WO2018221989A1 - 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법 - Google Patents
수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법 Download PDFInfo
- Publication number
- WO2018221989A1 WO2018221989A1 PCT/KR2018/006255 KR2018006255W WO2018221989A1 WO 2018221989 A1 WO2018221989 A1 WO 2018221989A1 KR 2018006255 W KR2018006255 W KR 2018006255W WO 2018221989 A1 WO2018221989 A1 WO 2018221989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- hot press
- temperature
- less
- press forming
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D35/00—Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
Definitions
- the present invention relates to a steel sheet for hot press forming members having excellent hydrogen delay fracture resistance and a method of manufacturing the same.
- the hot press forming method is a method of forming a low temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature suitable for processing and then quenching it at a low temperature to increase the strength of the final product.
- a hot press molding method is a method of forming a low temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature suitable for processing and then quenching it at a low temperature to increase the strength of the final product.
- the steel sheet When such a hot press forming is subjected to the steel sheet may have a strength of 1000MPa or more, in some cases 1470MPa or more, and in recent years, the demand for strength is even higher and may have a strength of 1800MPa or more. However, when the strength of the steel sheet increases, the steel sheet may be broken even when it contains a small amount of hydrogen because it is sensitive to hydrogen delayed fracture.
- a steel sheet for hot press forming and a manufacturing method for producing the steel sheet which can produce a hot press formed member having excellent resistance to hydrogen delayed fracture.
- the steel sheet for hot press forming member may include a steel sheet, an aluminum alloy plating layer formed on the surface of the steel sheet and an oxide layer having a thickness of 0.05 ⁇ m or more formed on the surface of the plating layer.
- the aluminum alloy plating layer may have an average content of Fe of at least 35% by weight.
- the aluminum alloy plating layer may have an average content of Fe of 45% by weight or more.
- the aluminum alloy plating layer may have an average content of Fe or more than 50% by weight.
- the brightness value representing the whiteness of the surface of the steel sheet may be 70 or less.
- the brightness value means the L value in the CIE colorimetric system (L * a * b * colorimetric system) prescribed in KS A 0067.)
- the base steel sheet by weight% C: 0.04 ⁇ 0.5%, Si: 0.01 ⁇ 2%, Mn: 0.01 ⁇ 10%, Al: 0.001 ⁇ 1.0%, P: 0.05% or less, S It may have a composition comprising: 0.02% or less, N: 0.02% or less, residual Fe and other unavoidable impurities.
- the composition of the steel sheet is a weight% of one or more selected from the group consisting of Cr, Mo and W: 0.01 to 4.0%, one from the group consisting of Ti, Nb, Zr and V Sum above: 0.001 to 0.4%, Cu + Ni: 0.005 to 2.0%, Sb + Sn: 0.001 to 1.0% and B: 0.0001 to 0.01% may further include one or more.
- a method of manufacturing a steel sheet for a hot press forming member includes: plating an aluminum plate on a surface of a steel sheet; Annealing the aluminum plated steel sheet; And cooling the steel sheet, the method of manufacturing a steel sheet for hot press forming member, wherein the aluminum plating amount is 30 to 200 g / m 2 based on one side of the steel sheet, and the winding tension after plating is 0.5 to 5 kg / mm 2 .
- the annealing is carried out in the heating temperature range of 550 ⁇ 750 °C in an annealing furnace for 30 minutes to 50 hours, when heating from room temperature to the heating temperature during the annealing, the average temperature increase rate to 20 ⁇ 100 °C / h
- the average temperature increase rate in the 400 ⁇ 500 °C section is 1 ⁇ 15 °C / h
- the heating temperature-50 °C ⁇ the temperature increase rate in the heating temperature section is 1 ⁇ 15 °C / h
- the partial pressure may be in the range of 10 ⁇ 70 to 10 ⁇ 20 atmospheres
- the difference between the atmospheric temperature in the annealing furnace and the steel sheet temperature may be 5 to 80 ° C.
- the base steel sheet by weight% C: 0.04 ⁇ 0.5%, Si: 0.01 ⁇ 2%, Mn: 0.01 ⁇ 10%, Al: 0.001 ⁇ 1.0%, P: 0.05% or less, S It may have a composition comprising: 0.02% or less, N: 0.02% or less, residual Fe and other unavoidable impurities.
- the composition of the steel sheet is a weight% of one or more selected from the group consisting of Cr, Mo and W: 0.01 to 4.0%, one from the group consisting of Ti, Nb, Zr and V Sum above: 0.001 to 0.4%, Cu + Ni: 0.005 to 2.0%, Sb + Sn: 0.001 to 1.0% and B: 0.0001 to 0.01% may further include one or more.
- the steel sheet for hot press forming is plated with an Al-Fe-based plating layer, and since the oxide is formed on the surface of the plating layer, it is possible to suppress the reaction between water and Al, hydrogen generated as a by-product. Can be reduced. As a result, it is possible to suppress hydrogen from penetrating into the steel sheet and to prevent delayed fracture.
- Example 1 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured according to Inventive Example 1 with a GDS analyzer.
- FIG. 2 is an optical microscope photograph of a cross section of a plated layer of a steel sheet manufactured according to Inventive Example 1.
- FIG. 2 is an optical microscope photograph of a cross section of a plated layer of a steel sheet manufactured according to Inventive Example 1.
- Figure 3 is a graph showing the results of GDS analysis of the oxygen content of the surface layer of Inventive Example 1 and Comparative Example 1.
- Fig. 4 is a component profile obtained by analyzing the plated layer of the steel sheet prepared according to Inventive Example 2.
- FIG. 5 is an optical microscope photograph of a cross section of a plated layer of a steel sheet manufactured according to Inventive Example 2.
- 6 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured by Comparative Example 1 by a GDS analyzer.
- FIG. 7 is an optical microscope photograph of a cross section of a plating layer of a steel sheet manufactured by Comparative Example 1.
- FIG. 9 is an optical microscope photograph of a cross section of a plating layer of a steel sheet manufactured by Comparative Example 2.
- FIG. 12 is a graph showing the strength-elongation curves of the notched tensile test performed on the members obtained in Inventive Example 1 and Comparative Example 1.
- FIG. 12 is a graph showing the strength-elongation curves of the notched tensile test performed on the members obtained in Inventive Example 1 and Comparative Example 1.
- FIG. 13 is a graph showing a heating pattern and a weight change when the TGA test is performed on Inventive Example 1 and Comparative Example 1.
- the member refers to a part or a part material manufactured by hot press molding.
- a steel plate means the thing before hot press molding, and this steel plate may be wound up during a manufacturing process, and may have a coil form, and this time is also called a coil.
- US Patent No. 6,296,805 has been proposed.
- the steel plate subjected to aluminum plating is used in a process of heating and quenching (hot post-heat treatment) after hot press molding or normal temperature molding. Since the aluminum plating layer is present on the steel sheet surface, the steel sheet is not oxidized at the time of heating.
- the generated hydrogen is not necessarily limited thereto, but is included (occluded) in the steel sheet by the reaction of Chemical Formula 2 below.
- [H] means hydrogen occluded in the steel sheet.
- Hydrogen delayed fracture occurs when the amount of hydrogen occluded in the steel sheet exceeds the threshold that causes delayed fracture. Therefore, in order to increase the resistance to hydrogen delayed fracture, the amount of hydrogen occluded is small so as not to exceed the threshold. Even if the amount of hydrogen is high, the threshold is high so that a delay failure can be used.
- One embodiment of the present invention focuses more on a method of reducing the amount of hydrogen contained in the hot press forming member so that the amount of hydrogen does not exceed the threshold.
- an aluminum alloy plated steel sheet including an aluminum alloy plated layer formed on a surface of the base steel sheet and the base plate and an oxide layer having a thickness of 0.05 ⁇ m or more formed on the surface of the plated layer may be provided.
- the oxide layer is formed on the surface of the aluminum alloy plating layer, and serves to block moisture contained in the atmosphere from contacting aluminum included in the plating layer when heated for hot press molding. In this case, since the amount of generated hydrogen decreases, the amount of hydrogen diffused into the steel sheet may also decrease, thereby reducing the possibility of hydrogen delayed destruction.
- the thickness of the oxide layer formed on the plating layer may be 0.05 ⁇ m or more. In another embodiment of the present invention, the thickness of the oxide may be 0.1 ⁇ m or more, and in another embodiment, the thickness of the oxide may be 0.3 ⁇ m or more. There is no need to specifically limit the upper limit, but if the oxide layer is excessive, the thickness of the plating layer may be reduced, which may cause problems in securing corrosion resistance. Therefore, the upper limit of the thickness of the oxide layer may be set to 2 ⁇ m. It can be set as 3 micrometers.
- the thickness of the oxide layer there may be various methods for measuring the thickness of the oxide layer, but in one embodiment of the present invention, when the oxygen content is measured in the thickness direction from the surface by glow discharge spectroscopy, up to the point where the oxygen content is 2%
- the thickness of can be defined in the thickness direction of the oxide layer.
- the oxygen content tends to decrease rapidly from the surface toward the thickness direction, and in the case of a general aluminum plated steel sheet, the oxygen content is less than 0.5% at a depth of 0.05 ⁇ m even if the oxygen content exceeds 20% at the outermost surface. It can be formed as low.
- the aluminum alloy plating layer of the aluminum alloy plated steel sheet for hot press molding of the present invention is 35% by weight or more, preferably 45% or more, more preferably 50% by weight of Fe May contain more than%.
- the content of Fe in the aluminum alloy plating layer according to the present embodiment is increased, aluminum forms an intermetallic compound with Fe or forms a solid solution.
- the activity of aluminum in the plating layer is higher than that of a conventional aluminum plated steel sheet mainly containing aluminum. Can be greatly reduced, and as a result, the reactivity of the formula (1) can be greatly reduced.
- the content of Fe in the aluminum alloy plating layer may be at least 35% by weight, at least 45% by weight, or at least 50% by weight.
- the upper limit of the average content of Fe does not need to be specifically determined, considering the efficiency of alloying etc., it may also be set to 80 weight% or less.
- the average content of Fe refers to the average content of Fe in the entire plating layer, but there may be various measurement methods.
- the surface of the plating layer from the surface of the plating layer by Glow Discharge Spectrometry (GDS) method. Integrating the content curve of Fe according to the depth (thickness) appearing when analyzed to the interface of can be used as the value divided by the plating layer thickness.
- the point where the Fe content is 92% of the base Fe content from the GDS results may be defined as the interface between the plated layer and the steel sheet.
- the brightness value indicating the whiteness of the surface of the aluminum alloy plated steel sheet for hot press molding of the present invention may be 70 or less.
- the whiteness of the steel sheet is a factor influencing the temperature increase rate according to the difference in emissivity during heating, thereby lowering the brightness of the surface of the steel sheet to increase the temperature increase rate under the same conditions, thereby reducing hydrogen coming from the atmosphere during heating for hot forming.
- the brightness value indicating the whiteness of the surface of the steel sheet can be measured with a spectrophotometer, and the L value of the CIE colorimeter (L * a * b * colorimeter) defined in KS A 0067 can be used.
- the lower limit of the brightness value is not particularly limited, but according to one embodiment of the present invention, the brightness value may be 10 or more.
- the steel sheet of the present invention is a steel sheet for hot press molding, and if used for hot press molding, its composition is not particularly limited. However, according to one aspect of the present invention in terms of weight percent (hereinafter, unless noted otherwise, it is necessary to note that the composition of the steel sheet and the plating layer is based on weight), C: 0.04-0.5%, Si: 0.01-2%, Mn: 0.01-10%, Al: 0.001-1.0%, P: 0.05% or less, S: 0.02% or less and N: 0.02% or less.
- the C may be added in an appropriate amount as an essential element for increasing the strength of the heat treatment member. That is, in order to ensure sufficient strength of the heat treatment member, the C may be added at least 0.04%.
- the lower limit of the C content may be 0.1%. However, if the content is too high, when producing cold rolled material, the cold rolled material is too high when cold-rolled and the cold rolled property is greatly inferior, and the spot weldability is greatly degraded. It may be added at 0.5% or less to ensure weldability.
- the C content may be limited to 0.45% or less and 0.4% or less.
- the Si not only needs to be added as a deoxidizer in steelmaking, but also suppresses carbide formation which most affects the strength of the hot press forming member, and in the hot press forming, carbon is formed on the martensite lath grain boundary after martensite formation. It is an element that plays a role of concentrating and securing residual austenite.
- Si may be added in an amount of 0.01% or more.
- the upper limit of the Si content may be set to 2% in order to secure sufficient plating properties when aluminum plating the steel sheet after rolling. In one embodiment of the present invention, the Si content may be limited to 1.5% or less.
- the Mn may be added in an amount of 0.01% or more in order to secure a solid solution strengthening effect and to lower the critical cooling rate for securing martensite in the hot press forming member.
- the Mn content may be 10% or less in terms of ensuring the hot press forming process workability, reducing manufacturing cost, and improving spot weldability by appropriately maintaining the strength of the steel sheet, and one embodiment of the present invention. Can be 9% or less, or 8% or less.
- the Al may be added in an amount of 0.001% or more since the deoxidation action in steelmaking together with Si may increase the cleanliness of the steel.
- the content of Al may be 1.0% or less in order to prevent the Ac3 temperature from becoming too high so that heating required in hot press molding may be performed in an appropriate temperature range.
- P is present as an impurity in the steel, and the smaller the content is, the more advantageous. Therefore, in one embodiment of the present invention, P may be included in an amount of 0.05% or less. In another embodiment of the invention, P may be limited to 0.03% or less. Since less P is an advantageous impurity element, there is no need to specifically set an upper limit of the content. However, in order to lower the P content excessively, the manufacturing cost may increase, and when considering this, the lower limit may be 0.001%.
- the maximum content is 0.02% (preferably 0.01% or less) because it is an element that inhibits the ductility, impact property and weldability of the member.
- the lower limit of the content may be 0.0001%.
- the N is an element included as an impurity in the steel, and in order to reduce the sensitivity to crack generation during continuous slab casting, and to secure the impact characteristics, the lower the content, the more advantageously, it may be included in 0.02% or less. Although the lower limit needs to be specifically determined, the N content may be set to 0.001% or more in one embodiment in consideration of an increase in manufacturing cost.
- the Cr, Mo and W can secure the hardenability and secure the strength and grain refinement through the precipitation strengthening effect, one or more of these may be added 0.01% or more based on the total content.
- the content may be limited to 4.0% or less in order to ensure weldability of the member.
- the content of these elements exceeds 4.0%, further increase in effect is also weak, so if the content is limited to 4.0% or less, it is possible to prevent the increase in cost due to the addition of additional elements.
- the Ti, Nb and V are effective in improving the steel sheet of the heat-treating member by forming fine precipitates and improving the retained austenite and impact toughness by refining grains, and therefore, at least one of them may be added in an amount of 0.001% or more. have. However, if the added amount exceeds 0.4%, the effect is not only saturated, but excessive cost may be caused by the addition of ferroalloy.
- Cu and Ni are elements that form fine precipitates to improve strength.
- the sum of one or more of these components may be 0.005% or more. However, if the value exceeds 2.0%, the excessive cost increases, so the upper limit is 2.0%.
- the Sb and Sn may be concentrated on the surface during annealing heat treatment for Al-Si plating to suppress the formation of Si or Mn oxide on the surface to improve plating properties. It may be added 0.001% or more in order to obtain such an effect. However, if the added amount exceeds 1.0%, the upper limit is 1.0% because not only excessive ferroalloy costs but also solid solution at the slab grain boundary may cause coil edge cracks during hot rolling.
- the above-mentioned B is an element which can not only improve hardenability by addition of a small amount but also segregate in the old austenite grain boundary and suppress brittleness of the hot press-molded member due to grain boundary segregation of P or / and S. Therefore, B may be added at least 0.001%. However, if the content exceeds 0.01%, the effect is not only saturated, but also causes brittleness in hot rolling, so the upper limit thereof may be 0.01%, and in one embodiment, the B content may be 0.005% or less.
- Iron and unavoidable impurities are mentioned as remainder other than the above-mentioned component, and if it is a component which can be contained in a steel plate for hot forming, it will not specifically limit.
- the steel sheet of the present invention can be obtained by using hot-rolled or cold-rolled steel sheet, by performing hot-dip aluminum plating on the surface of the steel sheet and performing annealing treatment on the coated steel sheet.
- a process of preparing a holding steel sheet, aluminum plating and winding the surface of the holding steel sheet under appropriate conditions is performed to obtain an aluminum plated steel sheet (coil).
- Aluminum plating may be applied to the surface of the rolled steel sheet.
- Aluminum plating is usually required by AlSi plating (type 80), containing at least 80% Al and 5-20% Si, optionally with additional elements, or at least 90% Al (type II). Depending on the plating, any plating containing additional elements may be used.
- Molten aluminum plating may be performed to form a plating layer, and annealing treatment may be performed on the steel sheet before plating.
- the appropriate plating amount is 30 ⁇ 200g / m 2 on one side. If the plating amount is too large, it may take an excessive time to alloy to the surface, on the contrary, if the plating amount is too small, it is difficult to obtain sufficient corrosion resistance.
- the winding tension of the coil can be adjusted. According to the adjustment of the winding tension of the coil, the alloying behavior and the surface quality of the coil may be changed during the subsequent annealing treatment. In one embodiment of the present invention, the winding tension may be 0.7 to 3 kg / mm 2 .
- An annealing treatment is performed on the aluminum plated steel sheet by the above-described process to obtain an aluminum alloy plated steel sheet.
- Aluminum plated steel sheets are heated in a batch annealing furnace.
- the heat treatment target temperature and the holding time are 30 minutes to 50 minutes at a range of 550 to 750 ° C based on the steel sheet temperature (in the present invention, the highest temperature at which the material reaches this temperature range is called a heating temperature). It is desirable to keep time.
- the holding time is the time from the coil temperature reaching the target temperature until the cooling start.
- the plating layer may be peeled off during roll leveling, so that the heating temperature may be 550 ° C. or more for sufficient alloying.
- the heating temperature may be 750 ° C.
- the holding time may be set to 30 minutes to 50 hours.
- the temperature of the steel sheet may have a pattern in which the temperature continues to rise without cooling until the heating temperature is reached.
- the steel sheet (coil) temperature reference for the entire temperature section room temperature to heating temperature section
- the average temperature increase rate can be 20-100 degreeC / h.
- the overall average temperature increase rate can be controlled in the above numerical range, but in one embodiment of the present invention to control the temperature increase rate of a specific temperature section as described later to achieve the problem of the present invention.
- the average temperature increase rate of 400 to 500 ° C. is increased. It can be heated at 1 to 15 ° C / h. In one embodiment of the present invention can be the lower limit of the average temperature increase rate of 400 ⁇ 500 °C section at the time of the temperature increase to 3 °C / hr, and in another embodiment the lower limit of the average temperature increase rate of 400 ⁇ 500 °C section at the time of temperature increase It may also be 4 ° C / hr.
- a method of reacting aluminum included in the plating layer with oxygen in an atmosphere gas may be used to form an oxide on the surface of the plating layer.
- aluminum present in the plating layer is an element having a very high oxygen affinity and is an element which easily forms an oxide with oxygen.
- the oxygen partial pressure can control the atmosphere to 10 -70 atm or more.
- the oxygen partial pressure is too high, the formation of oxides may be excessive and the weldability may be reduced, so the oxygen partial pressure is controlled to 10 -20 atm or less.
- the heating of the annealing furnace is a method of heating the steel sheet (coil) by raising the atmosphere temperature in the annealing furnace, rather than directly heating the steel sheet (coil).
- the difference between the ambient temperature and the coil temperature is unavoidable, but in order to minimize the variation in material and plating quality for each position in the steel sheet, the difference between the ambient temperature and the steel sheet temperature can be 80 ° C or less based on the time point at which the heat treatment target temperature is reached. have.
- the temperature difference should be as small as possible, but this can be made 5 ° C or higher, since it may be difficult to meet the overall average temperature rise rate conditions by slowing the rate of temperature rise.
- the temperature of the steel sheet means that the temperature of the loaded steel plate (coil) bottom part (meaning the lowest part of the coil) is measured
- the atmospheric temperature means the temperature measured at the center of the internal space of the heating furnace. .
- a cold rolled steel sheet for hot press molding having the composition of Table 1.
- the surface of the steel sheet was plated with a type I plating bath having an Al-9% Si-2.5% Fe composition on the surface of the steel sheet.
- the coating amount was adjusted to 75g / m 2 per side, and the coiling was wound by adjusting the winding tension after plating to 1.44kg / mm 2 .
- the plated steel sheet was heated to 650 ° C. under the following conditions in an annealing furnace.
- the plate After heating, the plate was maintained at the same temperature for 10 hours, after which the steel sheet was air-cooled to obtain a hot press forming steel sheet.
- the amount of hydrogen occluded in the steel sheet was analyzed by gas chromatography, and as a result, it was confirmed that about 0.13 ppm of hydrogen was contained in the steel sheet.
- the surface of the steel sheet having the composition shown in Table 1 was plated with a type I plating bath having an Al-9% Si-2.5% Fe composition. During plating, the coating amount was adjusted to 90g / m 2 per side, and the coiling was wound by adjusting the winding tension to 1.9kg / mm 2 after plating.
- the plated steel plate was then heated to 670 ° C. under the following conditions in an annealing furnace.
- Atmosphere upon heating 100 vol% hydrogen, oxygen partial pressure 10 -34 atm
- the plated layer of the steel sheet As a result of analyzing the plated layer of the steel sheet using a GDS analyzer, a component profile of the form as shown in FIG. 4 was obtained, and the average Fe content calculated based on this was 51.1 wt%. As shown in Fig. 5, the plated layer was formed on the outer surface of the steel sheet, and it was found that an aluminum oxide layer having a thickness of 0.37 ⁇ m was formed on the surface of the plated layer. Moreover, as a result of analyzing the surface of the steel plate with the spectrophotometer, it was confirmed that the brightness value (L *) was 48.7.
- the amount of hydrogen occluded in the steel sheet was analyzed by gas chromatography, and the analysis results confirmed that about 0.1 ppm of hydrogen was contained in the steel sheet.
- the plated layer of the steel sheet As a result of analyzing the plated layer of the steel sheet using a GDS analyzer, a component profile of the form shown in FIG. 6 was obtained, and the average Fe content calculated based on this was 25.6 wt%. As shown in FIG. 7, the plated layer was formed on the outer surface of the steel sheet as shown in FIG. 7. As shown in FIG. 3, an aluminum oxide layer having a thickness of 0.03 ⁇ m was formed on the surface of the plated layer. In addition, the spectrophotometer analyzed the surface of the steel sheet and found that the brightness value (L *) was 75.1.
- the amount of hydrogen occluded in the steel sheet was analyzed by gas chromatography, and as a result, it was confirmed that about 0.05 ppm of hydrogen was contained in the steel sheet.
- the amount of hydrogen occluded in the steel sheet was analyzed by gas chromatography, and as a result, it was confirmed that about 0.03 ppm of hydrogen was contained in the steel sheet.
- the aluminum plated steel sheet was heated to 500 ° C. under the following conditions in an annealing furnace.
- Atmosphere on heating 100 vol% hydrogen, partial pressure of oxygen 10 -36 atm
- the plated layer of the steel sheet As a result of analyzing the plated layer of the steel sheet using a GDS analyzer, a component profile of the form as shown in FIG. 10 was obtained, and the average Fe content calculated based on this was 31 wt%. As shown in Fig. 11, the plated layer was formed on the outer surface of the base steel sheet, and it was found that an aluminum oxide layer having a thickness of 0.15 mu m was formed on the surface of the plated layer. The brightness value (L *) was 71.7 as a result of analyzing the surface of the steel plate with the spectrophotometer.
- the amount of hydrogen occluded in the steel sheet was analyzed by gas chromatography, it was confirmed that the hydrogen contained about 0.09ppm in the steel sheet.
- the steel sheets of Inventive Examples 1 and 2 and Comparative Examples 1, 2 and 3 were heated to 950 ° C. and maintained at the temperature for 5 minutes, and then subjected to hot press molding to quench and pressurize by press. Got it.
- the content of hydrogen contained in the obtained member was measured by gas chromatography, and is shown in Table 2 together with the hydrogen content of the steel sheet.
- the steel sheet of Inventive Example 1 and Inventive Example 2 has a hydrogen content of 0.13 and 0.1 ppm, respectively, higher than the hydrogen content of the steel sheets of Comparative Examples 1, 2 and 3, respectively, 0.05, 0.03 and 0.09 ppm. It was. However, the hydrogen content in the hot press-formed members was 0.4 and 0.37 ppm of the invention examples 1 and 2, respectively, which were lower than the hydrogen contents of 0.72, 0.69, and 0.65 ppm of the comparative examples 1, 2, and 3, respectively.
- Hydrogen delayed destruction occurs in a member of higher strength than a steel sheet.
- the hydrogen storage amount during the heating process for hot press molding can be greatly reduced, and consequently, the hydrogen of the member is reduced. Since the content can be reduced, it is effective against hydrogen delayed destruction.
- the hydrogen content in the steel sheet was not high before hot press forming, the occlusion amount of hydrogen increased significantly when heating for hot press forming, and the hydrogen content of the member was high. .
- Notched tensile test is one of several methods to evaluate the impact characteristics of steel sheet.
- Hydrogen embrittlement is a phenomenon in which hydrogen present in steel concentrates at defects such as notches or cracks under stress, and results in abnormal brittleness or fracture.
- the tensile strength test of the material reaches the maximum tensile strength through the notch tensile test.
- hydrogen embrittlement was determined by the presence or absence of abnormal fracture. 12 shows the strength-elongation curves of the notched tensile test performed on the members obtained in Inventive Example 1 and Comparative Example 1.
- FIG. Inventive Example 1 showed a normal tensile curve, whereas in Comparative Example 1, it was found that abnormal fracture occurred before reaching the maximum tensile strength while the stress was increased due to hydrogen embrittlement.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
본 발명은 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법에 관한 것이다. 본 발명의 한가지 측면에 따른 열간 프레스 성형 부재용 강판은 소지강판, 상기 소지강판의 표면에 알루미늄 합금 도금층 및 상기 도금층의 표면에 형성된 두께 0.05㎛ 이상의 산화물 층을 포함할 수 있다.
Description
본 발명은 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법(STEEL SHEET FOR HOT PRESS FORMED MEMBER HAVING EXCELLENT RESISTANCE TO HYDROGEN DELAYED FRACTURE AND METHOD FOR MANUFACTURING THEREOF)에 관한 것이다.
최근 석유 에너지 자원의 고갈과 환경에 관한 높은 관심으로 인하여 자동차의 연비 향상에 대한 규제는 날로 강력해지고 있다.
재료적인 측면에서 자동차의 연비를 향상시키기 위한 한가지의 방법으로서 사용되는 강판의 두께를 감소시키는 것을 들 수 있으나, 두께를 감소시킬 경우 자동차의 안전성에 문제가 발생할 수 있으므로, 반드시 강판의 강도 향상이 뒷받침되어야 한다.
이와 같은 이유로 고강도 강판에 대한 수요가 지속적으로 발생하였으며, 다양한 종류의 강판이 개발된 바 있다. 그런데, 이들 강판은 그 자체로 높은 강도를 가지고 있기 때문에 가공성이 불량하다는 문제가 있다. 즉, 강판의 등급별로 강도와 연신율의 곱이 항상 일정한 값을 가지려는 경향을 가지고 있기 때문에, 강판의 강도가 높아질 경우에는 가공성의 지표가 되는 연신율이 감소하게 된다는 문제가 있었다.
이러한 문제를 해결하기 위하여 열간 프레스 성형법이 제안된 바 있다. 열간 프레스 성형법은 강판을 가공하기 좋은 고온으로 가공한 후, 이를 낮은 온도로 급냉함으로써 강판 내에 마르텐사이트 등의 저온 조직을 형성시켜, 최종 제품의 강도를 높이는 방법이다. 이와 같이 할 경우에는 높은 강도를 가지는 부재를 제조할 때 가공성의 문제를 최소화 할 수 있다는 장점이 있다.
이와 같은 열간 프레스 성형을 거칠 경우 강판은 1000MPa 이상, 경우에 따라서는 1470MPa 이상의 강도를 가질 수 있으며, 최근에는 강도에 대한 요구수준이 더욱 높아져서 1800MPa 이상의 강도를 가지게 되는 경우도 있다. 그런데, 강판의 강도가 높아질 경우 수소지연파괴에 대하여 민감해져서 적은 양의 수소를 함유하는 경우에도 강판이 파단에 이르는 경우도 있다.
본 발명의 한가지 측면에 따르면 수소지연파괴에 대한 저항성이 우수한 열간 프레스 성형 부재를 제조할 수 있는 열간 프레스 성형용 강판과 상기 강판을 제조하기 위한 한 가지 제조방법이 제공된다.
본 발명의 과제는 상술한 내용으로 한정되지 않는다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 명세서의 전반적인 사항으로부터 본 발명의 추가적인 과제를 해결하는데 아무런 어려움도 없을 것이다.
본 발명의 한가지 측면에 따른 열간 프레스 성형 부재용 강판은 소지강판, 상기 소지강판의 표면에 형성된 알루미늄 합금 도금층 및 상기 도금층의 표면에 형성된 두께 0.05㎛ 이상의 산화물 층을 포함할 수 있다.
본 발명의 한가지 구현례에서, 상기 알루미늄 합금 도금층은 Fe의 평균 함량이 35중량% 이상일 수 있다.
본 발명의 한가지 구현례에서, 상기 알루미늄 합금 도금층은 Fe의 평균 함량이 45중량% 이상일 수 있다.
본 발명의 한가지 구현례에서, 상기 알루미늄 합금 도금층은 Fe의 평균 함량이 50중량% 이상일 수 있다.
본 발명의 한가지 구현례에서, 상기 강판의 표면의 백색도를 나타내는 명도값이 70 이하 일 수 있다.
(단, 상기 명도값은 KS A 0067에서 규정하는 CIE 표색계(L*a*b* 표색계) 중 L값을 의미한다.)
본 발명의 한가지 구현례에서, 상기 소지강판이 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가질 수 있다.
본 발명의 한가지 구현례에서, 상기 소지강판의 조성은 중량%로 Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함할 수 있다.
본 발명의 한가지 측면에 따른 열간 프레스 성형 부재용 강판의 제조방법은, 소지강판 표면을 알루미늄 도금 하는 단계; 알루미늄 도금된 강판을 소둔하는 단계; 및 강판을 냉각하는 단계를 포함하는 열간 프레스 성형 부재용 강판의 제조방법으로서, 상기 알루미늄 도금량은 강판의 한쪽면 기준으로 30~200g/m2이고, 도금 후 권취장력을 0.5~5kg/mm2으로 하며, 상기 소둔은 상소둔 로에서 550~750℃의 가열 온도 범위에서 30분 ~ 50시간 실시되며, 상기 소둔 시 상온에서 상기 가열 온도까지 가열할 때, 평균 승온 속도를 20~100℃/h로 하되, 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하고, 가열 온도-50℃ ~ 가열 온도 구간의 승온 속도를 1~15℃/h로 하며, 열처리시 상소둔 로 내의 산소분압을 10-70~10-20 기압의 범위로 하며, 상기 상소둔 로내 분위기온도와 강판 온도간 차이를 5~80℃로할 수 있다.
본 발명의 한가지 구현례에서, 상기 소지강판이 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가질 수 있다.
본 발명의 한가지 구현례에서, 상기 소지강판의 조성은 중량%로 Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함할 수 있다.
본 발명의 한가지 측면에 따르면, 열간 프레스 성형용 강판이 Al-Fe계 도금층으로 도금되어 있으며, 상기 도금층 표면에 산화물이 형성되어 있으므로 수분과 Al이 반응하는 것을 억제할 수 있어, 부산물로 발생하는 수소를 줄일 수 있다. 그 결과 수소가 강판 내로 침투하는 것을 억제하여 지연파괴에 이르는 것을 억제할 수 있는 것이다.
도 1은 발명예 1에 의하여 제조된 강판의 도금층을 GDS 분석기로 분석한 성분 프로파일이다.
도 2는 발명예 1에 의하여 제조된 강판의 도금층의 단면을 관찰한 광학현미경 사진이다.
도 3은 발명예 1과 비교예 1의 표층의 산소함량을 GDS 분석한 결과를 나타내는 그래프이다.도 4는 발명예 2에 의하여 제조된 강판의 도금층을 GDS 분석기로 분석한 성분 프로파일이다.
도 5는 발명예 2에 의하여 제조된 강판의 도금층의 단면을 관찰한 광학현미경 사진이다.
도 6은 비교예 1에 의하여 제조된 강판의 도금층을 GDS 분석기로 분석한 성분 프로파일이다.
도 7은 비교예 1에 의하여 제조된 강판의 도금층의 단면을 관찰한 광학현미경 사진이다.
도 8은 비교예 2에 의하여 제조된 강판의 도금층을 GDS 분석기로 분석한 성분 프로파일이다.
도 9는 비교예 2에 의하여 제조된 강판의 도금층의 단면을 관찰한 광학현미경 사진이다.
도 12는 발명예 1과 비교예 1에서 얻어진 부재에 대하여 실시한 노치 인장시험의 강도-연신율 곡선을 나타낸 그래프이다.
도 13은 발명예 1과 비교예 1에 대하여 TGA 시험을 실시하였을 때, 가열 패턴및 중량 변화를 나타낸 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명에서 부재라 함은 열간 프레스 성형에 의해서 제조된 부품 또는 부품용 재료를 말한다. 또한, 강판은 열간 프레스 성형 전의 것을 의미하고 이러한 강판은 제조 공정 중에 권취되어 코일 형태를 가지는 경우가 있는데 이때에는 코일이라고 부르기도 한다.
열간 프레스 성형법에 의할 경우에는 강판을 고온으로 가열하여야 하기 때문에 강판 표면이 산화되고 따라서 프레스 성형 이후에 강판 표면의 산화물을 제거하는 과정이 추가되어야 한다는 문제가 있었다.
이러한 문제점을 해결하기 위한 방법으로 미국 특허공보 제6,296,805호 발명이 제안된 바 있다. 상기 발명에서는 알루미늄 도금을 실시한 강판을 열간 프레스 성형 또는 상온 성형 후 가열 하고 급냉하는 과정(간략히 '후 열처리')에 이용하고 있다. 알루미늄 도금층이 강판 표면에 존재하기 때문에 가열시에 강판이 산화되지는 않는다.
그런데, 본 발명자들의 연구결과에 따르면 알루미늄 도금강판을 열간 프레스 성형하기 위하여 가열할 경우 가열 분위기 중에 필연적으로 포함되게 되는 소량의 수분과 알루미늄 도금층이 반응하여 수소가 생성된다는 것을 알 수 있었다. 알루미늄 도금강판과 수분이 반응하여 수소가 생성되는 일례로서 반드시 이에 한정되는 것은 아니지만 하기의 화학식 1을 들 수 있다.
[화학식 1]
2Al + 3H2O = Al2O3 + 3H2
생성된 수소는 반드시 이로 한정하는 것은 아니나 하기 화학식 2의 반응에 의하여 강판 중으로 포함(흡장)되게 된다. 여기서 [H]는 강판 중에 흡장된 수소를 의미한다.
[화학식 2]
H2 = 2[H]
수소지연파괴는 강판 내에 흡장된 수소의 양이 지연파괴를 일으키는 임계치 이상으로 될 경우에 발생하는데, 따라서 수소지연파괴에 대한 저항성을 높이기 위해서는 흡장된 수소의 양이 적어서 임계치를 넘지 않도록 하거나, 그렇지 않으면 수소의 양이 많더라도 임계치가 높아서 지연파괴에 이르지 않도록 하는 방법을 사용할 수 있다. 본 발명의 한가지 구현례는 열간 프레스 성형 부재에 포함되는 수소량을 저감시켜서 수소량이 임계치를 넘지 않도록 하는 방법에 보다 촛점을 두고 있다.
즉, 본 발명의 한가지 구현례에 따른 열간 프레스 성형용 강판을 사용할 경우, 고온으로 가열하더라도 상기 화학식 1 등에 따르는 수소 생성 반응을 줄일 수 있어서, 열간 프레스 성형시 발생하는 수소량을 감소할 수 있다.
이를 위해서 본 발명의 한가지 구현례에서는 소지강판과 상기 소지강판의 표면에 형성된 알루미늄 합금 도금층 및 상기 도금층의 표면에 형성된 두께 0.05㎛ 이상의 산화물 층을 포함하는 알루미늄 합금 도금 강판이 제공될 수 있다.
상기 산화물 층은 알루미늄 합금 도금층 표면에 형성된 것으로서, 열간 프레스 성형을 위한 가열시 분위기에 포함된 수분이 도금층에 포함된 알루미늄과 접촉하는 것을 차단하는 역할을 한다. 이러할 경우 발생하는 수소량이 감소하기 때문에 강판 내부로 확산하여 들어가는 수소량도 감소할 수 있어, 수소지연파괴가 일어날 가능성이 줄어들게 된다.
충분한 효과를 얻기 위해서 도금층 위에 형성되는 상기 산화물 층의 두께는 0.05㎛ 이상일 수 있다. 본 발명의 다른 한가지 구현례에서는 상기 산화물의 두께는 0.1㎛ 이상일 수 있으며, 또다른 한가지 구현례에서는 상기 산화물의 두께는 0.3㎛ 이상일 수 있다.본 발명의 한가지 과제를 해결하기 위해서 상기 산화물 층의 두께의 상한을 특별히 제한할 필요는 없으나, 산화물 층이 과다할 경우 도금층의 두께가 감소하여 내식성 확보에 문제가 발생할 수도 있으므로, 상기 산화물 층의 두께의 상한을 2㎛로 정할 수 있으며, 한가지 구현례에서는 3㎛로 정할 수 있다.
상기 산화물 층의 두께 측정방법은 여러 가지가 있을 수 있으나, 본 발명의 한가지 구현례에서는 글로우 방전 분광 분석법에 의하여 표면으로부터 두께 방향으로 산소의 함량을 측정하였을 때, 산소의 함량이 2%인 지점까지의 두께를 산화물 층의 두께 방향으로 규정할 수 있다. 이때, 산소의 함량은 표면에서부터 두께 방향으로 갈수록 급격히 감소하는 경향이 있으며, 일반적인 알루미늄 도금 강판의 경우에는 최표면에서 산소의 함량이 20%를 초과하더라도 깊이 0.05㎛인 지점에서는 산소 함량이 0.5% 미만으로 낮게 형성될 수 있다.
또한, 본 발명의 또다른 한가지 구현례에 따르면, 본 발명의 열간 프레스 성형용 알루미늄 합금 도금 강판의 알루미늄 합금 도금층은 Fe를 35중량% 이상, 바람직하게는 45중량% 이상, 보다 바람직하게는 50중량% 이상 포함할 수 있다.
본 구현례에 따른 알루미늄 합금 도금층 중 Fe의 함량이 높아지면 알루미늄은 Fe와 금속간 화합물을 형성하거나 고용체를 형성하게 되는데, 이러할 경우 알루미늄을 위주로 하는 통상의 알루미늄 도금 강판에 비하여 도금층 내 알루미늄의 활동도를 크게 감소시킬 수 있으며, 그 결과 화학식 1의 반응성도 크게 감소시킬 수 있다.
따라서, 본 구현례에서는 알루미늄 합금 도금층 중 Fe의 함량을 35중량% 이상, 45중량% 이상 또는 50중량% 이상으로 할 수 있다. Fe의 평균 함량의 상한은 특별히 정할 필요는 없으나, 합금화의 효율 등을 고려할 때 80중량% 이하로 정할 수도 있다. 여기서 Fe의 평균 함량은 전체 도금층 중의 Fe 함량의 평균을 의미하는 것으로서 측정 방법이 여러가지가 있을 수 있으나, 본 구현례에서는 글로우 방전 분광 분석(Glow Discharge emission Spectrometry; 간략히 GDS)법으로 도금층의 표면부터 강판의 계면까지 분석하였을 때 나타나는 깊이(두께)에 따른 Fe의 함량 곡선을 적분한 후 이를 도금층 두께로 나눈 값으로 사용할 수 있다. 도금층과 강판의 계면을 판단하는 기준에는 여러가지가 있을 수 있으나, 본 발명의 한가지 구현례에서는 GDS 결과로부터 Fe의 함량이 모재 Fe함량의 92%인 지점을 도금층과 강판의 계면으로 규정할 수 있다.
또한, 본 발명의 한가지 구현례에 따르면, 본 발명의 열간 프레스 성형용 알루미늄 합금 도금 강판의 표면의 백색도를 나타내는 명도값이 70 이하 일 수 있다. 강판의 백색도는 가열시 방사율 차이에 따른 승온 속도에 영향을 미치는 인자로서 강판 표면의 명도를 낮게 하여 동일한 조건에서도 승온속도를 높일 수 있어, 열간 성형을 위한 가열 중 분위기로부터 들어오는 수소를 줄일 수 있다. 여기서, 강판 표면의 백색도를 나타내는 명도값은 분광광도계 (Spectrophotometer)로 측정할 수 있으며, KS A 0067에서 규정하는 CIE 표색계(L*a*b* 표색계) 중 L값을 사용할 수 있다. 명도값의 하한은 특별히 제한하지 아니하나, 본 발명의 한가지 구현례에 따르면 상기 명도값은 10 이상일 수 있다.
본 발명의 강판은 열간 프레스 성형용 강판으로서, 열간 프레스 성형에 사용된다면 그 조성을 특별히 제한하지 않는다. 다만, 본 발명의 한가지 측면에 따를 경우 중량%로(이하, 특별히 다르게 표현하지 않는 한 본 발명의 강판과 도금층의 조성은 중량을 기준으로 한다는 것에 유의할 필요가 있다), C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하 및 N: 0.02% 이하를 포함하는 조성을 가질 수 있다.
C: 0.04~0.5%
상기 C는 열처리 부재의 강도를 상향시키기 위해 필수적인 원소로서 적정한 양으로 첨가될 수 있다. 즉, 열처리 부재의 강도를 충분하기 확보하기 위해서 상기 C는 0.04% 이상 첨가될 수 있다. 한가지 구현례에서는 상기 C 함량의 하한은 0.1%일 수 있다. 다만, 그 함량이 너무 높으면 냉연재를 생산하는 경우 열연재를 냉간압연할 때 열연재 강도가 너무 높아 냉간압연성이 크게 열위하게 될 뿐만 아니라, 점용접성을 크게 저하시키기 때문에, 충분한 냉간압연성과 점용접성을 확보하기 위해 0.5% 이하로 첨가될 수 있다. 또한, 상기 C 함량은 0.45% 이하 또한 0.4% 이하로 그 함량을 제한할 수도 있다.
Si: 0.01~2%
상기 Si는 제강에서 탈산제로 첨가되어야 할 뿐만 아니라, 열간 프레스 성형 부재의 강도에 가장 크게 영향을 미치는 탄화물 생성을 억제하고, 열간 프레스 성형에 있어서 마르텐사이트 생성 후 마르텐사이트 래쓰(lath) 입계로 탄소를 농화시켜 잔류오스테나이트를 확보하는 역할을 하는 원소이다. 따라서, Si는 0.01% 이상의 함량으로 첨가될 수 있다. 또한, 압연 후 강판에 알루미늄 도금을 행할때 충분한 도금성을 확보하기 위해서 상기 Si 함량의 상한을 2%로 정할 수 있다. 본 발명의 한가지 구현례에서는 상기 Si 함량을 1.5% 이하로 제한할 수도 있다.
Mn: 0.01~10%
상기 Mn은 고용강화 효과를 확보할 수 있을 뿐만 아니라 열간 프레스 성형 부재에 있어서 마르텐사이트를 확보하기 위한 임계냉각속도를 낮추기 위하여 0.01% 이상의 함량으로 첨가될 수 있다. 또한, 강판의 강도를 적절하게 유지함으로써 열간 프레스 성형 공정 작업성을 확보하고, 제조원가를 절감하며, 점용접성을 향상시킨다는 점에서 상기 Mn 함량은 10% 이하로 할 수 있으며, 본 발명의 한가지 구현례에서는 9% 이하, 또는 8% 이하로 할 수 있다.
Al: 0.001~1.0%
상기 Al은 Si과 더불어 제강에서 탈산 작용을 하여 강의 청정도를 높일 수 있으므로 0.001% 이상의 함량으로 첨가될 수 있다. 또한, Ac3 온도가 너무 높아지지 않도록 하여 열간 프레스 성형시 필요한 가열을 적절한 온도범위에서 할 수 있도록 하기 위하여 상기 Al의 함량은 1.0% 이하로 할 수 있다.
P: 0.05% 이하
상기 P는 강내에 불순물로서 존재하며, 가급적 그 함량이 적을수록 유리하다. 따라서, 본 발명의 한가지 구현례에서 P는 0.05% 이하의 함량으로 포함될 수 있다. 본 발명의 다른 한가지 구현례에서 P는 0.03% 이하로 제한될 수도 있다. P는 적으면 적을수록 유리한 불순물 원소이기 때문에 그 함량의 상한을 특별히 정할 필요는 없다. 다만, P 함량을 과도하게 낮추기 위해서는 제조비용이 상승할 우려가 있으므로, 이를 고려할 경우에는 그 하한을 0.001%로 할 수도 있다.
S: 0.02% 이하
상기 S는 강 중에 불순물로서, 부재의 연성, 충격특성 및 용접성을 저해하는 원소이기 때문에 최대함량을 0.02%로 한다(바람직하게는 0.01% 이하). 또한 그 최소함량이 0.0001% 미만에서는 제조비용이 상승될 수 있으므로, 본 발명의 한가지 구현례에서는 그 함량의 하한을 0.0001%로 할 수 있다.
N: 0.02% 이하
상기 N은 강 중에 불순물로 포함되는 원소로서, 슬라브 연속주조시에 크랙 발생에 대한 민감도를 감소시키고, 충격특성을 확보하기 위해서는 그 함량이 낮을 수록 유리하며, 따라서 0.02% 이하로 포함할 수 있다. 하한을 특별히 정할 필요가 있으나, 제조비용의 상승 등을 고려하여 한가지 구현례에서 N 함량을 0.001% 이상으로 정할 수도 있다.
본 발명에서는 필요에 따라, 상술한 강 조성에 더하여 Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 추가로 첨가할 수 있다.
Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합 : 0.01~4.0%
상기 Cr, Mo 및 W은 경화능 향상과, 석출강화 효과를 통한 강도 및 결정립 미세화를 확보할 수 있으므로, 이들 중 1종 이상을 함량 합계 기준으로 0.01% 이상 첨가할 수 있다. 또한, 부재의 용접성을 확보하기 위해서 그 함량을 4.0% 이하로 제한할 수도 있다. 또한, 이들 원소의 함량이 4.0%를 초과 하면 더이상의 효과 상승도 미약하기 때문에 함량을 4.0% 이하로 제한할 경우 추가적인 원소 첨가에 따른 비용 상승을 방지할 수도 있다.
Ti, Nb, Zr 및 V로 이루어진 그룹 중 선택된 1종 이상의 합 : 0.001~0.4%
상기 Ti, Nb 및 V은 미세 석출물 형성으로 열처리 부재의 강판 향상과, 결정립 미세화에 의해 잔류 오스테나이트 안정화와 충격인성 향상에 효과가 있으므로 이들 중 1종 이상을 함량의 합계로 0.001% 이상 첨가할 수 있다. 다만, 그 첨가량이 0.4%를 초과하면 그 효과가 포화될 뿐만 아니라 과다한 합금철 첨가로 비용 상승을 초래할 수 있다.
Cu + Ni: 0.005~2.0%
상기 Cu와 Ni는 미세 석출물을 형성시켜 강도를 향상시키는 원소이다. 상술한 효과를 얻기 위해서 이들 중 하나 이상의 성분의 합을 0.005% 이상으로 할 수 있다. 다만, 그 값이 2.0%를 초과하면 과다한 비용 증가가 되기 때문에 그 상한을 2.0%로 한다.
Sb + Sn: 0.001~1.0%,
상기 Sb와 Sn은 Al-Si도금을 위한 소둔 열처리 시, 표면에 농화되어 Si 또는 Mn 산화물이 표면에 형성되는 것을 억제하여 도금성을 향상시킬 수 있다. 이와 같은 효과를 얻기 위해서 0.001% 이상 첨가될 수 있다. 다만, 그 첨가량이 1.0%를 초과하면 과다한 합금철 비용 뿐만 아니라 슬라브 입계에 고용되어 열간압연 시 코일 에지(edge) 크랙을 유발시킬 수 있기 때문에 그 상한을 1.0%로 한다.
B: 0.0001~0.01%
상기 B은 소량의 첨가로도 경화능을 향상시킬 수 있을 뿐만 아니라, 구오스테나이트 결정립계에 편석되어 P 또는/및 S의 입계 편석에 의한 열간 프레스 성형 부재의 취성을 억제할 수 있는 원소이다. 따라서 B는 0.001% 이상 첨가될 수 있다. 다만, 0.01%를 초과하면 그 효과가 포화될 뿐만 아니라, 열간압연에서 취성을 초래하므로 그 상한을 0.01%로 할 수 있으며, 한가지 구현례에서는 상기 B 함량을 0.005% 이하로 할 수 있다.
상술한 성분 이외의 잔부로서는 철 및 불가피한 불순물을 들 수 있으며, 열간 성형용 강판에 포함될 수 있는 성분이라면 특별히 제한하지 않는다.
이하, 본 발명의 일측면에 따른 열간 프레스 성형용 강판의 제조방법의 한가지 예를 설명하면 아래와 같다. 다만, 하기하는 열간 프레스 성형용 강판의 제조방법은 한가지 예시로서 본 발명의 열간 프레스 성형용 강판이 반드시 본 제조방법에 의해 제조되어야 한다는 것은 아니며, 어떠한 제조방법이라도 본 발명의 청구범위를 충족하는 방법이라면 본 발명의 각 구현례를 구현하는데 사용함에 아무런 문제가 없다는 것에 유의할 필요가 있다.
본 발명의 강판은 열간 압연 또는 냉간 압연된 소지강판을 이용하며, 상기 소지강판의 표면에 용융 알루미늄 도금을 실시하고, 도금 강판에 소둔 처리를 함으로써 얻을 수 있다.
[알루미늄 도금 공정]
본 발명의 한가지 구현례에서는 소지강판을 준비하고, 상기 소지강판의 표면을 적절한 조건으로 알루미늄 도금하고 권취하여 알루미늄 도금 강판(코일)을 얻는 과정이 수행된다.
한쪽면
당 30~200g/m
2
의 도금량으로 소지강판 표면을 알루미늄 도금
압연된 소지강판의 표면에 알루미늄 도금 처리를 할 수 있다. 알루미늄 도금은 통상 type I 이라고 명명되는 AlSi 도금(80% 이상의 Al과 5~20%의 Si를 포함, 필요에 따라 추가적인 원소도 포함 가능)이나, type II라고 명명되는 Al을 90% 이상 포함하고 필요에 따라 추가적인 원소를 포함하는 도금 모두 사용할 수 있다. 도금층을 형성하기 위해 용융 알루미늄 도금을 행할 수 있으며, 도금전에 강판에 대한 소둔 처리를 할 수도 있다. 도금시 적절한 도금량은 한쪽면 기준으로 30~200g/m2 이다. 도금량이 너무 많을 경우에는 표면까지 합금화하는데 시간이 과다하게 소요될 수 있으며, 반대로 도금량이 너무 적을 경우에는 충분한 내식성을 얻기 어렵다.
도금 후
권취
장력(coiling tension)을 0.5~
5 kg
/
mm
2
로 함
도금 후 강판을 권취하여 코일을 얻을 때, 코일의 권취 장력을 조절할 수 있다. 코일의 권취 장력의 조절에 따라 이후 행해지는 소둔 처리 시 코일의 합금화 거동과 표면 품질이 달라질 수 있다. 본 발명의 한가지 구현례에서는 상기 권취 장력은 0.7~3kg/mm2으로 할 수 있다.
[소둔 처리 공정]
상술한 과정에 의해 알루미늄 도금된 강판에 대하여 다음과 같은 조건으로 소둔 처리를 실시하여 알루미늄 합금 도금 강판을 얻는다.
상소둔
로에서
550~750℃의 범위에서 30분 ~ 50시간 실시
알루미늄 도금 강판(코일)은 상소둔 로(Batch annealing furnace)에서 가열된다. 강판을 가열할 때, 열처리 목표 온도와 유지 시간은 강판 온도를 기준으로 550~750℃인 범위 내(본 발명에서는 이 온도 범위에서 소재가 도달하는 최고 온도를 가열 온도라고 함)에서 30분~50시간 유지하는 것이 바람직하다. 여기서 유지시간이라 함은 코일온도가 목표 온도에 도달한 후 냉각개시까지의 시간이다. 본 발명의 한가지 구현례에서는 합금화가 충분하게 이루어지지 않을 경우에는 롤 레벨링시 도금층이 박리될 수 있으므로 충분한 합금화를 위해서 가열 온도를 550℃ 이상으로 할 수 있다. 또한, 표층에 산화물이 과다하게 생성되는 것을 방지하고 점 용접성을 확보하기 위해서 상기 가열 온도는 750℃ 이하로 할 수 있다. 또한, 도금층을 충분하게 확보하는 동시에 생산성의 저하를 방지하기 위하여 상기 유지 시간은 30분~50시간으로 정할 수 있다. 본 발명의 한가지 구현례에서는 강판의 온도는 가열 온도에 도달할 때까지 냉각 과정 없이 온도가 계속 상승하는 형태의 패턴을 가질 수 있다.
평균
승온
속도를 20~100℃/h로 하여 가열 온도까지 가열
상술한 가열 온도로 강판을 가열할 때, 충분한 생산성을 확보하고 전 강판(코일)에서 도금층을 균일하게 합금화 시키기 위해서는 전체 온도 구간(상온부터 가열 온도까지의 구간)에 대한 강판(코일) 온도 기준으로 평균 승온 속도가 20~100℃/h로 되도록 할 수 있다. 또한, 전체적인 평균 승온 속도는 위와 같은 수치 범위에서 제어할 수 있지만, 본 발명의 한가지 구현례에서는 후술하는 바와 같이 특정 온도 구간의 승온 속도도 함께 제어하여 본 발명의 과제를 달성할 수 있도록 하였다.
승온시
400~500℃ 구간의 평균
승온
속도를 1~15℃/h로 하여 가열
본 발명의 한가지 구현례에서는 압연시 혼입된 압연유가 기화되는 상기 온도구간에서 압연유가 잔존하여 표면 얼룩 등을 야기하는 것을 방지하면서 충분한 생산성을 확보하기 위하여 승온시 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하여 가열할 수 있다. 본 발명의 한가지 구현례에서는 상기 승온시 400~500℃ 구간의 평균 승온 속도의 하한을 3℃/hr로 할 수 있으며, 다른 한가지 구현례에서는 승온시 400~500℃ 구간의 평균 승온 속도의 하한을 4℃/hr로 할 수도 있다.
열처리시
상소둔
로 내의 산소분압을 10
-70
~10
-20
기압의 범위로 함
본 발명의 한가지 구현례에서는 도금층의 표면에 산화물을 형성시키기 위해 도금층에 포함된 알루미늄과 분위기 가스 중의 산소를 반응시키는 방법을 이용할 수 있다. 도금층 내 존재하는 알루미늄은 산소 친화력이 매우 큰 원소로서 산소와 쉽게 산화물을 형성하는 원소이기 때문이다. 이를 위해서 산소 분압은 10-70 기압 이상으로 분위기를 제어할 수 있다. 다만, 산소분압이 너무 높을 경우에는 산화물의 생성이 과다하여 용접성을 저하시킬 수 있으므로, 산소분압은 10-20 기압 이하로 제어한다.
상소둔로내
분위기 온도와 강판
온도간
차이를 5~80℃로 함
일반적인 상소둔로의 가열은 강판(코일)을 직접 가열하는 방식보다는 소둔로내 분위기 온도 상승을 통하여 강판(코일)을 가열하는 방식을 취한다. 이런 경우에 분위기 온도와 코일 온도 간의 차이는 피할 수 없으나, 강판 내 위치별 재질 및 도금 품질 편차를 최소화 하기 위해서는 열처리 목표온도 도달시점을 기준으로 분위기 온도와 강판 온도간 차이를 80℃ 이하로 할 수 있다. 온도차이는 가능한 한 작게 하는 것이 이상적이나 이는 승온속도를 느리게 하여 전체 평균 승온 속도 조건을 충족하기 어려울 수도 있으므로 이를 고려한다면 5℃ 이상으로 할 수 있다. 여기서, 강판의 온도는 장입된 강판(코일) 바닥부(코일 중에서 가장 낮은 부분을 의미한다)의 온도를 측정한 것을 의미하며, 분위기 온도는 가열로의 내부 공간의 중심에서 측정한 온도를 의미한다.
이하, 실시예를 통하여 본 발명을 상세하게 설명한다. 다만, 하기하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 청구범위에 기재된 사항 및 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
(실시예)
강판의 제조
발명예 1
하기 표 1의 조성을 가지는 열간 프레스 성형용 냉간압연 강판을 준비하였다. 강판의 표면에 Al-9%Si-2.5%Fe 조성을 가지는 type I 도금욕으로 강판 표면을 도금하였다. 도금시 도금량은 한쪽 면당 75g/m2으로 조절하였고, 도금 후 권취장력을 1.44kg/mm2으로 조절하여 코일을 권취하였다.
원소 | C | Si | Mn | Al | P | S | N | 추가 원소 |
함량(%) | 0.24 | 0.25 | 1.6 | 0.015 | 0.01 | 0.002 | 0.004 | B: 0.003, Ti: 0.03 |
도금된 강판을 상소둔 로에서 다음과 같은 조건으로 650℃까지 가열하였다.
650℃까지의 전체 평균 승온 속도: 25℃/h
400~500℃ 온도 구간의 평균 승온 속도: 12.5℃/h
가열시 분위기: 수소 100 vol%, 산소분압 10-30기압
가열 온도에서 분위기와 강판 사이의 온도 차이: 30℃
가열 후 동일한 온도에서 10시간 유지하였으며, 이후 강판을 공냉하여 열간 프레스 성형용 강판을 얻었다.
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 1과 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 49.1중량% 이었다. 강판의 단면 형태는 도 2에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 표층의 산소함량에 대해서 따로 분석한 GDS 분석 결과를 나타낸 도 3을 통하여 도금층의 표면에 두께 0.42㎛의 알루미늄계 산화물 층이 형성되어 있는 것을 알 수 있었다. 또한, 강판의 표면을 분광광도계로 분석한 결과 명도값(L*)가 50.2라는 것을 알 수 있었다.
또한, 강판에 흡장된 수소의 양을 가스 크로마토그래피법으로 분석하였으며, 분석 결과 강판 내부에 0.13ppm 정도의 수소가 포함되어 있다는 것을 확인할 수 있었다.
발명예 2
상기 표 1의 조성을 가지는 강판의 표면에 Al-9%Si-2.5%Fe 조성을 가지는 type I 도금욕으로 강판을 표면을 도금하였다. 도금시 도금량은 한쪽 면당 90g/m2으로 조절하였고, 도금 후 권취장력을 1.9kg/mm2으로 조절하여 코일을 권취하였다.
이후 도금된 강판을 상소둔 로에서 다음과 같은 조건으로 670℃까지 가열하였다.
670℃까지의 전체 평균 승온 속도: 23℃/h
400~500℃ 온도 구간의 평균 승온 속도: 11℃/h
가열시 분위기: 수소 100vol%, 산소분압 10-34기압
가열 온도에서 분위기와 강판 사이의 온도 차이: 20℃
가열 후 동일한 온도에서 10시간 유지하였으며, 이후 강판을 공냉하여 열간프레스 성형용 강판을 얻었다.
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 4과 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 51.1중량% 이었다. 강판의 단면 형태는 도 5에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 도금층의 표면에 두께 0.37㎛의 알루미늄계 산화물 층이 형성되어 있는 것을 알 수 있었다. 또한, 강판의 표면을 분광광도계로 분석한 결과 명도값(L*)가 48.7이라는 것을 확인할 수 있었다.
또한, 강판에 흡장된 수소의 양을 가스 크로마토그래피법으로 분석하였으며, 분석 결과 강판 내부에 0.1ppm 정도의 수소가 포함되어 있다는 것을 확인할 수 있었다.
비교예 1
상기 발명예 1과 동일하되 도금만 실시하고 가열 및 냉각은 실시하지 않은 알루미늄 도금 강판을 비교예 1로 하였다.
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 6와 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 25.6중량% 이었다. 강판의 단면 형태는 도 7에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 도 3에서 확인할 수 있듯이 도금층의 표면에 두께 0.03㎛의 알루미늄계 산화물 층이 형성되어 있는 것을 알 수 있었다. 또한 강판의 표면을 분광광도계로 분석한 결과 명도값(L*)이 75.1인 것으로 확인되었다.
또한, 강판에 흡장된 수소의 양을 가스 크로마토그래피법으로 분석하였으며, 분석 결과 강판 내부에 0.05ppm 정도의 수소가 포함되어 있다는 것을 확인할 수 있었다.
비교예 2
상기 발명예 2과 동일하되 도금만 실시하고 가열 및 냉각은 실시하지 않은 알루미늄 도금 강판을 비교예 2로 하였다.
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 8과 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 15.8중량% 이었다. 강판의 단면 형태는 도 9에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 도금층의 표면에 두께 0.015㎛의 알루미늄계 산화물 층이 형성되어 있는 것을 알 수 있었다. 또한 강판의 표면을 분광광도계로 분석한 결과 명도값(L*)이 80.2인 것으로 확인되었다.
또한, 강판에 흡장된 수소의 양을 가스 크로마토그래피 법으로 분석하였으며, 분석 결과 강판 내부에 0.03ppm 정도의 수소가 포함되어 있다는 것을 확인할 수 있었다.
비교예 3
상기 발명예 1과 동일한 강판의 표면을 발명예 1과 동일한 조건으로 알루미늄 도금 및 권취하여 알루미늄 도금 강판을 얻은 후, 상기 알루미늄 도금 강판을 상소둔 로에서 다음과 같은 조건으로 500℃까지 가열하였다.
500℃까지의 전체 평균 승온 속도: 50℃/h
400~500℃ 온도 구간의 평균 승온 속도: 25℃/h
가열시 분위기: 수소 100vol%, 산소분압 10-36기압
가열 온도에서 분위기와 강판 사이의 온도 차이: 35℃
가열 후 동일한 온도에서 5시간 유지하였으며, 이후 강판을 공냉하여 열간프레스 성형용 강판을 얻었다.
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 10과 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 31중량% 이었다. 강판의 단면 형태는 도 11에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 도금층의 표면에 두께 0.15㎛의 알루미늄계 산화물 층이 형성되어 있는 것을 알 수 있었다. 강판의 표면을 분광광도계로 분석한 결과 명도값(L*)는 71.7이었다.
또한, 강판에 흡장된 수소의 양을 가스 크로마토그래피법으로 분석하였으며, 분석 결과 강판 내부에 0.09ppm 정도의 수소가 포함되어 있다는 것을 확인할 수 있었다.
열간
프레스 성형
상기 발명예 1, 2 및 비교예 1, 2, 3의 강판을 950℃로 가열한 후 상기 온도에서 5분간 유지하였으며, 이후 프레스에 의하여 가압하면서 급냉하는 열간 프레스 성형을 실시하여 열간 프레스 성형 부재를 얻었다.
얻어진 부재에 포함된 수소의 함량을 가스 크로마토그래피의 방법으로 측정하여 강판의 수소 함량과 함께 하기 표 2에 나타내었다.
구분 | 강판 수소 함량(ppm) | 부재 수소 함량(ppm) |
발명예 1 | 0.13 | 0.40 |
발명예 2 | 0.1 | 0.37 |
비교예 1 | 0.05 | 0.72 |
비교예 2 | 0.03 | 0.69 |
비교예 3 | 0.09 | 0.65 |
상기 표 2에서 확인할 수 있듯이, 발명예 1과 발명예 2의 강판은 수소 함량이 각각 0.13 및 0.1ppm으로서 각각 0.05, 0.03 및 0.09ppm인 비교예 1, 2, 3의 강판의 수소 함량 보다 높은 수준이었다. 그러나, 열간 프레스 성형 부재에서의 수소 함량은 발명예 1 및 발명예 2가 각각 0.4 및 0.37ppm으로서 비교예 1, 2, 3의 수소함량 0.72, 0.69, 0.65ppm 보다 낮은 수준이었다.
수소지연파괴는 강판 보다는 강도가 높아진 부재에서 발생하는 것인데, 본 발명의 조건을 충족하는 발명예의 경우에는 열간 프레스 성형을 위한 가열 과정에서의 수소 흡장량을 대폭 감소시킬 수 있어서, 결과적으로 부재의 수소 함량을 감소시킬 수 있으므로 수소지연파괴에 대하여 효과적이다.
반면, 비교예의 경우에는 비록 열간 프레스 성형 전에는 강판 내 수소 함량이 높지 않았으나, 열간 프레스 성형을 위한 가열시 수소의 흡장량이 대폭 증가하여 부재의 수소 함량이 높았으며, 이러할 경우 수소지연파괴가 일어나기 쉽게 된다.
이러한 경향을 확인하기 위하여 상기 발명예 1과 비교예 1에서 얻어진 부재에 대하여, 노치 인장시험을 실시하였다. 노치 인장시험은 강판의 충격특성을 평가할 수 있는 여러가지 방법 중의 하나이다. 수소 취성은 응력이 부가되는 상황에서 강 내에 존재하는 수소가 노치나 크랙과 같은 결함부에 집중되어 비정상적인 취성이나 파단으로 나타나는 현상인데, 본 실시예에서는 노치 인장시험을 통하여 소재의 최대 인장강도에 도달하기 전에 비정상적으로 파단되는 현상의 유, 무를 통하여 수소취성을 판단하였다. 도 12에 상기 발명예 1과 비교예 1에서 얻어진 부재에 대하여 실시한 노치 인장시험의 강도-연신율 곡선을 나타내었다. 발명예 1에서는 정상적인 인장곡선을 나타내는 것에 반해, 비교예 1에서는 수소 취성으로 인하여 응력이 증가하는 중 최대 인장강도에 이르기 전에 비정상적으로 파단이 발생하는 것을 알 수 있었다.
열간
프레스 성형시 수소 발생 거동의 모사 시험
열간 프레스 성형시 수소가 발생하는 현상을 확인하기 위하여 수소 발생 거동을 모사하는 시험을 행하였다. 시험은 TGA(Thermo Gravimetric Analyzer)를 이용하였으며, 도 13의 가열 패턴(검정색 선으로 표시)으로 나타낸 바와 같이, 각 강판을 가열하였다. 가열시 강판의 중량 증가를 측정하였는데, 강판의 중량이 증가한다는 것은 강판 표면에 화학식 1과 유사한 형태의 산화반응이 일어나고 그 결과 수소가 발생하였다는 것을 의미한다.
실선으로 표시된 발명예 1의 경우는 점선으로 표시된 비교예 1 보다 고온에서 중량 증가가 적다는 것을 확인할 수 있다.
이것은 발명예 1의 경우가 비교예 1의 경우 보다 수소 발생량이 적었고 그에 따라 흡장량도 적었다는 것을 의미하는데, 이것은 실제 열간 프레스 성형에서 강판 내의 수소량 측정 결과와 양호하게 일치한다.
따라서, 본 발명의 유리한 효과를 확인할 수 있었다.
Claims (10)
- 소지강판, 상기 소지강판의 표면에 형성된 알루미늄 합금 도금층 및 상기 도금층의 표면에 형성된 두께 0.05㎛ 이상의 산화물 층을 포함하는 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판.
- 제 1 항에 있어서, 상기 알루미늄 합금 도금층은 35중량% 이상의 Fe를 포함하는 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판.
- 제 1 항에 있어서, 상기 알루미늄 합금 도금층은 45중량% 이상의 Fe를 포함하는 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판.
- 제 1 항에 있어서, 상기 알루미늄 합금 도금층은 50중량% 이상의 Fe를 포함하는 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판.
- 제 1 항에 있어서, 강판 표면의 명도값이 70 이하인 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판.단, 상기 명도값은 KS A 0067에서 규정하는 CIE 표색계(L*a*b* 표색계) 중 L값을 의미한다.
- 제 1 항에 있어서, 상기 소지강판이 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가지는 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판.
- 제 6 항에 있어서, 상기 소지강판의 조성은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함하는 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판.
- 소지강판 표면을 알루미늄 도금하고 권취하여 알루미늄 도금 강판을 얻는 단계;알루미늄 도금 강판을 소둔하여 알루미늄 합금 도금 강판을 얻는 단계; 및알루미늄 합금 도금 강판을 냉각하는 단계를 포함하는 열간 프레스 성형 부재용 강판의 제조방법으로서,상기 알루미늄 도금량은 강판의 한쪽면 기준으로 30~200g/m2이고,권취 시 권취 장력을 0.5~5kg/mm2으로 하며,상기 소둔은 상소둔 로에서 550~750℃의 가열 온도 범위에서 30분 ~ 50시간 실시되며,상기 소둔 시 상온에서 상기 가열 온도까지 가열할 때, 평균 승온 속도를 20~100℃/h로 하되, 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하고, 가열 온도-50℃ ~ 가열 온도 구간의 승온 속도를 1~15℃/h로 하며,열처리시 상소둔 로 내의 산소분압을 10-70~10-20 기압의 범위로 하며,상기 상소둔 로내 분위기 온도와 강판 온도간 차이를 5~80℃로 하는 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판의 제조방법.
- 제 8 항에 있어서, 상기 소지강판이 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가지는 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판의 제조방법.
- 제 9 항에 있어서, 상기 소지강판의 조성은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함하는 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판의 제조방법.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880036255.XA CN110709183B (zh) | 2017-06-01 | 2018-05-31 | 耐氢致延迟断裂性优异的热压成型部件用钢板及其制造方法 |
EP18808695.3A EP3632585B1 (en) | 2017-06-01 | 2018-05-31 | Steel sheet for hot press formed member having excellent resistance to hydrogen delayed fracture, and method for manufacturing same |
JP2019565849A JP7026700B2 (ja) | 2017-06-01 | 2018-05-31 | 水素遅れ破壊抵抗性に優れた熱間プレス成形部材用鋼板及びその製造方法 |
US16/617,823 US11338549B2 (en) | 2017-06-01 | 2018-05-31 | Steel sheet for hot press formed member having excellent resistance to hydrogen delayed fracture and method for manufacturing thereof |
CN202211007846.9A CN115287483B (zh) | 2017-06-01 | 2018-05-31 | 耐氢致延迟断裂性优异的热压成型部件用钢板及其制造方法 |
JP2021180241A JP7189306B2 (ja) | 2017-06-01 | 2021-11-04 | 水素遅れ破壊抵抗性に優れた熱間プレス成形部材用鋼板及びその製造方法 |
US17/728,396 US11801664B2 (en) | 2017-06-01 | 2022-04-25 | Steel sheet for hot press formed member having excellent resistance to hydrogen delayed fracture and method for manufacturing thereof |
US18/373,451 US20240051265A1 (en) | 2017-06-01 | 2023-09-27 | Steel sheet for hot press formed member having excellent resistance to hydrogen delayed fracture and method for manufacturing thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170068651 | 2017-06-01 | ||
KR10-2017-0068651 | 2017-06-01 | ||
KR10-2017-0101567 | 2017-08-10 | ||
KR1020170101567A KR102045622B1 (ko) | 2017-06-01 | 2017-08-10 | 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/617,823 A-371-Of-International US11338549B2 (en) | 2017-06-01 | 2018-05-31 | Steel sheet for hot press formed member having excellent resistance to hydrogen delayed fracture and method for manufacturing thereof |
US17/728,396 Continuation US11801664B2 (en) | 2017-06-01 | 2022-04-25 | Steel sheet for hot press formed member having excellent resistance to hydrogen delayed fracture and method for manufacturing thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018221989A1 true WO2018221989A1 (ko) | 2018-12-06 |
Family
ID=64454854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/006255 WO2018221989A1 (ko) | 2017-06-01 | 2018-05-31 | 수소지연파괴 저항성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018221989A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241338A1 (ja) * | 2020-05-27 | 2021-12-02 | Jfeスチール株式会社 | 亜鉛めっき鋼板 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296805B1 (en) | 1998-07-09 | 2001-10-02 | Sollac | Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment |
JP2004043887A (ja) * | 2002-07-11 | 2004-02-12 | Nissan Motor Co Ltd | アルミニウムめっき構造部材及びその製造方法 |
KR20150073021A (ko) * | 2013-12-20 | 2015-06-30 | 주식회사 포스코 | 내식성이 우수한 열간 프레스 성형용 합금도금강판 및 그 제조방법 |
KR101536703B1 (ko) * | 2011-03-09 | 2015-07-14 | 신닛테츠스미킨 카부시키카이샤 | 핫 스탬핑용 강판 및 그의 제조 방법과 고강도 부품의 제조 방법 |
KR101569505B1 (ko) * | 2014-12-24 | 2015-11-30 | 주식회사 포스코 | 내박리성이 우수한 hpf 성형부재 및 그 제조방법 |
KR101696121B1 (ko) * | 2015-12-23 | 2017-01-13 | 주식회사 포스코 | 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재 |
-
2018
- 2018-05-31 WO PCT/KR2018/006255 patent/WO2018221989A1/ko unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296805B1 (en) | 1998-07-09 | 2001-10-02 | Sollac | Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment |
JP2004043887A (ja) * | 2002-07-11 | 2004-02-12 | Nissan Motor Co Ltd | アルミニウムめっき構造部材及びその製造方法 |
KR101536703B1 (ko) * | 2011-03-09 | 2015-07-14 | 신닛테츠스미킨 카부시키카이샤 | 핫 스탬핑용 강판 및 그의 제조 방법과 고강도 부품의 제조 방법 |
KR20150073021A (ko) * | 2013-12-20 | 2015-06-30 | 주식회사 포스코 | 내식성이 우수한 열간 프레스 성형용 합금도금강판 및 그 제조방법 |
KR101569505B1 (ko) * | 2014-12-24 | 2015-11-30 | 주식회사 포스코 | 내박리성이 우수한 hpf 성형부재 및 그 제조방법 |
KR101696121B1 (ko) * | 2015-12-23 | 2017-01-13 | 주식회사 포스코 | 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3632585A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241338A1 (ja) * | 2020-05-27 | 2021-12-02 | Jfeスチール株式会社 | 亜鉛めっき鋼板 |
JPWO2021241338A1 (ko) * | 2020-05-27 | 2021-12-02 | ||
JP7239008B2 (ja) | 2020-05-27 | 2023-03-14 | Jfeスチール株式会社 | 亜鉛めっき鋼板 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017111525A1 (ko) | 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재 | |
WO2018117543A1 (ko) | 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법 | |
WO2017078278A1 (ko) | 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법 | |
WO2015099221A1 (ko) | 고강도 저비중 강판 및 그 제조방법 | |
WO2016104879A1 (ko) | 프레스성형시 내파우더링성이 우수한 hpf 성형부재 및 이의 제조방법 | |
WO2019124688A1 (ko) | 충돌특성 및 성형성이 우수한 고강도 강판 및 이의 제조방법 | |
WO2018056792A1 (ko) | 내식성 및 점용접성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법 | |
WO2019124693A1 (ko) | 가공성이 우수한 고강도 강판 및 이의 제조방법 | |
WO2018117544A1 (ko) | 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법 | |
WO2019231023A1 (ko) | Twb 용접 특성이 우수한 열간성형용 al-fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법 | |
WO2017105026A1 (ko) | 화성처리성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법 | |
WO2016105059A1 (ko) | 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법 | |
WO2017105025A1 (ko) | 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법 | |
WO2016105064A1 (ko) | 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법 | |
WO2018117724A1 (ko) | 연속 생산성이 우수한 고강도 열연강판 및 냉연강판 그리고 표면 품질 및 도금 밀착성이 우수한 고강도 용융아연도금강판 및 이들의 제조방법 | |
WO2013081422A1 (ko) | 린 듀플렉스 스테인리스강 및 그 제조방법 | |
WO2020111702A1 (ko) | 내구성이 우수한 고강도 강재 및 이의 제조방법 | |
WO2018117523A1 (ko) | 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법 | |
WO2016105062A1 (ko) | 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법 | |
WO2020111640A1 (ko) | 낮은 철손 및 우수한 표면품질을 갖는 무방향성 전기강판 및 그 제조방법 | |
WO2019124776A1 (ko) | 굽힘성 및 저온인성이 우수한 고강도 열연강판 및 이의 제조방법 | |
WO2020130675A1 (ko) | 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법 | |
WO2016104837A1 (ko) | 표면품질이 우수한 고강도 아연도금강판용 열연강판 및 이의 제조방법 | |
WO2019124781A1 (ko) | 상온내시효성 및 소부경화성이 우수한 아연계 도금강판 및 그 제조방법 | |
WO2024043608A1 (ko) | 내충돌성이 우수한 열간 성형용 도금강판, 열간 성형 부재 및 이들의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18808695 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019565849 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018808695 Country of ref document: EP Effective date: 20200102 |