en) * 2019-04-17 2020-10-22 Eaton Intelligent Power Limited Rocker arm assembly with lost motion spring capsule
WO2020221477A1 (en) * 2019-04-29 2020-11-05 Eaton Intelligent Power Limited Type ii paired hydraulics engine brake

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107060942B (zh) * 2017-06-07 2019-04-09 大连理工大学 一种紧凑型多模式气门驱动系统
DE102017009541A1 (de) 2017-10-13 2019-04-18 Daimler Ag Ventiltrieb für eine Brennkraftmaschine eines Kraftfahrzeugs
CN107701305B (zh) * 2017-11-05 2019-12-27 南京理工大学 一种可变冲程的自由活塞发动机
CN108071442B (zh) * 2017-11-29 2021-04-09 大连理工大学 一种变模式气门机构
WO2019228671A1 (en) * 2018-05-31 2019-12-05 Eaton Intelligent Power Limited Primary and auxiliary variable valve actuation valvetrain
US11300061B2 (en) * 2018-06-12 2022-04-12 Eaton Intelligent Power Limited Two stroke engine braking via cylinder deactivation and late intake valve closing
CN112469887B (zh) * 2018-07-13 2023-02-03 伊顿智能动力有限公司 用于启用可变气门致动的ii型气门机构
CN109736912B (zh) * 2018-12-11 2021-04-02 大连理工大学 一种多模式配气机构及其控制方法
CN109469527B (zh) * 2018-12-11 2021-06-08 大连理工大学 一种多模式配气机构及其控制方法
CN109488404B (zh) * 2018-12-11 2021-07-06 大连理工大学 一种多模式配气机构及其控制方法
CN109488405B (zh) * 2018-12-11 2021-04-30 大连理工大学 一种多模式配气机构及其控制方法
CN109488403B (zh) * 2018-12-11 2021-04-30 大连理工大学 一种多模式配气机构及其控制方法
CN109958494A (zh) * 2019-03-27 2019-07-02 大连理工大学 一种紧凑型高效多模式配气机构
CN109915223B (zh) * 2019-03-27 2021-01-05 大连理工大学 一种紧凑型高可靠多模式配气机构
CN111894697A (zh) * 2020-09-01 2020-11-06 大连理工大学 一种高效多级制动机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032773A1 (en) * 1997-12-23 1999-07-01 Diesel Engine Retarders, Inc. Engine braking with positive power valve actuation
DE102007002802A1 (de) * 2007-01-18 2008-07-24 Audi Ag Verfahren zum Umstellen eines Ventiltriebs einer Brennkraftmaschine zwischen einem Zweitakt- und einem Viertaktbetrieb und Ventiltrieb
CN102261283A (zh) * 2010-05-27 2011-11-30 上海尤顺汽车部件有限公司 一种固链式发动机制动装置
CN105275528A (zh) * 2014-07-15 2016-01-27 雅各布斯车辆系统公司 带有包括楔状体锁定元件的锁定元件的空转气门驱动系统
CN106460575A (zh) * 2014-06-10 2017-02-22 雅各布斯车辆系统公司 内燃机中的辅助运动源与主运动加载路径之间的联动装置
CN107060942A (zh) * 2017-06-07 2017-08-18 大连理工大学 一种紧凑型多模式气门驱动系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3030365B2 (ja) * 1994-07-18 2000-04-10 日野自動車株式会社 内燃機関
JP3875067B2 (ja) 2001-10-30 2007-01-31 川崎重工業株式会社 過給機付きディーゼル機関
US8936006B2 (en) 2010-07-27 2015-01-20 Jacobs Vehicle Systems, Inc. Combined engine braking and positive power engine lost motion valve actuation system
JP5891847B2 (ja) 2012-02-24 2016-03-23 いすゞ自動車株式会社 内燃機関の制御装置
JP5928835B2 (ja) 2013-07-03 2016-06-01 株式会社デンソー バルブリフト調整装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032773A1 (en) * 1997-12-23 1999-07-01 Diesel Engine Retarders, Inc. Engine braking with positive power valve actuation
DE102007002802A1 (de) * 2007-01-18 2008-07-24 Audi Ag Verfahren zum Umstellen eines Ventiltriebs einer Brennkraftmaschine zwischen einem Zweitakt- und einem Viertaktbetrieb und Ventiltrieb
CN102261283A (zh) * 2010-05-27 2011-11-30 上海尤顺汽车部件有限公司 一种固链式发动机制动装置
CN106460575A (zh) * 2014-06-10 2017-02-22 雅各布斯车辆系统公司 内燃机中的辅助运动源与主运动加载路径之间的联动装置
CN105275528A (zh) * 2014-07-15 2016-01-27 雅各布斯车辆系统公司 带有包括楔状体锁定元件的锁定元件的空转气门驱动系统
CN107060942A (zh) * 2017-06-07 2017-08-18 大连理工大学 一种紧凑型多模式气门驱动系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020211981A1 (en) * 2019-04-17 2020-10-22 Eaton Intelligent Power Limited Rocker arm assembly with lost motion spring capsule
US11852047B2 (en) 2019-04-17 2023-12-26 Eaton Intelligent Power Limited Rocker arm assembly with lost motion spring capsule
WO2020221477A1 (en) * 2019-04-29 2020-11-05 Eaton Intelligent Power Limited Type ii paired hydraulics engine brake

Also Published As

Publication number Publication date
CN107060942A (zh) 2017-08-18
CN107060942B (zh) 2019-04-09
JP7061395B2 (ja) 2022-04-28
JP2020523513A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2018223803A1 (zh) 一种紧凑型多模式气门驱动系统
JP6905282B2 (ja) 可変モードバルブ駆動システム
JP7084641B2 (ja) 可変モードバルブ駆動システム
CN107100686B (zh) 一种单凸轮轴开关支点式变模式气门驱动系统
JP5256309B2 (ja) 一体化したロストモーションシステムを有する弁ブリッジ
CN107829791B (zh) 组合发动机制动和正功率发动机空动阀致动系统
CA2151440C (en) Valve operating system for multi-cylinder internal combustion engine
CN113279834B (zh) 一种发动机缸内制动机构及方法
CN104454178A (zh) 一种发动机制动方法
CN115263485B (zh) 一种实现发动机缸内制动的机构及发动机
CN109854325B (zh) 一种二冲程辅助制动机构
CN109973168B (zh) 一种多模式全可变机构
CN111535893B (zh) 发动机缸内制动系统及与其配套的液压挺柱
CN111058916B (zh) 压缩释放式发动机缸内制动系统
CN114961917B (zh) 一种发动机动态闭缸用摇臂式气门控制机构及发动机
CN104712397B (zh) 一种复合摇臂发动机制动装置
CN115013108A (zh) 一种多变开启次数的内燃机液压气门机构
CN109736912B (zh) 一种多模式配气机构及其控制方法
CN109958493B (zh) 一种紧凑型辅助制动机构
CN107605563B (zh) 一种辅助制动机构
CN209818130U (zh) 一种二冲程辅助制动机构
CN103835780B (zh) 一种发动机辅助气门运动装置
CN115217568B (zh) 一种发动机配气机构及方法
CN107060943B (zh) 一种低能耗制动开关
CN109458238B (zh) 一种多模式配气机构及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813056

Country of ref document: EP

Kind code of ref document: A1