WO2018117544A1 - 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법 - Google Patents

항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법 Download PDF

Info

Publication number
WO2018117544A1
WO2018117544A1 PCT/KR2017/014845 KR2017014845W WO2018117544A1 WO 2018117544 A1 WO2018117544 A1 WO 2018117544A1 KR 2017014845 W KR2017014845 W KR 2017014845W WO 2018117544 A1 WO2018117544 A1 WO 2018117544A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
yield ratio
uniform elongation
less
low yield
Prior art date
Application number
PCT/KR2017/014845
Other languages
English (en)
French (fr)
Inventor
조열래
성환구
배성범
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201780079205.5A priority Critical patent/CN110100032B/zh
Priority to US16/471,265 priority patent/US20190382864A1/en
Priority to JP2019533629A priority patent/JP6893560B2/ja
Priority to EP17884040.1A priority patent/EP3561119B1/en
Publication of WO2018117544A1 publication Critical patent/WO2018117544A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a tempered martensitic steel having a low yield ratio and excellent uniform elongation and a method of manufacturing the same.
  • the stabilizer bar and tubular tortions beam axle of automobile chassis are parts that support the weight of the car body and are continuously subjected to fatigue loads while driving. At the same time, the application of high-strength components is expanding.
  • the fatigue life of steel sheet for automobile parts is closely related to the increase in tensile strength and elongation.
  • a method of manufacturing high-strength automobile parts with tensile strength of 1500 MPa or more there is a direct hot press forming method that performs proper molding and mold cooling at high temperature, or a post-heat treatment method that performs heat treatment after cold forming first.
  • a method of further tempering heat treatment is included.
  • the automotive parts having a tensile strength of 1500 MPa can be manufactured using DIN 22MnB5 or a corresponding boron-added steel sheet.
  • the automotive parts are manufactured by performing the aforementioned heat treatment using hot rolled or cold rolled coils. That is, the tensile strength of the coil before manufacturing the parts is in the range of 500 ⁇ 800MPa, and the coil is made to join the automobile parts, and then the coil is heated to the austenite region of Ac3 or more, solutioned, and subsequently extracted by a press equipped with a cooling device.
  • Tempering heat treatment after quenching depends on the use of automotive parts and the required level of strength. However, in order to impart toughness of martensite structure obtained after quenching treatment, hot tempering heat treatment is generally performed at a temperature range of 500 to 550 ° C. For example, there is patent document 1. Through this high temperature tempering heat treatment, the structure of the hardened state is changed from martensite to tempered martensite structure, and the yield strength and tensile strength are decreased compared to the hardened strength, and in terms of yield ratio (YS / TS), 0.6 ⁇ However, after tempering, the tensile strength decreases significantly compared to the decrease in yield strength, and the yield ratio becomes higher than 0.9. At the same time, the uniform elongation and the total elongation are increased, which increases the service life of the part.
  • Patent document 2 has a patent document regarding low temperature tempering heat processing.
  • the yield ratio increases to 0.9 ⁇ 0.98 as the tensile and yield strengths decrease compared to the quenching state.
  • the yield strength increases in comparison with the quenching state and the tensile strength decreases to 0.7 ⁇ . It has a yield ratio in the range of 0.85.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-037205
  • Patent Document 2 Korean Unexamined Patent Publication No. 2016-0078850
  • One aspect of the present invention is to provide a tempered martensitic steel having a low yield ratio and excellent uniform elongation, and a method of manufacturing the same, which have excellent balance of tensile strength and uniform elongation compared to conventional heat-treated boron-added heat-treated steel.
  • One aspect of the present invention is by weight, C: 0.2 ⁇ 0.6%, Si: 0.01 ⁇ 2.2%, Mn: 0.5 ⁇ 3.0%, P: 0.015% or less, S: 0.005% or less, Al: 0.01 ⁇ 0.1%, Ti: 0.01% to 0.1%, Cr: 0.05% to 0.5%, B: 0.0005% to 0.005%, Mo: 0.05% to 0.5%, N: 0.01% or less, including the remaining Fe and unavoidable impurities,
  • Yield ratio is 0.4 ⁇ 0.6, and the product of tensile strength and uniform elongation (TS * U-El) is more than 10000MPa%,
  • the microstructure relates to a tempered martensitic steel having a low yield ratio and good uniform elongation, including at least 90% of tempered martensite, 5% or less of ferrite, and the remaining bainite.
  • another aspect of the present invention is a weight%, C: 0.2 ⁇ 0.6%, Si: 0.01 ⁇ 2.2%, Mn: 0.5 ⁇ 3.0%, P: 0.015% or less, S: 0.005% or less, Al: 0.01 ⁇
  • the balance of tensile strength and uniform elongation is remarkably improved compared to conventional heat treatment type boron-added heat treatment steels by regulating the composition of steel and tempering after tempering. Excellent and low yield ratio, by securing such physical properties it has the effect of contributing to the reduction in weight and durability life of the heat-treated components used in the car chassis or body.
  • the present inventors carefully examined the histological factors and the fatigue stress characteristics added in the endurance test after fabricating the automotive heat treated parts to improve the toughness of the automotive heat treated parts. Under these conditions, the elongation affects the service life, but the tensile strength dominates the service life under cyclic stresses below the yield strength. It was confirmed that the change.
  • Tempered martensitic steel having a low yield ratio and excellent uniform elongation is a weight%, C: 0.2 ⁇ 0.6%, Si: 0.01 ⁇ 2.2%, Mn: 0.5 ⁇ 3.0%, P: 0.015% or less , S: 0.005% or less, Al: 0.01 to 0.1%, Ti: 0.01 to 0.1%, Cr: 0.05 to 0.5%, B: 0.0005 to 0.005%, Mo: 0.05 to 0.5%, N: 0.01% or less, remaining Fe And inevitable impurities,
  • Yield ratio is 0.4 ⁇ 0.6, and the product of tensile strength and uniform elongation (TS * U-El) is more than 10000MPa%,
  • the microstructure comprises, by area fraction, at least 90% of tempered martensite, at most 5% of ferrite, and the remaining bainite.
  • the unit of each element content hereafter means weight% unless there is particular notice.
  • C is the most important element to increase the hardenability of the steel sheet for hot press molding and to determine the strength after mold cooling or hardening heat treatment.
  • the C content is less than 0.2%, it is difficult to secure sufficient strength.
  • the C content is more than 0.6%, the strength of the coil is excessively increased during the hot rolled coil manufacturing step, and the width and the longitudinal material variation are increased, making it difficult to secure cold forming, and the strength is too high after the hardening heat treatment. There is a problem of being sensitive to delayed destruction.
  • the stress is concentrated around the weld portion, which increases the possibility of causing breakage. Therefore, it is preferable that C content is 0.2 to 0.6%.
  • the lower limit of the C content may be 0.22%, and the upper limit may be 0.58%.
  • Si is an important element that determines the quality or surface quality of welds.
  • Si content increases, there is a possibility that oxide remains in the welded portion, which may not satisfy the performance during flattening or expansion.
  • the Si content is preferably controlled to 2.2% or less.
  • Si is an impurity, the lower the content is advantageous, but the manufacturing cost increases to control less than 0.01%, the lower limit is 0.01%. Therefore, it is preferable that Si content is 0.01 to 2.2%.
  • the more preferable upper limit of Si content may be 2.1%, and a still more preferable upper limit may be 2.0%.
  • Mn is the second most important element after C in improving the hardenability of the hot press forming steel plate and determining the strength after mold cooling or hardening heat treatment.
  • Mn has an effect of delaying the formation of ferrite as the surface temperature of the steel sheet decreases during the air cooling immediately before the hardening after the solution treatment.
  • Mn content is less than 0.5%, the above effects are insufficient.
  • Mn content is more than 3.0%, it is advantageous for strength increase or transformation delay, but there is a concern that the bendability of the heat-treated steel sheet is lowered. Therefore, it is preferable that Mn content is 0.5 to 3.0%.
  • the lower limit of the Mn content may be 0.55%, and the upper limit may be 2.5%.
  • P is an element that is inevitably contained as an impurity and is an element that hardly affects hot press forming or quench strength.
  • it is preferably controlled at 0.015% or less, and more preferably at 0.010% or less.
  • the lower limit of the P content need not be particularly limited, but 0% may be excluded because excessive cost is consumed in order to control it to 0%.
  • S is an impurity element that, when present as an elongated emulsion in combination with Mn, deteriorates the toughness of the steel sheet after mold cooling or hardening heat treatment. Therefore, it is preferable to control to 0.005% or less, More preferably, to control to 0.003% or less.
  • the lower limit of the S content need not be particularly limited, but 0% may be excluded because excessive cost is consumed in order to control to 0%.
  • Al is a representative element used as a deoxidizer. If the Al content is less than 0.01%, the deoxidation effect is insufficient. If the Al content is more than 0.1%, the oxide is combined with N during the continuous casting process to cause surface defects and excessive oxides in the weld part during the manufacturing of ERW (electric resistance welding) steel pipe. There is a fear of remaining.
  • Ti has an effect of inhibiting austenite grain growth by TiN, TiC or TiMoC precipitates during the heating process of the hot press molding process.
  • it is an effective element to stably improve the strength after mold cooling or hardening heat treatment by causing an effect of increasing the effective amount of B, which contributes to the improvement of the hardenability of the austenitic structure.
  • the Ti content is less than 0.01%, the above effects are insufficient.
  • the Ti content is more than 0.1%, the effect of increasing the strength relative to the content is reduced and the manufacturing cost is increased.
  • Cr is an important element that, together with Mn and C, improves the hardenability of the hot press forming steel sheet and contributes to the increase in strength after mold cooling or hardening heat treatment. It influences critical cooling rate so that martensite structure can be easily obtained in the process of martensite structure control, and it is an element that lowers A3 temperature in hot press forming process. For this purpose, it is preferable to add 0.05% or more.
  • the Cr content is preferably 0.5% or less, more preferably 0.45% or less, even more preferably 0.4% or less.
  • B is an element which is very useful for increasing the hardenability of the hot press forming steel sheet, and is an element which greatly contributes to the increase in strength after mold cooling or hardening heat treatment even when a very small amount is added.
  • Mo is an element which improves the hardenability of the steel plate for hot press forming with Cr, and contributes to stabilization of hardening strength. In addition, it is an effective element to expand the austenite temperature range to the lower temperature side in the annealing process during hot rolling and cold rolling, and the heating step of the hot press forming process and to alleviate P segregation in the steel.
  • N is an impurity that promotes precipitation of AlN or the like during the continuous casting process to promote corner cracks of the cast steel. Therefore, it is preferable to control the N content to 0.01% or less.
  • the lower limit of the N content need not be particularly limited, but 0% may be excluded because excessive cost is consumed in order to control to 0%.
  • the remaining component of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
  • it may further include one or more of Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, and V: 0.05 to 0.3% by weight.
  • Cu is an element which contributes to the improvement of corrosion resistance of steel.
  • Cu is an element exhibiting an aging hardening effect as the supersaturated copper precipitates as epsilon carbide when tempering is performed to increase toughness after hot press molding.
  • Ni is effective in improving the strength and toughness of the steel sheet for hot press molding, and has an effect of increasing the hardenability, and is effective in reducing the hot shortening sensitivity caused when Cu alone is added.
  • Ni content is less than 0.05%, the above-mentioned effects are insufficient. If the Ni content is more than 0.5%, the effect of improving the hardenability or increasing the strength is reduced, but the effect of improving the hardenability compared to the addition is reduced, which is uneconomical.
  • V is an effective element for grain refinement of steel and prevention of hydrogen delayed fracture. That is, it not only suppresses austenite grain growth in the hot rolling process but also contributes to miniaturizing the final structure by raising the unrecrystallized zone temperature in the hot rolling step.
  • Such microstructures are effective in dispersing impurities such as P by causing grain refinement in a post-hot forming process.
  • the presence of precipitates in the hardened heat treatment structure traps hydrogen in the steel and can suppress hydrogen delayed destruction.
  • the above-described effects are insufficient. If the V content is more than 0.3%, the above-described effects are susceptible to slab cracking during continuous casting.
  • the microstructure of the present invention comprises at least 90% of the tempered martensite, 5% or less of ferrite, and the remaining bainite in an area fraction.
  • the tempered martensite is less than 90% or the ferrite is more than 5%, there is a problem that it is difficult to secure the target strength.
  • it may be a tempered martensite single phase.
  • the tempered martensitic steel according to the present invention has a product of tensile strength and uniform elongation (TS * U-El) of 10000 MPa% or more, and a yield ratio of 0.4-0.6.
  • the tempered martensite steel according to the present invention may have a tensile strength of 1500 MPa or more.
  • Another aspect of the present invention is a method for producing a low yield ratio and excellent elongation of tempered martensite steel comprising the steps of preparing a steel that satisfies the alloy composition of the present invention; Heating the steel to a temperature range of 850 to 960 ° C. and maintaining the steel for 100 to 1000 seconds; And cooling the heated steel to a cooling end temperature of Mf-50 ° C. to Mf + 100 ° C. at a cooling rate of (martensite critical cooling rate) to 300 ° C./sec, and then holding the heated steel for 3 to 30 minutes. Include.
  • a steel that satisfies the alloy composition of the present invention described above is prepared.
  • the present invention is characterized in the heat treatment step of preparing the steel is not particularly limited, but specific examples are as follows.
  • finish hot rolling temperature is less than Ar 3 , hot rolling is performed in a two-phase region (a region where ferrite and austenite coexist) in which some of the austenite is already transformed into ferrite, so that the deformation resistance becomes uneven, resulting in poor rolling efficiency. There is a fear that the stress is concentrated on the ferrite and the likelihood of breaking is increased.
  • finish hot rolling temperature is higher than 950 ° C., surface defects such as a sand scale may occur.
  • the coiling temperature is less than 500 °C, there is a problem that the strength of the hot-rolled steel sheet is significantly increased by the formation of low-temperature structure, such as martensite, in particular, if the material deviation increases due to the supercooling in the coil width direction, the rolled sheetability decreases in the subsequent cold rolling process In this case, even if the welded steel pipe is manufactured from a hot rolled product, there is a possibility of causing a welded steel pipe or forming a weld defect.
  • Cold rolling is not particularly limited, and the cold rolling rate may be 40 to 70%.
  • the continuous annealing temperature is less than 750 °C recrystallization may not be sufficient, if it is above 850 °C there is a problem that not only the grain is coarsened but also the annealing heating unit is raised.
  • the reason for controlling the over-aging treatment temperature to 400 ⁇ 600 ° C is to allow the microstructure of the cold rolled steel sheet to be composed of a structure containing some of ferrite or bainite in the ferrite matrix, thereby increasing the strength of the cold rolled steel sheet to a level similar to that of the hot rolled steel sheet This is to have strength.
  • Slitting the prepared steel is heated to the austenite station in the form of a blank and then extracted and hot formed and subsequently quenched, a method of producing an ERW steel pipe and then heated to the austenite station and then quenched or heat treated after hot forming
  • the final tempered martensitic steel can be produced using a method such as
  • the final tempered martensitic steel can be produced by a variety of methods such as quenching and heating to perform quenching and direct heating and direct cooling to the mold after heating.
  • the steel is heated to a temperature range of 850-960 ° C. and maintained for 100-1000 seconds for solution treatment.
  • the temperature may decrease during the hot forming by extracting the steel sheet from the heating furnace, which causes ferrite transformation from the surface of the steel sheet and does not produce sufficient tempered martensite over the entire thickness.
  • the target strength may not be obtained.
  • the heating temperature exceeds 960 ° C, coarsening of austenite grains is induced, concentration of impurity P is promoted at the austenite grain boundary, and surface decarburization is accelerated to decrease strength or impact energy after the final heat treatment. There is concern.
  • the martensite critical cooling rate means the minimum cooling rate for obtaining 100% martensite and is measured at 20 to 30 ° C./sec according to the component range of the present invention.
  • the strength may be low due to difficulty in obtaining the final structure mainly composed of tempered martensite.
  • the cooling rate is higher than 300 ° C / sec, the strength increase is not large due to the increase in the cooling rate. It is uneconomical in that a cooling system for the increase must be added.
  • Cooling end temperature is a very important factor with the alloy composition of the present invention, the material is determined by the cooling end temperature and the holding time, the material properties of the present invention is expressed.
  • the cooling end temperature may refer to the temperature of the small bath when using the method of cooling by immersing the heated steel in the small bath.
  • the holding time is preferably 2 to 40 minutes, more preferably 3 to 30 minutes.
  • the steel is a hot rolled steel sheet having a thickness of 3.0 mm manufactured by winding the slab having the composition shown in Table 1 in the range of 1200 ⁇ 20 ° C. for 180 minutes and homogenizing it, followed by rough rolling and finish rolling, followed by winding at 650 ° C. to be.
  • Yield strength (YS), tensile strength (TS) and elongation (El) of the hot-rolled steel sheet were measured and described in Table 2 below.
  • the hot rolled steel sheet was pickled, heated to 930 ° C. and maintained for 6 minutes, and then cooled to the cooling end temperature shown in Table 2 below at a cooling rate of 30 ° C./sec. When the cooling end temperature is 20 °C was marked with '-' and there was no separate holding time. If the cooling end temperature is more than 20 °C was maintained for 15 minutes and then cooled to room temperature.
  • the tempering temperature was expressed as '-'.
  • heating was performed at the tempering temperature shown in Table 2 below, followed by cooling for 30 minutes.
  • yield strength (YS), tensile strength (TS), uniform elongation (U-El), elongation (El), TS * U-El, and yield ratio (YR) after the heat treatment were measured and described in Table 2 below.
  • Ms and Mf are the values calculated
  • Comparative example 1-1 is only performing quenching, and 1-3, 1-4 and 1-5 are cases where tempering is performed after quenching.
  • 1-2 shows the case where cooling end temperature was 150 degreeC at the time of quenching as an invention example.
  • the martensite structure was observed in 1-1, and in the cases of tempering after quenching in 1-3, 1-4 and 1-5, different tissues were observed depending on the tempering temperature. In other words, fine plate-like carbides were observed in martensite lath at 1-3, while cementite was observed at 1-4 and 1-5.
  • Inventive Example 1-2 a tempered martensite structure in which plated carbides were deposited in martensite lath was observed, and tempered martensite was 96%, ferrite 2%, and bainite 2%.
  • the tempered martensite structure in which platelet carbide was deposited in martensite lath was similar to Comparative Example 1-3, but the amount of platelet carbide was larger and larger in size than Comparative Example 1-3, and the influence of platelet carbide was observed. As a result, it is possible to secure a resistance ratio and a high TS * U-El value.
  • TS * U-El was 10000 MPa% or more, and the yield ratio was 0.6 or less.
  • Comparing Comparative Examples 1-1, 1-3, 1-4, and 1-5 when the tempering temperature increases after quenching, the tensile strength decreases continuously, and the yield strength increases compared to immediately after quenching, and then peaks around 220 ° C. After the peak), it was continuously decreased like the tensile strength. The uniform elongation decreased sharply after showing a peak near 220 °C and then increased again when the tempering temperature increased.
  • the TS * U-El value at low temperature temper (1-3) is higher than the high temperature temper (1-5), and the heat treatment of the present invention is performed.
  • TS * U-El rose notably above 11000 MPa%.
  • the steel is a thickness produced by heating the slab having the composition shown in Table 3 in the range of 1200 ⁇ 20 ° C. for 180 minutes and homogenizing it, followed by rough rolling and finish rolling, followed by winding at the winding temperature shown in Table 4 below. 3.0mm hot rolled steel sheet. Yield strength (YS), tensile strength (TS) and elongation (El) of the hot-rolled steel sheet were measured and described in Table 4 below.
  • the hot rolled steel sheet was pickled, heated to 930 ° C. and maintained for 6 minutes, and then cooled to the cooling end temperature shown in Table 4 below at a cooling rate of 30 ° C./sec. When the cooling end temperature is 20 °C was marked with '-' and there was no separate holding time. If the cooling end temperature is more than 20 °C was maintained for 15 minutes and then cooled to room temperature.
  • the tempering temperature was expressed as '-'.
  • heating was performed at the tempering temperature shown in Table 4 below, followed by cooling for 30 minutes.
  • yield strength (YS), tensile strength (TS), uniform elongation (U-El), elongation (El), TS * U-El, and yield ratio (YR) after the heat treatment were measured and described in Table 4 below.
  • Ms and Mf are the values calculated
  • TS * U-El was 10000 MPa% or more, and the yield ratio was 0.6 or less.
  • TS * U-El was measured to be less than 10000 Mpa%.
  • the TS * U-El exceeds 10000 MPa%, but the yield ratio is 0.805, which deviates from the resistive ratio characteristic of the present invention.
  • a steel having the composition shown in Table 5 The steel was manufactured by heating the slab having the composition shown in Table 5 below in the range of 1200 ⁇ 20 ° C. for 180 minutes to homogenize, and then roughing and finishing rolling, followed by winding at the winding temperature shown in Table 6 below.
  • mm is a hot rolled steel sheet.
  • Yield strength (YS), tensile strength (TS) and elongation (El) of the hot-rolled steel sheet were measured and described in Table 6 below.
  • steel grade 1 is designed to have a tempering strength of 1800MPa grade, steel 2 1500MPa grade, and steel 3 and steel 5 ⁇ 19, 2000MPa grade, and the tensile strength level changes according to the cooling stop temperature after quenching. As shown in Table 6 it is shown as a comparative example.
  • yield strength (YS), tensile strength (TS), uniform elongation (U-El), elongation (El), TS * U-El, and yield ratio (YR) after the heat treatment were measured and described in Table 6 below.
  • Ms and Mf are the values calculated
  • the TS * U-El value was more than 10000MPa%, yield ratio was 0.4 ⁇ 0.6.
  • Comparative Example 7-1 the TS content was inferior to 10000 MPa% due to excessive P content.
  • Steel grades 8 to 17 are based on steel grade 8 and the effects of Si, Mn, Ti, Cu, and Cu-Ni addition on the materials before and after heat treatment were examined.
  • Steel grades 13-15 are for confirming the effects of Ti, Nb, and V addition.
  • the present invention meets the criteria, but in the case of steel grade 14, which is an Nb-added steel, the tensile strength is significantly decreased after heat treatment, and the TS * U-El value is far below the standard.
  • Steel grades 16 and 17 are steels containing Cu and Cu-Ni, respectively.
  • the yield ratio is gradually lowered, but if it exceeds 200 °C, the yield ratio is increased again, at 250 °C (17-4) the present invention Is beyond the yield ratio of
  • the Mn content was insufficient, and in the comparative example 21-1, the C content was insufficient, so that the TS * U-El value was less than 10000 MPa%.
  • Comparative Example 23-1 the C content was excessive, and thus the tensile strength before heat treatment was 1000 MPa or more.
  • the slab having the composition of steel grade 9 in Table 5 above was heated and homogenized by heating for 180 minutes in the range of 1200 ⁇ 20 ° C, followed by rough rolling and finish rolling. After winding at 680 °C to prepare a hot rolled steel sheet with a thickness of 3.0mm. Yield strength (YS), tensile strength (TS) and elongation (El) of the hot-rolled steel sheet were measured and described in Table 6 below.
  • the hot rolled steel sheet was pickled (PO), heated to 930 ° C. and maintained for 6 minutes, cooled to a cooling end temperature of 150 ° C. at a cooling rate of 30 ° C./sec, and maintained for a holding time shown in Table 7 below. After air cooled to room temperature.
  • yield strength (YS), tensile strength (TS), uniform elongation (U-El), elongation (El), TS * U-El, and yield ratio (YR) after the heat treatment were measured and described in Table 6 below.

Abstract

본 발명의 일 측면은 중량%로, C: 0.2~0.6%, Si: 0.01~2.2%, Mn: 0.5~3.0%, P: 0.015% 이하, S: 0.005% 이하, Al: 0.01~0.1%, Ti: 0.01~0.1%, Cr: 0.05~0.5%, B: 0.0005~0.005%, Mo: 0.05~0.5%, N: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며, 항복비가 0.4~0.6이며, 인장강도와 균일연신율의 곱(TS*U-El)이 10000MPa% 이상이고, 미세조직은 면적분율로 템퍼드 마르텐사이트를 90% 이상, 페라이트 5% 이하, 나머지 베이나이트를 포함하는 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강에 관한 것이다.

Description

항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법
본 발명은 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법에 관한 것이다.
최근 자동차 승객 보호를 위한 안전법규나 지구 환경보호를 위한 연비규제가 강화되면서 자동차의 강성 향상 및 경량화에 대한 관심이 고조되고 있다. 예를 들면, 자동차 샤시의 스테비라이저 바(Stabilizer bar), 튜블러 씨티비에이(Tubular tortions beam axle) 등은 차체의 중량을 지지하고 주행 동안 지속적으로 피로하중을 받는 부품으로서 강성과 내구수명을 동시에 확보하기 위하여 고강도 부품의 적용이 확대되고 있다.
자동차 부품용 강판의 피로수명은 인장강도의 상승과 연신율과 밀접한 관계에 있다. 인장강도 1500MPa급 이상의 고강도 자동차부품을 제조하는 방법으로서 고온에서 적정 성형과 금형냉각을 실시하는 직접 열간 프레스 성형 방법 혹은 냉간성형을 먼저 행한 후 열처리를 행하는 후열처리 방법이 있으며, 두 방법 모두 소입 상태의 인성을 높이기 위하여 추가로 뜨임 열처리를 행하는 공법을 포함하고 있다.
직접 열간 프레스 성형 공법 또는 후열처리 공법에 의하여 구현될 수 있는 강도는 다양하나 DIN 규격의 22MnB5 또는 상응하는 보론첨가 강판을 이용하여 인장강도 1500MPa급의 자동차용 부품을 제조할 수 있다.
상기 자동차용 부품은 열연 또는 냉연코일을 이용하여 앞서 언급한 열처리를 행하여 제조된다. 즉, 부품 제조전의 코일의 인장강도는 500~800MPa 범위에 있으며, 코일을 자동차 부품에 접합하게 블랭크를 만든 후 Ac3 이상의 오스테나이트역까지 가열하여 용체화하고, 연이어 추출하여 냉각장치가 구비된 프레스로 성형함과 동시에 금형냉각(die quenching)을 행하던가, 아니면 강판을 냉간상태에서 부품 형상에 가깝게 성형한 후 역시 Ac3 이상의 오스테나이트역까지 가열하여 용체화하고, 연이어 추출하여 금형냉각(die quenching) 또는 소입처리를 행함으로써, 최종적으로 마르텐사이트 혹은 마르텐사이트와 베이나이트가 혼재된 상이 형성되면서 1500MPa 이상의 초고강도가 얻어지게 된다. 그러나 이와 같은 마르텐사이트 기반의 조직강은 취성을 띠기 때문에 내구수명 향상이나 인성을 높이기 위하여 별도의 뜨임 열처리(tempering)를 행하여 사용한다.
소입 후 뜨임 열처리는 자동차 부품의 용도 및 요구되는 강도 수준에 따라의 다르나, 일반적으로 소입 처리 후 얻어지는 마르텐사이트 조직의 인성을 부여하기 위하여 500~550℃ 온도 범위에서 고온 뜨임 열처리하는 것이 일반적이다. 예를 들어, 특허문헌 1이 있다. 이러한 고온 뜨임 열처리를 거치면 소입 상태 대비 조직은 마르텐사이트에서 템퍼드 마르텐사이트 조직으로 변화하고, 소입강도 대비 항복강도 및 인장강도는 감소하며, 항복비(YS/TS) 측면에서 보면 소입단계에서는 0.6~0.7 범위이나, 뜨임처리 후에는 항복강도 하락 대비 인장강도 하락이 현저하여 항복비는 0.9 이상으로 높아지게 된다. 동시에 균일 연신율 및 총 연신율은 상승하게 되며, 이로 인하여 부품의 내구수명이 증가되는 것으로 알려져 있다.
한편, 저온 뜨임 열처리는 180~220℃의 온도범위에서 열처리를 행하며, 항복강도가 소입상태 대비 증가되지만 인장강도는 저하됨으로써 0.7~0.85 범위의 항복비가 얻어진다. 또한, 균일 연신율 및 총연신율은 소입 대비 다소 증가하게 된다. 저온 뜨임 열처리에 관한 특허문헌으로는 특허문헌 2가 있다.
즉, 고온 뜨임 열처리의 경우 소입상태 대비 인장 및 항복강도가 저하되면서 항복비는 0.9~0.98 범위로 증가하고, 저온 뜨임 열처리의 경우 항복강도는 소입 상태와 대비하여 증가하고 인장강도는 저하되어 0.7~0.85 범위의 항복비를 가진다.
한편, 자동차 차량 무게가 증가되면서 이들 열처리형 부품에 있어서 강도를 더욱 향상시키고자 하는 요구가 증가되고 있다. 강도를 높이는 방안으로 기존의 보론 첨가 열처리강에서 규제하는 바의 조성 즉, Mn을 0.5~1.5%, Cr을 0.1~0.3% 범위로 고정하고 열처리후 강도를 감안하여 C 함량을 높이는 경우, 소입강도는 C, Mn 등의 함량에 비례하여 증가하나, 인성 및 연성을 부여하기 위하여 종래와 같이 500~550℃ 열처리를 행하면 항복강도 및 인장강도가 현저하게 감소하여, C, Mn 등의 첨가 효과가 반감되어 강도 상승에 비례하여 인성이 늘어날 것이라는 기대를 충족시키지 못하는 문제점을 가지고 있다.
(선행기술문헌)
(특허문헌 1) 일본 공개특허공보 제2006-037205호
(특허문헌 2) 한국 공개특허공보 제2016-0078850호
본 발명의 일 측면은 종래의 열처리형 보론 첨가 열처리 강에 비하여 인장강도과 균일연신율의 발란스가 현저하게 우수한 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법을 제공하기 위함이다.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은 중량%로, C: 0.2~0.6%, Si: 0.01~2.2%, Mn: 0.5~3.0%, P: 0.015% 이하, S: 0.005% 이하, Al: 0.01~0.1%, Ti: 0.01~0.1%, Cr: 0.05~0.5%, B: 0.0005~0.005%, Mo: 0.05~0.5%, N: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며,
항복비가 0.4~0.6이며, 인장강도와 균일연신율의 곱(TS*U-El)이 10000MPa% 이상이고,
미세조직은 면적분율로 템퍼드 마르텐사이트를 90% 이상, 페라이트 5% 이하, 나머지 베이나이트를 포함하는 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강에 관한 것이다.
또한, 본 발명의 다른 일 측면은 중량%로, C: 0.2~0.6%, Si: 0.01~2.2%, Mn: 0.5~3.0%, P: 0.015% 이하, S: 0.005% 이하, Al: 0.01~0.1%, Ti: 0.01~0.1%, Cr: 0.05~0.5%, B: 0.0005~0.005%, Mo: 0.05~0.5%, N: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 강을 준비하는 단계;
상기 강을 850~960℃의 온도범위로 가열하여 100~1000초 동안 유지하는 단계; 및
상기 가열된 강을 (마르텐사이트 임계 냉각속도)~300℃/sec의 냉각속도로 Mf-50℃ ~ Mf+100℃의 냉각종료온도까지 냉각한 후, 3~30분 동안 유지하는 단계;를 포함하는 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강의 제조방법에 관한 것이다.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다.
본 발명에 의하면, 직접 열간 프레스 성형 또는 열처리형 자동차용 부품 제조에 있어서, 강의 조성과 소입후 뜨임 열처리 조건을 규제하여 종래의 열처리형 보론 첨가 열처리 강에 비하여 인장강도와 균일연신율의 발란스가 현저하게 우수하며 항복비가 낮을 뿐만 아니라, 이러한 물성을 확보함으로써 자동차 샤시나 차체에 사용되는 열처리형 부품의 경량화와 내구수명 향상에 기여하는 효과가 있다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은 자동차용 열처리 부품의 인성을 향상시키기 위하여 조직학적 인자 및 자동차용 열처리 부품을 제작한 후 내구 시험에서 부가되는 피로 응력 특성을 주의 깊게 검토한 결과, 반복 응력이 소성변형이 일어나는 조건으로 응력이 가해지는 조건에서는 연신율이 내구수명에 영향을 미치나, 항복강도 이하의 반복응력 부가 조건에서는 인장강도가 내구수명을 지배하는 것으로 파악하였고, 열처리강에서의 항복강도 및 연신율은 소입후 조건에 따라 크게 변화됨을 확인하였다.
그 결과, 상온까지 냉각한 후 고온 또는 저온에서 뜨임처리하는 종래의 열처리가 아닌, 일정 냉각종료온도까지 냉각한 후 일정시간 유지함으로써, 0.4~0.6 범위의 항복비와 저온 뜨임에서 얻어지는 인장강도 수준 및 고온 뜨임에서 얻어질수 있는 균일연신율 수준을 확보할 수 있어 인장강도와 균일연신율의 발란스를 현저하게 향상시킬 수 있음을 을 확인하고, 본 발명을 완성하기에 이르렀다.
항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강
이하, 본 발명의 일 측면에 따른 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강은 중량%로, C: 0.2~0.6%, Si: 0.01~2.2%, Mn: 0.5~3.0%, P: 0.015% 이하, S: 0.005% 이하, Al: 0.01~0.1%, Ti: 0.01~0.1%, Cr: 0.05~0.5%, B: 0.0005~0.005%, Mo: 0.05~0.5%, N: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며,
항복비가 0.4~0.6이며, 인장강도와 균일연신율의 곱(TS*U-El)이 10000MPa% 이상이고,
미세조직은 면적분율로 템퍼드 마르텐사이트를 90% 이상, 페라이트 5% 이하, 나머지 베이나이트를 포함한다.
먼저, 본 발명의 합금조성에 대하여 상세히 설명한다. 이하 각 원소 함량의 단위는 특별한 언급이 없는 한 중량%를 의미한다.
C: 0.2~0.6%
C는 열간 프레스 성형용 강판의 경화능을 높이고, 금형냉각 또는 소입 열처리후 강도를 결정하는 가장 중요한 원소이다.
C함량이 0.2% 미만인 경우에는 충분한 강도를 확보하기 어렵다. 반면에 C 함량이 0.6% 초과인 경우에는 열연 코일 제조단계에서 코일의 강도가 과다히 상승하고, 폭 및 길이방향 재질 편차가 증가하여 냉간성형 확보가 어려워지고, 소입 열처리 후에는 강도가 지나치게 높아 수소지연파괴에 민감해지는 문제점이 있다. 뿐만 아니라 강판 제조 과정 또는 열처리된 부품 제조 단계에서 용접을 행할 경우, 용접부 주위에 응력이 집중되어 파괴를 야기시킬 가능성이 높아진다. 따라서, C함량은 0.2~0.6%인 것이 바람직하다.
또한, C함량의 보다 바람직한 하한은 0.22%일 수 있으며, 보다 바람직한 상한은 0.58%일 수 있다.
Si: 0.01~2.2%
Si는 Mn과 함께 용접부의 품질이나 표면 품질을 결정하는 중요한 원소이다. Si함량이 증가할수록 용접부에 산화물이 잔존할 가능성이 높아져 편평이나 확관시 성능을 만족시키지 못할 우려가 있다. 또한, Si 함량이 증가하면 강판 표면에 Si이 농화되면서 표면에 스케일성 결함 발생을 초래할 가능성이 높아진다. 따라서 Si 함량은 2.2% 이하로 제어하는 것이 바람직하다. 반면에 Si는 불순물로서 그 함량이 낮을수록 유리하나, 0.01% 미만으로 제어하기 위해서는 제조비용이 증가하므로 그 하한은 0.01%로 한다. 따라서, Si함량은 0.01~2.2%인 것이 바람직하다.
또한, Si함량의 보다 바람직한 상한은 2.1%일 수 있으며, 보다 더 바람직한 상한은 2.0%일 수 있다.
Mn: 0.5~3.0%
Mn은 C과 더불어 열간 프레스 성형용 강판의 경화능을 향상시키고, 금형냉각 또는 소입 열처리후 강도를 결정함에 있어 C 다음으로 중요한 원소이다. 동시에 Mn은 용체화처리후 소입 직전의 공냉 동안 강판의 표면온도가 저하됨에 따른 페라이트 생성을 지연하는 효과가 있다.
Mn 함량이 0.5% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Mn 함량이 3.0% 초과인 경우에는 강도 상승이나 변태지연에는 유리하나, 열처리된 강판의 굽힘성을 저하시킬 우려가 있다. 따라서, Mn 함량은 0.5~3.0%인 것이 바람직하다.
또한, Mn 함량의 보다 바람직한 하한은 0.55%일 수 있으며, 보다 바람직한 상한은 2.5%일 수 있다.
P: 0.015% 이하
P는 불순물로 불가피하게 함유되는 성분이며 열간 프레스 성형 또는 소입강도에 거의 영향을 미치지 않는 원소이다. 그러나 오스테나이트 용체화 가열 단계에서 입계에 편석되면 충격에너지나 피로 특성을 저하시키므로 0.015% 이하로 제어하는 것이 바람직하며, 보다 바람직하게는 0.010% 이하로 제어한다.
P 함량의 하한은 특별히 한정할 필요는 없으나, 0%로 제어하기 위해서는 과다한 비용이 소모되므로 0%는 제외될 수 있다.
S: 0.005% 이하
S는 불순물 원소로서 Mn과 결합하여 연신된 유화물로 존재하면 금형냉각 또는 소입 열처리후 강판의 인성을 열화시키는 원소이다. 따라서, 0.005% 이하로 제어하는 것이 바람직하며, 보다 바람직하게는 0.003% 이하로 제어한다.
S 함량의 하한은 특별히 한정할 필요는 없으나, 0%로 제어하기 위해서는 과다한 비용이 소모되므로 0%는 제외될 수 있다.
Al: 0.01~0.1%
Al은 탈산제로 사용되는 대표적인 원소이다. Al 함량이 0.01% 미만인 경우에는 탈산 효과가 불충분하고, 0.1% 초과인 경우에는 연속주조 공정동안 N과 결합하여 석출되어 표면결함을 유발할 뿐만 아니라, ERW(전기저항용접) 강관제조시 용접부에 과다한 산화물을 잔존시킬 우려가 있다.
Ti: 0.01~0.1%
Ti은 열간 프레스 성형공정의 가열과정에서 TiN, TiC 또는 TiMoC 석출물에 의한 오스테나이트 결정립 성장을 억제하는 효과가 있다. 또한, 오스테나이트 조직의 소입성 향상에 기여하는 유효 B량을 증가시키는 효과를 유발하여 금형냉각 또는 소입 열처리후 강도를 안정적으로 향상 시키는데 유효한 원소이다.
Ti 함량이 0.01% 미만인 경우에는 상술한 효과가 불충분하다. 반면에, Ti 함량이 0.1% 초과인 경우에는 함량 대비 강도 상승 효과가 감소되고 제조비용이 상승한다.
Cr: 0.05~0.5%
Cr은 Mn, C과 더불어 열간 프레스 성형용 강판의 경화능을 향상시키고, 금형냉각 또는 소입 열처리후 강도 증가에 기여하는 중요한 원소이다. 마르텐사이트 조직제어 과정에서 마르텐사이트 조직을 용이하게 얻을수 있도록 임계냉각속도에 영향을 주며, 열간 프레스 성형공정에서 A3 온도를 저하시키는 역할을 하는 원소이다. 이를 위해서는 0.05% 이상 첨가하는 것이 바람직하다.
반면에 Cr 함량이 0.5% 초과인 경우에는 열간 프레스 성형품의 조립 공정에서 요구되는 소입성을 지나치게 증가시켜 용접성을 열화시킬 우려가 있다. 따라서, Cr 함량은 0.5% 이하인 것이 바람직하며, 보다 바람직하게는 0.45% 이하, 보다 더 바람직하게는 0.4% 이하이다.
B: 0.0005~0.005%
B는 열간 프레스 성형용 강판의 경화능 증가에 대단히 유용한 원소로서 극미량 첨가하여도 금형냉각 또는 소입 열처리후 강도 증가에 크게 기여하는 원소이다.
B 함량이 0.0005% 미만인 경우에는 상술한 효과가 불충분하고, 0.005% 초과인 경우에는 첨가량 대비 소입성 증가 효과는 둔화되며, 연속주조 슬라브의 코너부 결함 발생을 조장한다.
Mo: 0.05~0.5%
Mo는 Cr과 함께 열간 프레스 성형용 강판의 소입성을 향상시키고, 소입 강도 안정화에 기여하는 원소이다. 뿐만 아니라 열간압연 및 냉간압연시의 소둔공정, 그리고 열간 프레스 성형 공정의 가열단계에서 오스테나이트 온도역을 낮은 온도측으로 확대시키고, 강중의 P 편석을 완화시키는데 효과적인 원소이다.
Mo함량이 0.05% 미만인 경우에는 상술한 효과가 불충분하고, Mo 함량이 0.5% 초과인 경우에는 강도 상승에는 유리하나 첨가량 대비 강도 상승 효과가 감소되어 비경제적이다.
N: 0.01% 이하
N은 불순물로서 연속주조 공정 동안 AlN 등의 석출을 촉진하여 연주주편 코너 균열을 조장한다. 따라서 N 함량을 0.01% 이하로 제어하는 것이 바람직하다.
N 함량의 하한은 특별히 한정할 필요는 없으나, 0%로 제어하기 위해서는 과다한 비용이 소모되므로 0%는 제외될 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
상술한 성분 외에 중량%로, Cu: 0.05~0.5%, Ni: 0.05~0.5% 및 V: 0.05~0.3% 중 1종 이상을 추가로 포함할 수 있다.
Cu: 0.05~0.5%
Cu는 강의 내식성 향상에 기여하는 원소이다. 또한, Cu는 열간 프레스 성형후 인성 증가를 위하여 템퍼링을 행할 경우 과포화된 구리는 입실론 카바이드로 석출되면서 시효경화 효과를 발휘하는 원소이다.
Cu 함량이 0.05% 미만인 경우에는 상술한 효과가 불충분하고, Cu 함량이 0.5% 초과인 경우에는 강판 제조공정에서 표면결함을 유발하고, 내식성 측면에서 첨가 대비 비경제적이다.
Ni: 0.05~0.5%
Ni은 열간 프레스 성형용 강판의 강도 및 인성 향상에 유효할 뿐만 아니라 소입성을 증가시키는 효과가 있으며, Cu 단독 첨가시 야기되는 핫 숏트닝 감수성을 저감하는데 효과적이다. 또한, 열간압연 및 냉간압연시의 소둔공정, 그리고 열간 프레스 성형 공정의 가열단계에서 오스테나이트 온도역을 낮은 온도측으로 확대시키는 효과가 있다.
Ni함량이 0.05% 미만에서는 상술한 효과가 불충분하고, 0.5% 초과인 경우에는 소입성 개선이나 강도 상승에는 유리하나 첨가 대비 소입성 향상 효과는 감소되어 비경제적이다.
V: 0.05~0.3%
V는 강의 결정립 미세화 및 수소지연파괴 방지에 유효한 원소이다. 즉, 열간압연의 가열공정에서 오스테나이트 결정립 성장을 억제할 뿐만 아니라, 열간압연 단계에서 미재결정역 온도를 상승시킴으로써 최종 조직을 미세화시키는 데 기여한다. 이처럼 미세화된 조직은 후공정의 열간성형 공정에서의 결정립 미세화를 유발하여 P와 같은 불순물을 분산시키는데 효과적이다. 또한, 소입 열처리 조직내에서 석출물로 존재하면 강중의 수소가 trap되어 수소지연파괴를 억제할수 있다.
V 함량이 0.05% 미만인 경우에는 상술한 효과가 불충분하고, 0.3% 초과인 경우에는 이상 첨가되면 연속주조시 슬라브 균열에 민감해지는 문제점이 있다.
이하, 본 발명의 미세조직에 대하여 상세히 설명한다.
본 발명의 미세조직은 면적분율로 템퍼드 마르텐사이트를 90% 이상, 페라이트 5% 이하, 나머지 베이나이트를 포함한다.
템퍼드 마르텐사이트가 90% 미만이거나 페라이트가 5% 초과인 경우에는 목표로 하는 강도를 확보하기 어려운 문제점이 있다.
이때, 보다 바람직하게는 템퍼드 마르텐사이트 단상일 수 있다.
또한, 본 발명에 따른 템퍼드 마르텐사이트 강은 인장강도와 균일연신율의 곱(TS*U-El)이 10000MPa% 이상이고, 항복비가 0.4~0.6이다.
종래의 열처리형 보론 첨가 열처리 강에 비하여 인장강도와 균일연신율의 발란스가 현저하게 우수하며 항복비가 낮을 뿐만 아니라, 이러한 물성을 확보함으로써 자동차 샤시나 차체에 사용되는 열처리형 부품의 경량화와 내구수명 향상에 기여할 수 있다.
또한, 본 발명에 따른 템퍼드 마르텐사이트 강은 인장강도가 1500MPa 이상일 수 있다.
항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강의 제조방법
이하, 본 발명의 다른 일 측면인 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강의 제조방법에 대하여 상세히 설명한다.
본 발명의 다른 일 측면인 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강의 제조방법은 상술한 본 발명의 합금조성을 만족하는 강을 준비하는 단계; 상기 강을 850~960℃의 온도범위로 가열하여 100~1000초 동안 유지하는 단계; 및 상기 가열된 강을 (마르텐사이트 임계 냉각속도)~300℃/sec의 냉각속도로 Mf-50℃ ~ Mf+100℃의 냉각종료온도까지 냉각한 후, 3~30분 동안 유지하는 단계;를 포함한다.
강을 준비하는 단계
상술한 본 발명의 합금조성을 만족하는 강을 준비한다. 본 발명은 열처리에 특징이 있는 것으로 강을 준비하는 단계는 특별히 한정하지 않으나, 구체적인 예를 들면 하기와 같다.
예를 들어, 상술한 본 발명의 합금조성을 만족하는 슬라브를 1150~1300℃로 가열하는 단계; 상기 가열된 슬라브를 Ar3~950℃에서 마무리 열간압연하여 열연강판을 얻는 단계; 및 상기 열연강판을 500~750℃에서 권취하는 단계;를 포함하여 제조된 강을 준비할 수 있다.
슬라브를 1150~1300℃의 온도범위에서 가열함으로써, 슬라브의 조직을 균질하게 하고, 니오비움, 티타늄, 바나디움 등과 같은 탄질화 석출물들이 일부 고용되기도 하나, 여전히 슬라브 입성장을 억제하여 결정립이 과도하게 성장되는 것을 방지할 수 있다.
마무리 열간압연 온도가 Ar3 미만인 경우에는 오스테나이트 중 일부가 이미 페라이트로 변태된 2상역(페라이트와 오스테나이트가 공존하는 영역)에서 열간압연이 행해지므로, 변형저항이 불균일하게 되어 압연 통판성이 나빠지고, 페라이트 상에 응력이 집중되어 판파단 가능성이 높아질 우려가 있다. 반면에 마무리 열간압연 온도가 950℃ 초과인 경우에는 모래형 스케일 등의 표면결함이 발생될 우려가 있다.
권취온도가 500℃ 미만인 경우에는 마르텐사이트 같은 저온조직 형성으로 열연강판의 강도가 현저하게 상승되는 문제가 있으며, 특히 코일 폭방향으로 과냉되어 재질편차가 증가하면 후속되는 냉연공정에서 압연 통판성이 저하되는 경우가 발생될 수 있고, 열연제품으로 용접강관을 제조할 경우에도 강관 용접부 성형 또는 용접불량을 야기시킬 가능성이 있다. 반면에, 권취온도가 750℃ 초과인 경우에는 강판 표면에 내부산화가 조장되고, 상기 내부산화물이 산세공정에 의하여 제거하는 경우에는 결정입계에 틈이 형성되어 최종 부품에서 강관의 편평 성능을 열화시킬 우려가 있다.
이때, 상기 권취된 열연강판을 냉간압연하여 냉연강판을 얻는 단계; 상기 냉연강판을 750~850℃에서 연속소둔하는 단계; 및 상기 연속소둔된 냉연강판을 400~600℃에서 과시효 처리하는 단계;를 추가로 포함할 수 있다.
냉간압연은 특별히 제한하지 않으며, 냉간압하율은 40~70%일 수 잇다.
연속소둔 온도가 750℃ 미만인 경우에는 재결정이 충분하지 않을 수 있으며, 850℃ 초과인 경우에는 결정립이 조대화될 뿐만 아니라 소둔 가열 원단위가 상승되는 문제점이 있다.
과시효 처리 온도를 400~600℃로 제어하는 이유는 냉연강판의 미세조직이 페라이트 기지에 퍼얼라이트 또는 베이나이트가 일부 포함된 조직으로 구성되도록 함으로써, 냉연강판의 강도를 열연강판과 비슷한 수준의 인장강도를 갖도록 하기 위함이다.
상기 준비된 강을 슬리팅하여 블랭크 형태로 오스테나이트 역까지 가열한후 추출하여 열간성형하고 연이어 소입하는 방법, ERW 강관을 제조한 후 오스테나이트 역까지 가열한 후 소입하는 방법, 또는 열간성형후 소입 열처리를 행하는 방법 등을 이용하여 최종 템퍼드 마르텐사이트 강을 제조할 수 있다.
즉, 하술하는 본원발명의 가열 단계에서의 가열온도 및 유지시간, 냉각 및 유지 단계에서의 냉각속도, 냉각종료온도 및 유지시간을 만족한다면 열간성형후 냉각매체를 이용하여 냉각하거나, 냉간성형을 먼저하고 가열하여 소입 냉각을 실시하는 방법, 가열후 금형으로 직접 열간성형과 냉각을 동시에 행하는 방법 등 다양한 방법을 통하여 최종 템퍼드 마르텐사이트 강을 제조할 수 있다.
가열 단계
상기 강을 850~960℃의 온도범위로 가열하여 100~1000초 동안 유지하여 용체화 처리한다.
가열온도가 850℃ 미만인 경우에는 가열로에서 강판을 추출하여 열간성형을 행하는 동안 온도가 저하될 수 있고, 이로 인하여 강판 표면으로부터 페라이트 변태가 진행되어 전 두께에 걸쳐 충분한 템퍼드 마르텐사이트가 생성되지 않아 목표로 하는 강도가 얻어지지 않을 수 있다. 반면에, 가열온도가 960℃를 초과하는 경우에는 오스테나이트 결정립의 조대화를 유발하며, 오스테나이트 입계에 불순물 P의 농화가 촉진되고, 표면 탈탄이 가속화되어 최종 열처리후 강도나 충격에너지를 저하시킬 우려가 있다.
냉각 및 유지 단계
상기 가열된 강을 (마르텐사이트 임계 냉각속도)~300℃/sec의 냉각속도로 Mf(마르텐사이트 변태 종료온도)-50℃ ~ Mf+100℃의 냉각종료온도까지 냉각한 후, 2~40분 동안 유지한다.
마르텐사이트 임계 냉각속도란 100% 마르텐사이트를 얻기 위한 최소 냉각속도를 의미하며, 본 발명의 성분 범위에 따라 20~30℃/sec로 측정된다.
마르텐사이트 임계 냉각속도 미만에서는 템퍼드 마르텐사이트를 주상으로 하는 최종 조직을 얻기 어려워 강도가 낮을 수 있으며, 냉각속도가 300℃/sec 초과인 경우에는 냉각속도 증가에 따른 강도 증가가 크지 않고, 냉각속도 증가를 위한 냉각설비가 추가되어야 한다는 점에서 비경제적이다.
냉각종료온도는 본 발명의 합금조성과 함께 대단히 중요한 인자이며, 냉각종료온도 및 유지시간에 의하여 재질이 결정되고, 본 발명의 재질특성이 발현된다. 여기서 냉각종료온도는 상기 가열된 강을 소입욕에 침지하여 냉각하는 방법을 이용할 경우에는 소입욕의 온도를 의미할 수 있다.
냉각종료온도가 Mf-50℃ 미만인 경우에는 항복강도가 상승하고 균일연신율이 저하하여, 항복비가 0.6을 초과할 수 있으며, 인장강도와 균일연신율의 곱(TS*U-El)이 10000MPa% 미만이 될 우려가 있다.
반면에 냉각종료온도가 Mf+100℃ 초과인 경우에는 베이나이트 등이 생성되고, 인장강도가 낮아져서 인장강도와 균일연신율의 곱(TS*U-El)이 10000MPa% 미만이 될 우려가 있다.
또한, 냉각종료 후 유지시간이 2분 미만인 경우에는 템퍼드 마르텐사이트보다는 마르텐사이트가 형성되어 항복강도는 상승하고, 균일연신율이 저하될 우려가 있다. 반면에, 유지시간이 40분 초과인 경우에는 강도가 저하될 우려가 있다.
따라서, 유지시간은 2~40분인 것이 바람직하며, 보다 바람직하게는 3~30분이다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예 1)
하기 표 1에 나타낸 성분조성을 갖는 강을 준비하였다. 상기 강은 하기 표 1에 나태낸 성분조성을 갖는 슬라브를 1200±20℃ 범위에서 180분 가열하여 균질화처리한 후, 조압연 및 마무리 압연을 행한 후 650℃에서 권취하여 제조된 두께 3.0mm의 열연강판이다. 상기 열연강판의 항복강도(YS), 인장강도(TS) 및 연신율(El)을 측정하여 하기 표 2에 기재하였다.
상기 열연강판을 산세처리하고, 930℃로 가열하여 6분 동안 유지한 후, 30℃/sec의 냉각속도로 하기 표 2에 기재된 냉각종료온도까지 냉각하였다. 냉각종료온도가 20℃인 경우에는 '-'로 표시하였으며 별도의 유지시간은 없었다. 냉각종료온도가 20℃ 초과인 경우에는 15분 동안 유지한 후 상온까지 공냉하였다.
또한, 냉각 후 뜨임 열처리를 행하지 않은 경우에는 뜨임 온도를 '-'로 표시하였으며, 냉각 후 뜨임 열처리를 행한 경우에는 하기 표 2에 기재된 뜨임 온도로 가열하여 30분 동안 유지한 후 냉각하였다.
상기 열처리 후의 항복강도(YS), 인장강도(TS), 균일연신율(U-El), 연신율(El), TS*U-El 및 항복비(YR)을 측정하여 하기 표 2에 기재하였다.
기계적 물성은 압연강판에 평행한 방향으로 JIS 5호 시편을 채취하여 측정하였다.
한편, Ms 및 Mf는 하기 관계식에 의해 구한 값이며, 하기 관계식에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이다.
Ms(℃) = 512-453*C-16.9*Ni+15*Cr-9.5*Mo+217*C^2-71.5*C*Mn-67.6*C*Cr
Mf(℃)= Ms-215
Figure PCTKR2017014845-appb-T000001
Figure PCTKR2017014845-appb-T000002
비교예인 1-1은 소입만 실시한 것이며, 1-3및 1-4 및 1-5는 소입후 뜨임을 실시한 경우이다. 1-2는 발명예로서 소입을 행함에 있어 냉각종료온도를 150℃로 한 경우이다. 이 때의 조직을 관찰한 결과, 1-1에서는 마텐사이트 조직이, 소입후 뜨임을 실시한 경우인 1-3, 1-4 및 1-5에서는 뜨임온도에 따라 다른 조직이 관찰되었다. 즉, 1-3에서는 마르텐사이트 라스 내에 미세한 판상 카바이드가 관찰되는 반면, 1-4 및 1-5에서는 세멘타이트가 관찰되었다.
발명예인 1-2에서는 마르텐사이트 라스 내에 판상의 카바이드가 석출된 템퍼드 마텐사이트 조직이 관찰되었으며, 면적분율로 템퍼드 마텐사이트가 96%, 페라이트가 2%, 베이나이트가 2%로 관찰되었다.
마르텐사이트 라스 내에 판상의 카바이드가 석출된 템퍼드 마텐사이트 조직인 것은 비교예인 1-3과 유사하나, 비교예 1-3보다 판상 카바이드의 양이 많고, 크기도 큰 것으로 관찰되었으며, 이러한 판상 카바이드의 영향으로 저항복비 및 높은 TS*U-El값을 확보할 수 있었던 것으로 판단된다.
표2에서 확인할 수 있듯이, 발명예인 1-2의 경우에는 TS*U-El이 10000MPa% 이상이고, 항복비가 0.6 이하이었다.
비교예인 1-1, 1-3, 1-4 및 1-5를 비교해 보면, 소입후 뜨임 온도가 상승하면 인장강도는 연속적으로 하락하고, 항복강도는 소입 직후 대비 상승하다가 220℃ 부근에서 피크(peak)를 보인 후 인장강도와 마찬가지로 연속적으로 저하되었다. 균일연신율은 220℃ 부근에서 peak를 보인 후 급격히 감소하였다가 뜨임온도가 높아지면 다시 상승하였다.
인장강도와 균일연신율의 발란스인 TS*U-El값을 살펴보면, 고온 뜨임(1-5) 대비 저온 뜨임(1-3)에서의 TS*U-El값이 높으며, 본 발명의 열처리를 행한 경우(1-2)에는 TS*U-El이 11000MPa% 이상으로 현저히 상승하였다.
(실시예 2)
하기 표 3에 나타낸 성분조성을 갖는 강을 준비하였다. 상기 강은 하기 표 3에 나태낸 성분조성을 갖는 슬라브를 1200±20℃ 범위에서 180분 가열하여 균질화처리한 후, 조압연 및 마무리 압연을 행한 후 하기 표 4에 기재된 권취온도에서 권취하여 제조된 두께 3.0mm의 열연강판이다. 상기 열연강판의 항복강도(YS), 인장강도(TS) 및 연신율(El)을 측정하여 하기 표 4에 기재하였다.
상기 열연강판을 산세처리하고, 930℃로 가열하여 6분 동안 유지한 후, 30℃/sec의 냉각속도로 하기 표 4에 기재된 냉각종료온도까지 냉각하였다. 냉각종료온도가 20℃인 경우에는 '-'로 표시하였으며 별도의 유지시간은 없었다. 냉각종료온도가 20℃ 초과인 경우에는 15분 동안 유지한 후 상온까지 공냉하였다.
또한, 냉각 후 뜨임 열처리를 행하지 않은 경우에는 뜨임 온도를 '-'로 표시하였으며, 냉각 후 뜨임 열처리를 행한 경우에는 하기 표 4에 기재된 뜨임 온도로 가열하여 30분 동안 유지한 후 냉각하였다.
상기 열처리 후의 항복강도(YS), 인장강도(TS), 균일연신율(U-El), 연신율(El), TS*U-El 및 항복비(YR)을 측정하여 하기 표 4에 기재하였다.
기계적 물성은 압연강판에 평행한 방향으로 JIS 5호 시편을 채취하여 측정하였다.
한편, Ms 및 Mf는 하기 관계식에 의해 구한 값이며, 하기 관계식에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이다.
Ms(℃) = 512-453*C-16.9*Ni+15*Cr-9.5*Mo+217*C^2-71.5*C*Mn-67.6*C*Cr
Mf(℃)= Ms-215
Figure PCTKR2017014845-appb-T000003
Figure PCTKR2017014845-appb-T000004
발명예들의 경우에는 TS*U-El이 10000MPa% 이상이고, 항복비가 0.6 이하이었다.
200℃ 또는 220℃에서 저온 뜨임을 행한 경우(2-1, 3-1, 4-1)에는 항복강도는 강종에 따라 수준이 상이하나 항복비는 0.7~0.85 범위에 있으며,
500℃에서 고온 뜨임을 행한 경우(2-2, 3-2, 4-2)에는 항복비가 0.9~0.95 범위에 있음을 알 수 있다.
또한, 3-1을 제외하고는 뜨임을 행한 경우에는 TS*U-El이 10000MPa% 미만으로 측정되었다. 또한 비교예 3-1의 경우, TS*U-El이 10000MPa% 를 초과하지만 항복비가 0.805가 되어 본 발명의 저항복비 특성을 벗어난다.
비교예인 3-3의 경우, 냉각종료온도가 60℃로 본 발명에서 제시한 Mf-50℃를 미달하여 인장변형이 1~3% 변형율에서 시편이 갑작스럽게 절손되어 낮은 인장강도와 연신율이 얻어졌다. 절손된 인장시편의 파면을 확인한 결과, 수소지연파괴에 의한 입계파괴 양상을 일부 관찰할 수 있었다.
비교예 3-7의 경우, 냉각종료온도가 60℃로 본 발명에서 제시한 Mf+100℃를 초과하여 TS*U-El이 10000MPa% 미만이었으며, 항복비가 0.6 초과였다.
(실시예 3)
하기 표 5에 나타낸 성분조성을 갖는 강을 준비하였다. 상기 강은 하기 표 5에 나타낸 성분조성을 갖는 슬라브를 1200±20℃ 범위에서 180분 가열하여 균질화처리한 후, 조압연 및 마무리 압연을 행한 후 하기 표 6에 기재된 권취온도에서 권취하여 제조된 두께 3.0mm의 열연강판이다. 상기 열연강판의 항복강도(YS), 인장강도(TS) 및 연신율(El)을 측정하여 하기 표 6에 기재하였다. 아울러 강종 1은 1800MPa급, 강2는 1500MPa, 강3 및 강5~19까지는 2000MPa급의 뜨임강도를 가지도록 설계된 것이며, 소입후 냉각정지 온도에 따라 인장강도 수준이 변화되므로 각각 이들 강도에 미달하면 표 6에서와 같이 비교예로 표기하였다.
상기 열연강판을 산세처리하여 산세강판(PO)을 만들었고, 일부는 냉연강판(CR)을 만들었다. 냉연간판은 산세후 50%의 압하율로 냉간압연한 후, 800℃에서 소둔처리하였고, 연이어 450℃에서 과시효 처리하여 냉연강판을 제조하였다. 상기 산세강판(PO) 또는 냉연강판(CR)을 930℃로 가열하여 6분 동안 유지한 후, 30℃/sec의 냉각속도로 하기 표 6에 기재된 냉각종료온도까지 냉각하여 15분 동안 유지한 후 상온까지 공냉하였다.
상기 열처리 후의 항복강도(YS), 인장강도(TS), 균일연신율(U-El), 연신율(El), TS*U-El 및 항복비(YR)을 측정하여 하기 표 6에 기재하였다.
기계적 물성은 압연강판에 평행한 방향으로 JIS 5호 시편을 채취하여 측정하였다.
한편, Ms 및 Mf는 하기 관계식에 의해 구한 값이며, 하기 관계식에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이다.
Ms(℃) = 512-453*C-16.9*Ni+15*Cr-9.5*Mo+217*C^2-71.5*C*Mn-67.6*C*Cr
Mf(℃)= Ms-215
Figure PCTKR2017014845-appb-T000005
Figure PCTKR2017014845-appb-T000006
본 발명에서 제시한 합금조성 및 제조조건을 모두 만족하는 발명예들의 경우 TS*U-El 값이 10000MPa% 이상이었으며, 항복비가 0.4~0.6이었다.
상기 표 6에서 열처리 전 인장강도가 1000MPa 이상인 경우에는 절단 또는 강관제조 공정에서 어려움이 발생되므로 비교예로 하였으며, TS*U-El 값이 10000MPa% 미만이거나 항복비가 0.4~0.6을 벗어난 경우도 비교예로 기재하였다.
비교예인 6-1의 경우 Mn 함량이 과다하여 열처리 전 인장강도가 1000MPa 이상이었다.
비교예인 7-1의 경우 P 함량이 과다하여 TS*U-El 값이 10000MPa% 미만으로 열위하였다.
강종 8~17은 강종 8을 base로 하여 Si, Mn, Ti, Cu, Cu-Ni 첨가가 열처리 전후 재질에 미치는 영향을 알아본 것이다.
강종 9 및 10은 Si 함량이 증가하여 열처리 전후 인장강도가 증가하였다. 특히, 10-1 내지 10-5에서 확인할 수 있듯이, 냉각종료온도가 60~200℃ 범위에서는 저항복비 특성이 나타나 정지온도가 높아질수록 균일연신율이 증가하고 항복비가 감소되는 경향을 보이나, 250℃ 조건(10-5)에서는 항복비가 다시 상승함과 동시에 균일연신율이 감소하고, TS*U-El값이 10000MPa% 미만인 것으로 확인되었다.
강종 13~15는 Ti, Nb, V 첨가 영향을 확인하기 위한 것이다. 강 13 및 15의 경우 본원 발명 기준을 충족시키나, Nb첨가강인 강종 14의 경우 열처리 후 인장강도가 현저하게 저하되었고, TS*U-El값이 기준에 훨씬 미치지 못함을 알 수 있다.
강종 16 및 17은 각각 Cu, Cu-Ni을 첨가한 강이다. 특히 강종 17에 대하여 냉각종료온도의 영향을 실험한 결과, 냉각종료온도가 상승하면 항복비는 점차 낮아지다가 200℃를 넘어서면 항복비는 다시 상승하며, 250℃ 조건(17-4)에서는 본원 발명의 항복비 범위를 벗어나게 된다
비교예인 19-1의 경우 Mn 함량이 과다하여 열처리 전 인장강도가 1000MPa 이상이었다.
비교예인 20-1의 경우 Mn 함량이 미달하고, 비교예인 21-1의 경우 C 함량이 미달하여 TS*U-El값이 10000MPa% 미만이었다.
비교예인 23-1의 경우 C 함량이 과다하여 열처리 전 인장강도가 1000MPa 이상이었다.
(실시예 4)
냉각종료온도에서의 유지시간이 재질에 미치는 영향을 알아보기 위하여 상기 표 5에서 강종 9의 성분조성을 갖는 슬라브를 1200±20℃ 범위에서 180분 가열하여 균질화처리한 후, 조압연 및 마무리 압연을 행한 후 680℃에서 권취하여 두께 3.0mm의 열연강판을 제조하였다. 상기 열연강판의 항복강도(YS), 인장강도(TS) 및 연신율(El)을 측정하여 하기 표 6에 기재하였다.
상기 열연강판을 산세처리(PO)하고, 930℃로 가열하여 6분 동안 유지한 후, 30℃/sec의 냉각속도로 150℃의 냉각종료온도까지 냉각하여 하기 표 7에 기재된 유지시간 동안 유지한 후 상온까지 공냉하였다.
상기 열처리 후의 항복강도(YS), 인장강도(TS), 균일연신율(U-El), 연신율(El), TS*U-El 및 항복비(YR)을 측정하여 하기 표 6에 기재하였다.
기계적 물성은 압연강판에 평행한 방향으로 JIS 5호 시편을 채취하여 측정하였다.
Figure PCTKR2017014845-appb-T000007
상기 표 7에서 확인할 수 있듯이, 유지시간이 3~30분을 만족하는 경우에는 TS*U-El 값이 10000MPa% 이상이었으며, 항복비가 0.4~0.6이었다.
비교예인 9-1의 경우 유지시간이 너무 짧았고, 템퍼드 마르텐사이트 보다는 마르텐사이트가 형성되었으며 항복강도는 상승하고, 균일연신율이 저하되어 TS*U-El 값이 10000MPa% 미만이었으며, 항복비가 0.6 초과였다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (8)

  1. 중량%로, C: 0.2~0.6%, Si: 0.01~2.2%, Mn: 0.5~3.0%, P: 0.015% 이하, S: 0.005% 이하, Al: 0.01~0.1%, Ti: 0.01~0.1%, Cr: 0.05~0.5%, B: 0.0005~0.005%, Mo: 0.05~0.5%, N: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며,
    항복비가 0.4~0.6이며, 인장강도와 균일연신율의 곱(TS*U-El)이 10000MPa% 이상이고,
    미세조직은 면적분율로 템퍼드 마르텐사이트를 90% 이상, 페라이트 5% 이하, 나머지 베이나이트를 포함하는 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강.
  2. 제1항에 있어서,
    상기 템퍼드 마르텐사이트 강은 중량%로, Cu: 0.05~0.5%, Ni: 0.05~0.5% 및 V: 0.05~0.3% 중 1종 이상을 추가로 포함하는 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강.
  3. 제1항에 있어서,
    상기 템퍼드 마르텐사이트 강의 미세조직은 템퍼드 마르텐사이트 단상인 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강.
  4. 제1항에 있어서,
    상기 템퍼드 마르텐사이트 강은 인장강도가 1500MPa 이상인 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강.
  5. 중량%로, C: 0.2~0.6%, Si: 0.01~2.2%, Mn: 0.5~3.0%, P: 0.015% 이하, S: 0.005% 이하, Al: 0.01~0.1%, Ti: 0.01~0.1%, Cr: 0.05~0.5%, B: 0.0005~0.005%, Mo: 0.05~0.5%, N: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 강을 준비하는 단계;
    상기 강을 850~960℃의 온도범위로 가열하여 100~1000초 동안 유지하는 단계; 및
    상기 가열된 강을 (마르텐사이트 임계 냉각속도)~300℃/sec의 냉각속도로 Mf-50℃ ~ Mf+100℃의 냉각종료온도까지 냉각한 후, 2~40분 동안 유지하는 단계;를 포함하는 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강의 제조방법.
  6. 제5항에 있어서,
    상기 강은,
    슬라브를 1150~1300℃로 가열하는 단계;
    상기 가열된 슬라브를 Ar3~950℃에서 마무리 열간압연하여 열연강판을 얻는 단계; 및
    상기 열연강판을 500~750℃에서 권취하는 단계;를 포함하여 제조된 강인 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강의 제조방법.
  7. 제6항에 있어서,
    상기 권취된 열연강판을 냉간압연하여 냉연강판을 얻는 단계; 상기 냉연강판을 750~850℃에서 연속소둔하는 단계; 및 상기 연속소둔된 냉연강판을 400~600℃에서 과시효 처리하는 단계;를 추가로 포함하는 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강의 제조방법.
  8. 제5항에 있어서,
    상기 강은 중량%로, Cu: 0.05~0.5%, Ni: 0.05~0.5% 및 V: 0.05~0.3% 중 1종 이상을 추가로 포함하는 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강의 제조방법.
PCT/KR2017/014845 2016-12-23 2017-12-15 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법 WO2018117544A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780079205.5A CN110100032B (zh) 2016-12-23 2017-12-15 屈服比低且均匀延伸率优异的回火马氏体钢及其制造方法
US16/471,265 US20190382864A1 (en) 2016-12-23 2017-12-15 Tempered martensitic steel having low yield ratio and excelllent uniform elongation, and manufacturing method therefor
JP2019533629A JP6893560B2 (ja) 2016-12-23 2017-12-15 降伏比が低く均一伸びに優れた焼戻しマルテンサイト鋼及びその製造方法
EP17884040.1A EP3561119B1 (en) 2016-12-23 2017-12-15 Tempered martensitic steel having low yield ratio and excellent uniform elongation, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160178225A KR101917472B1 (ko) 2016-12-23 2016-12-23 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법
KR10-2016-0178225 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018117544A1 true WO2018117544A1 (ko) 2018-06-28

Family

ID=62626705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014845 WO2018117544A1 (ko) 2016-12-23 2017-12-15 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법

Country Status (6)

Country Link
US (1) US20190382864A1 (ko)
EP (1) EP3561119B1 (ko)
JP (1) JP6893560B2 (ko)
KR (1) KR101917472B1 (ko)
CN (1) CN110100032B (ko)
WO (1) WO2018117544A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025877A (zh) * 2019-12-24 2021-06-25 通用汽车环球科技运作有限责任公司 高性能压制硬化钢
RU2785760C1 (ru) * 2019-06-12 2022-12-12 Арселормиттал Холоднокатаная мартенситная сталь и способ получения мартенситной стали

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477978B1 (ja) * 2018-03-29 2019-03-06 新日鐵住金株式会社 ホットスタンプ成形体
WO2019186928A1 (ja) * 2018-03-29 2019-10-03 日本製鉄株式会社 ホットスタンプ成形体
JP6950820B2 (ja) * 2018-04-09 2021-10-13 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2020039696A1 (ja) * 2018-08-22 2020-02-27 Jfeスチール株式会社 高強度鋼板及びその製造方法
JP7425610B2 (ja) * 2020-01-21 2024-01-31 株式会社神戸製鋼所 耐遅れ破壊特性に優れた高強度鋼板
KR102289525B1 (ko) * 2020-02-19 2021-08-12 현대제철 주식회사 핫 스탬핑 부품 제조방법 및 이를 이용하여 제조된 핫 스탬핑 부품
CN112981237B (zh) * 2021-01-28 2022-10-11 江阴兴澄特种钢铁有限公司 一种球笼式万向节保持架用钢及其生产方法
CN113186464B (zh) * 2021-04-25 2022-06-10 东北大学 一种超低碳高强度高塑马氏体钢及其制备方法
CN113462978B (zh) * 2021-06-30 2022-12-09 重庆长安汽车股份有限公司 一种汽车用超高强度马氏体钢及轧制方法
CN113399780B (zh) * 2021-06-30 2022-07-05 华中科技大学 基于电弧熔丝增材制造300m钢的方法及300m钢
CA3235635A1 (en) * 2021-10-28 2023-05-04 Arcelormittal Hot rolled and steel sheet and a method of manufacturing thereof
CA3233088A1 (en) 2021-10-29 2023-05-04 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108152A (ja) * 1992-09-30 1994-04-19 Kobe Steel Ltd 曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP2006037205A (ja) 2004-07-30 2006-02-09 Jfe Steel Kk 耐疲労特性に優れた中空ドライブシャフトの製造方法
KR20100116608A (ko) * 2008-01-31 2010-11-01 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
KR101082680B1 (ko) * 2006-07-14 2011-11-15 가부시키가이샤 고베 세이코쇼 고강도 강판 및 그 제조 방법
US20140322559A1 (en) * 2011-05-18 2014-10-30 Thyssenkrupp Steel Europe Ag High-Strength Flat Steel Product and Method for Producing Same
KR20160078850A (ko) 2014-12-24 2016-07-05 주식회사 포스코 열처리 강재, 내구특성이 우수한 초고강도 성형품 및 그 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254663B2 (ja) * 2004-09-02 2009-04-15 住友金属工業株式会社 高強度薄鋼板およびその製造方法
WO2007129676A1 (ja) * 2006-05-10 2007-11-15 Sumitomo Metal Industries, Ltd. 熱間プレス成形鋼板部材およびその製造方法
JP4947176B2 (ja) * 2010-03-24 2012-06-06 Jfeスチール株式会社 超高強度冷延鋼板の製造方法
EP2695960B1 (en) * 2011-03-29 2018-02-21 JFE Steel Corporation Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
BR112014017113B1 (pt) * 2012-01-13 2019-03-26 Nippon Steel & Sumitomo Metal Corporation Aço estampado a quente e método para produzir o mesmo
EP2946848B1 (en) * 2013-01-18 2018-07-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Manufacturing method for hot press formed steel member
SI2789699T1 (sl) * 2013-08-30 2017-06-30 Rautaruukki Oyj Utrjeni vroče valjani jekleni proizvod in metoda za proizvodnjo le-tega
WO2016177420A1 (de) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Stahlflachprodukt und verfahren zu seiner herstellung
KR101797316B1 (ko) * 2015-12-21 2017-11-14 주식회사 포스코 고강도 및 우수한 내구성을 가지는 자동차용 부품 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108152A (ja) * 1992-09-30 1994-04-19 Kobe Steel Ltd 曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP2006037205A (ja) 2004-07-30 2006-02-09 Jfe Steel Kk 耐疲労特性に優れた中空ドライブシャフトの製造方法
KR101082680B1 (ko) * 2006-07-14 2011-11-15 가부시키가이샤 고베 세이코쇼 고강도 강판 및 그 제조 방법
KR20100116608A (ko) * 2008-01-31 2010-11-01 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
US20140322559A1 (en) * 2011-05-18 2014-10-30 Thyssenkrupp Steel Europe Ag High-Strength Flat Steel Product and Method for Producing Same
KR20160078850A (ko) 2014-12-24 2016-07-05 주식회사 포스코 열처리 강재, 내구특성이 우수한 초고강도 성형품 및 그 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802417C2 (ru) * 2019-05-15 2023-08-28 Арселормиттал Холоднокатаная мартенситная сталь и способ получения указанной стали
RU2788613C1 (ru) * 2019-06-03 2023-01-23 Арселормиттал Холоднокатаный и покрытый стальной лист и способ его получения
RU2785760C1 (ru) * 2019-06-12 2022-12-12 Арселормиттал Холоднокатаная мартенситная сталь и способ получения мартенситной стали
CN113025877A (zh) * 2019-12-24 2021-06-25 通用汽车环球科技运作有限责任公司 高性能压制硬化钢

Also Published As

Publication number Publication date
EP3561119A1 (en) 2019-10-30
CN110100032B (zh) 2021-05-07
CN110100032A (zh) 2019-08-06
EP3561119A4 (en) 2019-10-30
KR20180074284A (ko) 2018-07-03
KR101917472B1 (ko) 2018-11-09
EP3561119B1 (en) 2020-12-02
JP6893560B2 (ja) 2021-06-23
US20190382864A1 (en) 2019-12-19
JP2020509208A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2018117544A1 (ko) 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법
WO2017111456A1 (ko) 고강도 및 우수한 내구성을 가지는 자동차용 부품 및 그 제조방법
WO2017111525A1 (ko) 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
WO2016105089A1 (ko) 열처리 강재, 내구특성이 우수한 초고강도 성형품 및 그 제조방법
WO2017078278A1 (ko) 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
WO2019124688A1 (ko) 충돌특성 및 성형성이 우수한 고강도 강판 및 이의 제조방법
WO2015099382A1 (ko) 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
WO2019124693A1 (ko) 가공성이 우수한 고강도 강판 및 이의 제조방법
WO2017222342A1 (ko) 강도 및 성형성이 우수한 클래드 강판 및 그 제조방법
WO2018117552A1 (ko) 굽힘가공성이 우수한 초고강도 열연강판 및 그 제조방법
WO2019132342A1 (ko) 내충격성이 우수한 열연강판, 강관, 부재 및 그 제조 방법
WO2017222189A1 (ko) 항복강도가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2019231023A1 (ko) Twb 용접 특성이 우수한 열간성형용 al-fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
WO2019088762A1 (ko) 저온인성이 우수한 용접강관용 강재, 용접후열처리된 강재 및 이들의 제조방법
WO2017105026A1 (ko) 화성처리성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2020111702A1 (ko) 내구성이 우수한 고강도 강재 및 이의 제조방법
WO2018117766A1 (ko) 저온에서의 파괴 개시 및 전파 저항성이 우수한 고강도 강재 및 그 제조방법
WO2018056792A1 (ko) 내식성 및 점용접성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법
WO2019124776A1 (ko) 굽힘성 및 저온인성이 우수한 고강도 열연강판 및 이의 제조방법
WO2019132400A1 (ko) 재질편차가 적고, 신장플랜지성 및 실수율이 우수한 고강도 냉연강판 및 그 제조방법
WO2018117539A1 (ko) 용접성 및 연성이 우수한 고강도 열연강판 및 이의 제조방법
WO2022086050A1 (ko) 연성이 우수한 초고강도 강판 및 그 제조방법
WO2018117500A1 (ko) 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법
WO2022097965A1 (ko) 내수소취성 및 내충돌성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017884040

Country of ref document: EP

Effective date: 20190723